SUNRPC: Add a (empty for the moment) destructor for rpc_wait_queues
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static void
60 __rpc_disable_timer(struct rpc_task *task)
61 {
62         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
63         task->tk_timeout = 0;
64 }
65
66 /*
67  * Set up a timer for the current task.
68  */
69 static void
70 __rpc_add_timer(struct rpc_task *task)
71 {
72         if (!task->tk_timeout)
73                 return;
74
75         dprintk("RPC: %5u setting alarm for %lu ms\n",
76                         task->tk_pid, task->tk_timeout * 1000 / HZ);
77
78         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
79         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
80 }
81
82 /*
83  * Delete any timer for the current task. Because we use del_timer_sync(),
84  * this function should never be called while holding queue->lock.
85  */
86 static void
87 rpc_delete_timer(struct rpc_task *task)
88 {
89         if (RPC_IS_QUEUED(task))
90                 return;
91         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
92                 del_singleshot_timer_sync(&task->tk_timer);
93                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
94         }
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102         struct list_head *q;
103         struct rpc_task *t;
104
105         INIT_LIST_HEAD(&task->u.tk_wait.links);
106         q = &queue->tasks[task->tk_priority];
107         if (unlikely(task->tk_priority > queue->maxpriority))
108                 q = &queue->tasks[queue->maxpriority];
109         list_for_each_entry(t, q, u.tk_wait.list) {
110                 if (t->tk_owner == task->tk_owner) {
111                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112                         return;
113                 }
114         }
115         list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128         BUG_ON (RPC_IS_QUEUED(task));
129
130         if (RPC_IS_PRIORITY(queue))
131                 __rpc_add_wait_queue_priority(queue, task);
132         else if (RPC_IS_SWAPPER(task))
133                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134         else
135                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136         task->tk_waitqueue = queue;
137         queue->qlen++;
138         rpc_set_queued(task);
139
140         dprintk("RPC: %5u added to queue %p \"%s\"\n",
141                         task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         if (!list_empty(&task->u.tk_wait.links)) {
152                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155         }
156         list_del(&task->u.tk_wait.list);
157 }
158
159 /*
160  * Remove request from queue.
161  * Note: must be called with spin lock held.
162  */
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 {
165         if (RPC_IS_PRIORITY(queue))
166                 __rpc_remove_wait_queue_priority(task);
167         else
168                 list_del(&task->u.tk_wait.list);
169         queue->qlen--;
170         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171                         task->tk_pid, queue, rpc_qname(queue));
172 }
173
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 {
176         queue->priority = priority;
177         queue->count = 1 << (priority * 2);
178 }
179
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 {
182         queue->owner = pid;
183         queue->nr = RPC_BATCH_COUNT;
184 }
185
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 {
188         rpc_set_waitqueue_priority(queue, queue->maxpriority);
189         rpc_set_waitqueue_owner(queue, 0);
190 }
191
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 {
194         int i;
195
196         spin_lock_init(&queue->lock);
197         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198                 INIT_LIST_HEAD(&queue->tasks[i]);
199         queue->maxpriority = nr_queues - 1;
200         rpc_reset_waitqueue_priority(queue);
201 #ifdef RPC_DEBUG
202         queue->name = qname;
203 #endif
204 }
205
206 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
207 {
208         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
209 }
210
211 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
212 {
213         __rpc_init_priority_wait_queue(queue, qname, 1);
214 }
215 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
216
217 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
218 {
219 }
220 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
221
222 static int rpc_wait_bit_killable(void *word)
223 {
224         if (fatal_signal_pending(current))
225                 return -ERESTARTSYS;
226         schedule();
227         return 0;
228 }
229
230 #ifdef RPC_DEBUG
231 static void rpc_task_set_debuginfo(struct rpc_task *task)
232 {
233         static atomic_t rpc_pid;
234
235         task->tk_magic = RPC_TASK_MAGIC_ID;
236         task->tk_pid = atomic_inc_return(&rpc_pid);
237 }
238 #else
239 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
240 {
241 }
242 #endif
243
244 static void rpc_set_active(struct rpc_task *task)
245 {
246         struct rpc_clnt *clnt;
247         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
248                 return;
249         rpc_task_set_debuginfo(task);
250         /* Add to global list of all tasks */
251         clnt = task->tk_client;
252         if (clnt != NULL) {
253                 spin_lock(&clnt->cl_lock);
254                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
255                 spin_unlock(&clnt->cl_lock);
256         }
257 }
258
259 /*
260  * Mark an RPC call as having completed by clearing the 'active' bit
261  */
262 static void rpc_mark_complete_task(struct rpc_task *task)
263 {
264         smp_mb__before_clear_bit();
265         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
266         smp_mb__after_clear_bit();
267         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
268 }
269
270 /*
271  * Allow callers to wait for completion of an RPC call
272  */
273 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
274 {
275         if (action == NULL)
276                 action = rpc_wait_bit_killable;
277         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
278                         action, TASK_KILLABLE);
279 }
280 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
281
282 /*
283  * Make an RPC task runnable.
284  *
285  * Note: If the task is ASYNC, this must be called with
286  * the spinlock held to protect the wait queue operation.
287  */
288 static void rpc_make_runnable(struct rpc_task *task)
289 {
290         rpc_clear_queued(task);
291         if (rpc_test_and_set_running(task))
292                 return;
293         /* We might have raced */
294         if (RPC_IS_QUEUED(task)) {
295                 rpc_clear_running(task);
296                 return;
297         }
298         if (RPC_IS_ASYNC(task)) {
299                 int status;
300
301                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
302                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
303                 if (status < 0) {
304                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
305                         task->tk_status = status;
306                         return;
307                 }
308         } else
309                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
310 }
311
312 /*
313  * Prepare for sleeping on a wait queue.
314  * By always appending tasks to the list we ensure FIFO behavior.
315  * NB: An RPC task will only receive interrupt-driven events as long
316  * as it's on a wait queue.
317  */
318 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
319                         rpc_action action)
320 {
321         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
322                         task->tk_pid, rpc_qname(q), jiffies);
323
324         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
325                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
326                 return;
327         }
328
329         __rpc_add_wait_queue(q, task);
330
331         BUG_ON(task->tk_callback != NULL);
332         task->tk_callback = action;
333         __rpc_add_timer(task);
334 }
335
336 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
337                                 rpc_action action)
338 {
339         /* Mark the task as being activated if so needed */
340         rpc_set_active(task);
341
342         /*
343          * Protect the queue operations.
344          */
345         spin_lock_bh(&q->lock);
346         __rpc_sleep_on(q, task, action);
347         spin_unlock_bh(&q->lock);
348 }
349 EXPORT_SYMBOL_GPL(rpc_sleep_on);
350
351 /**
352  * __rpc_do_wake_up_task - wake up a single rpc_task
353  * @queue: wait queue
354  * @task: task to be woken up
355  *
356  * Caller must hold queue->lock, and have cleared the task queued flag.
357  */
358 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
359 {
360         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
361                         task->tk_pid, jiffies);
362
363 #ifdef RPC_DEBUG
364         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
365 #endif
366         /* Has the task been executed yet? If not, we cannot wake it up! */
367         if (!RPC_IS_ACTIVATED(task)) {
368                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
369                 return;
370         }
371
372         __rpc_disable_timer(task);
373         __rpc_remove_wait_queue(queue, task);
374
375         rpc_make_runnable(task);
376
377         dprintk("RPC:       __rpc_wake_up_task done\n");
378 }
379
380 /*
381  * Wake up a queued task while the queue lock is being held
382  */
383 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
384 {
385         if (!RPC_IS_QUEUED(task) || task->tk_waitqueue != queue)
386                 return;
387         if (rpc_start_wakeup(task)) {
388                         __rpc_do_wake_up_task(queue, task);
389                 rpc_finish_wakeup(task);
390         }
391 }
392
393 /*
394  * Wake up a task on a specific queue
395  */
396 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
397 {
398         rcu_read_lock_bh();
399         spin_lock(&queue->lock);
400         rpc_wake_up_task_queue_locked(queue, task);
401         spin_unlock(&queue->lock);
402         rcu_read_unlock_bh();
403 }
404 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
405
406 /*
407  * Wake up the specified task
408  */
409 static void rpc_wake_up_task(struct rpc_task *task)
410 {
411         rpc_wake_up_queued_task(task->tk_waitqueue, task);
412 }
413
414 /*
415  * Wake up the next task on a priority queue.
416  */
417 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
418 {
419         struct list_head *q;
420         struct rpc_task *task;
421
422         /*
423          * Service a batch of tasks from a single owner.
424          */
425         q = &queue->tasks[queue->priority];
426         if (!list_empty(q)) {
427                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
428                 if (queue->owner == task->tk_owner) {
429                         if (--queue->nr)
430                                 goto out;
431                         list_move_tail(&task->u.tk_wait.list, q);
432                 }
433                 /*
434                  * Check if we need to switch queues.
435                  */
436                 if (--queue->count)
437                         goto new_owner;
438         }
439
440         /*
441          * Service the next queue.
442          */
443         do {
444                 if (q == &queue->tasks[0])
445                         q = &queue->tasks[queue->maxpriority];
446                 else
447                         q = q - 1;
448                 if (!list_empty(q)) {
449                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
450                         goto new_queue;
451                 }
452         } while (q != &queue->tasks[queue->priority]);
453
454         rpc_reset_waitqueue_priority(queue);
455         return NULL;
456
457 new_queue:
458         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
459 new_owner:
460         rpc_set_waitqueue_owner(queue, task->tk_owner);
461 out:
462         rpc_wake_up_task_queue_locked(queue, task);
463         return task;
464 }
465
466 /*
467  * Wake up the next task on the wait queue.
468  */
469 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
470 {
471         struct rpc_task *task = NULL;
472
473         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
474                         queue, rpc_qname(queue));
475         rcu_read_lock_bh();
476         spin_lock(&queue->lock);
477         if (RPC_IS_PRIORITY(queue))
478                 task = __rpc_wake_up_next_priority(queue);
479         else {
480                 task_for_first(task, &queue->tasks[0])
481                         rpc_wake_up_task_queue_locked(queue, task);
482         }
483         spin_unlock(&queue->lock);
484         rcu_read_unlock_bh();
485
486         return task;
487 }
488 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
489
490 /**
491  * rpc_wake_up - wake up all rpc_tasks
492  * @queue: rpc_wait_queue on which the tasks are sleeping
493  *
494  * Grabs queue->lock
495  */
496 void rpc_wake_up(struct rpc_wait_queue *queue)
497 {
498         struct rpc_task *task, *next;
499         struct list_head *head;
500
501         rcu_read_lock_bh();
502         spin_lock(&queue->lock);
503         head = &queue->tasks[queue->maxpriority];
504         for (;;) {
505                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
506                         rpc_wake_up_task_queue_locked(queue, task);
507                 if (head == &queue->tasks[0])
508                         break;
509                 head--;
510         }
511         spin_unlock(&queue->lock);
512         rcu_read_unlock_bh();
513 }
514 EXPORT_SYMBOL_GPL(rpc_wake_up);
515
516 /**
517  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
518  * @queue: rpc_wait_queue on which the tasks are sleeping
519  * @status: status value to set
520  *
521  * Grabs queue->lock
522  */
523 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
524 {
525         struct rpc_task *task, *next;
526         struct list_head *head;
527
528         rcu_read_lock_bh();
529         spin_lock(&queue->lock);
530         head = &queue->tasks[queue->maxpriority];
531         for (;;) {
532                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
533                         task->tk_status = status;
534                         rpc_wake_up_task_queue_locked(queue, task);
535                 }
536                 if (head == &queue->tasks[0])
537                         break;
538                 head--;
539         }
540         spin_unlock(&queue->lock);
541         rcu_read_unlock_bh();
542 }
543 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
544
545 /*
546  * Run a timeout function.
547  */
548 static void rpc_run_timer(unsigned long ptr)
549 {
550         struct rpc_task *task = (struct rpc_task *)ptr;
551         struct rpc_wait_queue *queue = task->tk_waitqueue;
552
553         spin_lock(&queue->lock);
554         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) {
555                 dprintk("RPC: %5u timeout\n", task->tk_pid);
556                 task->tk_status = -ETIMEDOUT;
557                 rpc_wake_up_task_queue_locked(queue, task);
558         }
559         spin_unlock(&queue->lock);
560         smp_mb__before_clear_bit();
561         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
562         smp_mb__after_clear_bit();
563 }
564
565 static void __rpc_atrun(struct rpc_task *task)
566 {
567         task->tk_status = 0;
568 }
569
570 /*
571  * Run a task at a later time
572  */
573 void rpc_delay(struct rpc_task *task, unsigned long delay)
574 {
575         task->tk_timeout = delay;
576         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
577 }
578 EXPORT_SYMBOL_GPL(rpc_delay);
579
580 /*
581  * Helper to call task->tk_ops->rpc_call_prepare
582  */
583 static void rpc_prepare_task(struct rpc_task *task)
584 {
585         lock_kernel();
586         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
587         unlock_kernel();
588 }
589
590 /*
591  * Helper that calls task->tk_ops->rpc_call_done if it exists
592  */
593 void rpc_exit_task(struct rpc_task *task)
594 {
595         task->tk_action = NULL;
596         if (task->tk_ops->rpc_call_done != NULL) {
597                 lock_kernel();
598                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
599                 unlock_kernel();
600                 if (task->tk_action != NULL) {
601                         WARN_ON(RPC_ASSASSINATED(task));
602                         /* Always release the RPC slot and buffer memory */
603                         xprt_release(task);
604                 }
605         }
606 }
607 EXPORT_SYMBOL_GPL(rpc_exit_task);
608
609 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
610 {
611         if (ops->rpc_release != NULL) {
612                 lock_kernel();
613                 ops->rpc_release(calldata);
614                 unlock_kernel();
615         }
616 }
617
618 /*
619  * This is the RPC `scheduler' (or rather, the finite state machine).
620  */
621 static void __rpc_execute(struct rpc_task *task)
622 {
623         int             status = 0;
624
625         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
626                         task->tk_pid, task->tk_flags);
627
628         BUG_ON(RPC_IS_QUEUED(task));
629
630         for (;;) {
631                 /*
632                  * Garbage collection of pending timers...
633                  */
634                 rpc_delete_timer(task);
635
636                 /*
637                  * Execute any pending callback.
638                  */
639                 if (RPC_DO_CALLBACK(task)) {
640                         /* Define a callback save pointer */
641                         void (*save_callback)(struct rpc_task *);
642
643                         /*
644                          * If a callback exists, save it, reset it,
645                          * call it.
646                          * The save is needed to stop from resetting
647                          * another callback set within the callback handler
648                          * - Dave
649                          */
650                         save_callback=task->tk_callback;
651                         task->tk_callback=NULL;
652                         save_callback(task);
653                 }
654
655                 /*
656                  * Perform the next FSM step.
657                  * tk_action may be NULL when the task has been killed
658                  * by someone else.
659                  */
660                 if (!RPC_IS_QUEUED(task)) {
661                         if (task->tk_action == NULL)
662                                 break;
663                         task->tk_action(task);
664                 }
665
666                 /*
667                  * Lockless check for whether task is sleeping or not.
668                  */
669                 if (!RPC_IS_QUEUED(task))
670                         continue;
671                 rpc_clear_running(task);
672                 if (RPC_IS_ASYNC(task)) {
673                         /* Careful! we may have raced... */
674                         if (RPC_IS_QUEUED(task))
675                                 return;
676                         if (rpc_test_and_set_running(task))
677                                 return;
678                         continue;
679                 }
680
681                 /* sync task: sleep here */
682                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
683                 status = out_of_line_wait_on_bit(&task->tk_runstate,
684                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
685                                 TASK_KILLABLE);
686                 if (status == -ERESTARTSYS) {
687                         /*
688                          * When a sync task receives a signal, it exits with
689                          * -ERESTARTSYS. In order to catch any callbacks that
690                          * clean up after sleeping on some queue, we don't
691                          * break the loop here, but go around once more.
692                          */
693                         dprintk("RPC: %5u got signal\n", task->tk_pid);
694                         task->tk_flags |= RPC_TASK_KILLED;
695                         rpc_exit(task, -ERESTARTSYS);
696                         rpc_wake_up_task(task);
697                 }
698                 rpc_set_running(task);
699                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
700         }
701
702         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
703                         task->tk_status);
704         /* Release all resources associated with the task */
705         rpc_release_task(task);
706 }
707
708 /*
709  * User-visible entry point to the scheduler.
710  *
711  * This may be called recursively if e.g. an async NFS task updates
712  * the attributes and finds that dirty pages must be flushed.
713  * NOTE: Upon exit of this function the task is guaranteed to be
714  *       released. In particular note that tk_release() will have
715  *       been called, so your task memory may have been freed.
716  */
717 void rpc_execute(struct rpc_task *task)
718 {
719         rpc_set_active(task);
720         rpc_set_running(task);
721         __rpc_execute(task);
722 }
723
724 static void rpc_async_schedule(struct work_struct *work)
725 {
726         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
727 }
728
729 struct rpc_buffer {
730         size_t  len;
731         char    data[];
732 };
733
734 /**
735  * rpc_malloc - allocate an RPC buffer
736  * @task: RPC task that will use this buffer
737  * @size: requested byte size
738  *
739  * To prevent rpciod from hanging, this allocator never sleeps,
740  * returning NULL if the request cannot be serviced immediately.
741  * The caller can arrange to sleep in a way that is safe for rpciod.
742  *
743  * Most requests are 'small' (under 2KiB) and can be serviced from a
744  * mempool, ensuring that NFS reads and writes can always proceed,
745  * and that there is good locality of reference for these buffers.
746  *
747  * In order to avoid memory starvation triggering more writebacks of
748  * NFS requests, we avoid using GFP_KERNEL.
749  */
750 void *rpc_malloc(struct rpc_task *task, size_t size)
751 {
752         struct rpc_buffer *buf;
753         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
754
755         size += sizeof(struct rpc_buffer);
756         if (size <= RPC_BUFFER_MAXSIZE)
757                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
758         else
759                 buf = kmalloc(size, gfp);
760
761         if (!buf)
762                 return NULL;
763
764         buf->len = size;
765         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
766                         task->tk_pid, size, buf);
767         return &buf->data;
768 }
769 EXPORT_SYMBOL_GPL(rpc_malloc);
770
771 /**
772  * rpc_free - free buffer allocated via rpc_malloc
773  * @buffer: buffer to free
774  *
775  */
776 void rpc_free(void *buffer)
777 {
778         size_t size;
779         struct rpc_buffer *buf;
780
781         if (!buffer)
782                 return;
783
784         buf = container_of(buffer, struct rpc_buffer, data);
785         size = buf->len;
786
787         dprintk("RPC:       freeing buffer of size %zu at %p\n",
788                         size, buf);
789
790         if (size <= RPC_BUFFER_MAXSIZE)
791                 mempool_free(buf, rpc_buffer_mempool);
792         else
793                 kfree(buf);
794 }
795 EXPORT_SYMBOL_GPL(rpc_free);
796
797 /*
798  * Creation and deletion of RPC task structures
799  */
800 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
801 {
802         memset(task, 0, sizeof(*task));
803         setup_timer(&task->tk_timer, rpc_run_timer, (unsigned long)task);
804         atomic_set(&task->tk_count, 1);
805         task->tk_flags  = task_setup_data->flags;
806         task->tk_ops = task_setup_data->callback_ops;
807         task->tk_calldata = task_setup_data->callback_data;
808         INIT_LIST_HEAD(&task->tk_task);
809
810         /* Initialize retry counters */
811         task->tk_garb_retry = 2;
812         task->tk_cred_retry = 2;
813
814         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
815         task->tk_owner = current->tgid;
816
817         /* Initialize workqueue for async tasks */
818         task->tk_workqueue = task_setup_data->workqueue;
819
820         task->tk_client = task_setup_data->rpc_client;
821         if (task->tk_client != NULL) {
822                 kref_get(&task->tk_client->cl_kref);
823                 if (task->tk_client->cl_softrtry)
824                         task->tk_flags |= RPC_TASK_SOFT;
825         }
826
827         if (task->tk_ops->rpc_call_prepare != NULL)
828                 task->tk_action = rpc_prepare_task;
829
830         if (task_setup_data->rpc_message != NULL) {
831                 memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
832                 /* Bind the user cred */
833                 if (task->tk_msg.rpc_cred != NULL)
834                         rpcauth_holdcred(task);
835                 else
836                         rpcauth_bindcred(task);
837                 if (task->tk_action == NULL)
838                         rpc_call_start(task);
839         }
840
841         /* starting timestamp */
842         task->tk_start = jiffies;
843
844         dprintk("RPC:       new task initialized, procpid %u\n",
845                                 task_pid_nr(current));
846 }
847
848 static struct rpc_task *
849 rpc_alloc_task(void)
850 {
851         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
852 }
853
854 static void rpc_free_task_rcu(struct rcu_head *rcu)
855 {
856         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
857         dprintk("RPC: %5u freeing task\n", task->tk_pid);
858         mempool_free(task, rpc_task_mempool);
859 }
860
861 /*
862  * Create a new task for the specified client.
863  */
864 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
865 {
866         struct rpc_task *task = setup_data->task;
867         unsigned short flags = 0;
868
869         if (task == NULL) {
870                 task = rpc_alloc_task();
871                 if (task == NULL)
872                         goto out;
873                 flags = RPC_TASK_DYNAMIC;
874         }
875
876         rpc_init_task(task, setup_data);
877
878         task->tk_flags |= flags;
879         dprintk("RPC:       allocated task %p\n", task);
880 out:
881         return task;
882 }
883
884 static void rpc_free_task(struct rpc_task *task)
885 {
886         const struct rpc_call_ops *tk_ops = task->tk_ops;
887         void *calldata = task->tk_calldata;
888
889         if (task->tk_flags & RPC_TASK_DYNAMIC)
890                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
891         rpc_release_calldata(tk_ops, calldata);
892 }
893
894 static void rpc_async_release(struct work_struct *work)
895 {
896         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
897 }
898
899 void rpc_put_task(struct rpc_task *task)
900 {
901         if (!atomic_dec_and_test(&task->tk_count))
902                 return;
903         /* Release resources */
904         if (task->tk_rqstp)
905                 xprt_release(task);
906         if (task->tk_msg.rpc_cred)
907                 rpcauth_unbindcred(task);
908         if (task->tk_client) {
909                 rpc_release_client(task->tk_client);
910                 task->tk_client = NULL;
911         }
912         if (task->tk_workqueue != NULL) {
913                 INIT_WORK(&task->u.tk_work, rpc_async_release);
914                 queue_work(task->tk_workqueue, &task->u.tk_work);
915         } else
916                 rpc_free_task(task);
917 }
918 EXPORT_SYMBOL_GPL(rpc_put_task);
919
920 static void rpc_release_task(struct rpc_task *task)
921 {
922 #ifdef RPC_DEBUG
923         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
924 #endif
925         dprintk("RPC: %5u release task\n", task->tk_pid);
926
927         if (!list_empty(&task->tk_task)) {
928                 struct rpc_clnt *clnt = task->tk_client;
929                 /* Remove from client task list */
930                 spin_lock(&clnt->cl_lock);
931                 list_del(&task->tk_task);
932                 spin_unlock(&clnt->cl_lock);
933         }
934         BUG_ON (RPC_IS_QUEUED(task));
935
936         /* Synchronously delete any running timer */
937         rpc_delete_timer(task);
938
939 #ifdef RPC_DEBUG
940         task->tk_magic = 0;
941 #endif
942         /* Wake up anyone who is waiting for task completion */
943         rpc_mark_complete_task(task);
944
945         rpc_put_task(task);
946 }
947
948 /*
949  * Kill all tasks for the given client.
950  * XXX: kill their descendants as well?
951  */
952 void rpc_killall_tasks(struct rpc_clnt *clnt)
953 {
954         struct rpc_task *rovr;
955
956
957         if (list_empty(&clnt->cl_tasks))
958                 return;
959         dprintk("RPC:       killing all tasks for client %p\n", clnt);
960         /*
961          * Spin lock all_tasks to prevent changes...
962          */
963         spin_lock(&clnt->cl_lock);
964         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
965                 if (! RPC_IS_ACTIVATED(rovr))
966                         continue;
967                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
968                         rovr->tk_flags |= RPC_TASK_KILLED;
969                         rpc_exit(rovr, -EIO);
970                         rpc_wake_up_task(rovr);
971                 }
972         }
973         spin_unlock(&clnt->cl_lock);
974 }
975 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
976
977 int rpciod_up(void)
978 {
979         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
980 }
981
982 void rpciod_down(void)
983 {
984         module_put(THIS_MODULE);
985 }
986
987 /*
988  * Start up the rpciod workqueue.
989  */
990 static int rpciod_start(void)
991 {
992         struct workqueue_struct *wq;
993
994         /*
995          * Create the rpciod thread and wait for it to start.
996          */
997         dprintk("RPC:       creating workqueue rpciod\n");
998         wq = create_workqueue("rpciod");
999         rpciod_workqueue = wq;
1000         return rpciod_workqueue != NULL;
1001 }
1002
1003 static void rpciod_stop(void)
1004 {
1005         struct workqueue_struct *wq = NULL;
1006
1007         if (rpciod_workqueue == NULL)
1008                 return;
1009         dprintk("RPC:       destroying workqueue rpciod\n");
1010
1011         wq = rpciod_workqueue;
1012         rpciod_workqueue = NULL;
1013         destroy_workqueue(wq);
1014 }
1015
1016 void
1017 rpc_destroy_mempool(void)
1018 {
1019         rpciod_stop();
1020         if (rpc_buffer_mempool)
1021                 mempool_destroy(rpc_buffer_mempool);
1022         if (rpc_task_mempool)
1023                 mempool_destroy(rpc_task_mempool);
1024         if (rpc_task_slabp)
1025                 kmem_cache_destroy(rpc_task_slabp);
1026         if (rpc_buffer_slabp)
1027                 kmem_cache_destroy(rpc_buffer_slabp);
1028         rpc_destroy_wait_queue(&delay_queue);
1029 }
1030
1031 int
1032 rpc_init_mempool(void)
1033 {
1034         /*
1035          * The following is not strictly a mempool initialisation,
1036          * but there is no harm in doing it here
1037          */
1038         rpc_init_wait_queue(&delay_queue, "delayq");
1039         if (!rpciod_start())
1040                 goto err_nomem;
1041
1042         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1043                                              sizeof(struct rpc_task),
1044                                              0, SLAB_HWCACHE_ALIGN,
1045                                              NULL);
1046         if (!rpc_task_slabp)
1047                 goto err_nomem;
1048         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1049                                              RPC_BUFFER_MAXSIZE,
1050                                              0, SLAB_HWCACHE_ALIGN,
1051                                              NULL);
1052         if (!rpc_buffer_slabp)
1053                 goto err_nomem;
1054         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1055                                                     rpc_task_slabp);
1056         if (!rpc_task_mempool)
1057                 goto err_nomem;
1058         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1059                                                       rpc_buffer_slabp);
1060         if (!rpc_buffer_mempool)
1061                 goto err_nomem;
1062         return 0;
1063 err_nomem:
1064         rpc_destroy_mempool();
1065         return -ENOMEM;
1066 }