SUNRPC: Add a new helper rpc_wake_up_queued_task()
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static inline void
60 __rpc_disable_timer(struct rpc_task *task)
61 {
62         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
63         task->tk_timeout_fn = NULL;
64         task->tk_timeout = 0;
65 }
66
67 /*
68  * Default timeout handler if none specified by user
69  */
70 static void
71 __rpc_default_timer(struct rpc_task *task)
72 {
73         dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
74         task->tk_status = -ETIMEDOUT;
75 }
76
77 /*
78  * Set up a timer for the current task.
79  */
80 static inline void
81 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
82 {
83         if (!task->tk_timeout)
84                 return;
85
86         dprintk("RPC: %5u setting alarm for %lu ms\n",
87                         task->tk_pid, task->tk_timeout * 1000 / HZ);
88
89         if (timer)
90                 task->tk_timeout_fn = timer;
91         else
92                 task->tk_timeout_fn = __rpc_default_timer;
93         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
94         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
95 }
96
97 /*
98  * Delete any timer for the current task. Because we use del_timer_sync(),
99  * this function should never be called while holding queue->lock.
100  */
101 static void
102 rpc_delete_timer(struct rpc_task *task)
103 {
104         if (RPC_IS_QUEUED(task))
105                 return;
106         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
107                 del_singleshot_timer_sync(&task->tk_timer);
108                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
109         }
110 }
111
112 /*
113  * Add new request to a priority queue.
114  */
115 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
116 {
117         struct list_head *q;
118         struct rpc_task *t;
119
120         INIT_LIST_HEAD(&task->u.tk_wait.links);
121         q = &queue->tasks[task->tk_priority];
122         if (unlikely(task->tk_priority > queue->maxpriority))
123                 q = &queue->tasks[queue->maxpriority];
124         list_for_each_entry(t, q, u.tk_wait.list) {
125                 if (t->tk_owner == task->tk_owner) {
126                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
127                         return;
128                 }
129         }
130         list_add_tail(&task->u.tk_wait.list, q);
131 }
132
133 /*
134  * Add new request to wait queue.
135  *
136  * Swapper tasks always get inserted at the head of the queue.
137  * This should avoid many nasty memory deadlocks and hopefully
138  * improve overall performance.
139  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
140  */
141 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
142 {
143         BUG_ON (RPC_IS_QUEUED(task));
144
145         if (RPC_IS_PRIORITY(queue))
146                 __rpc_add_wait_queue_priority(queue, task);
147         else if (RPC_IS_SWAPPER(task))
148                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
149         else
150                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
151         task->tk_waitqueue = queue;
152         queue->qlen++;
153         rpc_set_queued(task);
154
155         dprintk("RPC: %5u added to queue %p \"%s\"\n",
156                         task->tk_pid, queue, rpc_qname(queue));
157 }
158
159 /*
160  * Remove request from a priority queue.
161  */
162 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
163 {
164         struct rpc_task *t;
165
166         if (!list_empty(&task->u.tk_wait.links)) {
167                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
168                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
169                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
170         }
171         list_del(&task->u.tk_wait.list);
172 }
173
174 /*
175  * Remove request from queue.
176  * Note: must be called with spin lock held.
177  */
178 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
179 {
180         if (RPC_IS_PRIORITY(queue))
181                 __rpc_remove_wait_queue_priority(task);
182         else
183                 list_del(&task->u.tk_wait.list);
184         queue->qlen--;
185         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
186                         task->tk_pid, queue, rpc_qname(queue));
187 }
188
189 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
190 {
191         queue->priority = priority;
192         queue->count = 1 << (priority * 2);
193 }
194
195 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
196 {
197         queue->owner = pid;
198         queue->nr = RPC_BATCH_COUNT;
199 }
200
201 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
202 {
203         rpc_set_waitqueue_priority(queue, queue->maxpriority);
204         rpc_set_waitqueue_owner(queue, 0);
205 }
206
207 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
208 {
209         int i;
210
211         spin_lock_init(&queue->lock);
212         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
213                 INIT_LIST_HEAD(&queue->tasks[i]);
214         queue->maxpriority = nr_queues - 1;
215         rpc_reset_waitqueue_priority(queue);
216 #ifdef RPC_DEBUG
217         queue->name = qname;
218 #endif
219 }
220
221 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
222 {
223         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
224 }
225
226 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
227 {
228         __rpc_init_priority_wait_queue(queue, qname, 1);
229 }
230 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234         if (fatal_signal_pending(current))
235                 return -ERESTARTSYS;
236         schedule();
237         return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243         static atomic_t rpc_pid;
244
245         task->tk_magic = RPC_TASK_MAGIC_ID;
246         task->tk_pid = atomic_inc_return(&rpc_pid);
247 }
248 #else
249 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
250 {
251 }
252 #endif
253
254 static void rpc_set_active(struct rpc_task *task)
255 {
256         struct rpc_clnt *clnt;
257         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
258                 return;
259         rpc_task_set_debuginfo(task);
260         /* Add to global list of all tasks */
261         clnt = task->tk_client;
262         if (clnt != NULL) {
263                 spin_lock(&clnt->cl_lock);
264                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
265                 spin_unlock(&clnt->cl_lock);
266         }
267 }
268
269 /*
270  * Mark an RPC call as having completed by clearing the 'active' bit
271  */
272 static void rpc_mark_complete_task(struct rpc_task *task)
273 {
274         smp_mb__before_clear_bit();
275         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
276         smp_mb__after_clear_bit();
277         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
278 }
279
280 /*
281  * Allow callers to wait for completion of an RPC call
282  */
283 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
284 {
285         if (action == NULL)
286                 action = rpc_wait_bit_killable;
287         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
288                         action, TASK_KILLABLE);
289 }
290 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
291
292 /*
293  * Make an RPC task runnable.
294  *
295  * Note: If the task is ASYNC, this must be called with
296  * the spinlock held to protect the wait queue operation.
297  */
298 static void rpc_make_runnable(struct rpc_task *task)
299 {
300         BUG_ON(task->tk_timeout_fn);
301         rpc_clear_queued(task);
302         if (rpc_test_and_set_running(task))
303                 return;
304         /* We might have raced */
305         if (RPC_IS_QUEUED(task)) {
306                 rpc_clear_running(task);
307                 return;
308         }
309         if (RPC_IS_ASYNC(task)) {
310                 int status;
311
312                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
313                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
314                 if (status < 0) {
315                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
316                         task->tk_status = status;
317                         return;
318                 }
319         } else
320                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
321 }
322
323 /*
324  * Prepare for sleeping on a wait queue.
325  * By always appending tasks to the list we ensure FIFO behavior.
326  * NB: An RPC task will only receive interrupt-driven events as long
327  * as it's on a wait queue.
328  */
329 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
330                         rpc_action action, rpc_action timer)
331 {
332         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
333                         task->tk_pid, rpc_qname(q), jiffies);
334
335         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
336                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
337                 return;
338         }
339
340         __rpc_add_wait_queue(q, task);
341
342         BUG_ON(task->tk_callback != NULL);
343         task->tk_callback = action;
344         __rpc_add_timer(task, timer);
345 }
346
347 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
348                                 rpc_action action, rpc_action timer)
349 {
350         /* Mark the task as being activated if so needed */
351         rpc_set_active(task);
352
353         /*
354          * Protect the queue operations.
355          */
356         spin_lock_bh(&q->lock);
357         __rpc_sleep_on(q, task, action, timer);
358         spin_unlock_bh(&q->lock);
359 }
360 EXPORT_SYMBOL_GPL(rpc_sleep_on);
361
362 /**
363  * __rpc_do_wake_up_task - wake up a single rpc_task
364  * @queue: wait queue
365  * @task: task to be woken up
366  *
367  * Caller must hold queue->lock, and have cleared the task queued flag.
368  */
369 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
370 {
371         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
372                         task->tk_pid, jiffies);
373
374 #ifdef RPC_DEBUG
375         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
376 #endif
377         /* Has the task been executed yet? If not, we cannot wake it up! */
378         if (!RPC_IS_ACTIVATED(task)) {
379                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
380                 return;
381         }
382
383         __rpc_disable_timer(task);
384         __rpc_remove_wait_queue(queue, task);
385
386         rpc_make_runnable(task);
387
388         dprintk("RPC:       __rpc_wake_up_task done\n");
389 }
390
391 /*
392  * Wake up a queued task while the queue lock is being held
393  */
394 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
395 {
396         if (!RPC_IS_QUEUED(task) || task->tk_waitqueue != queue)
397                 return;
398         if (rpc_start_wakeup(task)) {
399                         __rpc_do_wake_up_task(queue, task);
400                 rpc_finish_wakeup(task);
401         }
402 }
403
404 /*
405  * Wake up a task on a specific queue
406  */
407 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
408 {
409         rcu_read_lock_bh();
410         spin_lock(&queue->lock);
411         rpc_wake_up_task_queue_locked(queue, task);
412         spin_unlock(&queue->lock);
413         rcu_read_unlock_bh();
414 }
415 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
416
417 /*
418  * Wake up the specified task
419  */
420 void rpc_wake_up_task(struct rpc_task *task)
421 {
422         rpc_wake_up_queued_task(task->tk_waitqueue, task);
423 }
424 EXPORT_SYMBOL_GPL(rpc_wake_up_task);
425
426 /*
427  * Wake up the next task on a priority queue.
428  */
429 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
430 {
431         struct list_head *q;
432         struct rpc_task *task;
433
434         /*
435          * Service a batch of tasks from a single owner.
436          */
437         q = &queue->tasks[queue->priority];
438         if (!list_empty(q)) {
439                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
440                 if (queue->owner == task->tk_owner) {
441                         if (--queue->nr)
442                                 goto out;
443                         list_move_tail(&task->u.tk_wait.list, q);
444                 }
445                 /*
446                  * Check if we need to switch queues.
447                  */
448                 if (--queue->count)
449                         goto new_owner;
450         }
451
452         /*
453          * Service the next queue.
454          */
455         do {
456                 if (q == &queue->tasks[0])
457                         q = &queue->tasks[queue->maxpriority];
458                 else
459                         q = q - 1;
460                 if (!list_empty(q)) {
461                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
462                         goto new_queue;
463                 }
464         } while (q != &queue->tasks[queue->priority]);
465
466         rpc_reset_waitqueue_priority(queue);
467         return NULL;
468
469 new_queue:
470         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
471 new_owner:
472         rpc_set_waitqueue_owner(queue, task->tk_owner);
473 out:
474         rpc_wake_up_task_queue_locked(queue, task);
475         return task;
476 }
477
478 /*
479  * Wake up the next task on the wait queue.
480  */
481 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
482 {
483         struct rpc_task *task = NULL;
484
485         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
486                         queue, rpc_qname(queue));
487         rcu_read_lock_bh();
488         spin_lock(&queue->lock);
489         if (RPC_IS_PRIORITY(queue))
490                 task = __rpc_wake_up_next_priority(queue);
491         else {
492                 task_for_first(task, &queue->tasks[0])
493                         rpc_wake_up_task_queue_locked(queue, task);
494         }
495         spin_unlock(&queue->lock);
496         rcu_read_unlock_bh();
497
498         return task;
499 }
500 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
501
502 /**
503  * rpc_wake_up - wake up all rpc_tasks
504  * @queue: rpc_wait_queue on which the tasks are sleeping
505  *
506  * Grabs queue->lock
507  */
508 void rpc_wake_up(struct rpc_wait_queue *queue)
509 {
510         struct rpc_task *task, *next;
511         struct list_head *head;
512
513         rcu_read_lock_bh();
514         spin_lock(&queue->lock);
515         head = &queue->tasks[queue->maxpriority];
516         for (;;) {
517                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
518                         rpc_wake_up_task_queue_locked(queue, task);
519                 if (head == &queue->tasks[0])
520                         break;
521                 head--;
522         }
523         spin_unlock(&queue->lock);
524         rcu_read_unlock_bh();
525 }
526 EXPORT_SYMBOL_GPL(rpc_wake_up);
527
528 /**
529  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
530  * @queue: rpc_wait_queue on which the tasks are sleeping
531  * @status: status value to set
532  *
533  * Grabs queue->lock
534  */
535 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
536 {
537         struct rpc_task *task, *next;
538         struct list_head *head;
539
540         rcu_read_lock_bh();
541         spin_lock(&queue->lock);
542         head = &queue->tasks[queue->maxpriority];
543         for (;;) {
544                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
545                         task->tk_status = status;
546                         rpc_wake_up_task_queue_locked(queue, task);
547                 }
548                 if (head == &queue->tasks[0])
549                         break;
550                 head--;
551         }
552         spin_unlock(&queue->lock);
553         rcu_read_unlock_bh();
554 }
555 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
556
557 /*
558  * Run a timeout function.
559  */
560 static void rpc_run_timer(unsigned long ptr)
561 {
562         struct rpc_task *task = (struct rpc_task *)ptr;
563         void (*callback)(struct rpc_task *);
564
565         if (RPC_IS_QUEUED(task)) {
566                 struct rpc_wait_queue *queue = task->tk_waitqueue;
567                 callback = task->tk_timeout_fn;
568
569                 dprintk("RPC: %5u running timer\n", task->tk_pid);
570                 if (callback != NULL)
571                         callback(task);
572                 /* Note: we're already in a bh-safe context */
573                 spin_lock(&queue->lock);
574                 rpc_wake_up_task_queue_locked(queue, task);
575                 spin_unlock(&queue->lock);
576         }
577         smp_mb__before_clear_bit();
578         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
579         smp_mb__after_clear_bit();
580 }
581
582 static void __rpc_atrun(struct rpc_task *task)
583 {
584 }
585
586 /*
587  * Run a task at a later time
588  */
589 void rpc_delay(struct rpc_task *task, unsigned long delay)
590 {
591         task->tk_timeout = delay;
592         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
593 }
594 EXPORT_SYMBOL_GPL(rpc_delay);
595
596 /*
597  * Helper to call task->tk_ops->rpc_call_prepare
598  */
599 static void rpc_prepare_task(struct rpc_task *task)
600 {
601         lock_kernel();
602         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
603         unlock_kernel();
604 }
605
606 /*
607  * Helper that calls task->tk_ops->rpc_call_done if it exists
608  */
609 void rpc_exit_task(struct rpc_task *task)
610 {
611         task->tk_action = NULL;
612         if (task->tk_ops->rpc_call_done != NULL) {
613                 lock_kernel();
614                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
615                 unlock_kernel();
616                 if (task->tk_action != NULL) {
617                         WARN_ON(RPC_ASSASSINATED(task));
618                         /* Always release the RPC slot and buffer memory */
619                         xprt_release(task);
620                 }
621         }
622 }
623 EXPORT_SYMBOL_GPL(rpc_exit_task);
624
625 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
626 {
627         if (ops->rpc_release != NULL) {
628                 lock_kernel();
629                 ops->rpc_release(calldata);
630                 unlock_kernel();
631         }
632 }
633
634 /*
635  * This is the RPC `scheduler' (or rather, the finite state machine).
636  */
637 static void __rpc_execute(struct rpc_task *task)
638 {
639         int             status = 0;
640
641         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
642                         task->tk_pid, task->tk_flags);
643
644         BUG_ON(RPC_IS_QUEUED(task));
645
646         for (;;) {
647                 /*
648                  * Garbage collection of pending timers...
649                  */
650                 rpc_delete_timer(task);
651
652                 /*
653                  * Execute any pending callback.
654                  */
655                 if (RPC_DO_CALLBACK(task)) {
656                         /* Define a callback save pointer */
657                         void (*save_callback)(struct rpc_task *);
658
659                         /*
660                          * If a callback exists, save it, reset it,
661                          * call it.
662                          * The save is needed to stop from resetting
663                          * another callback set within the callback handler
664                          * - Dave
665                          */
666                         save_callback=task->tk_callback;
667                         task->tk_callback=NULL;
668                         save_callback(task);
669                 }
670
671                 /*
672                  * Perform the next FSM step.
673                  * tk_action may be NULL when the task has been killed
674                  * by someone else.
675                  */
676                 if (!RPC_IS_QUEUED(task)) {
677                         if (task->tk_action == NULL)
678                                 break;
679                         task->tk_action(task);
680                 }
681
682                 /*
683                  * Lockless check for whether task is sleeping or not.
684                  */
685                 if (!RPC_IS_QUEUED(task))
686                         continue;
687                 rpc_clear_running(task);
688                 if (RPC_IS_ASYNC(task)) {
689                         /* Careful! we may have raced... */
690                         if (RPC_IS_QUEUED(task))
691                                 return;
692                         if (rpc_test_and_set_running(task))
693                                 return;
694                         continue;
695                 }
696
697                 /* sync task: sleep here */
698                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
699                 status = out_of_line_wait_on_bit(&task->tk_runstate,
700                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
701                                 TASK_KILLABLE);
702                 if (status == -ERESTARTSYS) {
703                         /*
704                          * When a sync task receives a signal, it exits with
705                          * -ERESTARTSYS. In order to catch any callbacks that
706                          * clean up after sleeping on some queue, we don't
707                          * break the loop here, but go around once more.
708                          */
709                         dprintk("RPC: %5u got signal\n", task->tk_pid);
710                         task->tk_flags |= RPC_TASK_KILLED;
711                         rpc_exit(task, -ERESTARTSYS);
712                         rpc_wake_up_task(task);
713                 }
714                 rpc_set_running(task);
715                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
716         }
717
718         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
719                         task->tk_status);
720         /* Release all resources associated with the task */
721         rpc_release_task(task);
722 }
723
724 /*
725  * User-visible entry point to the scheduler.
726  *
727  * This may be called recursively if e.g. an async NFS task updates
728  * the attributes and finds that dirty pages must be flushed.
729  * NOTE: Upon exit of this function the task is guaranteed to be
730  *       released. In particular note that tk_release() will have
731  *       been called, so your task memory may have been freed.
732  */
733 void rpc_execute(struct rpc_task *task)
734 {
735         rpc_set_active(task);
736         rpc_set_running(task);
737         __rpc_execute(task);
738 }
739
740 static void rpc_async_schedule(struct work_struct *work)
741 {
742         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
743 }
744
745 struct rpc_buffer {
746         size_t  len;
747         char    data[];
748 };
749
750 /**
751  * rpc_malloc - allocate an RPC buffer
752  * @task: RPC task that will use this buffer
753  * @size: requested byte size
754  *
755  * To prevent rpciod from hanging, this allocator never sleeps,
756  * returning NULL if the request cannot be serviced immediately.
757  * The caller can arrange to sleep in a way that is safe for rpciod.
758  *
759  * Most requests are 'small' (under 2KiB) and can be serviced from a
760  * mempool, ensuring that NFS reads and writes can always proceed,
761  * and that there is good locality of reference for these buffers.
762  *
763  * In order to avoid memory starvation triggering more writebacks of
764  * NFS requests, we avoid using GFP_KERNEL.
765  */
766 void *rpc_malloc(struct rpc_task *task, size_t size)
767 {
768         struct rpc_buffer *buf;
769         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
770
771         size += sizeof(struct rpc_buffer);
772         if (size <= RPC_BUFFER_MAXSIZE)
773                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
774         else
775                 buf = kmalloc(size, gfp);
776
777         if (!buf)
778                 return NULL;
779
780         buf->len = size;
781         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
782                         task->tk_pid, size, buf);
783         return &buf->data;
784 }
785 EXPORT_SYMBOL_GPL(rpc_malloc);
786
787 /**
788  * rpc_free - free buffer allocated via rpc_malloc
789  * @buffer: buffer to free
790  *
791  */
792 void rpc_free(void *buffer)
793 {
794         size_t size;
795         struct rpc_buffer *buf;
796
797         if (!buffer)
798                 return;
799
800         buf = container_of(buffer, struct rpc_buffer, data);
801         size = buf->len;
802
803         dprintk("RPC:       freeing buffer of size %zu at %p\n",
804                         size, buf);
805
806         if (size <= RPC_BUFFER_MAXSIZE)
807                 mempool_free(buf, rpc_buffer_mempool);
808         else
809                 kfree(buf);
810 }
811 EXPORT_SYMBOL_GPL(rpc_free);
812
813 /*
814  * Creation and deletion of RPC task structures
815  */
816 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
817 {
818         memset(task, 0, sizeof(*task));
819         setup_timer(&task->tk_timer, rpc_run_timer, (unsigned long)task);
820         atomic_set(&task->tk_count, 1);
821         task->tk_flags  = task_setup_data->flags;
822         task->tk_ops = task_setup_data->callback_ops;
823         task->tk_calldata = task_setup_data->callback_data;
824         INIT_LIST_HEAD(&task->tk_task);
825
826         /* Initialize retry counters */
827         task->tk_garb_retry = 2;
828         task->tk_cred_retry = 2;
829
830         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
831         task->tk_owner = current->tgid;
832
833         /* Initialize workqueue for async tasks */
834         task->tk_workqueue = task_setup_data->workqueue;
835
836         task->tk_client = task_setup_data->rpc_client;
837         if (task->tk_client != NULL) {
838                 kref_get(&task->tk_client->cl_kref);
839                 if (task->tk_client->cl_softrtry)
840                         task->tk_flags |= RPC_TASK_SOFT;
841         }
842
843         if (task->tk_ops->rpc_call_prepare != NULL)
844                 task->tk_action = rpc_prepare_task;
845
846         if (task_setup_data->rpc_message != NULL) {
847                 memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
848                 /* Bind the user cred */
849                 if (task->tk_msg.rpc_cred != NULL)
850                         rpcauth_holdcred(task);
851                 else
852                         rpcauth_bindcred(task);
853                 if (task->tk_action == NULL)
854                         rpc_call_start(task);
855         }
856
857         /* starting timestamp */
858         task->tk_start = jiffies;
859
860         dprintk("RPC:       new task initialized, procpid %u\n",
861                                 task_pid_nr(current));
862 }
863
864 static struct rpc_task *
865 rpc_alloc_task(void)
866 {
867         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
868 }
869
870 static void rpc_free_task_rcu(struct rcu_head *rcu)
871 {
872         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
873         dprintk("RPC: %5u freeing task\n", task->tk_pid);
874         mempool_free(task, rpc_task_mempool);
875 }
876
877 /*
878  * Create a new task for the specified client.
879  */
880 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
881 {
882         struct rpc_task *task = setup_data->task;
883         unsigned short flags = 0;
884
885         if (task == NULL) {
886                 task = rpc_alloc_task();
887                 if (task == NULL)
888                         goto out;
889                 flags = RPC_TASK_DYNAMIC;
890         }
891
892         rpc_init_task(task, setup_data);
893
894         task->tk_flags |= flags;
895         dprintk("RPC:       allocated task %p\n", task);
896 out:
897         return task;
898 }
899
900 static void rpc_free_task(struct rpc_task *task)
901 {
902         const struct rpc_call_ops *tk_ops = task->tk_ops;
903         void *calldata = task->tk_calldata;
904
905         if (task->tk_flags & RPC_TASK_DYNAMIC)
906                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
907         rpc_release_calldata(tk_ops, calldata);
908 }
909
910 static void rpc_async_release(struct work_struct *work)
911 {
912         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
913 }
914
915 void rpc_put_task(struct rpc_task *task)
916 {
917         if (!atomic_dec_and_test(&task->tk_count))
918                 return;
919         /* Release resources */
920         if (task->tk_rqstp)
921                 xprt_release(task);
922         if (task->tk_msg.rpc_cred)
923                 rpcauth_unbindcred(task);
924         if (task->tk_client) {
925                 rpc_release_client(task->tk_client);
926                 task->tk_client = NULL;
927         }
928         if (task->tk_workqueue != NULL) {
929                 INIT_WORK(&task->u.tk_work, rpc_async_release);
930                 queue_work(task->tk_workqueue, &task->u.tk_work);
931         } else
932                 rpc_free_task(task);
933 }
934 EXPORT_SYMBOL_GPL(rpc_put_task);
935
936 static void rpc_release_task(struct rpc_task *task)
937 {
938 #ifdef RPC_DEBUG
939         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
940 #endif
941         dprintk("RPC: %5u release task\n", task->tk_pid);
942
943         if (!list_empty(&task->tk_task)) {
944                 struct rpc_clnt *clnt = task->tk_client;
945                 /* Remove from client task list */
946                 spin_lock(&clnt->cl_lock);
947                 list_del(&task->tk_task);
948                 spin_unlock(&clnt->cl_lock);
949         }
950         BUG_ON (RPC_IS_QUEUED(task));
951
952         /* Synchronously delete any running timer */
953         rpc_delete_timer(task);
954
955 #ifdef RPC_DEBUG
956         task->tk_magic = 0;
957 #endif
958         /* Wake up anyone who is waiting for task completion */
959         rpc_mark_complete_task(task);
960
961         rpc_put_task(task);
962 }
963
964 /*
965  * Kill all tasks for the given client.
966  * XXX: kill their descendants as well?
967  */
968 void rpc_killall_tasks(struct rpc_clnt *clnt)
969 {
970         struct rpc_task *rovr;
971
972
973         if (list_empty(&clnt->cl_tasks))
974                 return;
975         dprintk("RPC:       killing all tasks for client %p\n", clnt);
976         /*
977          * Spin lock all_tasks to prevent changes...
978          */
979         spin_lock(&clnt->cl_lock);
980         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
981                 if (! RPC_IS_ACTIVATED(rovr))
982                         continue;
983                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
984                         rovr->tk_flags |= RPC_TASK_KILLED;
985                         rpc_exit(rovr, -EIO);
986                         rpc_wake_up_task(rovr);
987                 }
988         }
989         spin_unlock(&clnt->cl_lock);
990 }
991 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
992
993 int rpciod_up(void)
994 {
995         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
996 }
997
998 void rpciod_down(void)
999 {
1000         module_put(THIS_MODULE);
1001 }
1002
1003 /*
1004  * Start up the rpciod workqueue.
1005  */
1006 static int rpciod_start(void)
1007 {
1008         struct workqueue_struct *wq;
1009
1010         /*
1011          * Create the rpciod thread and wait for it to start.
1012          */
1013         dprintk("RPC:       creating workqueue rpciod\n");
1014         wq = create_workqueue("rpciod");
1015         rpciod_workqueue = wq;
1016         return rpciod_workqueue != NULL;
1017 }
1018
1019 static void rpciod_stop(void)
1020 {
1021         struct workqueue_struct *wq = NULL;
1022
1023         if (rpciod_workqueue == NULL)
1024                 return;
1025         dprintk("RPC:       destroying workqueue rpciod\n");
1026
1027         wq = rpciod_workqueue;
1028         rpciod_workqueue = NULL;
1029         destroy_workqueue(wq);
1030 }
1031
1032 void
1033 rpc_destroy_mempool(void)
1034 {
1035         rpciod_stop();
1036         if (rpc_buffer_mempool)
1037                 mempool_destroy(rpc_buffer_mempool);
1038         if (rpc_task_mempool)
1039                 mempool_destroy(rpc_task_mempool);
1040         if (rpc_task_slabp)
1041                 kmem_cache_destroy(rpc_task_slabp);
1042         if (rpc_buffer_slabp)
1043                 kmem_cache_destroy(rpc_buffer_slabp);
1044 }
1045
1046 int
1047 rpc_init_mempool(void)
1048 {
1049         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1050                                              sizeof(struct rpc_task),
1051                                              0, SLAB_HWCACHE_ALIGN,
1052                                              NULL);
1053         if (!rpc_task_slabp)
1054                 goto err_nomem;
1055         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1056                                              RPC_BUFFER_MAXSIZE,
1057                                              0, SLAB_HWCACHE_ALIGN,
1058                                              NULL);
1059         if (!rpc_buffer_slabp)
1060                 goto err_nomem;
1061         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1062                                                     rpc_task_slabp);
1063         if (!rpc_task_mempool)
1064                 goto err_nomem;
1065         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1066                                                       rpc_buffer_slabp);
1067         if (!rpc_buffer_mempool)
1068                 goto err_nomem;
1069         if (!rpciod_start())
1070                 goto err_nomem;
1071         /*
1072          * The following is not strictly a mempool initialisation,
1073          * but there is no harm in doing it here
1074          */
1075         rpc_init_wait_queue(&delay_queue, "delayq");
1076         return 0;
1077 err_nomem:
1078         rpc_destroy_mempool();
1079         return -ENOMEM;
1080 }