SUNRPC: Kill rpc_clnt->cl_oneshot
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     __rpc_default_timer(struct rpc_task *task);
42 static void                     rpciod_killall(void);
43 static void                     rpc_async_schedule(struct work_struct *);
44 static void                      rpc_release_task(struct rpc_task *task);
45
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static RPC_WAITQ(delay_queue, "delayq");
50
51 /*
52  * All RPC clients are linked into this list
53  */
54 static LIST_HEAD(all_clients);
55 static DECLARE_WAIT_QUEUE_HEAD(client_kill_wait);
56
57 /*
58  * rpciod-related stuff
59  */
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int             rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
63
64 /*
65  * Spinlock for other critical sections of code.
66  */
67 static DEFINE_SPINLOCK(rpc_sched_lock);
68
69 /*
70  * Disable the timer for a given RPC task. Should be called with
71  * queue->lock and bh_disabled in order to avoid races within
72  * rpc_run_timer().
73  */
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
76 {
77         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
78         task->tk_timeout_fn = NULL;
79         task->tk_timeout = 0;
80 }
81
82 /*
83  * Run a timeout function.
84  * We use the callback in order to allow __rpc_wake_up_task()
85  * and friends to disable the timer synchronously on SMP systems
86  * without calling del_timer_sync(). The latter could cause a
87  * deadlock if called while we're holding spinlocks...
88  */
89 static void rpc_run_timer(struct rpc_task *task)
90 {
91         void (*callback)(struct rpc_task *);
92
93         callback = task->tk_timeout_fn;
94         task->tk_timeout_fn = NULL;
95         if (callback && RPC_IS_QUEUED(task)) {
96                 dprintk("RPC: %5u running timer\n", task->tk_pid);
97                 callback(task);
98         }
99         smp_mb__before_clear_bit();
100         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101         smp_mb__after_clear_bit();
102 }
103
104 /*
105  * Set up a timer for the current task.
106  */
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
109 {
110         if (!task->tk_timeout)
111                 return;
112
113         dprintk("RPC: %5u setting alarm for %lu ms\n",
114                         task->tk_pid, task->tk_timeout * 1000 / HZ);
115
116         if (timer)
117                 task->tk_timeout_fn = timer;
118         else
119                 task->tk_timeout_fn = __rpc_default_timer;
120         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
122 }
123
124 /*
125  * Delete any timer for the current task. Because we use del_timer_sync(),
126  * this function should never be called while holding queue->lock.
127  */
128 static void
129 rpc_delete_timer(struct rpc_task *task)
130 {
131         if (RPC_IS_QUEUED(task))
132                 return;
133         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134                 del_singleshot_timer_sync(&task->tk_timer);
135                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
136         }
137 }
138
139 /*
140  * Add new request to a priority queue.
141  */
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
143 {
144         struct list_head *q;
145         struct rpc_task *t;
146
147         INIT_LIST_HEAD(&task->u.tk_wait.links);
148         q = &queue->tasks[task->tk_priority];
149         if (unlikely(task->tk_priority > queue->maxpriority))
150                 q = &queue->tasks[queue->maxpriority];
151         list_for_each_entry(t, q, u.tk_wait.list) {
152                 if (t->tk_cookie == task->tk_cookie) {
153                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154                         return;
155                 }
156         }
157         list_add_tail(&task->u.tk_wait.list, q);
158 }
159
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 {
170         BUG_ON (RPC_IS_QUEUED(task));
171
172         if (RPC_IS_PRIORITY(queue))
173                 __rpc_add_wait_queue_priority(queue, task);
174         else if (RPC_IS_SWAPPER(task))
175                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176         else
177                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178         task->u.tk_wait.rpc_waitq = queue;
179         queue->qlen++;
180         rpc_set_queued(task);
181
182         dprintk("RPC: %5u added to queue %p \"%s\"\n",
183                         task->tk_pid, queue, rpc_qname(queue));
184 }
185
186 /*
187  * Remove request from a priority queue.
188  */
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
190 {
191         struct rpc_task *t;
192
193         if (!list_empty(&task->u.tk_wait.links)) {
194                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
197         }
198         list_del(&task->u.tk_wait.list);
199 }
200
201 /*
202  * Remove request from queue.
203  * Note: must be called with spin lock held.
204  */
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
206 {
207         struct rpc_wait_queue *queue;
208         queue = task->u.tk_wait.rpc_waitq;
209
210         if (RPC_IS_PRIORITY(queue))
211                 __rpc_remove_wait_queue_priority(task);
212         else
213                 list_del(&task->u.tk_wait.list);
214         queue->qlen--;
215         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
216                         task->tk_pid, queue, rpc_qname(queue));
217 }
218
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
220 {
221         queue->priority = priority;
222         queue->count = 1 << (priority * 2);
223 }
224
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
226 {
227         queue->cookie = cookie;
228         queue->nr = RPC_BATCH_COUNT;
229 }
230
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
232 {
233         rpc_set_waitqueue_priority(queue, queue->maxpriority);
234         rpc_set_waitqueue_cookie(queue, 0);
235 }
236
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
238 {
239         int i;
240
241         spin_lock_init(&queue->lock);
242         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243                 INIT_LIST_HEAD(&queue->tasks[i]);
244         queue->maxpriority = maxprio;
245         rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247         queue->name = qname;
248 #endif
249 }
250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
254 }
255
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258         __rpc_init_priority_wait_queue(queue, qname, 0);
259 }
260 EXPORT_SYMBOL(rpc_init_wait_queue);
261
262 static int rpc_wait_bit_interruptible(void *word)
263 {
264         if (signal_pending(current))
265                 return -ERESTARTSYS;
266         schedule();
267         return 0;
268 }
269
270 #ifdef RPC_DEBUG
271 static void rpc_task_set_debuginfo(struct rpc_task *task)
272 {
273         static atomic_t rpc_pid;
274
275         task->tk_magic = RPC_TASK_MAGIC_ID;
276         task->tk_pid = atomic_inc_return(&rpc_pid);
277 }
278 #else
279 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 }
282 #endif
283
284 static void rpc_set_active(struct rpc_task *task)
285 {
286         struct rpc_clnt *clnt;
287         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
288                 return;
289         rpc_task_set_debuginfo(task);
290         /* Add to global list of all tasks */
291         clnt = task->tk_client;
292         if (clnt != NULL) {
293                 spin_lock(&clnt->cl_lock);
294                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
295                 spin_unlock(&clnt->cl_lock);
296         }
297 }
298
299 /*
300  * Mark an RPC call as having completed by clearing the 'active' bit
301  */
302 static void rpc_mark_complete_task(struct rpc_task *task)
303 {
304         smp_mb__before_clear_bit();
305         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
306         smp_mb__after_clear_bit();
307         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
308 }
309
310 /*
311  * Allow callers to wait for completion of an RPC call
312  */
313 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
314 {
315         if (action == NULL)
316                 action = rpc_wait_bit_interruptible;
317         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
318                         action, TASK_INTERRUPTIBLE);
319 }
320 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
321
322 /*
323  * Make an RPC task runnable.
324  *
325  * Note: If the task is ASYNC, this must be called with
326  * the spinlock held to protect the wait queue operation.
327  */
328 static void rpc_make_runnable(struct rpc_task *task)
329 {
330         BUG_ON(task->tk_timeout_fn);
331         rpc_clear_queued(task);
332         if (rpc_test_and_set_running(task))
333                 return;
334         /* We might have raced */
335         if (RPC_IS_QUEUED(task)) {
336                 rpc_clear_running(task);
337                 return;
338         }
339         if (RPC_IS_ASYNC(task)) {
340                 int status;
341
342                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
343                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
344                 if (status < 0) {
345                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
346                         task->tk_status = status;
347                         return;
348                 }
349         } else
350                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
351 }
352
353 /*
354  * Prepare for sleeping on a wait queue.
355  * By always appending tasks to the list we ensure FIFO behavior.
356  * NB: An RPC task will only receive interrupt-driven events as long
357  * as it's on a wait queue.
358  */
359 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
360                         rpc_action action, rpc_action timer)
361 {
362         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
363                         task->tk_pid, rpc_qname(q), jiffies);
364
365         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
366                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
367                 return;
368         }
369
370         __rpc_add_wait_queue(q, task);
371
372         BUG_ON(task->tk_callback != NULL);
373         task->tk_callback = action;
374         __rpc_add_timer(task, timer);
375 }
376
377 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
378                                 rpc_action action, rpc_action timer)
379 {
380         /* Mark the task as being activated if so needed */
381         rpc_set_active(task);
382
383         /*
384          * Protect the queue operations.
385          */
386         spin_lock_bh(&q->lock);
387         __rpc_sleep_on(q, task, action, timer);
388         spin_unlock_bh(&q->lock);
389 }
390
391 /**
392  * __rpc_do_wake_up_task - wake up a single rpc_task
393  * @task: task to be woken up
394  *
395  * Caller must hold queue->lock, and have cleared the task queued flag.
396  */
397 static void __rpc_do_wake_up_task(struct rpc_task *task)
398 {
399         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
400                         task->tk_pid, jiffies);
401
402 #ifdef RPC_DEBUG
403         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
404 #endif
405         /* Has the task been executed yet? If not, we cannot wake it up! */
406         if (!RPC_IS_ACTIVATED(task)) {
407                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
408                 return;
409         }
410
411         __rpc_disable_timer(task);
412         __rpc_remove_wait_queue(task);
413
414         rpc_make_runnable(task);
415
416         dprintk("RPC:       __rpc_wake_up_task done\n");
417 }
418
419 /*
420  * Wake up the specified task
421  */
422 static void __rpc_wake_up_task(struct rpc_task *task)
423 {
424         if (rpc_start_wakeup(task)) {
425                 if (RPC_IS_QUEUED(task))
426                         __rpc_do_wake_up_task(task);
427                 rpc_finish_wakeup(task);
428         }
429 }
430
431 /*
432  * Default timeout handler if none specified by user
433  */
434 static void
435 __rpc_default_timer(struct rpc_task *task)
436 {
437         dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
438         task->tk_status = -ETIMEDOUT;
439         rpc_wake_up_task(task);
440 }
441
442 /*
443  * Wake up the specified task
444  */
445 void rpc_wake_up_task(struct rpc_task *task)
446 {
447         rcu_read_lock_bh();
448         if (rpc_start_wakeup(task)) {
449                 if (RPC_IS_QUEUED(task)) {
450                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
451
452                         /* Note: we're already in a bh-safe context */
453                         spin_lock(&queue->lock);
454                         __rpc_do_wake_up_task(task);
455                         spin_unlock(&queue->lock);
456                 }
457                 rpc_finish_wakeup(task);
458         }
459         rcu_read_unlock_bh();
460 }
461
462 /*
463  * Wake up the next task on a priority queue.
464  */
465 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
466 {
467         struct list_head *q;
468         struct rpc_task *task;
469
470         /*
471          * Service a batch of tasks from a single cookie.
472          */
473         q = &queue->tasks[queue->priority];
474         if (!list_empty(q)) {
475                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
476                 if (queue->cookie == task->tk_cookie) {
477                         if (--queue->nr)
478                                 goto out;
479                         list_move_tail(&task->u.tk_wait.list, q);
480                 }
481                 /*
482                  * Check if we need to switch queues.
483                  */
484                 if (--queue->count)
485                         goto new_cookie;
486         }
487
488         /*
489          * Service the next queue.
490          */
491         do {
492                 if (q == &queue->tasks[0])
493                         q = &queue->tasks[queue->maxpriority];
494                 else
495                         q = q - 1;
496                 if (!list_empty(q)) {
497                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
498                         goto new_queue;
499                 }
500         } while (q != &queue->tasks[queue->priority]);
501
502         rpc_reset_waitqueue_priority(queue);
503         return NULL;
504
505 new_queue:
506         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
507 new_cookie:
508         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
509 out:
510         __rpc_wake_up_task(task);
511         return task;
512 }
513
514 /*
515  * Wake up the next task on the wait queue.
516  */
517 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
518 {
519         struct rpc_task *task = NULL;
520
521         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
522                         queue, rpc_qname(queue));
523         rcu_read_lock_bh();
524         spin_lock(&queue->lock);
525         if (RPC_IS_PRIORITY(queue))
526                 task = __rpc_wake_up_next_priority(queue);
527         else {
528                 task_for_first(task, &queue->tasks[0])
529                         __rpc_wake_up_task(task);
530         }
531         spin_unlock(&queue->lock);
532         rcu_read_unlock_bh();
533
534         return task;
535 }
536
537 /**
538  * rpc_wake_up - wake up all rpc_tasks
539  * @queue: rpc_wait_queue on which the tasks are sleeping
540  *
541  * Grabs queue->lock
542  */
543 void rpc_wake_up(struct rpc_wait_queue *queue)
544 {
545         struct rpc_task *task, *next;
546         struct list_head *head;
547
548         rcu_read_lock_bh();
549         spin_lock(&queue->lock);
550         head = &queue->tasks[queue->maxpriority];
551         for (;;) {
552                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
553                         __rpc_wake_up_task(task);
554                 if (head == &queue->tasks[0])
555                         break;
556                 head--;
557         }
558         spin_unlock(&queue->lock);
559         rcu_read_unlock_bh();
560 }
561
562 /**
563  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
564  * @queue: rpc_wait_queue on which the tasks are sleeping
565  * @status: status value to set
566  *
567  * Grabs queue->lock
568  */
569 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
570 {
571         struct rpc_task *task, *next;
572         struct list_head *head;
573
574         rcu_read_lock_bh();
575         spin_lock(&queue->lock);
576         head = &queue->tasks[queue->maxpriority];
577         for (;;) {
578                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
579                         task->tk_status = status;
580                         __rpc_wake_up_task(task);
581                 }
582                 if (head == &queue->tasks[0])
583                         break;
584                 head--;
585         }
586         spin_unlock(&queue->lock);
587         rcu_read_unlock_bh();
588 }
589
590 static void __rpc_atrun(struct rpc_task *task)
591 {
592         rpc_wake_up_task(task);
593 }
594
595 /*
596  * Run a task at a later time
597  */
598 void rpc_delay(struct rpc_task *task, unsigned long delay)
599 {
600         task->tk_timeout = delay;
601         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
602 }
603
604 /*
605  * Helper to call task->tk_ops->rpc_call_prepare
606  */
607 static void rpc_prepare_task(struct rpc_task *task)
608 {
609         lock_kernel();
610         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
611         unlock_kernel();
612 }
613
614 /*
615  * Helper that calls task->tk_ops->rpc_call_done if it exists
616  */
617 void rpc_exit_task(struct rpc_task *task)
618 {
619         task->tk_action = NULL;
620         if (task->tk_ops->rpc_call_done != NULL) {
621                 lock_kernel();
622                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
623                 unlock_kernel();
624                 if (task->tk_action != NULL) {
625                         WARN_ON(RPC_ASSASSINATED(task));
626                         /* Always release the RPC slot and buffer memory */
627                         xprt_release(task);
628                 }
629         }
630 }
631 EXPORT_SYMBOL(rpc_exit_task);
632
633 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
634 {
635         if (ops->rpc_release != NULL) {
636                 lock_kernel();
637                 ops->rpc_release(calldata);
638                 unlock_kernel();
639         }
640 }
641
642 /*
643  * This is the RPC `scheduler' (or rather, the finite state machine).
644  */
645 static void __rpc_execute(struct rpc_task *task)
646 {
647         int             status = 0;
648
649         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
650                         task->tk_pid, task->tk_flags);
651
652         BUG_ON(RPC_IS_QUEUED(task));
653
654         for (;;) {
655                 /*
656                  * Garbage collection of pending timers...
657                  */
658                 rpc_delete_timer(task);
659
660                 /*
661                  * Execute any pending callback.
662                  */
663                 if (RPC_DO_CALLBACK(task)) {
664                         /* Define a callback save pointer */
665                         void (*save_callback)(struct rpc_task *);
666
667                         /*
668                          * If a callback exists, save it, reset it,
669                          * call it.
670                          * The save is needed to stop from resetting
671                          * another callback set within the callback handler
672                          * - Dave
673                          */
674                         save_callback=task->tk_callback;
675                         task->tk_callback=NULL;
676                         save_callback(task);
677                 }
678
679                 /*
680                  * Perform the next FSM step.
681                  * tk_action may be NULL when the task has been killed
682                  * by someone else.
683                  */
684                 if (!RPC_IS_QUEUED(task)) {
685                         if (task->tk_action == NULL)
686                                 break;
687                         task->tk_action(task);
688                 }
689
690                 /*
691                  * Lockless check for whether task is sleeping or not.
692                  */
693                 if (!RPC_IS_QUEUED(task))
694                         continue;
695                 rpc_clear_running(task);
696                 if (RPC_IS_ASYNC(task)) {
697                         /* Careful! we may have raced... */
698                         if (RPC_IS_QUEUED(task))
699                                 return;
700                         if (rpc_test_and_set_running(task))
701                                 return;
702                         continue;
703                 }
704
705                 /* sync task: sleep here */
706                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
707                 /* Note: Caller should be using rpc_clnt_sigmask() */
708                 status = out_of_line_wait_on_bit(&task->tk_runstate,
709                                 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
710                                 TASK_INTERRUPTIBLE);
711                 if (status == -ERESTARTSYS) {
712                         /*
713                          * When a sync task receives a signal, it exits with
714                          * -ERESTARTSYS. In order to catch any callbacks that
715                          * clean up after sleeping on some queue, we don't
716                          * break the loop here, but go around once more.
717                          */
718                         dprintk("RPC: %5u got signal\n", task->tk_pid);
719                         task->tk_flags |= RPC_TASK_KILLED;
720                         rpc_exit(task, -ERESTARTSYS);
721                         rpc_wake_up_task(task);
722                 }
723                 rpc_set_running(task);
724                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
725         }
726
727         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
728                         task->tk_status);
729         /* Release all resources associated with the task */
730         rpc_release_task(task);
731 }
732
733 /*
734  * User-visible entry point to the scheduler.
735  *
736  * This may be called recursively if e.g. an async NFS task updates
737  * the attributes and finds that dirty pages must be flushed.
738  * NOTE: Upon exit of this function the task is guaranteed to be
739  *       released. In particular note that tk_release() will have
740  *       been called, so your task memory may have been freed.
741  */
742 void rpc_execute(struct rpc_task *task)
743 {
744         rpc_set_active(task);
745         rpc_set_running(task);
746         __rpc_execute(task);
747 }
748
749 static void rpc_async_schedule(struct work_struct *work)
750 {
751         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
752 }
753
754 struct rpc_buffer {
755         size_t  len;
756         char    data[];
757 };
758
759 /**
760  * rpc_malloc - allocate an RPC buffer
761  * @task: RPC task that will use this buffer
762  * @size: requested byte size
763  *
764  * To prevent rpciod from hanging, this allocator never sleeps,
765  * returning NULL if the request cannot be serviced immediately.
766  * The caller can arrange to sleep in a way that is safe for rpciod.
767  *
768  * Most requests are 'small' (under 2KiB) and can be serviced from a
769  * mempool, ensuring that NFS reads and writes can always proceed,
770  * and that there is good locality of reference for these buffers.
771  *
772  * In order to avoid memory starvation triggering more writebacks of
773  * NFS requests, we avoid using GFP_KERNEL.
774  */
775 void *rpc_malloc(struct rpc_task *task, size_t size)
776 {
777         struct rpc_buffer *buf;
778         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
779
780         size += sizeof(struct rpc_buffer);
781         if (size <= RPC_BUFFER_MAXSIZE)
782                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
783         else
784                 buf = kmalloc(size, gfp);
785
786         if (!buf)
787                 return NULL;
788
789         buf->len = size;
790         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
791                         task->tk_pid, size, buf);
792         return &buf->data;
793 }
794
795 /**
796  * rpc_free - free buffer allocated via rpc_malloc
797  * @buffer: buffer to free
798  *
799  */
800 void rpc_free(void *buffer)
801 {
802         size_t size;
803         struct rpc_buffer *buf;
804
805         if (!buffer)
806                 return;
807
808         buf = container_of(buffer, struct rpc_buffer, data);
809         size = buf->len;
810
811         dprintk("RPC:       freeing buffer of size %zu at %p\n",
812                         size, buf);
813
814         if (size <= RPC_BUFFER_MAXSIZE)
815                 mempool_free(buf, rpc_buffer_mempool);
816         else
817                 kfree(buf);
818 }
819
820 /*
821  * Creation and deletion of RPC task structures
822  */
823 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
824 {
825         memset(task, 0, sizeof(*task));
826         init_timer(&task->tk_timer);
827         task->tk_timer.data     = (unsigned long) task;
828         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
829         atomic_set(&task->tk_count, 1);
830         task->tk_client = clnt;
831         task->tk_flags  = flags;
832         task->tk_ops = tk_ops;
833         if (tk_ops->rpc_call_prepare != NULL)
834                 task->tk_action = rpc_prepare_task;
835         task->tk_calldata = calldata;
836         INIT_LIST_HEAD(&task->tk_task);
837
838         /* Initialize retry counters */
839         task->tk_garb_retry = 2;
840         task->tk_cred_retry = 2;
841
842         task->tk_priority = RPC_PRIORITY_NORMAL;
843         task->tk_cookie = (unsigned long)current;
844
845         /* Initialize workqueue for async tasks */
846         task->tk_workqueue = rpciod_workqueue;
847
848         if (clnt) {
849                 kref_get(&clnt->cl_kref);
850                 if (clnt->cl_softrtry)
851                         task->tk_flags |= RPC_TASK_SOFT;
852                 if (!clnt->cl_intr)
853                         task->tk_flags |= RPC_TASK_NOINTR;
854         }
855
856         BUG_ON(task->tk_ops == NULL);
857
858         /* starting timestamp */
859         task->tk_start = jiffies;
860
861         dprintk("RPC:       new task initialized, procpid %u\n",
862                                 current->pid);
863 }
864
865 static struct rpc_task *
866 rpc_alloc_task(void)
867 {
868         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
869 }
870
871 static void rpc_free_task(struct rcu_head *rcu)
872 {
873         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
874         dprintk("RPC: %5u freeing task\n", task->tk_pid);
875         mempool_free(task, rpc_task_mempool);
876 }
877
878 /*
879  * Create a new task for the specified client.
880  */
881 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
882 {
883         struct rpc_task *task;
884
885         task = rpc_alloc_task();
886         if (!task)
887                 goto out;
888
889         rpc_init_task(task, clnt, flags, tk_ops, calldata);
890
891         dprintk("RPC:       allocated task %p\n", task);
892         task->tk_flags |= RPC_TASK_DYNAMIC;
893 out:
894         return task;
895 }
896
897
898 void rpc_put_task(struct rpc_task *task)
899 {
900         const struct rpc_call_ops *tk_ops = task->tk_ops;
901         void *calldata = task->tk_calldata;
902
903         if (!atomic_dec_and_test(&task->tk_count))
904                 return;
905         /* Release resources */
906         if (task->tk_rqstp)
907                 xprt_release(task);
908         if (task->tk_msg.rpc_cred)
909                 rpcauth_unbindcred(task);
910         if (task->tk_client) {
911                 rpc_release_client(task->tk_client);
912                 task->tk_client = NULL;
913         }
914         if (task->tk_flags & RPC_TASK_DYNAMIC)
915                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
916         rpc_release_calldata(tk_ops, calldata);
917 }
918 EXPORT_SYMBOL(rpc_put_task);
919
920 static void rpc_release_task(struct rpc_task *task)
921 {
922 #ifdef RPC_DEBUG
923         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
924 #endif
925         dprintk("RPC: %5u release task\n", task->tk_pid);
926
927         if (!list_empty(&task->tk_task)) {
928                 struct rpc_clnt *clnt = task->tk_client;
929                 /* Remove from client task list */
930                 spin_lock(&clnt->cl_lock);
931                 list_del(&task->tk_task);
932                 spin_unlock(&clnt->cl_lock);
933         }
934         BUG_ON (RPC_IS_QUEUED(task));
935
936         /* Synchronously delete any running timer */
937         rpc_delete_timer(task);
938
939 #ifdef RPC_DEBUG
940         task->tk_magic = 0;
941 #endif
942         /* Wake up anyone who is waiting for task completion */
943         rpc_mark_complete_task(task);
944
945         rpc_put_task(task);
946 }
947
948 /**
949  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
950  * @clnt: pointer to RPC client
951  * @flags: RPC flags
952  * @ops: RPC call ops
953  * @data: user call data
954  */
955 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
956                                         const struct rpc_call_ops *ops,
957                                         void *data)
958 {
959         struct rpc_task *task;
960         task = rpc_new_task(clnt, flags, ops, data);
961         if (task == NULL) {
962                 rpc_release_calldata(ops, data);
963                 return ERR_PTR(-ENOMEM);
964         }
965         atomic_inc(&task->tk_count);
966         rpc_execute(task);
967         return task;
968 }
969 EXPORT_SYMBOL(rpc_run_task);
970
971 /*
972  * Kill all tasks for the given client.
973  * XXX: kill their descendants as well?
974  */
975 void rpc_killall_tasks(struct rpc_clnt *clnt)
976 {
977         struct rpc_task *rovr;
978
979
980         if (list_empty(&clnt->cl_tasks))
981                 return;
982         dprintk("RPC:       killing all tasks for client %p\n", clnt);
983         /*
984          * Spin lock all_tasks to prevent changes...
985          */
986         spin_lock(&clnt->cl_lock);
987         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
988                 if (! RPC_IS_ACTIVATED(rovr))
989                         continue;
990                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
991                         rovr->tk_flags |= RPC_TASK_KILLED;
992                         rpc_exit(rovr, -EIO);
993                         rpc_wake_up_task(rovr);
994                 }
995         }
996         spin_unlock(&clnt->cl_lock);
997 }
998
999 static void rpciod_killall(void)
1000 {
1001         struct rpc_clnt *clnt;
1002         unsigned long flags;
1003
1004         for(;;) {
1005                 clear_thread_flag(TIF_SIGPENDING);
1006
1007                 spin_lock(&rpc_sched_lock);
1008                 list_for_each_entry(clnt, &all_clients, cl_clients)
1009                         rpc_killall_tasks(clnt);
1010                 spin_unlock(&rpc_sched_lock);
1011                 flush_workqueue(rpciod_workqueue);
1012                 if (!list_empty(&all_clients))
1013                         break;
1014                 dprintk("RPC:       rpciod_killall: waiting for tasks "
1015                                         "to exit\n");
1016                 wait_event_timeout(client_kill_wait,
1017                                 list_empty(&all_clients), 1*HZ);
1018         }
1019
1020         spin_lock_irqsave(&current->sighand->siglock, flags);
1021         recalc_sigpending();
1022         spin_unlock_irqrestore(&current->sighand->siglock, flags);
1023 }
1024
1025 void rpc_register_client(struct rpc_clnt *clnt)
1026 {
1027         spin_lock(&rpc_sched_lock);
1028         list_add(&clnt->cl_clients, &all_clients);
1029         spin_unlock(&rpc_sched_lock);
1030 }
1031
1032 void rpc_unregister_client(struct rpc_clnt *clnt)
1033 {
1034         spin_lock(&rpc_sched_lock);
1035         list_del(&clnt->cl_clients);
1036         if (list_empty(&all_clients))
1037                 wake_up(&client_kill_wait);
1038         spin_unlock(&rpc_sched_lock);
1039 }
1040
1041 /*
1042  * Start up the rpciod process if it's not already running.
1043  */
1044 int
1045 rpciod_up(void)
1046 {
1047         struct workqueue_struct *wq;
1048         int error = 0;
1049
1050         mutex_lock(&rpciod_mutex);
1051         dprintk("RPC:       rpciod_up: users %u\n", rpciod_users);
1052         rpciod_users++;
1053         if (rpciod_workqueue)
1054                 goto out;
1055         /*
1056          * If there's no pid, we should be the first user.
1057          */
1058         if (rpciod_users > 1)
1059                 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1060         /*
1061          * Create the rpciod thread and wait for it to start.
1062          */
1063         error = -ENOMEM;
1064         wq = create_workqueue("rpciod");
1065         if (wq == NULL) {
1066                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1067                 rpciod_users--;
1068                 goto out;
1069         }
1070         rpciod_workqueue = wq;
1071         error = 0;
1072 out:
1073         mutex_unlock(&rpciod_mutex);
1074         return error;
1075 }
1076
1077 void
1078 rpciod_down(void)
1079 {
1080         mutex_lock(&rpciod_mutex);
1081         dprintk("RPC:       rpciod_down sema %u\n", rpciod_users);
1082         if (rpciod_users) {
1083                 if (--rpciod_users)
1084                         goto out;
1085         } else
1086                 printk(KERN_WARNING "rpciod_down: no users??\n");
1087
1088         if (!rpciod_workqueue) {
1089                 dprintk("RPC:       rpciod_down: Nothing to do!\n");
1090                 goto out;
1091         }
1092         rpciod_killall();
1093
1094         destroy_workqueue(rpciod_workqueue);
1095         rpciod_workqueue = NULL;
1096  out:
1097         mutex_unlock(&rpciod_mutex);
1098 }
1099
1100 #ifdef RPC_DEBUG
1101 void rpc_show_tasks(void)
1102 {
1103         struct rpc_clnt *clnt;
1104         struct rpc_task *t;
1105
1106         spin_lock(&rpc_sched_lock);
1107         if (list_empty(&all_clients))
1108                 goto out;
1109         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1110                 "-rpcwait -action- ---ops--\n");
1111         list_for_each_entry(clnt, &all_clients, cl_clients) {
1112                 if (list_empty(&clnt->cl_tasks))
1113                         continue;
1114                 spin_lock(&clnt->cl_lock);
1115                 list_for_each_entry(t, &clnt->cl_tasks, tk_task) {
1116                         const char *rpc_waitq = "none";
1117
1118                         if (RPC_IS_QUEUED(t))
1119                                 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1120
1121                         printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1122                                 t->tk_pid,
1123                                 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1124                                 t->tk_flags, t->tk_status,
1125                                 t->tk_client,
1126                                 (t->tk_client ? t->tk_client->cl_prog : 0),
1127                                 t->tk_rqstp, t->tk_timeout,
1128                                 rpc_waitq,
1129                                 t->tk_action, t->tk_ops);
1130                 }
1131                 spin_unlock(&clnt->cl_lock);
1132         }
1133 out:
1134         spin_unlock(&rpc_sched_lock);
1135 }
1136 #endif
1137
1138 void
1139 rpc_destroy_mempool(void)
1140 {
1141         if (rpc_buffer_mempool)
1142                 mempool_destroy(rpc_buffer_mempool);
1143         if (rpc_task_mempool)
1144                 mempool_destroy(rpc_task_mempool);
1145         if (rpc_task_slabp)
1146                 kmem_cache_destroy(rpc_task_slabp);
1147         if (rpc_buffer_slabp)
1148                 kmem_cache_destroy(rpc_buffer_slabp);
1149 }
1150
1151 int
1152 rpc_init_mempool(void)
1153 {
1154         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1155                                              sizeof(struct rpc_task),
1156                                              0, SLAB_HWCACHE_ALIGN,
1157                                              NULL, NULL);
1158         if (!rpc_task_slabp)
1159                 goto err_nomem;
1160         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1161                                              RPC_BUFFER_MAXSIZE,
1162                                              0, SLAB_HWCACHE_ALIGN,
1163                                              NULL, NULL);
1164         if (!rpc_buffer_slabp)
1165                 goto err_nomem;
1166         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1167                                                     rpc_task_slabp);
1168         if (!rpc_task_mempool)
1169                 goto err_nomem;
1170         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1171                                                       rpc_buffer_slabp);
1172         if (!rpc_buffer_mempool)
1173                 goto err_nomem;
1174         return 0;
1175 err_nomem:
1176         rpc_destroy_mempool();
1177         return -ENOMEM;
1178 }