SUNRPC: Move rpc_task->tk_task list into struct rpc_clnt
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 static int                      rpc_task_id;
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static struct kmem_cache        *rpc_task_slabp __read_mostly;
38 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     __rpc_default_timer(struct rpc_task *task);
43 static void                     rpciod_killall(void);
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46
47 /*
48  * RPC tasks sit here while waiting for conditions to improve.
49  */
50 static RPC_WAITQ(delay_queue, "delayq");
51
52 /*
53  * All RPC clients are linked into this list
54  */
55 static LIST_HEAD(all_clients);
56 static DECLARE_WAIT_QUEUE_HEAD(client_kill_wait);
57
58 /*
59  * rpciod-related stuff
60  */
61 static DEFINE_MUTEX(rpciod_mutex);
62 static unsigned int             rpciod_users;
63 struct workqueue_struct *rpciod_workqueue;
64
65 /*
66  * Spinlock for other critical sections of code.
67  */
68 static DEFINE_SPINLOCK(rpc_sched_lock);
69
70 /*
71  * Disable the timer for a given RPC task. Should be called with
72  * queue->lock and bh_disabled in order to avoid races within
73  * rpc_run_timer().
74  */
75 static inline void
76 __rpc_disable_timer(struct rpc_task *task)
77 {
78         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
79         task->tk_timeout_fn = NULL;
80         task->tk_timeout = 0;
81 }
82
83 /*
84  * Run a timeout function.
85  * We use the callback in order to allow __rpc_wake_up_task()
86  * and friends to disable the timer synchronously on SMP systems
87  * without calling del_timer_sync(). The latter could cause a
88  * deadlock if called while we're holding spinlocks...
89  */
90 static void rpc_run_timer(struct rpc_task *task)
91 {
92         void (*callback)(struct rpc_task *);
93
94         callback = task->tk_timeout_fn;
95         task->tk_timeout_fn = NULL;
96         if (callback && RPC_IS_QUEUED(task)) {
97                 dprintk("RPC: %5u running timer\n", task->tk_pid);
98                 callback(task);
99         }
100         smp_mb__before_clear_bit();
101         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
102         smp_mb__after_clear_bit();
103 }
104
105 /*
106  * Set up a timer for the current task.
107  */
108 static inline void
109 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
110 {
111         if (!task->tk_timeout)
112                 return;
113
114         dprintk("RPC: %5u setting alarm for %lu ms\n",
115                         task->tk_pid, task->tk_timeout * 1000 / HZ);
116
117         if (timer)
118                 task->tk_timeout_fn = timer;
119         else
120                 task->tk_timeout_fn = __rpc_default_timer;
121         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
122         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
123 }
124
125 /*
126  * Delete any timer for the current task. Because we use del_timer_sync(),
127  * this function should never be called while holding queue->lock.
128  */
129 static void
130 rpc_delete_timer(struct rpc_task *task)
131 {
132         if (RPC_IS_QUEUED(task))
133                 return;
134         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
135                 del_singleshot_timer_sync(&task->tk_timer);
136                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
137         }
138 }
139
140 /*
141  * Add new request to a priority queue.
142  */
143 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
144 {
145         struct list_head *q;
146         struct rpc_task *t;
147
148         INIT_LIST_HEAD(&task->u.tk_wait.links);
149         q = &queue->tasks[task->tk_priority];
150         if (unlikely(task->tk_priority > queue->maxpriority))
151                 q = &queue->tasks[queue->maxpriority];
152         list_for_each_entry(t, q, u.tk_wait.list) {
153                 if (t->tk_cookie == task->tk_cookie) {
154                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
155                         return;
156                 }
157         }
158         list_add_tail(&task->u.tk_wait.list, q);
159 }
160
161 /*
162  * Add new request to wait queue.
163  *
164  * Swapper tasks always get inserted at the head of the queue.
165  * This should avoid many nasty memory deadlocks and hopefully
166  * improve overall performance.
167  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168  */
169 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
170 {
171         BUG_ON (RPC_IS_QUEUED(task));
172
173         if (RPC_IS_PRIORITY(queue))
174                 __rpc_add_wait_queue_priority(queue, task);
175         else if (RPC_IS_SWAPPER(task))
176                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
177         else
178                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
179         task->u.tk_wait.rpc_waitq = queue;
180         queue->qlen++;
181         rpc_set_queued(task);
182
183         dprintk("RPC: %5u added to queue %p \"%s\"\n",
184                         task->tk_pid, queue, rpc_qname(queue));
185 }
186
187 /*
188  * Remove request from a priority queue.
189  */
190 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
191 {
192         struct rpc_task *t;
193
194         if (!list_empty(&task->u.tk_wait.links)) {
195                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
196                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
197                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
198         }
199         list_del(&task->u.tk_wait.list);
200 }
201
202 /*
203  * Remove request from queue.
204  * Note: must be called with spin lock held.
205  */
206 static void __rpc_remove_wait_queue(struct rpc_task *task)
207 {
208         struct rpc_wait_queue *queue;
209         queue = task->u.tk_wait.rpc_waitq;
210
211         if (RPC_IS_PRIORITY(queue))
212                 __rpc_remove_wait_queue_priority(task);
213         else
214                 list_del(&task->u.tk_wait.list);
215         queue->qlen--;
216         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217                         task->tk_pid, queue, rpc_qname(queue));
218 }
219
220 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
221 {
222         queue->priority = priority;
223         queue->count = 1 << (priority * 2);
224 }
225
226 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
227 {
228         queue->cookie = cookie;
229         queue->nr = RPC_BATCH_COUNT;
230 }
231
232 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
233 {
234         rpc_set_waitqueue_priority(queue, queue->maxpriority);
235         rpc_set_waitqueue_cookie(queue, 0);
236 }
237
238 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
239 {
240         int i;
241
242         spin_lock_init(&queue->lock);
243         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
244                 INIT_LIST_HEAD(&queue->tasks[i]);
245         queue->maxpriority = maxprio;
246         rpc_reset_waitqueue_priority(queue);
247 #ifdef RPC_DEBUG
248         queue->name = qname;
249 #endif
250 }
251
252 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 {
254         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
255 }
256
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259         __rpc_init_priority_wait_queue(queue, qname, 0);
260 }
261 EXPORT_SYMBOL(rpc_init_wait_queue);
262
263 static int rpc_wait_bit_interruptible(void *word)
264 {
265         if (signal_pending(current))
266                 return -ERESTARTSYS;
267         schedule();
268         return 0;
269 }
270
271 static void rpc_set_active(struct rpc_task *task)
272 {
273         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
274                 return;
275         spin_lock(&rpc_sched_lock);
276 #ifdef RPC_DEBUG
277         task->tk_magic = RPC_TASK_MAGIC_ID;
278         task->tk_pid = rpc_task_id++;
279 #endif
280         /* Add to global list of all tasks */
281         if (task->tk_client)
282                 list_add_tail(&task->tk_task, &task->tk_client->cl_tasks);
283         spin_unlock(&rpc_sched_lock);
284 }
285
286 /*
287  * Mark an RPC call as having completed by clearing the 'active' bit
288  */
289 static void rpc_mark_complete_task(struct rpc_task *task)
290 {
291         smp_mb__before_clear_bit();
292         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
293         smp_mb__after_clear_bit();
294         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
295 }
296
297 /*
298  * Allow callers to wait for completion of an RPC call
299  */
300 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
301 {
302         if (action == NULL)
303                 action = rpc_wait_bit_interruptible;
304         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
305                         action, TASK_INTERRUPTIBLE);
306 }
307 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
308
309 /*
310  * Make an RPC task runnable.
311  *
312  * Note: If the task is ASYNC, this must be called with
313  * the spinlock held to protect the wait queue operation.
314  */
315 static void rpc_make_runnable(struct rpc_task *task)
316 {
317         BUG_ON(task->tk_timeout_fn);
318         rpc_clear_queued(task);
319         if (rpc_test_and_set_running(task))
320                 return;
321         /* We might have raced */
322         if (RPC_IS_QUEUED(task)) {
323                 rpc_clear_running(task);
324                 return;
325         }
326         if (RPC_IS_ASYNC(task)) {
327                 int status;
328
329                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
330                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
331                 if (status < 0) {
332                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
333                         task->tk_status = status;
334                         return;
335                 }
336         } else
337                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
338 }
339
340 /*
341  * Prepare for sleeping on a wait queue.
342  * By always appending tasks to the list we ensure FIFO behavior.
343  * NB: An RPC task will only receive interrupt-driven events as long
344  * as it's on a wait queue.
345  */
346 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
347                         rpc_action action, rpc_action timer)
348 {
349         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
350                         task->tk_pid, rpc_qname(q), jiffies);
351
352         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
353                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
354                 return;
355         }
356
357         __rpc_add_wait_queue(q, task);
358
359         BUG_ON(task->tk_callback != NULL);
360         task->tk_callback = action;
361         __rpc_add_timer(task, timer);
362 }
363
364 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
365                                 rpc_action action, rpc_action timer)
366 {
367         /* Mark the task as being activated if so needed */
368         rpc_set_active(task);
369
370         /*
371          * Protect the queue operations.
372          */
373         spin_lock_bh(&q->lock);
374         __rpc_sleep_on(q, task, action, timer);
375         spin_unlock_bh(&q->lock);
376 }
377
378 /**
379  * __rpc_do_wake_up_task - wake up a single rpc_task
380  * @task: task to be woken up
381  *
382  * Caller must hold queue->lock, and have cleared the task queued flag.
383  */
384 static void __rpc_do_wake_up_task(struct rpc_task *task)
385 {
386         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
387                         task->tk_pid, jiffies);
388
389 #ifdef RPC_DEBUG
390         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
391 #endif
392         /* Has the task been executed yet? If not, we cannot wake it up! */
393         if (!RPC_IS_ACTIVATED(task)) {
394                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
395                 return;
396         }
397
398         __rpc_disable_timer(task);
399         __rpc_remove_wait_queue(task);
400
401         rpc_make_runnable(task);
402
403         dprintk("RPC:       __rpc_wake_up_task done\n");
404 }
405
406 /*
407  * Wake up the specified task
408  */
409 static void __rpc_wake_up_task(struct rpc_task *task)
410 {
411         if (rpc_start_wakeup(task)) {
412                 if (RPC_IS_QUEUED(task))
413                         __rpc_do_wake_up_task(task);
414                 rpc_finish_wakeup(task);
415         }
416 }
417
418 /*
419  * Default timeout handler if none specified by user
420  */
421 static void
422 __rpc_default_timer(struct rpc_task *task)
423 {
424         dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
425         task->tk_status = -ETIMEDOUT;
426         rpc_wake_up_task(task);
427 }
428
429 /*
430  * Wake up the specified task
431  */
432 void rpc_wake_up_task(struct rpc_task *task)
433 {
434         rcu_read_lock_bh();
435         if (rpc_start_wakeup(task)) {
436                 if (RPC_IS_QUEUED(task)) {
437                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
438
439                         /* Note: we're already in a bh-safe context */
440                         spin_lock(&queue->lock);
441                         __rpc_do_wake_up_task(task);
442                         spin_unlock(&queue->lock);
443                 }
444                 rpc_finish_wakeup(task);
445         }
446         rcu_read_unlock_bh();
447 }
448
449 /*
450  * Wake up the next task on a priority queue.
451  */
452 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
453 {
454         struct list_head *q;
455         struct rpc_task *task;
456
457         /*
458          * Service a batch of tasks from a single cookie.
459          */
460         q = &queue->tasks[queue->priority];
461         if (!list_empty(q)) {
462                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
463                 if (queue->cookie == task->tk_cookie) {
464                         if (--queue->nr)
465                                 goto out;
466                         list_move_tail(&task->u.tk_wait.list, q);
467                 }
468                 /*
469                  * Check if we need to switch queues.
470                  */
471                 if (--queue->count)
472                         goto new_cookie;
473         }
474
475         /*
476          * Service the next queue.
477          */
478         do {
479                 if (q == &queue->tasks[0])
480                         q = &queue->tasks[queue->maxpriority];
481                 else
482                         q = q - 1;
483                 if (!list_empty(q)) {
484                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
485                         goto new_queue;
486                 }
487         } while (q != &queue->tasks[queue->priority]);
488
489         rpc_reset_waitqueue_priority(queue);
490         return NULL;
491
492 new_queue:
493         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
494 new_cookie:
495         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
496 out:
497         __rpc_wake_up_task(task);
498         return task;
499 }
500
501 /*
502  * Wake up the next task on the wait queue.
503  */
504 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
505 {
506         struct rpc_task *task = NULL;
507
508         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
509                         queue, rpc_qname(queue));
510         rcu_read_lock_bh();
511         spin_lock(&queue->lock);
512         if (RPC_IS_PRIORITY(queue))
513                 task = __rpc_wake_up_next_priority(queue);
514         else {
515                 task_for_first(task, &queue->tasks[0])
516                         __rpc_wake_up_task(task);
517         }
518         spin_unlock(&queue->lock);
519         rcu_read_unlock_bh();
520
521         return task;
522 }
523
524 /**
525  * rpc_wake_up - wake up all rpc_tasks
526  * @queue: rpc_wait_queue on which the tasks are sleeping
527  *
528  * Grabs queue->lock
529  */
530 void rpc_wake_up(struct rpc_wait_queue *queue)
531 {
532         struct rpc_task *task, *next;
533         struct list_head *head;
534
535         rcu_read_lock_bh();
536         spin_lock(&queue->lock);
537         head = &queue->tasks[queue->maxpriority];
538         for (;;) {
539                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
540                         __rpc_wake_up_task(task);
541                 if (head == &queue->tasks[0])
542                         break;
543                 head--;
544         }
545         spin_unlock(&queue->lock);
546         rcu_read_unlock_bh();
547 }
548
549 /**
550  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
551  * @queue: rpc_wait_queue on which the tasks are sleeping
552  * @status: status value to set
553  *
554  * Grabs queue->lock
555  */
556 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
557 {
558         struct rpc_task *task, *next;
559         struct list_head *head;
560
561         rcu_read_lock_bh();
562         spin_lock(&queue->lock);
563         head = &queue->tasks[queue->maxpriority];
564         for (;;) {
565                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
566                         task->tk_status = status;
567                         __rpc_wake_up_task(task);
568                 }
569                 if (head == &queue->tasks[0])
570                         break;
571                 head--;
572         }
573         spin_unlock(&queue->lock);
574         rcu_read_unlock_bh();
575 }
576
577 static void __rpc_atrun(struct rpc_task *task)
578 {
579         rpc_wake_up_task(task);
580 }
581
582 /*
583  * Run a task at a later time
584  */
585 void rpc_delay(struct rpc_task *task, unsigned long delay)
586 {
587         task->tk_timeout = delay;
588         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
589 }
590
591 /*
592  * Helper to call task->tk_ops->rpc_call_prepare
593  */
594 static void rpc_prepare_task(struct rpc_task *task)
595 {
596         lock_kernel();
597         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
598         unlock_kernel();
599 }
600
601 /*
602  * Helper that calls task->tk_ops->rpc_call_done if it exists
603  */
604 void rpc_exit_task(struct rpc_task *task)
605 {
606         task->tk_action = NULL;
607         if (task->tk_ops->rpc_call_done != NULL) {
608                 lock_kernel();
609                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
610                 unlock_kernel();
611                 if (task->tk_action != NULL) {
612                         WARN_ON(RPC_ASSASSINATED(task));
613                         /* Always release the RPC slot and buffer memory */
614                         xprt_release(task);
615                 }
616         }
617 }
618 EXPORT_SYMBOL(rpc_exit_task);
619
620 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
621 {
622         if (ops->rpc_release != NULL) {
623                 lock_kernel();
624                 ops->rpc_release(calldata);
625                 unlock_kernel();
626         }
627 }
628
629 /*
630  * This is the RPC `scheduler' (or rather, the finite state machine).
631  */
632 static void __rpc_execute(struct rpc_task *task)
633 {
634         int             status = 0;
635
636         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
637                         task->tk_pid, task->tk_flags);
638
639         BUG_ON(RPC_IS_QUEUED(task));
640
641         for (;;) {
642                 /*
643                  * Garbage collection of pending timers...
644                  */
645                 rpc_delete_timer(task);
646
647                 /*
648                  * Execute any pending callback.
649                  */
650                 if (RPC_DO_CALLBACK(task)) {
651                         /* Define a callback save pointer */
652                         void (*save_callback)(struct rpc_task *);
653
654                         /*
655                          * If a callback exists, save it, reset it,
656                          * call it.
657                          * The save is needed to stop from resetting
658                          * another callback set within the callback handler
659                          * - Dave
660                          */
661                         save_callback=task->tk_callback;
662                         task->tk_callback=NULL;
663                         save_callback(task);
664                 }
665
666                 /*
667                  * Perform the next FSM step.
668                  * tk_action may be NULL when the task has been killed
669                  * by someone else.
670                  */
671                 if (!RPC_IS_QUEUED(task)) {
672                         if (task->tk_action == NULL)
673                                 break;
674                         task->tk_action(task);
675                 }
676
677                 /*
678                  * Lockless check for whether task is sleeping or not.
679                  */
680                 if (!RPC_IS_QUEUED(task))
681                         continue;
682                 rpc_clear_running(task);
683                 if (RPC_IS_ASYNC(task)) {
684                         /* Careful! we may have raced... */
685                         if (RPC_IS_QUEUED(task))
686                                 return;
687                         if (rpc_test_and_set_running(task))
688                                 return;
689                         continue;
690                 }
691
692                 /* sync task: sleep here */
693                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
694                 /* Note: Caller should be using rpc_clnt_sigmask() */
695                 status = out_of_line_wait_on_bit(&task->tk_runstate,
696                                 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
697                                 TASK_INTERRUPTIBLE);
698                 if (status == -ERESTARTSYS) {
699                         /*
700                          * When a sync task receives a signal, it exits with
701                          * -ERESTARTSYS. In order to catch any callbacks that
702                          * clean up after sleeping on some queue, we don't
703                          * break the loop here, but go around once more.
704                          */
705                         dprintk("RPC: %5u got signal\n", task->tk_pid);
706                         task->tk_flags |= RPC_TASK_KILLED;
707                         rpc_exit(task, -ERESTARTSYS);
708                         rpc_wake_up_task(task);
709                 }
710                 rpc_set_running(task);
711                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
712         }
713
714         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
715                         task->tk_status);
716         /* Release all resources associated with the task */
717         rpc_release_task(task);
718 }
719
720 /*
721  * User-visible entry point to the scheduler.
722  *
723  * This may be called recursively if e.g. an async NFS task updates
724  * the attributes and finds that dirty pages must be flushed.
725  * NOTE: Upon exit of this function the task is guaranteed to be
726  *       released. In particular note that tk_release() will have
727  *       been called, so your task memory may have been freed.
728  */
729 void rpc_execute(struct rpc_task *task)
730 {
731         rpc_set_active(task);
732         rpc_set_running(task);
733         __rpc_execute(task);
734 }
735
736 static void rpc_async_schedule(struct work_struct *work)
737 {
738         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
739 }
740
741 struct rpc_buffer {
742         size_t  len;
743         char    data[];
744 };
745
746 /**
747  * rpc_malloc - allocate an RPC buffer
748  * @task: RPC task that will use this buffer
749  * @size: requested byte size
750  *
751  * To prevent rpciod from hanging, this allocator never sleeps,
752  * returning NULL if the request cannot be serviced immediately.
753  * The caller can arrange to sleep in a way that is safe for rpciod.
754  *
755  * Most requests are 'small' (under 2KiB) and can be serviced from a
756  * mempool, ensuring that NFS reads and writes can always proceed,
757  * and that there is good locality of reference for these buffers.
758  *
759  * In order to avoid memory starvation triggering more writebacks of
760  * NFS requests, we avoid using GFP_KERNEL.
761  */
762 void *rpc_malloc(struct rpc_task *task, size_t size)
763 {
764         struct rpc_buffer *buf;
765         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
766
767         size += sizeof(struct rpc_buffer);
768         if (size <= RPC_BUFFER_MAXSIZE)
769                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
770         else
771                 buf = kmalloc(size, gfp);
772
773         if (!buf)
774                 return NULL;
775
776         buf->len = size;
777         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
778                         task->tk_pid, size, buf);
779         return &buf->data;
780 }
781
782 /**
783  * rpc_free - free buffer allocated via rpc_malloc
784  * @buffer: buffer to free
785  *
786  */
787 void rpc_free(void *buffer)
788 {
789         size_t size;
790         struct rpc_buffer *buf;
791
792         if (!buffer)
793                 return;
794
795         buf = container_of(buffer, struct rpc_buffer, data);
796         size = buf->len;
797
798         dprintk("RPC:       freeing buffer of size %zu at %p\n",
799                         size, buf);
800
801         if (size <= RPC_BUFFER_MAXSIZE)
802                 mempool_free(buf, rpc_buffer_mempool);
803         else
804                 kfree(buf);
805 }
806
807 /*
808  * Creation and deletion of RPC task structures
809  */
810 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
811 {
812         memset(task, 0, sizeof(*task));
813         init_timer(&task->tk_timer);
814         task->tk_timer.data     = (unsigned long) task;
815         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
816         atomic_set(&task->tk_count, 1);
817         task->tk_client = clnt;
818         task->tk_flags  = flags;
819         task->tk_ops = tk_ops;
820         if (tk_ops->rpc_call_prepare != NULL)
821                 task->tk_action = rpc_prepare_task;
822         task->tk_calldata = calldata;
823         INIT_LIST_HEAD(&task->tk_task);
824
825         /* Initialize retry counters */
826         task->tk_garb_retry = 2;
827         task->tk_cred_retry = 2;
828
829         task->tk_priority = RPC_PRIORITY_NORMAL;
830         task->tk_cookie = (unsigned long)current;
831
832         /* Initialize workqueue for async tasks */
833         task->tk_workqueue = rpciod_workqueue;
834
835         if (clnt) {
836                 atomic_inc(&clnt->cl_users);
837                 if (clnt->cl_softrtry)
838                         task->tk_flags |= RPC_TASK_SOFT;
839                 if (!clnt->cl_intr)
840                         task->tk_flags |= RPC_TASK_NOINTR;
841         }
842
843         BUG_ON(task->tk_ops == NULL);
844
845         /* starting timestamp */
846         task->tk_start = jiffies;
847
848         dprintk("RPC:       new task initialized, procpid %u\n",
849                                 current->pid);
850 }
851
852 static struct rpc_task *
853 rpc_alloc_task(void)
854 {
855         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
856 }
857
858 static void rpc_free_task(struct rcu_head *rcu)
859 {
860         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
861         dprintk("RPC: %5u freeing task\n", task->tk_pid);
862         mempool_free(task, rpc_task_mempool);
863 }
864
865 /*
866  * Create a new task for the specified client.  We have to
867  * clean up after an allocation failure, as the client may
868  * have specified "oneshot".
869  */
870 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
871 {
872         struct rpc_task *task;
873
874         task = rpc_alloc_task();
875         if (!task)
876                 goto cleanup;
877
878         rpc_init_task(task, clnt, flags, tk_ops, calldata);
879
880         dprintk("RPC:       allocated task %p\n", task);
881         task->tk_flags |= RPC_TASK_DYNAMIC;
882 out:
883         return task;
884
885 cleanup:
886         /* Check whether to release the client */
887         if (clnt) {
888                 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
889                         atomic_read(&clnt->cl_users), clnt->cl_oneshot);
890                 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
891                 rpc_release_client(clnt);
892         }
893         goto out;
894 }
895
896
897 void rpc_put_task(struct rpc_task *task)
898 {
899         const struct rpc_call_ops *tk_ops = task->tk_ops;
900         void *calldata = task->tk_calldata;
901
902         if (!atomic_dec_and_test(&task->tk_count))
903                 return;
904         /* Release resources */
905         if (task->tk_rqstp)
906                 xprt_release(task);
907         if (task->tk_msg.rpc_cred)
908                 rpcauth_unbindcred(task);
909         if (task->tk_client) {
910                 rpc_release_client(task->tk_client);
911                 task->tk_client = NULL;
912         }
913         if (task->tk_flags & RPC_TASK_DYNAMIC)
914                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
915         rpc_release_calldata(tk_ops, calldata);
916 }
917 EXPORT_SYMBOL(rpc_put_task);
918
919 static void rpc_release_task(struct rpc_task *task)
920 {
921 #ifdef RPC_DEBUG
922         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
923 #endif
924         dprintk("RPC: %5u release task\n", task->tk_pid);
925
926         if (!list_empty(&task->tk_task)) {
927                 /* Remove from client task list */
928                 spin_lock(&rpc_sched_lock);
929                 list_del(&task->tk_task);
930                 spin_unlock(&rpc_sched_lock);
931         }
932         BUG_ON (RPC_IS_QUEUED(task));
933
934         /* Synchronously delete any running timer */
935         rpc_delete_timer(task);
936
937 #ifdef RPC_DEBUG
938         task->tk_magic = 0;
939 #endif
940         /* Wake up anyone who is waiting for task completion */
941         rpc_mark_complete_task(task);
942
943         rpc_put_task(task);
944 }
945
946 /**
947  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
948  * @clnt: pointer to RPC client
949  * @flags: RPC flags
950  * @ops: RPC call ops
951  * @data: user call data
952  */
953 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
954                                         const struct rpc_call_ops *ops,
955                                         void *data)
956 {
957         struct rpc_task *task;
958         task = rpc_new_task(clnt, flags, ops, data);
959         if (task == NULL) {
960                 rpc_release_calldata(ops, data);
961                 return ERR_PTR(-ENOMEM);
962         }
963         atomic_inc(&task->tk_count);
964         rpc_execute(task);
965         return task;
966 }
967 EXPORT_SYMBOL(rpc_run_task);
968
969 /*
970  * Kill all tasks for the given client.
971  * XXX: kill their descendants as well?
972  */
973 static void rpc_killall_tasks_locked(struct list_head *head)
974 {
975         struct rpc_task *rovr;
976
977
978         list_for_each_entry(rovr, head, tk_task) {
979                 if (! RPC_IS_ACTIVATED(rovr))
980                         continue;
981                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
982                         rovr->tk_flags |= RPC_TASK_KILLED;
983                         rpc_exit(rovr, -EIO);
984                         rpc_wake_up_task(rovr);
985                 }
986         }
987 }
988
989 void rpc_killall_tasks(struct rpc_clnt *clnt)
990 {
991         dprintk("RPC:       killing all tasks for client %p\n", clnt);
992         /*
993          * Spin lock all_tasks to prevent changes...
994          */
995         spin_lock(&rpc_sched_lock);
996         rpc_killall_tasks_locked(&clnt->cl_tasks);
997         spin_unlock(&rpc_sched_lock);
998 }
999
1000 static void rpciod_killall(void)
1001 {
1002         struct rpc_clnt *clnt;
1003         unsigned long flags;
1004
1005         for(;;) {
1006                 clear_thread_flag(TIF_SIGPENDING);
1007
1008                 spin_lock(&rpc_sched_lock);
1009                 list_for_each_entry(clnt, &all_clients, cl_clients)
1010                         rpc_killall_tasks_locked(&clnt->cl_tasks);
1011                 spin_unlock(&rpc_sched_lock);
1012                 flush_workqueue(rpciod_workqueue);
1013                 if (!list_empty(&all_clients))
1014                         break;
1015                 dprintk("RPC:       rpciod_killall: waiting for tasks "
1016                                         "to exit\n");
1017                 wait_event_timeout(client_kill_wait,
1018                                 list_empty(&all_clients), 1*HZ);
1019         }
1020
1021         spin_lock_irqsave(&current->sighand->siglock, flags);
1022         recalc_sigpending();
1023         spin_unlock_irqrestore(&current->sighand->siglock, flags);
1024 }
1025
1026 void rpc_register_client(struct rpc_clnt *clnt)
1027 {
1028         spin_lock(&rpc_sched_lock);
1029         list_add(&clnt->cl_clients, &all_clients);
1030         spin_unlock(&rpc_sched_lock);
1031 }
1032
1033 void rpc_unregister_client(struct rpc_clnt *clnt)
1034 {
1035         spin_lock(&rpc_sched_lock);
1036         list_del(&clnt->cl_clients);
1037         if (list_empty(&all_clients))
1038                 wake_up(&client_kill_wait);
1039         spin_unlock(&rpc_sched_lock);
1040 }
1041
1042 /*
1043  * Start up the rpciod process if it's not already running.
1044  */
1045 int
1046 rpciod_up(void)
1047 {
1048         struct workqueue_struct *wq;
1049         int error = 0;
1050
1051         mutex_lock(&rpciod_mutex);
1052         dprintk("RPC:       rpciod_up: users %u\n", rpciod_users);
1053         rpciod_users++;
1054         if (rpciod_workqueue)
1055                 goto out;
1056         /*
1057          * If there's no pid, we should be the first user.
1058          */
1059         if (rpciod_users > 1)
1060                 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1061         /*
1062          * Create the rpciod thread and wait for it to start.
1063          */
1064         error = -ENOMEM;
1065         wq = create_workqueue("rpciod");
1066         if (wq == NULL) {
1067                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1068                 rpciod_users--;
1069                 goto out;
1070         }
1071         rpciod_workqueue = wq;
1072         error = 0;
1073 out:
1074         mutex_unlock(&rpciod_mutex);
1075         return error;
1076 }
1077
1078 void
1079 rpciod_down(void)
1080 {
1081         mutex_lock(&rpciod_mutex);
1082         dprintk("RPC:       rpciod_down sema %u\n", rpciod_users);
1083         if (rpciod_users) {
1084                 if (--rpciod_users)
1085                         goto out;
1086         } else
1087                 printk(KERN_WARNING "rpciod_down: no users??\n");
1088
1089         if (!rpciod_workqueue) {
1090                 dprintk("RPC:       rpciod_down: Nothing to do!\n");
1091                 goto out;
1092         }
1093         rpciod_killall();
1094
1095         destroy_workqueue(rpciod_workqueue);
1096         rpciod_workqueue = NULL;
1097  out:
1098         mutex_unlock(&rpciod_mutex);
1099 }
1100
1101 #ifdef RPC_DEBUG
1102 void rpc_show_tasks(void)
1103 {
1104         struct rpc_clnt *clnt;
1105         struct rpc_task *t;
1106
1107         spin_lock(&rpc_sched_lock);
1108         if (list_empty(&all_clients))
1109                 goto out;
1110         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1111                 "-rpcwait -action- ---ops--\n");
1112         list_for_each_entry(clnt, &all_clients, cl_clients) {
1113                 list_for_each_entry(t, &clnt->cl_tasks, tk_task) {
1114                         const char *rpc_waitq = "none";
1115
1116                         if (RPC_IS_QUEUED(t))
1117                                 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1118
1119                         printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1120                                 t->tk_pid,
1121                                 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1122                                 t->tk_flags, t->tk_status,
1123                                 t->tk_client,
1124                                 (t->tk_client ? t->tk_client->cl_prog : 0),
1125                                 t->tk_rqstp, t->tk_timeout,
1126                                 rpc_waitq,
1127                                 t->tk_action, t->tk_ops);
1128                 }
1129         }
1130 out:
1131         spin_unlock(&rpc_sched_lock);
1132 }
1133 #endif
1134
1135 void
1136 rpc_destroy_mempool(void)
1137 {
1138         if (rpc_buffer_mempool)
1139                 mempool_destroy(rpc_buffer_mempool);
1140         if (rpc_task_mempool)
1141                 mempool_destroy(rpc_task_mempool);
1142         if (rpc_task_slabp)
1143                 kmem_cache_destroy(rpc_task_slabp);
1144         if (rpc_buffer_slabp)
1145                 kmem_cache_destroy(rpc_buffer_slabp);
1146 }
1147
1148 int
1149 rpc_init_mempool(void)
1150 {
1151         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1152                                              sizeof(struct rpc_task),
1153                                              0, SLAB_HWCACHE_ALIGN,
1154                                              NULL, NULL);
1155         if (!rpc_task_slabp)
1156                 goto err_nomem;
1157         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1158                                              RPC_BUFFER_MAXSIZE,
1159                                              0, SLAB_HWCACHE_ALIGN,
1160                                              NULL, NULL);
1161         if (!rpc_buffer_slabp)
1162                 goto err_nomem;
1163         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1164                                                     rpc_task_slabp);
1165         if (!rpc_task_mempool)
1166                 goto err_nomem;
1167         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1168                                                       rpc_buffer_slabp);
1169         if (!rpc_buffer_mempool)
1170                 goto err_nomem;
1171         return 0;
1172 err_nomem:
1173         rpc_destroy_mempool();
1174         return -ENOMEM;
1175 }