SUNRPC: Run rpc timeout functions as callbacks instead of in softirqs
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static void
60 __rpc_disable_timer(struct rpc_task *task)
61 {
62         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
63         task->tk_timeout = 0;
64 }
65
66 /*
67  * Set up a timer for the current task.
68  */
69 static void
70 __rpc_add_timer(struct rpc_task *task)
71 {
72         if (!task->tk_timeout)
73                 return;
74
75         dprintk("RPC: %5u setting alarm for %lu ms\n",
76                         task->tk_pid, task->tk_timeout * 1000 / HZ);
77
78         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
79         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
80 }
81
82 /*
83  * Delete any timer for the current task. Because we use del_timer_sync(),
84  * this function should never be called while holding queue->lock.
85  */
86 static void
87 rpc_delete_timer(struct rpc_task *task)
88 {
89         if (RPC_IS_QUEUED(task))
90                 return;
91         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
92                 del_singleshot_timer_sync(&task->tk_timer);
93                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
94         }
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102         struct list_head *q;
103         struct rpc_task *t;
104
105         INIT_LIST_HEAD(&task->u.tk_wait.links);
106         q = &queue->tasks[task->tk_priority];
107         if (unlikely(task->tk_priority > queue->maxpriority))
108                 q = &queue->tasks[queue->maxpriority];
109         list_for_each_entry(t, q, u.tk_wait.list) {
110                 if (t->tk_owner == task->tk_owner) {
111                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112                         return;
113                 }
114         }
115         list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128         BUG_ON (RPC_IS_QUEUED(task));
129
130         if (RPC_IS_PRIORITY(queue))
131                 __rpc_add_wait_queue_priority(queue, task);
132         else if (RPC_IS_SWAPPER(task))
133                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134         else
135                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136         task->tk_waitqueue = queue;
137         queue->qlen++;
138         rpc_set_queued(task);
139
140         dprintk("RPC: %5u added to queue %p \"%s\"\n",
141                         task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         if (!list_empty(&task->u.tk_wait.links)) {
152                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155         }
156         list_del(&task->u.tk_wait.list);
157 }
158
159 /*
160  * Remove request from queue.
161  * Note: must be called with spin lock held.
162  */
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 {
165         if (RPC_IS_PRIORITY(queue))
166                 __rpc_remove_wait_queue_priority(task);
167         else
168                 list_del(&task->u.tk_wait.list);
169         queue->qlen--;
170         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171                         task->tk_pid, queue, rpc_qname(queue));
172 }
173
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 {
176         queue->priority = priority;
177         queue->count = 1 << (priority * 2);
178 }
179
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 {
182         queue->owner = pid;
183         queue->nr = RPC_BATCH_COUNT;
184 }
185
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 {
188         rpc_set_waitqueue_priority(queue, queue->maxpriority);
189         rpc_set_waitqueue_owner(queue, 0);
190 }
191
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 {
194         int i;
195
196         spin_lock_init(&queue->lock);
197         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198                 INIT_LIST_HEAD(&queue->tasks[i]);
199         queue->maxpriority = nr_queues - 1;
200         rpc_reset_waitqueue_priority(queue);
201 #ifdef RPC_DEBUG
202         queue->name = qname;
203 #endif
204 }
205
206 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
207 {
208         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
209 }
210
211 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
212 {
213         __rpc_init_priority_wait_queue(queue, qname, 1);
214 }
215 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
216
217 static int rpc_wait_bit_killable(void *word)
218 {
219         if (fatal_signal_pending(current))
220                 return -ERESTARTSYS;
221         schedule();
222         return 0;
223 }
224
225 #ifdef RPC_DEBUG
226 static void rpc_task_set_debuginfo(struct rpc_task *task)
227 {
228         static atomic_t rpc_pid;
229
230         task->tk_magic = RPC_TASK_MAGIC_ID;
231         task->tk_pid = atomic_inc_return(&rpc_pid);
232 }
233 #else
234 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
235 {
236 }
237 #endif
238
239 static void rpc_set_active(struct rpc_task *task)
240 {
241         struct rpc_clnt *clnt;
242         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
243                 return;
244         rpc_task_set_debuginfo(task);
245         /* Add to global list of all tasks */
246         clnt = task->tk_client;
247         if (clnt != NULL) {
248                 spin_lock(&clnt->cl_lock);
249                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
250                 spin_unlock(&clnt->cl_lock);
251         }
252 }
253
254 /*
255  * Mark an RPC call as having completed by clearing the 'active' bit
256  */
257 static void rpc_mark_complete_task(struct rpc_task *task)
258 {
259         smp_mb__before_clear_bit();
260         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
261         smp_mb__after_clear_bit();
262         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
263 }
264
265 /*
266  * Allow callers to wait for completion of an RPC call
267  */
268 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
269 {
270         if (action == NULL)
271                 action = rpc_wait_bit_killable;
272         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
273                         action, TASK_KILLABLE);
274 }
275 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
276
277 /*
278  * Make an RPC task runnable.
279  *
280  * Note: If the task is ASYNC, this must be called with
281  * the spinlock held to protect the wait queue operation.
282  */
283 static void rpc_make_runnable(struct rpc_task *task)
284 {
285         rpc_clear_queued(task);
286         if (rpc_test_and_set_running(task))
287                 return;
288         /* We might have raced */
289         if (RPC_IS_QUEUED(task)) {
290                 rpc_clear_running(task);
291                 return;
292         }
293         if (RPC_IS_ASYNC(task)) {
294                 int status;
295
296                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
297                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
298                 if (status < 0) {
299                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
300                         task->tk_status = status;
301                         return;
302                 }
303         } else
304                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
305 }
306
307 /*
308  * Prepare for sleeping on a wait queue.
309  * By always appending tasks to the list we ensure FIFO behavior.
310  * NB: An RPC task will only receive interrupt-driven events as long
311  * as it's on a wait queue.
312  */
313 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
314                         rpc_action action)
315 {
316         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
317                         task->tk_pid, rpc_qname(q), jiffies);
318
319         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
320                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
321                 return;
322         }
323
324         __rpc_add_wait_queue(q, task);
325
326         BUG_ON(task->tk_callback != NULL);
327         task->tk_callback = action;
328         __rpc_add_timer(task);
329 }
330
331 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
332                                 rpc_action action)
333 {
334         /* Mark the task as being activated if so needed */
335         rpc_set_active(task);
336
337         /*
338          * Protect the queue operations.
339          */
340         spin_lock_bh(&q->lock);
341         __rpc_sleep_on(q, task, action);
342         spin_unlock_bh(&q->lock);
343 }
344 EXPORT_SYMBOL_GPL(rpc_sleep_on);
345
346 /**
347  * __rpc_do_wake_up_task - wake up a single rpc_task
348  * @queue: wait queue
349  * @task: task to be woken up
350  *
351  * Caller must hold queue->lock, and have cleared the task queued flag.
352  */
353 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
354 {
355         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
356                         task->tk_pid, jiffies);
357
358 #ifdef RPC_DEBUG
359         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
360 #endif
361         /* Has the task been executed yet? If not, we cannot wake it up! */
362         if (!RPC_IS_ACTIVATED(task)) {
363                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364                 return;
365         }
366
367         __rpc_disable_timer(task);
368         __rpc_remove_wait_queue(queue, task);
369
370         rpc_make_runnable(task);
371
372         dprintk("RPC:       __rpc_wake_up_task done\n");
373 }
374
375 /*
376  * Wake up a queued task while the queue lock is being held
377  */
378 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
379 {
380         if (!RPC_IS_QUEUED(task) || task->tk_waitqueue != queue)
381                 return;
382         if (rpc_start_wakeup(task)) {
383                         __rpc_do_wake_up_task(queue, task);
384                 rpc_finish_wakeup(task);
385         }
386 }
387
388 /*
389  * Wake up a task on a specific queue
390  */
391 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
392 {
393         rcu_read_lock_bh();
394         spin_lock(&queue->lock);
395         rpc_wake_up_task_queue_locked(queue, task);
396         spin_unlock(&queue->lock);
397         rcu_read_unlock_bh();
398 }
399 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
400
401 /*
402  * Wake up the specified task
403  */
404 static void rpc_wake_up_task(struct rpc_task *task)
405 {
406         rpc_wake_up_queued_task(task->tk_waitqueue, task);
407 }
408
409 /*
410  * Wake up the next task on a priority queue.
411  */
412 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
413 {
414         struct list_head *q;
415         struct rpc_task *task;
416
417         /*
418          * Service a batch of tasks from a single owner.
419          */
420         q = &queue->tasks[queue->priority];
421         if (!list_empty(q)) {
422                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
423                 if (queue->owner == task->tk_owner) {
424                         if (--queue->nr)
425                                 goto out;
426                         list_move_tail(&task->u.tk_wait.list, q);
427                 }
428                 /*
429                  * Check if we need to switch queues.
430                  */
431                 if (--queue->count)
432                         goto new_owner;
433         }
434
435         /*
436          * Service the next queue.
437          */
438         do {
439                 if (q == &queue->tasks[0])
440                         q = &queue->tasks[queue->maxpriority];
441                 else
442                         q = q - 1;
443                 if (!list_empty(q)) {
444                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
445                         goto new_queue;
446                 }
447         } while (q != &queue->tasks[queue->priority]);
448
449         rpc_reset_waitqueue_priority(queue);
450         return NULL;
451
452 new_queue:
453         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
454 new_owner:
455         rpc_set_waitqueue_owner(queue, task->tk_owner);
456 out:
457         rpc_wake_up_task_queue_locked(queue, task);
458         return task;
459 }
460
461 /*
462  * Wake up the next task on the wait queue.
463  */
464 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
465 {
466         struct rpc_task *task = NULL;
467
468         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
469                         queue, rpc_qname(queue));
470         rcu_read_lock_bh();
471         spin_lock(&queue->lock);
472         if (RPC_IS_PRIORITY(queue))
473                 task = __rpc_wake_up_next_priority(queue);
474         else {
475                 task_for_first(task, &queue->tasks[0])
476                         rpc_wake_up_task_queue_locked(queue, task);
477         }
478         spin_unlock(&queue->lock);
479         rcu_read_unlock_bh();
480
481         return task;
482 }
483 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
484
485 /**
486  * rpc_wake_up - wake up all rpc_tasks
487  * @queue: rpc_wait_queue on which the tasks are sleeping
488  *
489  * Grabs queue->lock
490  */
491 void rpc_wake_up(struct rpc_wait_queue *queue)
492 {
493         struct rpc_task *task, *next;
494         struct list_head *head;
495
496         rcu_read_lock_bh();
497         spin_lock(&queue->lock);
498         head = &queue->tasks[queue->maxpriority];
499         for (;;) {
500                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
501                         rpc_wake_up_task_queue_locked(queue, task);
502                 if (head == &queue->tasks[0])
503                         break;
504                 head--;
505         }
506         spin_unlock(&queue->lock);
507         rcu_read_unlock_bh();
508 }
509 EXPORT_SYMBOL_GPL(rpc_wake_up);
510
511 /**
512  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
513  * @queue: rpc_wait_queue on which the tasks are sleeping
514  * @status: status value to set
515  *
516  * Grabs queue->lock
517  */
518 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
519 {
520         struct rpc_task *task, *next;
521         struct list_head *head;
522
523         rcu_read_lock_bh();
524         spin_lock(&queue->lock);
525         head = &queue->tasks[queue->maxpriority];
526         for (;;) {
527                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
528                         task->tk_status = status;
529                         rpc_wake_up_task_queue_locked(queue, task);
530                 }
531                 if (head == &queue->tasks[0])
532                         break;
533                 head--;
534         }
535         spin_unlock(&queue->lock);
536         rcu_read_unlock_bh();
537 }
538 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
539
540 /*
541  * Run a timeout function.
542  */
543 static void rpc_run_timer(unsigned long ptr)
544 {
545         struct rpc_task *task = (struct rpc_task *)ptr;
546         struct rpc_wait_queue *queue = task->tk_waitqueue;
547
548         spin_lock(&queue->lock);
549         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) {
550                 dprintk("RPC: %5u timeout\n", task->tk_pid);
551                 task->tk_status = -ETIMEDOUT;
552                 rpc_wake_up_task_queue_locked(queue, task);
553         }
554         spin_unlock(&queue->lock);
555         smp_mb__before_clear_bit();
556         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
557         smp_mb__after_clear_bit();
558 }
559
560 static void __rpc_atrun(struct rpc_task *task)
561 {
562         task->tk_status = 0;
563 }
564
565 /*
566  * Run a task at a later time
567  */
568 void rpc_delay(struct rpc_task *task, unsigned long delay)
569 {
570         task->tk_timeout = delay;
571         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
572 }
573 EXPORT_SYMBOL_GPL(rpc_delay);
574
575 /*
576  * Helper to call task->tk_ops->rpc_call_prepare
577  */
578 static void rpc_prepare_task(struct rpc_task *task)
579 {
580         lock_kernel();
581         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
582         unlock_kernel();
583 }
584
585 /*
586  * Helper that calls task->tk_ops->rpc_call_done if it exists
587  */
588 void rpc_exit_task(struct rpc_task *task)
589 {
590         task->tk_action = NULL;
591         if (task->tk_ops->rpc_call_done != NULL) {
592                 lock_kernel();
593                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
594                 unlock_kernel();
595                 if (task->tk_action != NULL) {
596                         WARN_ON(RPC_ASSASSINATED(task));
597                         /* Always release the RPC slot and buffer memory */
598                         xprt_release(task);
599                 }
600         }
601 }
602 EXPORT_SYMBOL_GPL(rpc_exit_task);
603
604 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
605 {
606         if (ops->rpc_release != NULL) {
607                 lock_kernel();
608                 ops->rpc_release(calldata);
609                 unlock_kernel();
610         }
611 }
612
613 /*
614  * This is the RPC `scheduler' (or rather, the finite state machine).
615  */
616 static void __rpc_execute(struct rpc_task *task)
617 {
618         int             status = 0;
619
620         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621                         task->tk_pid, task->tk_flags);
622
623         BUG_ON(RPC_IS_QUEUED(task));
624
625         for (;;) {
626                 /*
627                  * Garbage collection of pending timers...
628                  */
629                 rpc_delete_timer(task);
630
631                 /*
632                  * Execute any pending callback.
633                  */
634                 if (RPC_DO_CALLBACK(task)) {
635                         /* Define a callback save pointer */
636                         void (*save_callback)(struct rpc_task *);
637
638                         /*
639                          * If a callback exists, save it, reset it,
640                          * call it.
641                          * The save is needed to stop from resetting
642                          * another callback set within the callback handler
643                          * - Dave
644                          */
645                         save_callback=task->tk_callback;
646                         task->tk_callback=NULL;
647                         save_callback(task);
648                 }
649
650                 /*
651                  * Perform the next FSM step.
652                  * tk_action may be NULL when the task has been killed
653                  * by someone else.
654                  */
655                 if (!RPC_IS_QUEUED(task)) {
656                         if (task->tk_action == NULL)
657                                 break;
658                         task->tk_action(task);
659                 }
660
661                 /*
662                  * Lockless check for whether task is sleeping or not.
663                  */
664                 if (!RPC_IS_QUEUED(task))
665                         continue;
666                 rpc_clear_running(task);
667                 if (RPC_IS_ASYNC(task)) {
668                         /* Careful! we may have raced... */
669                         if (RPC_IS_QUEUED(task))
670                                 return;
671                         if (rpc_test_and_set_running(task))
672                                 return;
673                         continue;
674                 }
675
676                 /* sync task: sleep here */
677                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
678                 status = out_of_line_wait_on_bit(&task->tk_runstate,
679                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
680                                 TASK_KILLABLE);
681                 if (status == -ERESTARTSYS) {
682                         /*
683                          * When a sync task receives a signal, it exits with
684                          * -ERESTARTSYS. In order to catch any callbacks that
685                          * clean up after sleeping on some queue, we don't
686                          * break the loop here, but go around once more.
687                          */
688                         dprintk("RPC: %5u got signal\n", task->tk_pid);
689                         task->tk_flags |= RPC_TASK_KILLED;
690                         rpc_exit(task, -ERESTARTSYS);
691                         rpc_wake_up_task(task);
692                 }
693                 rpc_set_running(task);
694                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
695         }
696
697         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
698                         task->tk_status);
699         /* Release all resources associated with the task */
700         rpc_release_task(task);
701 }
702
703 /*
704  * User-visible entry point to the scheduler.
705  *
706  * This may be called recursively if e.g. an async NFS task updates
707  * the attributes and finds that dirty pages must be flushed.
708  * NOTE: Upon exit of this function the task is guaranteed to be
709  *       released. In particular note that tk_release() will have
710  *       been called, so your task memory may have been freed.
711  */
712 void rpc_execute(struct rpc_task *task)
713 {
714         rpc_set_active(task);
715         rpc_set_running(task);
716         __rpc_execute(task);
717 }
718
719 static void rpc_async_schedule(struct work_struct *work)
720 {
721         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
722 }
723
724 struct rpc_buffer {
725         size_t  len;
726         char    data[];
727 };
728
729 /**
730  * rpc_malloc - allocate an RPC buffer
731  * @task: RPC task that will use this buffer
732  * @size: requested byte size
733  *
734  * To prevent rpciod from hanging, this allocator never sleeps,
735  * returning NULL if the request cannot be serviced immediately.
736  * The caller can arrange to sleep in a way that is safe for rpciod.
737  *
738  * Most requests are 'small' (under 2KiB) and can be serviced from a
739  * mempool, ensuring that NFS reads and writes can always proceed,
740  * and that there is good locality of reference for these buffers.
741  *
742  * In order to avoid memory starvation triggering more writebacks of
743  * NFS requests, we avoid using GFP_KERNEL.
744  */
745 void *rpc_malloc(struct rpc_task *task, size_t size)
746 {
747         struct rpc_buffer *buf;
748         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
749
750         size += sizeof(struct rpc_buffer);
751         if (size <= RPC_BUFFER_MAXSIZE)
752                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
753         else
754                 buf = kmalloc(size, gfp);
755
756         if (!buf)
757                 return NULL;
758
759         buf->len = size;
760         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
761                         task->tk_pid, size, buf);
762         return &buf->data;
763 }
764 EXPORT_SYMBOL_GPL(rpc_malloc);
765
766 /**
767  * rpc_free - free buffer allocated via rpc_malloc
768  * @buffer: buffer to free
769  *
770  */
771 void rpc_free(void *buffer)
772 {
773         size_t size;
774         struct rpc_buffer *buf;
775
776         if (!buffer)
777                 return;
778
779         buf = container_of(buffer, struct rpc_buffer, data);
780         size = buf->len;
781
782         dprintk("RPC:       freeing buffer of size %zu at %p\n",
783                         size, buf);
784
785         if (size <= RPC_BUFFER_MAXSIZE)
786                 mempool_free(buf, rpc_buffer_mempool);
787         else
788                 kfree(buf);
789 }
790 EXPORT_SYMBOL_GPL(rpc_free);
791
792 /*
793  * Creation and deletion of RPC task structures
794  */
795 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
796 {
797         memset(task, 0, sizeof(*task));
798         setup_timer(&task->tk_timer, rpc_run_timer, (unsigned long)task);
799         atomic_set(&task->tk_count, 1);
800         task->tk_flags  = task_setup_data->flags;
801         task->tk_ops = task_setup_data->callback_ops;
802         task->tk_calldata = task_setup_data->callback_data;
803         INIT_LIST_HEAD(&task->tk_task);
804
805         /* Initialize retry counters */
806         task->tk_garb_retry = 2;
807         task->tk_cred_retry = 2;
808
809         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
810         task->tk_owner = current->tgid;
811
812         /* Initialize workqueue for async tasks */
813         task->tk_workqueue = task_setup_data->workqueue;
814
815         task->tk_client = task_setup_data->rpc_client;
816         if (task->tk_client != NULL) {
817                 kref_get(&task->tk_client->cl_kref);
818                 if (task->tk_client->cl_softrtry)
819                         task->tk_flags |= RPC_TASK_SOFT;
820         }
821
822         if (task->tk_ops->rpc_call_prepare != NULL)
823                 task->tk_action = rpc_prepare_task;
824
825         if (task_setup_data->rpc_message != NULL) {
826                 memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
827                 /* Bind the user cred */
828                 if (task->tk_msg.rpc_cred != NULL)
829                         rpcauth_holdcred(task);
830                 else
831                         rpcauth_bindcred(task);
832                 if (task->tk_action == NULL)
833                         rpc_call_start(task);
834         }
835
836         /* starting timestamp */
837         task->tk_start = jiffies;
838
839         dprintk("RPC:       new task initialized, procpid %u\n",
840                                 task_pid_nr(current));
841 }
842
843 static struct rpc_task *
844 rpc_alloc_task(void)
845 {
846         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
847 }
848
849 static void rpc_free_task_rcu(struct rcu_head *rcu)
850 {
851         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
852         dprintk("RPC: %5u freeing task\n", task->tk_pid);
853         mempool_free(task, rpc_task_mempool);
854 }
855
856 /*
857  * Create a new task for the specified client.
858  */
859 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
860 {
861         struct rpc_task *task = setup_data->task;
862         unsigned short flags = 0;
863
864         if (task == NULL) {
865                 task = rpc_alloc_task();
866                 if (task == NULL)
867                         goto out;
868                 flags = RPC_TASK_DYNAMIC;
869         }
870
871         rpc_init_task(task, setup_data);
872
873         task->tk_flags |= flags;
874         dprintk("RPC:       allocated task %p\n", task);
875 out:
876         return task;
877 }
878
879 static void rpc_free_task(struct rpc_task *task)
880 {
881         const struct rpc_call_ops *tk_ops = task->tk_ops;
882         void *calldata = task->tk_calldata;
883
884         if (task->tk_flags & RPC_TASK_DYNAMIC)
885                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
886         rpc_release_calldata(tk_ops, calldata);
887 }
888
889 static void rpc_async_release(struct work_struct *work)
890 {
891         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
892 }
893
894 void rpc_put_task(struct rpc_task *task)
895 {
896         if (!atomic_dec_and_test(&task->tk_count))
897                 return;
898         /* Release resources */
899         if (task->tk_rqstp)
900                 xprt_release(task);
901         if (task->tk_msg.rpc_cred)
902                 rpcauth_unbindcred(task);
903         if (task->tk_client) {
904                 rpc_release_client(task->tk_client);
905                 task->tk_client = NULL;
906         }
907         if (task->tk_workqueue != NULL) {
908                 INIT_WORK(&task->u.tk_work, rpc_async_release);
909                 queue_work(task->tk_workqueue, &task->u.tk_work);
910         } else
911                 rpc_free_task(task);
912 }
913 EXPORT_SYMBOL_GPL(rpc_put_task);
914
915 static void rpc_release_task(struct rpc_task *task)
916 {
917 #ifdef RPC_DEBUG
918         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
919 #endif
920         dprintk("RPC: %5u release task\n", task->tk_pid);
921
922         if (!list_empty(&task->tk_task)) {
923                 struct rpc_clnt *clnt = task->tk_client;
924                 /* Remove from client task list */
925                 spin_lock(&clnt->cl_lock);
926                 list_del(&task->tk_task);
927                 spin_unlock(&clnt->cl_lock);
928         }
929         BUG_ON (RPC_IS_QUEUED(task));
930
931         /* Synchronously delete any running timer */
932         rpc_delete_timer(task);
933
934 #ifdef RPC_DEBUG
935         task->tk_magic = 0;
936 #endif
937         /* Wake up anyone who is waiting for task completion */
938         rpc_mark_complete_task(task);
939
940         rpc_put_task(task);
941 }
942
943 /*
944  * Kill all tasks for the given client.
945  * XXX: kill their descendants as well?
946  */
947 void rpc_killall_tasks(struct rpc_clnt *clnt)
948 {
949         struct rpc_task *rovr;
950
951
952         if (list_empty(&clnt->cl_tasks))
953                 return;
954         dprintk("RPC:       killing all tasks for client %p\n", clnt);
955         /*
956          * Spin lock all_tasks to prevent changes...
957          */
958         spin_lock(&clnt->cl_lock);
959         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
960                 if (! RPC_IS_ACTIVATED(rovr))
961                         continue;
962                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
963                         rovr->tk_flags |= RPC_TASK_KILLED;
964                         rpc_exit(rovr, -EIO);
965                         rpc_wake_up_task(rovr);
966                 }
967         }
968         spin_unlock(&clnt->cl_lock);
969 }
970 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
971
972 int rpciod_up(void)
973 {
974         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
975 }
976
977 void rpciod_down(void)
978 {
979         module_put(THIS_MODULE);
980 }
981
982 /*
983  * Start up the rpciod workqueue.
984  */
985 static int rpciod_start(void)
986 {
987         struct workqueue_struct *wq;
988
989         /*
990          * Create the rpciod thread and wait for it to start.
991          */
992         dprintk("RPC:       creating workqueue rpciod\n");
993         wq = create_workqueue("rpciod");
994         rpciod_workqueue = wq;
995         return rpciod_workqueue != NULL;
996 }
997
998 static void rpciod_stop(void)
999 {
1000         struct workqueue_struct *wq = NULL;
1001
1002         if (rpciod_workqueue == NULL)
1003                 return;
1004         dprintk("RPC:       destroying workqueue rpciod\n");
1005
1006         wq = rpciod_workqueue;
1007         rpciod_workqueue = NULL;
1008         destroy_workqueue(wq);
1009 }
1010
1011 void
1012 rpc_destroy_mempool(void)
1013 {
1014         rpciod_stop();
1015         if (rpc_buffer_mempool)
1016                 mempool_destroy(rpc_buffer_mempool);
1017         if (rpc_task_mempool)
1018                 mempool_destroy(rpc_task_mempool);
1019         if (rpc_task_slabp)
1020                 kmem_cache_destroy(rpc_task_slabp);
1021         if (rpc_buffer_slabp)
1022                 kmem_cache_destroy(rpc_buffer_slabp);
1023 }
1024
1025 int
1026 rpc_init_mempool(void)
1027 {
1028         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1029                                              sizeof(struct rpc_task),
1030                                              0, SLAB_HWCACHE_ALIGN,
1031                                              NULL);
1032         if (!rpc_task_slabp)
1033                 goto err_nomem;
1034         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1035                                              RPC_BUFFER_MAXSIZE,
1036                                              0, SLAB_HWCACHE_ALIGN,
1037                                              NULL);
1038         if (!rpc_buffer_slabp)
1039                 goto err_nomem;
1040         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1041                                                     rpc_task_slabp);
1042         if (!rpc_task_mempool)
1043                 goto err_nomem;
1044         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1045                                                       rpc_buffer_slabp);
1046         if (!rpc_buffer_mempool)
1047                 goto err_nomem;
1048         if (!rpciod_start())
1049                 goto err_nomem;
1050         /*
1051          * The following is not strictly a mempool initialisation,
1052          * but there is no harm in doing it here
1053          */
1054         rpc_init_wait_queue(&delay_queue, "delayq");
1055         return 0;
1056 err_nomem:
1057         rpc_destroy_mempool();
1058         return -ENOMEM;
1059 }