SUNRPC: Add a per-rpc_clnt spinlock
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 static int                      rpc_task_id;
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static struct kmem_cache        *rpc_task_slabp __read_mostly;
38 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     __rpc_default_timer(struct rpc_task *task);
43 static void                     rpciod_killall(void);
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46
47 /*
48  * RPC tasks sit here while waiting for conditions to improve.
49  */
50 static RPC_WAITQ(delay_queue, "delayq");
51
52 /*
53  * All RPC clients are linked into this list
54  */
55 static LIST_HEAD(all_clients);
56 static DECLARE_WAIT_QUEUE_HEAD(client_kill_wait);
57
58 /*
59  * rpciod-related stuff
60  */
61 static DEFINE_MUTEX(rpciod_mutex);
62 static unsigned int             rpciod_users;
63 struct workqueue_struct *rpciod_workqueue;
64
65 /*
66  * Spinlock for other critical sections of code.
67  */
68 static DEFINE_SPINLOCK(rpc_sched_lock);
69
70 /*
71  * Disable the timer for a given RPC task. Should be called with
72  * queue->lock and bh_disabled in order to avoid races within
73  * rpc_run_timer().
74  */
75 static inline void
76 __rpc_disable_timer(struct rpc_task *task)
77 {
78         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
79         task->tk_timeout_fn = NULL;
80         task->tk_timeout = 0;
81 }
82
83 /*
84  * Run a timeout function.
85  * We use the callback in order to allow __rpc_wake_up_task()
86  * and friends to disable the timer synchronously on SMP systems
87  * without calling del_timer_sync(). The latter could cause a
88  * deadlock if called while we're holding spinlocks...
89  */
90 static void rpc_run_timer(struct rpc_task *task)
91 {
92         void (*callback)(struct rpc_task *);
93
94         callback = task->tk_timeout_fn;
95         task->tk_timeout_fn = NULL;
96         if (callback && RPC_IS_QUEUED(task)) {
97                 dprintk("RPC: %5u running timer\n", task->tk_pid);
98                 callback(task);
99         }
100         smp_mb__before_clear_bit();
101         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
102         smp_mb__after_clear_bit();
103 }
104
105 /*
106  * Set up a timer for the current task.
107  */
108 static inline void
109 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
110 {
111         if (!task->tk_timeout)
112                 return;
113
114         dprintk("RPC: %5u setting alarm for %lu ms\n",
115                         task->tk_pid, task->tk_timeout * 1000 / HZ);
116
117         if (timer)
118                 task->tk_timeout_fn = timer;
119         else
120                 task->tk_timeout_fn = __rpc_default_timer;
121         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
122         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
123 }
124
125 /*
126  * Delete any timer for the current task. Because we use del_timer_sync(),
127  * this function should never be called while holding queue->lock.
128  */
129 static void
130 rpc_delete_timer(struct rpc_task *task)
131 {
132         if (RPC_IS_QUEUED(task))
133                 return;
134         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
135                 del_singleshot_timer_sync(&task->tk_timer);
136                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
137         }
138 }
139
140 /*
141  * Add new request to a priority queue.
142  */
143 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
144 {
145         struct list_head *q;
146         struct rpc_task *t;
147
148         INIT_LIST_HEAD(&task->u.tk_wait.links);
149         q = &queue->tasks[task->tk_priority];
150         if (unlikely(task->tk_priority > queue->maxpriority))
151                 q = &queue->tasks[queue->maxpriority];
152         list_for_each_entry(t, q, u.tk_wait.list) {
153                 if (t->tk_cookie == task->tk_cookie) {
154                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
155                         return;
156                 }
157         }
158         list_add_tail(&task->u.tk_wait.list, q);
159 }
160
161 /*
162  * Add new request to wait queue.
163  *
164  * Swapper tasks always get inserted at the head of the queue.
165  * This should avoid many nasty memory deadlocks and hopefully
166  * improve overall performance.
167  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168  */
169 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
170 {
171         BUG_ON (RPC_IS_QUEUED(task));
172
173         if (RPC_IS_PRIORITY(queue))
174                 __rpc_add_wait_queue_priority(queue, task);
175         else if (RPC_IS_SWAPPER(task))
176                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
177         else
178                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
179         task->u.tk_wait.rpc_waitq = queue;
180         queue->qlen++;
181         rpc_set_queued(task);
182
183         dprintk("RPC: %5u added to queue %p \"%s\"\n",
184                         task->tk_pid, queue, rpc_qname(queue));
185 }
186
187 /*
188  * Remove request from a priority queue.
189  */
190 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
191 {
192         struct rpc_task *t;
193
194         if (!list_empty(&task->u.tk_wait.links)) {
195                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
196                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
197                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
198         }
199         list_del(&task->u.tk_wait.list);
200 }
201
202 /*
203  * Remove request from queue.
204  * Note: must be called with spin lock held.
205  */
206 static void __rpc_remove_wait_queue(struct rpc_task *task)
207 {
208         struct rpc_wait_queue *queue;
209         queue = task->u.tk_wait.rpc_waitq;
210
211         if (RPC_IS_PRIORITY(queue))
212                 __rpc_remove_wait_queue_priority(task);
213         else
214                 list_del(&task->u.tk_wait.list);
215         queue->qlen--;
216         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217                         task->tk_pid, queue, rpc_qname(queue));
218 }
219
220 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
221 {
222         queue->priority = priority;
223         queue->count = 1 << (priority * 2);
224 }
225
226 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
227 {
228         queue->cookie = cookie;
229         queue->nr = RPC_BATCH_COUNT;
230 }
231
232 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
233 {
234         rpc_set_waitqueue_priority(queue, queue->maxpriority);
235         rpc_set_waitqueue_cookie(queue, 0);
236 }
237
238 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
239 {
240         int i;
241
242         spin_lock_init(&queue->lock);
243         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
244                 INIT_LIST_HEAD(&queue->tasks[i]);
245         queue->maxpriority = maxprio;
246         rpc_reset_waitqueue_priority(queue);
247 #ifdef RPC_DEBUG
248         queue->name = qname;
249 #endif
250 }
251
252 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 {
254         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
255 }
256
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259         __rpc_init_priority_wait_queue(queue, qname, 0);
260 }
261 EXPORT_SYMBOL(rpc_init_wait_queue);
262
263 static int rpc_wait_bit_interruptible(void *word)
264 {
265         if (signal_pending(current))
266                 return -ERESTARTSYS;
267         schedule();
268         return 0;
269 }
270
271 static void rpc_set_active(struct rpc_task *task)
272 {
273         struct rpc_clnt *clnt;
274         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
275                 return;
276 #ifdef RPC_DEBUG
277         task->tk_magic = RPC_TASK_MAGIC_ID;
278         spin_lock(&rpc_sched_lock);
279         task->tk_pid = rpc_task_id++;
280         spin_unlock(&rpc_sched_lock);
281 #endif
282         /* Add to global list of all tasks */
283         clnt = task->tk_client;
284         if (clnt != NULL) {
285                 spin_lock(&clnt->cl_lock);
286                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
287                 spin_unlock(&clnt->cl_lock);
288         }
289 }
290
291 /*
292  * Mark an RPC call as having completed by clearing the 'active' bit
293  */
294 static void rpc_mark_complete_task(struct rpc_task *task)
295 {
296         smp_mb__before_clear_bit();
297         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298         smp_mb__after_clear_bit();
299         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
300 }
301
302 /*
303  * Allow callers to wait for completion of an RPC call
304  */
305 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
306 {
307         if (action == NULL)
308                 action = rpc_wait_bit_interruptible;
309         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
310                         action, TASK_INTERRUPTIBLE);
311 }
312 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
313
314 /*
315  * Make an RPC task runnable.
316  *
317  * Note: If the task is ASYNC, this must be called with
318  * the spinlock held to protect the wait queue operation.
319  */
320 static void rpc_make_runnable(struct rpc_task *task)
321 {
322         BUG_ON(task->tk_timeout_fn);
323         rpc_clear_queued(task);
324         if (rpc_test_and_set_running(task))
325                 return;
326         /* We might have raced */
327         if (RPC_IS_QUEUED(task)) {
328                 rpc_clear_running(task);
329                 return;
330         }
331         if (RPC_IS_ASYNC(task)) {
332                 int status;
333
334                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
335                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
336                 if (status < 0) {
337                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
338                         task->tk_status = status;
339                         return;
340                 }
341         } else
342                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
343 }
344
345 /*
346  * Prepare for sleeping on a wait queue.
347  * By always appending tasks to the list we ensure FIFO behavior.
348  * NB: An RPC task will only receive interrupt-driven events as long
349  * as it's on a wait queue.
350  */
351 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
352                         rpc_action action, rpc_action timer)
353 {
354         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
355                         task->tk_pid, rpc_qname(q), jiffies);
356
357         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
358                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
359                 return;
360         }
361
362         __rpc_add_wait_queue(q, task);
363
364         BUG_ON(task->tk_callback != NULL);
365         task->tk_callback = action;
366         __rpc_add_timer(task, timer);
367 }
368
369 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
370                                 rpc_action action, rpc_action timer)
371 {
372         /* Mark the task as being activated if so needed */
373         rpc_set_active(task);
374
375         /*
376          * Protect the queue operations.
377          */
378         spin_lock_bh(&q->lock);
379         __rpc_sleep_on(q, task, action, timer);
380         spin_unlock_bh(&q->lock);
381 }
382
383 /**
384  * __rpc_do_wake_up_task - wake up a single rpc_task
385  * @task: task to be woken up
386  *
387  * Caller must hold queue->lock, and have cleared the task queued flag.
388  */
389 static void __rpc_do_wake_up_task(struct rpc_task *task)
390 {
391         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
392                         task->tk_pid, jiffies);
393
394 #ifdef RPC_DEBUG
395         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
396 #endif
397         /* Has the task been executed yet? If not, we cannot wake it up! */
398         if (!RPC_IS_ACTIVATED(task)) {
399                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
400                 return;
401         }
402
403         __rpc_disable_timer(task);
404         __rpc_remove_wait_queue(task);
405
406         rpc_make_runnable(task);
407
408         dprintk("RPC:       __rpc_wake_up_task done\n");
409 }
410
411 /*
412  * Wake up the specified task
413  */
414 static void __rpc_wake_up_task(struct rpc_task *task)
415 {
416         if (rpc_start_wakeup(task)) {
417                 if (RPC_IS_QUEUED(task))
418                         __rpc_do_wake_up_task(task);
419                 rpc_finish_wakeup(task);
420         }
421 }
422
423 /*
424  * Default timeout handler if none specified by user
425  */
426 static void
427 __rpc_default_timer(struct rpc_task *task)
428 {
429         dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
430         task->tk_status = -ETIMEDOUT;
431         rpc_wake_up_task(task);
432 }
433
434 /*
435  * Wake up the specified task
436  */
437 void rpc_wake_up_task(struct rpc_task *task)
438 {
439         rcu_read_lock_bh();
440         if (rpc_start_wakeup(task)) {
441                 if (RPC_IS_QUEUED(task)) {
442                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
443
444                         /* Note: we're already in a bh-safe context */
445                         spin_lock(&queue->lock);
446                         __rpc_do_wake_up_task(task);
447                         spin_unlock(&queue->lock);
448                 }
449                 rpc_finish_wakeup(task);
450         }
451         rcu_read_unlock_bh();
452 }
453
454 /*
455  * Wake up the next task on a priority queue.
456  */
457 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
458 {
459         struct list_head *q;
460         struct rpc_task *task;
461
462         /*
463          * Service a batch of tasks from a single cookie.
464          */
465         q = &queue->tasks[queue->priority];
466         if (!list_empty(q)) {
467                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
468                 if (queue->cookie == task->tk_cookie) {
469                         if (--queue->nr)
470                                 goto out;
471                         list_move_tail(&task->u.tk_wait.list, q);
472                 }
473                 /*
474                  * Check if we need to switch queues.
475                  */
476                 if (--queue->count)
477                         goto new_cookie;
478         }
479
480         /*
481          * Service the next queue.
482          */
483         do {
484                 if (q == &queue->tasks[0])
485                         q = &queue->tasks[queue->maxpriority];
486                 else
487                         q = q - 1;
488                 if (!list_empty(q)) {
489                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
490                         goto new_queue;
491                 }
492         } while (q != &queue->tasks[queue->priority]);
493
494         rpc_reset_waitqueue_priority(queue);
495         return NULL;
496
497 new_queue:
498         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
499 new_cookie:
500         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
501 out:
502         __rpc_wake_up_task(task);
503         return task;
504 }
505
506 /*
507  * Wake up the next task on the wait queue.
508  */
509 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
510 {
511         struct rpc_task *task = NULL;
512
513         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
514                         queue, rpc_qname(queue));
515         rcu_read_lock_bh();
516         spin_lock(&queue->lock);
517         if (RPC_IS_PRIORITY(queue))
518                 task = __rpc_wake_up_next_priority(queue);
519         else {
520                 task_for_first(task, &queue->tasks[0])
521                         __rpc_wake_up_task(task);
522         }
523         spin_unlock(&queue->lock);
524         rcu_read_unlock_bh();
525
526         return task;
527 }
528
529 /**
530  * rpc_wake_up - wake up all rpc_tasks
531  * @queue: rpc_wait_queue on which the tasks are sleeping
532  *
533  * Grabs queue->lock
534  */
535 void rpc_wake_up(struct rpc_wait_queue *queue)
536 {
537         struct rpc_task *task, *next;
538         struct list_head *head;
539
540         rcu_read_lock_bh();
541         spin_lock(&queue->lock);
542         head = &queue->tasks[queue->maxpriority];
543         for (;;) {
544                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
545                         __rpc_wake_up_task(task);
546                 if (head == &queue->tasks[0])
547                         break;
548                 head--;
549         }
550         spin_unlock(&queue->lock);
551         rcu_read_unlock_bh();
552 }
553
554 /**
555  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
556  * @queue: rpc_wait_queue on which the tasks are sleeping
557  * @status: status value to set
558  *
559  * Grabs queue->lock
560  */
561 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
562 {
563         struct rpc_task *task, *next;
564         struct list_head *head;
565
566         rcu_read_lock_bh();
567         spin_lock(&queue->lock);
568         head = &queue->tasks[queue->maxpriority];
569         for (;;) {
570                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
571                         task->tk_status = status;
572                         __rpc_wake_up_task(task);
573                 }
574                 if (head == &queue->tasks[0])
575                         break;
576                 head--;
577         }
578         spin_unlock(&queue->lock);
579         rcu_read_unlock_bh();
580 }
581
582 static void __rpc_atrun(struct rpc_task *task)
583 {
584         rpc_wake_up_task(task);
585 }
586
587 /*
588  * Run a task at a later time
589  */
590 void rpc_delay(struct rpc_task *task, unsigned long delay)
591 {
592         task->tk_timeout = delay;
593         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
594 }
595
596 /*
597  * Helper to call task->tk_ops->rpc_call_prepare
598  */
599 static void rpc_prepare_task(struct rpc_task *task)
600 {
601         lock_kernel();
602         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
603         unlock_kernel();
604 }
605
606 /*
607  * Helper that calls task->tk_ops->rpc_call_done if it exists
608  */
609 void rpc_exit_task(struct rpc_task *task)
610 {
611         task->tk_action = NULL;
612         if (task->tk_ops->rpc_call_done != NULL) {
613                 lock_kernel();
614                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
615                 unlock_kernel();
616                 if (task->tk_action != NULL) {
617                         WARN_ON(RPC_ASSASSINATED(task));
618                         /* Always release the RPC slot and buffer memory */
619                         xprt_release(task);
620                 }
621         }
622 }
623 EXPORT_SYMBOL(rpc_exit_task);
624
625 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
626 {
627         if (ops->rpc_release != NULL) {
628                 lock_kernel();
629                 ops->rpc_release(calldata);
630                 unlock_kernel();
631         }
632 }
633
634 /*
635  * This is the RPC `scheduler' (or rather, the finite state machine).
636  */
637 static void __rpc_execute(struct rpc_task *task)
638 {
639         int             status = 0;
640
641         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
642                         task->tk_pid, task->tk_flags);
643
644         BUG_ON(RPC_IS_QUEUED(task));
645
646         for (;;) {
647                 /*
648                  * Garbage collection of pending timers...
649                  */
650                 rpc_delete_timer(task);
651
652                 /*
653                  * Execute any pending callback.
654                  */
655                 if (RPC_DO_CALLBACK(task)) {
656                         /* Define a callback save pointer */
657                         void (*save_callback)(struct rpc_task *);
658
659                         /*
660                          * If a callback exists, save it, reset it,
661                          * call it.
662                          * The save is needed to stop from resetting
663                          * another callback set within the callback handler
664                          * - Dave
665                          */
666                         save_callback=task->tk_callback;
667                         task->tk_callback=NULL;
668                         save_callback(task);
669                 }
670
671                 /*
672                  * Perform the next FSM step.
673                  * tk_action may be NULL when the task has been killed
674                  * by someone else.
675                  */
676                 if (!RPC_IS_QUEUED(task)) {
677                         if (task->tk_action == NULL)
678                                 break;
679                         task->tk_action(task);
680                 }
681
682                 /*
683                  * Lockless check for whether task is sleeping or not.
684                  */
685                 if (!RPC_IS_QUEUED(task))
686                         continue;
687                 rpc_clear_running(task);
688                 if (RPC_IS_ASYNC(task)) {
689                         /* Careful! we may have raced... */
690                         if (RPC_IS_QUEUED(task))
691                                 return;
692                         if (rpc_test_and_set_running(task))
693                                 return;
694                         continue;
695                 }
696
697                 /* sync task: sleep here */
698                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
699                 /* Note: Caller should be using rpc_clnt_sigmask() */
700                 status = out_of_line_wait_on_bit(&task->tk_runstate,
701                                 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
702                                 TASK_INTERRUPTIBLE);
703                 if (status == -ERESTARTSYS) {
704                         /*
705                          * When a sync task receives a signal, it exits with
706                          * -ERESTARTSYS. In order to catch any callbacks that
707                          * clean up after sleeping on some queue, we don't
708                          * break the loop here, but go around once more.
709                          */
710                         dprintk("RPC: %5u got signal\n", task->tk_pid);
711                         task->tk_flags |= RPC_TASK_KILLED;
712                         rpc_exit(task, -ERESTARTSYS);
713                         rpc_wake_up_task(task);
714                 }
715                 rpc_set_running(task);
716                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
717         }
718
719         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
720                         task->tk_status);
721         /* Release all resources associated with the task */
722         rpc_release_task(task);
723 }
724
725 /*
726  * User-visible entry point to the scheduler.
727  *
728  * This may be called recursively if e.g. an async NFS task updates
729  * the attributes and finds that dirty pages must be flushed.
730  * NOTE: Upon exit of this function the task is guaranteed to be
731  *       released. In particular note that tk_release() will have
732  *       been called, so your task memory may have been freed.
733  */
734 void rpc_execute(struct rpc_task *task)
735 {
736         rpc_set_active(task);
737         rpc_set_running(task);
738         __rpc_execute(task);
739 }
740
741 static void rpc_async_schedule(struct work_struct *work)
742 {
743         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
744 }
745
746 struct rpc_buffer {
747         size_t  len;
748         char    data[];
749 };
750
751 /**
752  * rpc_malloc - allocate an RPC buffer
753  * @task: RPC task that will use this buffer
754  * @size: requested byte size
755  *
756  * To prevent rpciod from hanging, this allocator never sleeps,
757  * returning NULL if the request cannot be serviced immediately.
758  * The caller can arrange to sleep in a way that is safe for rpciod.
759  *
760  * Most requests are 'small' (under 2KiB) and can be serviced from a
761  * mempool, ensuring that NFS reads and writes can always proceed,
762  * and that there is good locality of reference for these buffers.
763  *
764  * In order to avoid memory starvation triggering more writebacks of
765  * NFS requests, we avoid using GFP_KERNEL.
766  */
767 void *rpc_malloc(struct rpc_task *task, size_t size)
768 {
769         struct rpc_buffer *buf;
770         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
771
772         size += sizeof(struct rpc_buffer);
773         if (size <= RPC_BUFFER_MAXSIZE)
774                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
775         else
776                 buf = kmalloc(size, gfp);
777
778         if (!buf)
779                 return NULL;
780
781         buf->len = size;
782         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
783                         task->tk_pid, size, buf);
784         return &buf->data;
785 }
786
787 /**
788  * rpc_free - free buffer allocated via rpc_malloc
789  * @buffer: buffer to free
790  *
791  */
792 void rpc_free(void *buffer)
793 {
794         size_t size;
795         struct rpc_buffer *buf;
796
797         if (!buffer)
798                 return;
799
800         buf = container_of(buffer, struct rpc_buffer, data);
801         size = buf->len;
802
803         dprintk("RPC:       freeing buffer of size %zu at %p\n",
804                         size, buf);
805
806         if (size <= RPC_BUFFER_MAXSIZE)
807                 mempool_free(buf, rpc_buffer_mempool);
808         else
809                 kfree(buf);
810 }
811
812 /*
813  * Creation and deletion of RPC task structures
814  */
815 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
816 {
817         memset(task, 0, sizeof(*task));
818         init_timer(&task->tk_timer);
819         task->tk_timer.data     = (unsigned long) task;
820         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
821         atomic_set(&task->tk_count, 1);
822         task->tk_client = clnt;
823         task->tk_flags  = flags;
824         task->tk_ops = tk_ops;
825         if (tk_ops->rpc_call_prepare != NULL)
826                 task->tk_action = rpc_prepare_task;
827         task->tk_calldata = calldata;
828         INIT_LIST_HEAD(&task->tk_task);
829
830         /* Initialize retry counters */
831         task->tk_garb_retry = 2;
832         task->tk_cred_retry = 2;
833
834         task->tk_priority = RPC_PRIORITY_NORMAL;
835         task->tk_cookie = (unsigned long)current;
836
837         /* Initialize workqueue for async tasks */
838         task->tk_workqueue = rpciod_workqueue;
839
840         if (clnt) {
841                 atomic_inc(&clnt->cl_users);
842                 if (clnt->cl_softrtry)
843                         task->tk_flags |= RPC_TASK_SOFT;
844                 if (!clnt->cl_intr)
845                         task->tk_flags |= RPC_TASK_NOINTR;
846         }
847
848         BUG_ON(task->tk_ops == NULL);
849
850         /* starting timestamp */
851         task->tk_start = jiffies;
852
853         dprintk("RPC:       new task initialized, procpid %u\n",
854                                 current->pid);
855 }
856
857 static struct rpc_task *
858 rpc_alloc_task(void)
859 {
860         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
861 }
862
863 static void rpc_free_task(struct rcu_head *rcu)
864 {
865         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
866         dprintk("RPC: %5u freeing task\n", task->tk_pid);
867         mempool_free(task, rpc_task_mempool);
868 }
869
870 /*
871  * Create a new task for the specified client.  We have to
872  * clean up after an allocation failure, as the client may
873  * have specified "oneshot".
874  */
875 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
876 {
877         struct rpc_task *task;
878
879         task = rpc_alloc_task();
880         if (!task)
881                 goto cleanup;
882
883         rpc_init_task(task, clnt, flags, tk_ops, calldata);
884
885         dprintk("RPC:       allocated task %p\n", task);
886         task->tk_flags |= RPC_TASK_DYNAMIC;
887 out:
888         return task;
889
890 cleanup:
891         /* Check whether to release the client */
892         if (clnt) {
893                 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
894                         atomic_read(&clnt->cl_users), clnt->cl_oneshot);
895                 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
896                 rpc_release_client(clnt);
897         }
898         goto out;
899 }
900
901
902 void rpc_put_task(struct rpc_task *task)
903 {
904         const struct rpc_call_ops *tk_ops = task->tk_ops;
905         void *calldata = task->tk_calldata;
906
907         if (!atomic_dec_and_test(&task->tk_count))
908                 return;
909         /* Release resources */
910         if (task->tk_rqstp)
911                 xprt_release(task);
912         if (task->tk_msg.rpc_cred)
913                 rpcauth_unbindcred(task);
914         if (task->tk_client) {
915                 rpc_release_client(task->tk_client);
916                 task->tk_client = NULL;
917         }
918         if (task->tk_flags & RPC_TASK_DYNAMIC)
919                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
920         rpc_release_calldata(tk_ops, calldata);
921 }
922 EXPORT_SYMBOL(rpc_put_task);
923
924 static void rpc_release_task(struct rpc_task *task)
925 {
926 #ifdef RPC_DEBUG
927         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
928 #endif
929         dprintk("RPC: %5u release task\n", task->tk_pid);
930
931         if (!list_empty(&task->tk_task)) {
932                 struct rpc_clnt *clnt = task->tk_client;
933                 /* Remove from client task list */
934                 spin_lock(&clnt->cl_lock);
935                 list_del(&task->tk_task);
936                 spin_unlock(&clnt->cl_lock);
937         }
938         BUG_ON (RPC_IS_QUEUED(task));
939
940         /* Synchronously delete any running timer */
941         rpc_delete_timer(task);
942
943 #ifdef RPC_DEBUG
944         task->tk_magic = 0;
945 #endif
946         /* Wake up anyone who is waiting for task completion */
947         rpc_mark_complete_task(task);
948
949         rpc_put_task(task);
950 }
951
952 /**
953  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
954  * @clnt: pointer to RPC client
955  * @flags: RPC flags
956  * @ops: RPC call ops
957  * @data: user call data
958  */
959 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
960                                         const struct rpc_call_ops *ops,
961                                         void *data)
962 {
963         struct rpc_task *task;
964         task = rpc_new_task(clnt, flags, ops, data);
965         if (task == NULL) {
966                 rpc_release_calldata(ops, data);
967                 return ERR_PTR(-ENOMEM);
968         }
969         atomic_inc(&task->tk_count);
970         rpc_execute(task);
971         return task;
972 }
973 EXPORT_SYMBOL(rpc_run_task);
974
975 /*
976  * Kill all tasks for the given client.
977  * XXX: kill their descendants as well?
978  */
979 void rpc_killall_tasks(struct rpc_clnt *clnt)
980 {
981         struct rpc_task *rovr;
982
983
984         if (list_empty(&clnt->cl_tasks))
985                 return;
986         dprintk("RPC:       killing all tasks for client %p\n", clnt);
987         /*
988          * Spin lock all_tasks to prevent changes...
989          */
990         spin_lock(&clnt->cl_lock);
991         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
992                 if (! RPC_IS_ACTIVATED(rovr))
993                         continue;
994                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
995                         rovr->tk_flags |= RPC_TASK_KILLED;
996                         rpc_exit(rovr, -EIO);
997                         rpc_wake_up_task(rovr);
998                 }
999         }
1000         spin_unlock(&clnt->cl_lock);
1001 }
1002
1003 static void rpciod_killall(void)
1004 {
1005         struct rpc_clnt *clnt;
1006         unsigned long flags;
1007
1008         for(;;) {
1009                 clear_thread_flag(TIF_SIGPENDING);
1010
1011                 spin_lock(&rpc_sched_lock);
1012                 list_for_each_entry(clnt, &all_clients, cl_clients)
1013                         rpc_killall_tasks(clnt);
1014                 spin_unlock(&rpc_sched_lock);
1015                 flush_workqueue(rpciod_workqueue);
1016                 if (!list_empty(&all_clients))
1017                         break;
1018                 dprintk("RPC:       rpciod_killall: waiting for tasks "
1019                                         "to exit\n");
1020                 wait_event_timeout(client_kill_wait,
1021                                 list_empty(&all_clients), 1*HZ);
1022         }
1023
1024         spin_lock_irqsave(&current->sighand->siglock, flags);
1025         recalc_sigpending();
1026         spin_unlock_irqrestore(&current->sighand->siglock, flags);
1027 }
1028
1029 void rpc_register_client(struct rpc_clnt *clnt)
1030 {
1031         spin_lock(&rpc_sched_lock);
1032         list_add(&clnt->cl_clients, &all_clients);
1033         spin_unlock(&rpc_sched_lock);
1034 }
1035
1036 void rpc_unregister_client(struct rpc_clnt *clnt)
1037 {
1038         spin_lock(&rpc_sched_lock);
1039         list_del(&clnt->cl_clients);
1040         if (list_empty(&all_clients))
1041                 wake_up(&client_kill_wait);
1042         spin_unlock(&rpc_sched_lock);
1043 }
1044
1045 /*
1046  * Start up the rpciod process if it's not already running.
1047  */
1048 int
1049 rpciod_up(void)
1050 {
1051         struct workqueue_struct *wq;
1052         int error = 0;
1053
1054         mutex_lock(&rpciod_mutex);
1055         dprintk("RPC:       rpciod_up: users %u\n", rpciod_users);
1056         rpciod_users++;
1057         if (rpciod_workqueue)
1058                 goto out;
1059         /*
1060          * If there's no pid, we should be the first user.
1061          */
1062         if (rpciod_users > 1)
1063                 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1064         /*
1065          * Create the rpciod thread and wait for it to start.
1066          */
1067         error = -ENOMEM;
1068         wq = create_workqueue("rpciod");
1069         if (wq == NULL) {
1070                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1071                 rpciod_users--;
1072                 goto out;
1073         }
1074         rpciod_workqueue = wq;
1075         error = 0;
1076 out:
1077         mutex_unlock(&rpciod_mutex);
1078         return error;
1079 }
1080
1081 void
1082 rpciod_down(void)
1083 {
1084         mutex_lock(&rpciod_mutex);
1085         dprintk("RPC:       rpciod_down sema %u\n", rpciod_users);
1086         if (rpciod_users) {
1087                 if (--rpciod_users)
1088                         goto out;
1089         } else
1090                 printk(KERN_WARNING "rpciod_down: no users??\n");
1091
1092         if (!rpciod_workqueue) {
1093                 dprintk("RPC:       rpciod_down: Nothing to do!\n");
1094                 goto out;
1095         }
1096         rpciod_killall();
1097
1098         destroy_workqueue(rpciod_workqueue);
1099         rpciod_workqueue = NULL;
1100  out:
1101         mutex_unlock(&rpciod_mutex);
1102 }
1103
1104 #ifdef RPC_DEBUG
1105 void rpc_show_tasks(void)
1106 {
1107         struct rpc_clnt *clnt;
1108         struct rpc_task *t;
1109
1110         spin_lock(&rpc_sched_lock);
1111         if (list_empty(&all_clients))
1112                 goto out;
1113         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1114                 "-rpcwait -action- ---ops--\n");
1115         list_for_each_entry(clnt, &all_clients, cl_clients) {
1116                 if (list_empty(&clnt->cl_tasks))
1117                         continue;
1118                 spin_lock(&clnt->cl_lock);
1119                 list_for_each_entry(t, &clnt->cl_tasks, tk_task) {
1120                         const char *rpc_waitq = "none";
1121
1122                         if (RPC_IS_QUEUED(t))
1123                                 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1124
1125                         printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1126                                 t->tk_pid,
1127                                 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1128                                 t->tk_flags, t->tk_status,
1129                                 t->tk_client,
1130                                 (t->tk_client ? t->tk_client->cl_prog : 0),
1131                                 t->tk_rqstp, t->tk_timeout,
1132                                 rpc_waitq,
1133                                 t->tk_action, t->tk_ops);
1134                 }
1135                 spin_unlock(&clnt->cl_lock);
1136         }
1137 out:
1138         spin_unlock(&rpc_sched_lock);
1139 }
1140 #endif
1141
1142 void
1143 rpc_destroy_mempool(void)
1144 {
1145         if (rpc_buffer_mempool)
1146                 mempool_destroy(rpc_buffer_mempool);
1147         if (rpc_task_mempool)
1148                 mempool_destroy(rpc_task_mempool);
1149         if (rpc_task_slabp)
1150                 kmem_cache_destroy(rpc_task_slabp);
1151         if (rpc_buffer_slabp)
1152                 kmem_cache_destroy(rpc_buffer_slabp);
1153 }
1154
1155 int
1156 rpc_init_mempool(void)
1157 {
1158         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1159                                              sizeof(struct rpc_task),
1160                                              0, SLAB_HWCACHE_ALIGN,
1161                                              NULL, NULL);
1162         if (!rpc_task_slabp)
1163                 goto err_nomem;
1164         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1165                                              RPC_BUFFER_MAXSIZE,
1166                                              0, SLAB_HWCACHE_ALIGN,
1167                                              NULL, NULL);
1168         if (!rpc_buffer_slabp)
1169                 goto err_nomem;
1170         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1171                                                     rpc_task_slabp);
1172         if (!rpc_task_mempool)
1173                 goto err_nomem;
1174         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1175                                                       rpc_buffer_slabp);
1176         if (!rpc_buffer_mempool)
1177                 goto err_nomem;
1178         return 0;
1179 err_nomem:
1180         rpc_destroy_mempool();
1181         return -ENOMEM;
1182 }