rpc: add rpc_queue_empty function
[safe/jmp/linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID       0xf00baa
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static struct kmem_cache        *rpc_task_slabp __read_mostly;
38 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     rpc_async_schedule(struct work_struct *);
43 static void                      rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static struct rpc_wait_queue delay_queue;
50
51 /*
52  * rpciod-related stuff
53  */
54 struct workqueue_struct *rpciod_workqueue;
55
56 /*
57  * Disable the timer for a given RPC task. Should be called with
58  * queue->lock and bh_disabled in order to avoid races within
59  * rpc_run_timer().
60  */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64         if (task->tk_timeout == 0)
65                 return;
66         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67         task->tk_timeout = 0;
68         list_del(&task->u.tk_wait.timer_list);
69         if (list_empty(&queue->timer_list.list))
70                 del_timer(&queue->timer_list.timer);
71 }
72
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76         queue->timer_list.expires = expires;
77         mod_timer(&queue->timer_list.timer, expires);
78 }
79
80 /*
81  * Set up a timer for the current task.
82  */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (!task->tk_timeout)
87                 return;
88
89         dprintk("RPC: %5u setting alarm for %lu ms\n",
90                         task->tk_pid, task->tk_timeout * 1000 / HZ);
91
92         task->u.tk_wait.expires = jiffies + task->tk_timeout;
93         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97
98 /*
99  * Add new request to a priority queue.
100  */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 {
103         struct list_head *q;
104         struct rpc_task *t;
105
106         INIT_LIST_HEAD(&task->u.tk_wait.links);
107         q = &queue->tasks[task->tk_priority];
108         if (unlikely(task->tk_priority > queue->maxpriority))
109                 q = &queue->tasks[queue->maxpriority];
110         list_for_each_entry(t, q, u.tk_wait.list) {
111                 if (t->tk_owner == task->tk_owner) {
112                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
113                         return;
114                 }
115         }
116         list_add_tail(&task->u.tk_wait.list, q);
117 }
118
119 /*
120  * Add new request to wait queue.
121  *
122  * Swapper tasks always get inserted at the head of the queue.
123  * This should avoid many nasty memory deadlocks and hopefully
124  * improve overall performance.
125  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126  */
127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 {
129         BUG_ON (RPC_IS_QUEUED(task));
130
131         if (RPC_IS_PRIORITY(queue))
132                 __rpc_add_wait_queue_priority(queue, task);
133         else if (RPC_IS_SWAPPER(task))
134                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
135         else
136                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
137         task->tk_waitqueue = queue;
138         queue->qlen++;
139         rpc_set_queued(task);
140
141         dprintk("RPC: %5u added to queue %p \"%s\"\n",
142                         task->tk_pid, queue, rpc_qname(queue));
143 }
144
145 /*
146  * Remove request from a priority queue.
147  */
148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 {
150         struct rpc_task *t;
151
152         if (!list_empty(&task->u.tk_wait.links)) {
153                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
154                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
155                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
156         }
157 }
158
159 /*
160  * Remove request from queue.
161  * Note: must be called with spin lock held.
162  */
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 {
165         __rpc_disable_timer(queue, task);
166         if (RPC_IS_PRIORITY(queue))
167                 __rpc_remove_wait_queue_priority(task);
168         list_del(&task->u.tk_wait.list);
169         queue->qlen--;
170         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171                         task->tk_pid, queue, rpc_qname(queue));
172 }
173
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 {
176         queue->priority = priority;
177         queue->count = 1 << (priority * 2);
178 }
179
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 {
182         queue->owner = pid;
183         queue->nr = RPC_BATCH_COUNT;
184 }
185
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 {
188         rpc_set_waitqueue_priority(queue, queue->maxpriority);
189         rpc_set_waitqueue_owner(queue, 0);
190 }
191
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 {
194         int i;
195
196         spin_lock_init(&queue->lock);
197         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198                 INIT_LIST_HEAD(&queue->tasks[i]);
199         queue->maxpriority = nr_queues - 1;
200         rpc_reset_waitqueue_priority(queue);
201         queue->qlen = 0;
202         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
203         INIT_LIST_HEAD(&queue->timer_list.list);
204 #ifdef RPC_DEBUG
205         queue->name = qname;
206 #endif
207 }
208
209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 {
211         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 }
213
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222         del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225
226 static int rpc_wait_bit_killable(void *word)
227 {
228         if (fatal_signal_pending(current))
229                 return -ERESTARTSYS;
230         schedule();
231         return 0;
232 }
233
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237         static atomic_t rpc_pid;
238
239         task->tk_magic = RPC_TASK_MAGIC_ID;
240         task->tk_pid = atomic_inc_return(&rpc_pid);
241 }
242 #else
243 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
244 {
245 }
246 #endif
247
248 static void rpc_set_active(struct rpc_task *task)
249 {
250         struct rpc_clnt *clnt;
251         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
252                 return;
253         rpc_task_set_debuginfo(task);
254         /* Add to global list of all tasks */
255         clnt = task->tk_client;
256         if (clnt != NULL) {
257                 spin_lock(&clnt->cl_lock);
258                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
259                 spin_unlock(&clnt->cl_lock);
260         }
261 }
262
263 /*
264  * Mark an RPC call as having completed by clearing the 'active' bit
265  */
266 static void rpc_mark_complete_task(struct rpc_task *task)
267 {
268         smp_mb__before_clear_bit();
269         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
270         smp_mb__after_clear_bit();
271         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
272 }
273
274 /*
275  * Allow callers to wait for completion of an RPC call
276  */
277 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
278 {
279         if (action == NULL)
280                 action = rpc_wait_bit_killable;
281         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
282                         action, TASK_KILLABLE);
283 }
284 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
285
286 /*
287  * Make an RPC task runnable.
288  *
289  * Note: If the task is ASYNC, this must be called with
290  * the spinlock held to protect the wait queue operation.
291  */
292 static void rpc_make_runnable(struct rpc_task *task)
293 {
294         rpc_clear_queued(task);
295         if (rpc_test_and_set_running(task))
296                 return;
297         if (RPC_IS_ASYNC(task)) {
298                 int status;
299
300                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
301                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
302                 if (status < 0) {
303                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
304                         task->tk_status = status;
305                         return;
306                 }
307         } else
308                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
309 }
310
311 /*
312  * Prepare for sleeping on a wait queue.
313  * By always appending tasks to the list we ensure FIFO behavior.
314  * NB: An RPC task will only receive interrupt-driven events as long
315  * as it's on a wait queue.
316  */
317 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
318                         rpc_action action)
319 {
320         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
321                         task->tk_pid, rpc_qname(q), jiffies);
322
323         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
324                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
325                 return;
326         }
327
328         __rpc_add_wait_queue(q, task);
329
330         BUG_ON(task->tk_callback != NULL);
331         task->tk_callback = action;
332         __rpc_add_timer(q, task);
333 }
334
335 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
336                                 rpc_action action)
337 {
338         /* Mark the task as being activated if so needed */
339         rpc_set_active(task);
340
341         /*
342          * Protect the queue operations.
343          */
344         spin_lock_bh(&q->lock);
345         __rpc_sleep_on(q, task, action);
346         spin_unlock_bh(&q->lock);
347 }
348 EXPORT_SYMBOL_GPL(rpc_sleep_on);
349
350 /**
351  * __rpc_do_wake_up_task - wake up a single rpc_task
352  * @queue: wait queue
353  * @task: task to be woken up
354  *
355  * Caller must hold queue->lock, and have cleared the task queued flag.
356  */
357 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
358 {
359         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
360                         task->tk_pid, jiffies);
361
362 #ifdef RPC_DEBUG
363         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
364 #endif
365         /* Has the task been executed yet? If not, we cannot wake it up! */
366         if (!RPC_IS_ACTIVATED(task)) {
367                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
368                 return;
369         }
370
371         __rpc_remove_wait_queue(queue, task);
372
373         rpc_make_runnable(task);
374
375         dprintk("RPC:       __rpc_wake_up_task done\n");
376 }
377
378 /*
379  * Wake up a queued task while the queue lock is being held
380  */
381 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
382 {
383         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
384                 __rpc_do_wake_up_task(queue, task);
385 }
386
387 /*
388  * Tests whether rpc queue is empty
389  */
390 int rpc_queue_empty(struct rpc_wait_queue *queue)
391 {
392         int res;
393
394         spin_lock_bh(&queue->lock);
395         res = queue->qlen;
396         spin_unlock_bh(&queue->lock);
397         return (res == 0);
398 }
399 EXPORT_SYMBOL_GPL(rpc_queue_empty);
400
401 /*
402  * Wake up a task on a specific queue
403  */
404 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
405 {
406         spin_lock_bh(&queue->lock);
407         rpc_wake_up_task_queue_locked(queue, task);
408         spin_unlock_bh(&queue->lock);
409 }
410 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
411
412 /*
413  * Wake up the specified task
414  */
415 static void rpc_wake_up_task(struct rpc_task *task)
416 {
417         rpc_wake_up_queued_task(task->tk_waitqueue, task);
418 }
419
420 /*
421  * Wake up the next task on a priority queue.
422  */
423 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
424 {
425         struct list_head *q;
426         struct rpc_task *task;
427
428         /*
429          * Service a batch of tasks from a single owner.
430          */
431         q = &queue->tasks[queue->priority];
432         if (!list_empty(q)) {
433                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
434                 if (queue->owner == task->tk_owner) {
435                         if (--queue->nr)
436                                 goto out;
437                         list_move_tail(&task->u.tk_wait.list, q);
438                 }
439                 /*
440                  * Check if we need to switch queues.
441                  */
442                 if (--queue->count)
443                         goto new_owner;
444         }
445
446         /*
447          * Service the next queue.
448          */
449         do {
450                 if (q == &queue->tasks[0])
451                         q = &queue->tasks[queue->maxpriority];
452                 else
453                         q = q - 1;
454                 if (!list_empty(q)) {
455                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
456                         goto new_queue;
457                 }
458         } while (q != &queue->tasks[queue->priority]);
459
460         rpc_reset_waitqueue_priority(queue);
461         return NULL;
462
463 new_queue:
464         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
465 new_owner:
466         rpc_set_waitqueue_owner(queue, task->tk_owner);
467 out:
468         rpc_wake_up_task_queue_locked(queue, task);
469         return task;
470 }
471
472 /*
473  * Wake up the next task on the wait queue.
474  */
475 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
476 {
477         struct rpc_task *task = NULL;
478
479         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
480                         queue, rpc_qname(queue));
481         spin_lock_bh(&queue->lock);
482         if (RPC_IS_PRIORITY(queue))
483                 task = __rpc_wake_up_next_priority(queue);
484         else {
485                 task_for_first(task, &queue->tasks[0])
486                         rpc_wake_up_task_queue_locked(queue, task);
487         }
488         spin_unlock_bh(&queue->lock);
489
490         return task;
491 }
492 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
493
494 /**
495  * rpc_wake_up - wake up all rpc_tasks
496  * @queue: rpc_wait_queue on which the tasks are sleeping
497  *
498  * Grabs queue->lock
499  */
500 void rpc_wake_up(struct rpc_wait_queue *queue)
501 {
502         struct rpc_task *task, *next;
503         struct list_head *head;
504
505         spin_lock_bh(&queue->lock);
506         head = &queue->tasks[queue->maxpriority];
507         for (;;) {
508                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
509                         rpc_wake_up_task_queue_locked(queue, task);
510                 if (head == &queue->tasks[0])
511                         break;
512                 head--;
513         }
514         spin_unlock_bh(&queue->lock);
515 }
516 EXPORT_SYMBOL_GPL(rpc_wake_up);
517
518 /**
519  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
520  * @queue: rpc_wait_queue on which the tasks are sleeping
521  * @status: status value to set
522  *
523  * Grabs queue->lock
524  */
525 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
526 {
527         struct rpc_task *task, *next;
528         struct list_head *head;
529
530         spin_lock_bh(&queue->lock);
531         head = &queue->tasks[queue->maxpriority];
532         for (;;) {
533                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
534                         task->tk_status = status;
535                         rpc_wake_up_task_queue_locked(queue, task);
536                 }
537                 if (head == &queue->tasks[0])
538                         break;
539                 head--;
540         }
541         spin_unlock_bh(&queue->lock);
542 }
543 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
544
545 static void __rpc_queue_timer_fn(unsigned long ptr)
546 {
547         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
548         struct rpc_task *task, *n;
549         unsigned long expires, now, timeo;
550
551         spin_lock(&queue->lock);
552         expires = now = jiffies;
553         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
554                 timeo = task->u.tk_wait.expires;
555                 if (time_after_eq(now, timeo)) {
556                         dprintk("RPC: %5u timeout\n", task->tk_pid);
557                         task->tk_status = -ETIMEDOUT;
558                         rpc_wake_up_task_queue_locked(queue, task);
559                         continue;
560                 }
561                 if (expires == now || time_after(expires, timeo))
562                         expires = timeo;
563         }
564         if (!list_empty(&queue->timer_list.list))
565                 rpc_set_queue_timer(queue, expires);
566         spin_unlock(&queue->lock);
567 }
568
569 static void __rpc_atrun(struct rpc_task *task)
570 {
571         task->tk_status = 0;
572 }
573
574 /*
575  * Run a task at a later time
576  */
577 void rpc_delay(struct rpc_task *task, unsigned long delay)
578 {
579         task->tk_timeout = delay;
580         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
581 }
582 EXPORT_SYMBOL_GPL(rpc_delay);
583
584 /*
585  * Helper to call task->tk_ops->rpc_call_prepare
586  */
587 void rpc_prepare_task(struct rpc_task *task)
588 {
589         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
590 }
591
592 /*
593  * Helper that calls task->tk_ops->rpc_call_done if it exists
594  */
595 void rpc_exit_task(struct rpc_task *task)
596 {
597         task->tk_action = NULL;
598         if (task->tk_ops->rpc_call_done != NULL) {
599                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
600                 if (task->tk_action != NULL) {
601                         WARN_ON(RPC_ASSASSINATED(task));
602                         /* Always release the RPC slot and buffer memory */
603                         xprt_release(task);
604                 }
605         }
606 }
607 EXPORT_SYMBOL_GPL(rpc_exit_task);
608
609 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
610 {
611         if (ops->rpc_release != NULL)
612                 ops->rpc_release(calldata);
613 }
614
615 /*
616  * This is the RPC `scheduler' (or rather, the finite state machine).
617  */
618 static void __rpc_execute(struct rpc_task *task)
619 {
620         struct rpc_wait_queue *queue;
621         int task_is_async = RPC_IS_ASYNC(task);
622         int status = 0;
623
624         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
625                         task->tk_pid, task->tk_flags);
626
627         BUG_ON(RPC_IS_QUEUED(task));
628
629         for (;;) {
630
631                 /*
632                  * Execute any pending callback.
633                  */
634                 if (task->tk_callback) {
635                         void (*save_callback)(struct rpc_task *);
636
637                         /*
638                          * We set tk_callback to NULL before calling it,
639                          * in case it sets the tk_callback field itself:
640                          */
641                         save_callback = task->tk_callback;
642                         task->tk_callback = NULL;
643                         save_callback(task);
644                 }
645
646                 /*
647                  * Perform the next FSM step.
648                  * tk_action may be NULL when the task has been killed
649                  * by someone else.
650                  */
651                 if (!RPC_IS_QUEUED(task)) {
652                         if (task->tk_action == NULL)
653                                 break;
654                         task->tk_action(task);
655                 }
656
657                 /*
658                  * Lockless check for whether task is sleeping or not.
659                  */
660                 if (!RPC_IS_QUEUED(task))
661                         continue;
662                 /*
663                  * The queue->lock protects against races with
664                  * rpc_make_runnable().
665                  *
666                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
667                  * rpc_task, rpc_make_runnable() can assign it to a
668                  * different workqueue. We therefore cannot assume that the
669                  * rpc_task pointer may still be dereferenced.
670                  */
671                 queue = task->tk_waitqueue;
672                 spin_lock_bh(&queue->lock);
673                 if (!RPC_IS_QUEUED(task)) {
674                         spin_unlock_bh(&queue->lock);
675                         continue;
676                 }
677                 rpc_clear_running(task);
678                 spin_unlock_bh(&queue->lock);
679                 if (task_is_async)
680                         return;
681
682                 /* sync task: sleep here */
683                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
684                 status = out_of_line_wait_on_bit(&task->tk_runstate,
685                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
686                                 TASK_KILLABLE);
687                 if (status == -ERESTARTSYS) {
688                         /*
689                          * When a sync task receives a signal, it exits with
690                          * -ERESTARTSYS. In order to catch any callbacks that
691                          * clean up after sleeping on some queue, we don't
692                          * break the loop here, but go around once more.
693                          */
694                         dprintk("RPC: %5u got signal\n", task->tk_pid);
695                         task->tk_flags |= RPC_TASK_KILLED;
696                         rpc_exit(task, -ERESTARTSYS);
697                         rpc_wake_up_task(task);
698                 }
699                 rpc_set_running(task);
700                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
701         }
702
703         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
704                         task->tk_status);
705         /* Release all resources associated with the task */
706         rpc_release_task(task);
707 }
708
709 /*
710  * User-visible entry point to the scheduler.
711  *
712  * This may be called recursively if e.g. an async NFS task updates
713  * the attributes and finds that dirty pages must be flushed.
714  * NOTE: Upon exit of this function the task is guaranteed to be
715  *       released. In particular note that tk_release() will have
716  *       been called, so your task memory may have been freed.
717  */
718 void rpc_execute(struct rpc_task *task)
719 {
720         rpc_set_active(task);
721         rpc_set_running(task);
722         __rpc_execute(task);
723 }
724
725 static void rpc_async_schedule(struct work_struct *work)
726 {
727         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
728 }
729
730 /**
731  * rpc_malloc - allocate an RPC buffer
732  * @task: RPC task that will use this buffer
733  * @size: requested byte size
734  *
735  * To prevent rpciod from hanging, this allocator never sleeps,
736  * returning NULL if the request cannot be serviced immediately.
737  * The caller can arrange to sleep in a way that is safe for rpciod.
738  *
739  * Most requests are 'small' (under 2KiB) and can be serviced from a
740  * mempool, ensuring that NFS reads and writes can always proceed,
741  * and that there is good locality of reference for these buffers.
742  *
743  * In order to avoid memory starvation triggering more writebacks of
744  * NFS requests, we avoid using GFP_KERNEL.
745  */
746 void *rpc_malloc(struct rpc_task *task, size_t size)
747 {
748         struct rpc_buffer *buf;
749         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
750
751         size += sizeof(struct rpc_buffer);
752         if (size <= RPC_BUFFER_MAXSIZE)
753                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
754         else
755                 buf = kmalloc(size, gfp);
756
757         if (!buf)
758                 return NULL;
759
760         buf->len = size;
761         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
762                         task->tk_pid, size, buf);
763         return &buf->data;
764 }
765 EXPORT_SYMBOL_GPL(rpc_malloc);
766
767 /**
768  * rpc_free - free buffer allocated via rpc_malloc
769  * @buffer: buffer to free
770  *
771  */
772 void rpc_free(void *buffer)
773 {
774         size_t size;
775         struct rpc_buffer *buf;
776
777         if (!buffer)
778                 return;
779
780         buf = container_of(buffer, struct rpc_buffer, data);
781         size = buf->len;
782
783         dprintk("RPC:       freeing buffer of size %zu at %p\n",
784                         size, buf);
785
786         if (size <= RPC_BUFFER_MAXSIZE)
787                 mempool_free(buf, rpc_buffer_mempool);
788         else
789                 kfree(buf);
790 }
791 EXPORT_SYMBOL_GPL(rpc_free);
792
793 /*
794  * Creation and deletion of RPC task structures
795  */
796 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
797 {
798         memset(task, 0, sizeof(*task));
799         atomic_set(&task->tk_count, 1);
800         task->tk_flags  = task_setup_data->flags;
801         task->tk_ops = task_setup_data->callback_ops;
802         task->tk_calldata = task_setup_data->callback_data;
803         INIT_LIST_HEAD(&task->tk_task);
804
805         /* Initialize retry counters */
806         task->tk_garb_retry = 2;
807         task->tk_cred_retry = 2;
808
809         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
810         task->tk_owner = current->tgid;
811
812         /* Initialize workqueue for async tasks */
813         task->tk_workqueue = task_setup_data->workqueue;
814
815         task->tk_client = task_setup_data->rpc_client;
816         if (task->tk_client != NULL) {
817                 kref_get(&task->tk_client->cl_kref);
818                 if (task->tk_client->cl_softrtry)
819                         task->tk_flags |= RPC_TASK_SOFT;
820         }
821
822         if (task->tk_ops->rpc_call_prepare != NULL)
823                 task->tk_action = rpc_prepare_task;
824
825         if (task_setup_data->rpc_message != NULL) {
826                 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
827                 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
828                 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
829                 /* Bind the user cred */
830                 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
831                 if (task->tk_action == NULL)
832                         rpc_call_start(task);
833         }
834
835         /* starting timestamp */
836         task->tk_start = jiffies;
837
838         dprintk("RPC:       new task initialized, procpid %u\n",
839                                 task_pid_nr(current));
840 }
841
842 static struct rpc_task *
843 rpc_alloc_task(void)
844 {
845         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
846 }
847
848 /*
849  * Create a new task for the specified client.
850  */
851 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
852 {
853         struct rpc_task *task = setup_data->task;
854         unsigned short flags = 0;
855
856         if (task == NULL) {
857                 task = rpc_alloc_task();
858                 if (task == NULL)
859                         goto out;
860                 flags = RPC_TASK_DYNAMIC;
861         }
862
863         rpc_init_task(task, setup_data);
864
865         task->tk_flags |= flags;
866         dprintk("RPC:       allocated task %p\n", task);
867 out:
868         return task;
869 }
870
871 static void rpc_free_task(struct rpc_task *task)
872 {
873         const struct rpc_call_ops *tk_ops = task->tk_ops;
874         void *calldata = task->tk_calldata;
875
876         if (task->tk_flags & RPC_TASK_DYNAMIC) {
877                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
878                 mempool_free(task, rpc_task_mempool);
879         }
880         rpc_release_calldata(tk_ops, calldata);
881 }
882
883 static void rpc_async_release(struct work_struct *work)
884 {
885         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
886 }
887
888 void rpc_put_task(struct rpc_task *task)
889 {
890         if (!atomic_dec_and_test(&task->tk_count))
891                 return;
892         /* Release resources */
893         if (task->tk_rqstp)
894                 xprt_release(task);
895         if (task->tk_msg.rpc_cred)
896                 rpcauth_unbindcred(task);
897         if (task->tk_client) {
898                 rpc_release_client(task->tk_client);
899                 task->tk_client = NULL;
900         }
901         if (task->tk_workqueue != NULL) {
902                 INIT_WORK(&task->u.tk_work, rpc_async_release);
903                 queue_work(task->tk_workqueue, &task->u.tk_work);
904         } else
905                 rpc_free_task(task);
906 }
907 EXPORT_SYMBOL_GPL(rpc_put_task);
908
909 static void rpc_release_task(struct rpc_task *task)
910 {
911 #ifdef RPC_DEBUG
912         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
913 #endif
914         dprintk("RPC: %5u release task\n", task->tk_pid);
915
916         if (!list_empty(&task->tk_task)) {
917                 struct rpc_clnt *clnt = task->tk_client;
918                 /* Remove from client task list */
919                 spin_lock(&clnt->cl_lock);
920                 list_del(&task->tk_task);
921                 spin_unlock(&clnt->cl_lock);
922         }
923         BUG_ON (RPC_IS_QUEUED(task));
924
925 #ifdef RPC_DEBUG
926         task->tk_magic = 0;
927 #endif
928         /* Wake up anyone who is waiting for task completion */
929         rpc_mark_complete_task(task);
930
931         rpc_put_task(task);
932 }
933
934 /*
935  * Kill all tasks for the given client.
936  * XXX: kill their descendants as well?
937  */
938 void rpc_killall_tasks(struct rpc_clnt *clnt)
939 {
940         struct rpc_task *rovr;
941
942
943         if (list_empty(&clnt->cl_tasks))
944                 return;
945         dprintk("RPC:       killing all tasks for client %p\n", clnt);
946         /*
947          * Spin lock all_tasks to prevent changes...
948          */
949         spin_lock(&clnt->cl_lock);
950         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
951                 if (! RPC_IS_ACTIVATED(rovr))
952                         continue;
953                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
954                         rovr->tk_flags |= RPC_TASK_KILLED;
955                         rpc_exit(rovr, -EIO);
956                         rpc_wake_up_task(rovr);
957                 }
958         }
959         spin_unlock(&clnt->cl_lock);
960 }
961 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
962
963 int rpciod_up(void)
964 {
965         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
966 }
967
968 void rpciod_down(void)
969 {
970         module_put(THIS_MODULE);
971 }
972
973 /*
974  * Start up the rpciod workqueue.
975  */
976 static int rpciod_start(void)
977 {
978         struct workqueue_struct *wq;
979
980         /*
981          * Create the rpciod thread and wait for it to start.
982          */
983         dprintk("RPC:       creating workqueue rpciod\n");
984         wq = create_workqueue("rpciod");
985         rpciod_workqueue = wq;
986         return rpciod_workqueue != NULL;
987 }
988
989 static void rpciod_stop(void)
990 {
991         struct workqueue_struct *wq = NULL;
992
993         if (rpciod_workqueue == NULL)
994                 return;
995         dprintk("RPC:       destroying workqueue rpciod\n");
996
997         wq = rpciod_workqueue;
998         rpciod_workqueue = NULL;
999         destroy_workqueue(wq);
1000 }
1001
1002 void
1003 rpc_destroy_mempool(void)
1004 {
1005         rpciod_stop();
1006         if (rpc_buffer_mempool)
1007                 mempool_destroy(rpc_buffer_mempool);
1008         if (rpc_task_mempool)
1009                 mempool_destroy(rpc_task_mempool);
1010         if (rpc_task_slabp)
1011                 kmem_cache_destroy(rpc_task_slabp);
1012         if (rpc_buffer_slabp)
1013                 kmem_cache_destroy(rpc_buffer_slabp);
1014         rpc_destroy_wait_queue(&delay_queue);
1015 }
1016
1017 int
1018 rpc_init_mempool(void)
1019 {
1020         /*
1021          * The following is not strictly a mempool initialisation,
1022          * but there is no harm in doing it here
1023          */
1024         rpc_init_wait_queue(&delay_queue, "delayq");
1025         if (!rpciod_start())
1026                 goto err_nomem;
1027
1028         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1029                                              sizeof(struct rpc_task),
1030                                              0, SLAB_HWCACHE_ALIGN,
1031                                              NULL);
1032         if (!rpc_task_slabp)
1033                 goto err_nomem;
1034         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1035                                              RPC_BUFFER_MAXSIZE,
1036                                              0, SLAB_HWCACHE_ALIGN,
1037                                              NULL);
1038         if (!rpc_buffer_slabp)
1039                 goto err_nomem;
1040         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1041                                                     rpc_task_slabp);
1042         if (!rpc_task_mempool)
1043                 goto err_nomem;
1044         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1045                                                       rpc_buffer_slabp);
1046         if (!rpc_buffer_mempool)
1047                 goto err_nomem;
1048         return 0;
1049 err_nomem:
1050         rpc_destroy_mempool();
1051         return -ENOMEM;
1052 }