sunrpc: document the rpc_pipefs kernel api
[safe/jmp/linux-2.6] / net / sunrpc / rpc_pipe.c
1 /*
2  * net/sunrpc/rpc_pipe.c
3  *
4  * Userland/kernel interface for rpcauth_gss.
5  * Code shamelessly plagiarized from fs/nfsd/nfsctl.c
6  * and fs/sysfs/inode.c
7  *
8  * Copyright (c) 2002, Trond Myklebust <trond.myklebust@fys.uio.no>
9  *
10  */
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include <linux/pagemap.h>
15 #include <linux/mount.h>
16 #include <linux/namei.h>
17 #include <linux/fsnotify.h>
18 #include <linux/kernel.h>
19
20 #include <asm/ioctls.h>
21 #include <linux/fs.h>
22 #include <linux/poll.h>
23 #include <linux/wait.h>
24 #include <linux/seq_file.h>
25
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/workqueue.h>
28 #include <linux/sunrpc/rpc_pipe_fs.h>
29
30 static struct vfsmount *rpc_mount __read_mostly;
31 static int rpc_mount_count;
32
33 static struct file_system_type rpc_pipe_fs_type;
34
35
36 static struct kmem_cache *rpc_inode_cachep __read_mostly;
37
38 #define RPC_UPCALL_TIMEOUT (30*HZ)
39
40 static void rpc_purge_list(struct rpc_inode *rpci, struct list_head *head,
41                 void (*destroy_msg)(struct rpc_pipe_msg *), int err)
42 {
43         struct rpc_pipe_msg *msg;
44
45         if (list_empty(head))
46                 return;
47         do {
48                 msg = list_entry(head->next, struct rpc_pipe_msg, list);
49                 list_del(&msg->list);
50                 msg->errno = err;
51                 destroy_msg(msg);
52         } while (!list_empty(head));
53         wake_up(&rpci->waitq);
54 }
55
56 static void
57 rpc_timeout_upcall_queue(struct work_struct *work)
58 {
59         LIST_HEAD(free_list);
60         struct rpc_inode *rpci =
61                 container_of(work, struct rpc_inode, queue_timeout.work);
62         struct inode *inode = &rpci->vfs_inode;
63         void (*destroy_msg)(struct rpc_pipe_msg *);
64
65         spin_lock(&inode->i_lock);
66         if (rpci->ops == NULL) {
67                 spin_unlock(&inode->i_lock);
68                 return;
69         }
70         destroy_msg = rpci->ops->destroy_msg;
71         if (rpci->nreaders == 0) {
72                 list_splice_init(&rpci->pipe, &free_list);
73                 rpci->pipelen = 0;
74         }
75         spin_unlock(&inode->i_lock);
76         rpc_purge_list(rpci, &free_list, destroy_msg, -ETIMEDOUT);
77 }
78
79 /**
80  * rpc_queue_upcall
81  * @inode: inode of upcall pipe on which to queue given message
82  * @msg: message to queue
83  *
84  * Call with an @inode created by rpc_mkpipe() to queue an upcall.
85  * A userspace process may then later read the upcall by performing a
86  * read on an open file for this inode.  It is up to the caller to
87  * initialize the fields of @msg (other than @msg->list) appropriately.
88  */
89 int
90 rpc_queue_upcall(struct inode *inode, struct rpc_pipe_msg *msg)
91 {
92         struct rpc_inode *rpci = RPC_I(inode);
93         int res = -EPIPE;
94
95         spin_lock(&inode->i_lock);
96         if (rpci->ops == NULL)
97                 goto out;
98         if (rpci->nreaders) {
99                 list_add_tail(&msg->list, &rpci->pipe);
100                 rpci->pipelen += msg->len;
101                 res = 0;
102         } else if (rpci->flags & RPC_PIPE_WAIT_FOR_OPEN) {
103                 if (list_empty(&rpci->pipe))
104                         queue_delayed_work(rpciod_workqueue,
105                                         &rpci->queue_timeout,
106                                         RPC_UPCALL_TIMEOUT);
107                 list_add_tail(&msg->list, &rpci->pipe);
108                 rpci->pipelen += msg->len;
109                 res = 0;
110         }
111 out:
112         spin_unlock(&inode->i_lock);
113         wake_up(&rpci->waitq);
114         return res;
115 }
116
117 static inline void
118 rpc_inode_setowner(struct inode *inode, void *private)
119 {
120         RPC_I(inode)->private = private;
121 }
122
123 static void
124 rpc_close_pipes(struct inode *inode)
125 {
126         struct rpc_inode *rpci = RPC_I(inode);
127         struct rpc_pipe_ops *ops;
128
129         mutex_lock(&inode->i_mutex);
130         ops = rpci->ops;
131         if (ops != NULL) {
132                 LIST_HEAD(free_list);
133
134                 spin_lock(&inode->i_lock);
135                 rpci->nreaders = 0;
136                 list_splice_init(&rpci->in_upcall, &free_list);
137                 list_splice_init(&rpci->pipe, &free_list);
138                 rpci->pipelen = 0;
139                 rpci->ops = NULL;
140                 spin_unlock(&inode->i_lock);
141                 rpc_purge_list(rpci, &free_list, ops->destroy_msg, -EPIPE);
142                 rpci->nwriters = 0;
143                 if (ops->release_pipe)
144                         ops->release_pipe(inode);
145                 cancel_delayed_work_sync(&rpci->queue_timeout);
146         }
147         rpc_inode_setowner(inode, NULL);
148         mutex_unlock(&inode->i_mutex);
149 }
150
151 static struct inode *
152 rpc_alloc_inode(struct super_block *sb)
153 {
154         struct rpc_inode *rpci;
155         rpci = (struct rpc_inode *)kmem_cache_alloc(rpc_inode_cachep, GFP_KERNEL);
156         if (!rpci)
157                 return NULL;
158         return &rpci->vfs_inode;
159 }
160
161 static void
162 rpc_destroy_inode(struct inode *inode)
163 {
164         kmem_cache_free(rpc_inode_cachep, RPC_I(inode));
165 }
166
167 static int
168 rpc_pipe_open(struct inode *inode, struct file *filp)
169 {
170         struct rpc_inode *rpci = RPC_I(inode);
171         int res = -ENXIO;
172
173         mutex_lock(&inode->i_mutex);
174         if (rpci->ops != NULL) {
175                 if (filp->f_mode & FMODE_READ)
176                         rpci->nreaders ++;
177                 if (filp->f_mode & FMODE_WRITE)
178                         rpci->nwriters ++;
179                 res = 0;
180         }
181         mutex_unlock(&inode->i_mutex);
182         return res;
183 }
184
185 static int
186 rpc_pipe_release(struct inode *inode, struct file *filp)
187 {
188         struct rpc_inode *rpci = RPC_I(inode);
189         struct rpc_pipe_msg *msg;
190
191         mutex_lock(&inode->i_mutex);
192         if (rpci->ops == NULL)
193                 goto out;
194         msg = (struct rpc_pipe_msg *)filp->private_data;
195         if (msg != NULL) {
196                 spin_lock(&inode->i_lock);
197                 msg->errno = -EAGAIN;
198                 list_del(&msg->list);
199                 spin_unlock(&inode->i_lock);
200                 rpci->ops->destroy_msg(msg);
201         }
202         if (filp->f_mode & FMODE_WRITE)
203                 rpci->nwriters --;
204         if (filp->f_mode & FMODE_READ) {
205                 rpci->nreaders --;
206                 if (rpci->nreaders == 0) {
207                         LIST_HEAD(free_list);
208                         spin_lock(&inode->i_lock);
209                         list_splice_init(&rpci->pipe, &free_list);
210                         rpci->pipelen = 0;
211                         spin_unlock(&inode->i_lock);
212                         rpc_purge_list(rpci, &free_list,
213                                         rpci->ops->destroy_msg, -EAGAIN);
214                 }
215         }
216         if (rpci->ops->release_pipe)
217                 rpci->ops->release_pipe(inode);
218 out:
219         mutex_unlock(&inode->i_mutex);
220         return 0;
221 }
222
223 static ssize_t
224 rpc_pipe_read(struct file *filp, char __user *buf, size_t len, loff_t *offset)
225 {
226         struct inode *inode = filp->f_path.dentry->d_inode;
227         struct rpc_inode *rpci = RPC_I(inode);
228         struct rpc_pipe_msg *msg;
229         int res = 0;
230
231         mutex_lock(&inode->i_mutex);
232         if (rpci->ops == NULL) {
233                 res = -EPIPE;
234                 goto out_unlock;
235         }
236         msg = filp->private_data;
237         if (msg == NULL) {
238                 spin_lock(&inode->i_lock);
239                 if (!list_empty(&rpci->pipe)) {
240                         msg = list_entry(rpci->pipe.next,
241                                         struct rpc_pipe_msg,
242                                         list);
243                         list_move(&msg->list, &rpci->in_upcall);
244                         rpci->pipelen -= msg->len;
245                         filp->private_data = msg;
246                         msg->copied = 0;
247                 }
248                 spin_unlock(&inode->i_lock);
249                 if (msg == NULL)
250                         goto out_unlock;
251         }
252         /* NOTE: it is up to the callback to update msg->copied */
253         res = rpci->ops->upcall(filp, msg, buf, len);
254         if (res < 0 || msg->len == msg->copied) {
255                 filp->private_data = NULL;
256                 spin_lock(&inode->i_lock);
257                 list_del(&msg->list);
258                 spin_unlock(&inode->i_lock);
259                 rpci->ops->destroy_msg(msg);
260         }
261 out_unlock:
262         mutex_unlock(&inode->i_mutex);
263         return res;
264 }
265
266 static ssize_t
267 rpc_pipe_write(struct file *filp, const char __user *buf, size_t len, loff_t *offset)
268 {
269         struct inode *inode = filp->f_path.dentry->d_inode;
270         struct rpc_inode *rpci = RPC_I(inode);
271         int res;
272
273         mutex_lock(&inode->i_mutex);
274         res = -EPIPE;
275         if (rpci->ops != NULL)
276                 res = rpci->ops->downcall(filp, buf, len);
277         mutex_unlock(&inode->i_mutex);
278         return res;
279 }
280
281 static unsigned int
282 rpc_pipe_poll(struct file *filp, struct poll_table_struct *wait)
283 {
284         struct rpc_inode *rpci;
285         unsigned int mask = 0;
286
287         rpci = RPC_I(filp->f_path.dentry->d_inode);
288         poll_wait(filp, &rpci->waitq, wait);
289
290         mask = POLLOUT | POLLWRNORM;
291         if (rpci->ops == NULL)
292                 mask |= POLLERR | POLLHUP;
293         if (filp->private_data || !list_empty(&rpci->pipe))
294                 mask |= POLLIN | POLLRDNORM;
295         return mask;
296 }
297
298 static int
299 rpc_pipe_ioctl(struct inode *ino, struct file *filp,
300                 unsigned int cmd, unsigned long arg)
301 {
302         struct rpc_inode *rpci = RPC_I(filp->f_path.dentry->d_inode);
303         int len;
304
305         switch (cmd) {
306         case FIONREAD:
307                 if (rpci->ops == NULL)
308                         return -EPIPE;
309                 len = rpci->pipelen;
310                 if (filp->private_data) {
311                         struct rpc_pipe_msg *msg;
312                         msg = (struct rpc_pipe_msg *)filp->private_data;
313                         len += msg->len - msg->copied;
314                 }
315                 return put_user(len, (int __user *)arg);
316         default:
317                 return -EINVAL;
318         }
319 }
320
321 static const struct file_operations rpc_pipe_fops = {
322         .owner          = THIS_MODULE,
323         .llseek         = no_llseek,
324         .read           = rpc_pipe_read,
325         .write          = rpc_pipe_write,
326         .poll           = rpc_pipe_poll,
327         .ioctl          = rpc_pipe_ioctl,
328         .open           = rpc_pipe_open,
329         .release        = rpc_pipe_release,
330 };
331
332 static int
333 rpc_show_info(struct seq_file *m, void *v)
334 {
335         struct rpc_clnt *clnt = m->private;
336
337         seq_printf(m, "RPC server: %s\n", clnt->cl_server);
338         seq_printf(m, "service: %s (%d) version %d\n", clnt->cl_protname,
339                         clnt->cl_prog, clnt->cl_vers);
340         seq_printf(m, "address: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR));
341         seq_printf(m, "protocol: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PROTO));
342         seq_printf(m, "port: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PORT));
343         return 0;
344 }
345
346 static int
347 rpc_info_open(struct inode *inode, struct file *file)
348 {
349         struct rpc_clnt *clnt;
350         int ret = single_open(file, rpc_show_info, NULL);
351
352         if (!ret) {
353                 struct seq_file *m = file->private_data;
354                 mutex_lock(&inode->i_mutex);
355                 clnt = RPC_I(inode)->private;
356                 if (clnt) {
357                         kref_get(&clnt->cl_kref);
358                         m->private = clnt;
359                 } else {
360                         single_release(inode, file);
361                         ret = -EINVAL;
362                 }
363                 mutex_unlock(&inode->i_mutex);
364         }
365         return ret;
366 }
367
368 static int
369 rpc_info_release(struct inode *inode, struct file *file)
370 {
371         struct seq_file *m = file->private_data;
372         struct rpc_clnt *clnt = (struct rpc_clnt *)m->private;
373
374         if (clnt)
375                 rpc_release_client(clnt);
376         return single_release(inode, file);
377 }
378
379 static const struct file_operations rpc_info_operations = {
380         .owner          = THIS_MODULE,
381         .open           = rpc_info_open,
382         .read           = seq_read,
383         .llseek         = seq_lseek,
384         .release        = rpc_info_release,
385 };
386
387
388 /*
389  * We have a single directory with 1 node in it.
390  */
391 enum {
392         RPCAUTH_Root = 1,
393         RPCAUTH_lockd,
394         RPCAUTH_mount,
395         RPCAUTH_nfs,
396         RPCAUTH_portmap,
397         RPCAUTH_statd,
398         RPCAUTH_RootEOF
399 };
400
401 /*
402  * Description of fs contents.
403  */
404 struct rpc_filelist {
405         char *name;
406         const struct file_operations *i_fop;
407         int mode;
408 };
409
410 static struct rpc_filelist files[] = {
411         [RPCAUTH_lockd] = {
412                 .name = "lockd",
413                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
414         },
415         [RPCAUTH_mount] = {
416                 .name = "mount",
417                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
418         },
419         [RPCAUTH_nfs] = {
420                 .name = "nfs",
421                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
422         },
423         [RPCAUTH_portmap] = {
424                 .name = "portmap",
425                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
426         },
427         [RPCAUTH_statd] = {
428                 .name = "statd",
429                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
430         },
431 };
432
433 enum {
434         RPCAUTH_info = 2,
435         RPCAUTH_EOF
436 };
437
438 static struct rpc_filelist authfiles[] = {
439         [RPCAUTH_info] = {
440                 .name = "info",
441                 .i_fop = &rpc_info_operations,
442                 .mode = S_IFREG | S_IRUSR,
443         },
444 };
445
446 struct vfsmount *rpc_get_mount(void)
447 {
448         int err;
449
450         err = simple_pin_fs(&rpc_pipe_fs_type, &rpc_mount, &rpc_mount_count);
451         if (err != 0)
452                 return ERR_PTR(err);
453         return rpc_mount;
454 }
455
456 void rpc_put_mount(void)
457 {
458         simple_release_fs(&rpc_mount, &rpc_mount_count);
459 }
460
461 static int rpc_delete_dentry(struct dentry *dentry)
462 {
463         return 1;
464 }
465
466 static struct dentry_operations rpc_dentry_operations = {
467         .d_delete = rpc_delete_dentry,
468 };
469
470 static int
471 rpc_lookup_parent(char *path, struct nameidata *nd)
472 {
473         struct vfsmount *mnt;
474
475         if (path[0] == '\0')
476                 return -ENOENT;
477
478         mnt = rpc_get_mount();
479         if (IS_ERR(mnt)) {
480                 printk(KERN_WARNING "%s: %s failed to mount "
481                                "pseudofilesystem \n", __FILE__, __FUNCTION__);
482                 return PTR_ERR(mnt);
483         }
484
485         if (vfs_path_lookup(mnt->mnt_root, mnt, path, LOOKUP_PARENT, nd)) {
486                 printk(KERN_WARNING "%s: %s failed to find path %s\n",
487                                 __FILE__, __FUNCTION__, path);
488                 rpc_put_mount();
489                 return -ENOENT;
490         }
491         return 0;
492 }
493
494 static void
495 rpc_release_path(struct nameidata *nd)
496 {
497         path_release(nd);
498         rpc_put_mount();
499 }
500
501 static struct inode *
502 rpc_get_inode(struct super_block *sb, int mode)
503 {
504         struct inode *inode = new_inode(sb);
505         if (!inode)
506                 return NULL;
507         inode->i_mode = mode;
508         inode->i_uid = inode->i_gid = 0;
509         inode->i_blocks = 0;
510         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
511         switch(mode & S_IFMT) {
512                 case S_IFDIR:
513                         inode->i_fop = &simple_dir_operations;
514                         inode->i_op = &simple_dir_inode_operations;
515                         inc_nlink(inode);
516                 default:
517                         break;
518         }
519         return inode;
520 }
521
522 /*
523  * FIXME: This probably has races.
524  */
525 static void
526 rpc_depopulate(struct dentry *parent, int start, int eof)
527 {
528         struct inode *dir = parent->d_inode;
529         struct list_head *pos, *next;
530         struct dentry *dentry, *dvec[10];
531         int n = 0;
532
533         mutex_lock_nested(&dir->i_mutex, I_MUTEX_CHILD);
534 repeat:
535         spin_lock(&dcache_lock);
536         list_for_each_safe(pos, next, &parent->d_subdirs) {
537                 dentry = list_entry(pos, struct dentry, d_u.d_child);
538                 if (!dentry->d_inode ||
539                                 dentry->d_inode->i_ino < start ||
540                                 dentry->d_inode->i_ino >= eof)
541                         continue;
542                 spin_lock(&dentry->d_lock);
543                 if (!d_unhashed(dentry)) {
544                         dget_locked(dentry);
545                         __d_drop(dentry);
546                         spin_unlock(&dentry->d_lock);
547                         dvec[n++] = dentry;
548                         if (n == ARRAY_SIZE(dvec))
549                                 break;
550                 } else
551                         spin_unlock(&dentry->d_lock);
552         }
553         spin_unlock(&dcache_lock);
554         if (n) {
555                 do {
556                         dentry = dvec[--n];
557                         if (S_ISREG(dentry->d_inode->i_mode))
558                                 simple_unlink(dir, dentry);
559                         else if (S_ISDIR(dentry->d_inode->i_mode))
560                                 simple_rmdir(dir, dentry);
561                         d_delete(dentry);
562                         dput(dentry);
563                 } while (n);
564                 goto repeat;
565         }
566         mutex_unlock(&dir->i_mutex);
567 }
568
569 static int
570 rpc_populate(struct dentry *parent,
571                 struct rpc_filelist *files,
572                 int start, int eof)
573 {
574         struct inode *inode, *dir = parent->d_inode;
575         void *private = RPC_I(dir)->private;
576         struct dentry *dentry;
577         int mode, i;
578
579         mutex_lock(&dir->i_mutex);
580         for (i = start; i < eof; i++) {
581                 dentry = d_alloc_name(parent, files[i].name);
582                 if (!dentry)
583                         goto out_bad;
584                 dentry->d_op = &rpc_dentry_operations;
585                 mode = files[i].mode;
586                 inode = rpc_get_inode(dir->i_sb, mode);
587                 if (!inode) {
588                         dput(dentry);
589                         goto out_bad;
590                 }
591                 inode->i_ino = i;
592                 if (files[i].i_fop)
593                         inode->i_fop = files[i].i_fop;
594                 if (private)
595                         rpc_inode_setowner(inode, private);
596                 if (S_ISDIR(mode))
597                         inc_nlink(dir);
598                 d_add(dentry, inode);
599                 fsnotify_create(dir, dentry);
600         }
601         mutex_unlock(&dir->i_mutex);
602         return 0;
603 out_bad:
604         mutex_unlock(&dir->i_mutex);
605         printk(KERN_WARNING "%s: %s failed to populate directory %s\n",
606                         __FILE__, __FUNCTION__, parent->d_name.name);
607         return -ENOMEM;
608 }
609
610 static int
611 __rpc_mkdir(struct inode *dir, struct dentry *dentry)
612 {
613         struct inode *inode;
614
615         inode = rpc_get_inode(dir->i_sb, S_IFDIR | S_IRUGO | S_IXUGO);
616         if (!inode)
617                 goto out_err;
618         inode->i_ino = iunique(dir->i_sb, 100);
619         d_instantiate(dentry, inode);
620         inc_nlink(dir);
621         fsnotify_mkdir(dir, dentry);
622         return 0;
623 out_err:
624         printk(KERN_WARNING "%s: %s failed to allocate inode for dentry %s\n",
625                         __FILE__, __FUNCTION__, dentry->d_name.name);
626         return -ENOMEM;
627 }
628
629 static int
630 __rpc_rmdir(struct inode *dir, struct dentry *dentry)
631 {
632         int error;
633         error = simple_rmdir(dir, dentry);
634         if (!error)
635                 d_delete(dentry);
636         return error;
637 }
638
639 static struct dentry *
640 rpc_lookup_create(struct dentry *parent, const char *name, int len, int exclusive)
641 {
642         struct inode *dir = parent->d_inode;
643         struct dentry *dentry;
644
645         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
646         dentry = lookup_one_len(name, parent, len);
647         if (IS_ERR(dentry))
648                 goto out_err;
649         if (!dentry->d_inode)
650                 dentry->d_op = &rpc_dentry_operations;
651         else if (exclusive) {
652                 dput(dentry);
653                 dentry = ERR_PTR(-EEXIST);
654                 goto out_err;
655         }
656         return dentry;
657 out_err:
658         mutex_unlock(&dir->i_mutex);
659         return dentry;
660 }
661
662 static struct dentry *
663 rpc_lookup_negative(char *path, struct nameidata *nd)
664 {
665         struct dentry *dentry;
666         int error;
667
668         if ((error = rpc_lookup_parent(path, nd)) != 0)
669                 return ERR_PTR(error);
670         dentry = rpc_lookup_create(nd->dentry, nd->last.name, nd->last.len, 1);
671         if (IS_ERR(dentry))
672                 rpc_release_path(nd);
673         return dentry;
674 }
675
676 /**
677  * rpc_mkdir - Create a new directory in rpc_pipefs
678  * @path: path from the rpc_pipefs root to the new directory
679  * @rpc_clnt: rpc client to associate with this directory
680  *
681  * This creates a directory at the given @path associated with
682  * @rpc_clnt, which will contain a file named "info" with some basic
683  * information about the client, together with any "pipes" that may
684  * later be created using rpc_mkpipe().
685  */
686 struct dentry *
687 rpc_mkdir(char *path, struct rpc_clnt *rpc_client)
688 {
689         struct nameidata nd;
690         struct dentry *dentry;
691         struct inode *dir;
692         int error;
693
694         dentry = rpc_lookup_negative(path, &nd);
695         if (IS_ERR(dentry))
696                 return dentry;
697         dir = nd.dentry->d_inode;
698         if ((error = __rpc_mkdir(dir, dentry)) != 0)
699                 goto err_dput;
700         RPC_I(dentry->d_inode)->private = rpc_client;
701         error = rpc_populate(dentry, authfiles,
702                         RPCAUTH_info, RPCAUTH_EOF);
703         if (error)
704                 goto err_depopulate;
705         dget(dentry);
706 out:
707         mutex_unlock(&dir->i_mutex);
708         rpc_release_path(&nd);
709         return dentry;
710 err_depopulate:
711         rpc_depopulate(dentry, RPCAUTH_info, RPCAUTH_EOF);
712         __rpc_rmdir(dir, dentry);
713 err_dput:
714         dput(dentry);
715         printk(KERN_WARNING "%s: %s() failed to create directory %s (errno = %d)\n",
716                         __FILE__, __FUNCTION__, path, error);
717         dentry = ERR_PTR(error);
718         goto out;
719 }
720
721 /**
722  * rpc_rmdir - Remove a directory created with rpc_mkdir()
723  * @dentry: directory to remove
724  */
725 int
726 rpc_rmdir(struct dentry *dentry)
727 {
728         struct dentry *parent;
729         struct inode *dir;
730         int error;
731
732         parent = dget_parent(dentry);
733         dir = parent->d_inode;
734         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
735         rpc_depopulate(dentry, RPCAUTH_info, RPCAUTH_EOF);
736         error = __rpc_rmdir(dir, dentry);
737         dput(dentry);
738         mutex_unlock(&dir->i_mutex);
739         dput(parent);
740         return error;
741 }
742
743 /**
744  * rpc_mkpipe - make an rpc_pipefs file for kernel<->userspace communication
745  * @parent: dentry of directory to create new "pipe" in
746  * @name: name of pipe
747  * @private: private data to associate with the pipe, for the caller's use
748  * @ops: operations defining the behavior of the pipe: upcall, downcall,
749  *      release_pipe, and destroy_msg.
750  *
751  * Data is made available for userspace to read by calls to
752  * rpc_queue_upcall().  The actual reads will result in calls to
753  * @ops->upcall, which will be called with the file pointer,
754  * message, and userspace buffer to copy to.
755  *
756  * Writes can come at any time, and do not necessarily have to be
757  * responses to upcalls.  They will result in calls to @msg->downcall.
758  *
759  * The @private argument passed here will be available to all these methods
760  * from the file pointer, via RPC_I(file->f_dentry->d_inode)->private.
761  */
762 struct dentry *
763 rpc_mkpipe(struct dentry *parent, const char *name, void *private, struct rpc_pipe_ops *ops, int flags)
764 {
765         struct dentry *dentry;
766         struct inode *dir, *inode;
767         struct rpc_inode *rpci;
768
769         dentry = rpc_lookup_create(parent, name, strlen(name), 0);
770         if (IS_ERR(dentry))
771                 return dentry;
772         dir = parent->d_inode;
773         if (dentry->d_inode) {
774                 rpci = RPC_I(dentry->d_inode);
775                 if (rpci->private != private ||
776                                 rpci->ops != ops ||
777                                 rpci->flags != flags) {
778                         dput (dentry);
779                         dentry = ERR_PTR(-EBUSY);
780                 }
781                 rpci->nkern_readwriters++;
782                 goto out;
783         }
784         inode = rpc_get_inode(dir->i_sb, S_IFIFO | S_IRUSR | S_IWUSR);
785         if (!inode)
786                 goto err_dput;
787         inode->i_ino = iunique(dir->i_sb, 100);
788         inode->i_fop = &rpc_pipe_fops;
789         d_instantiate(dentry, inode);
790         rpci = RPC_I(inode);
791         rpci->private = private;
792         rpci->flags = flags;
793         rpci->ops = ops;
794         rpci->nkern_readwriters = 1;
795         fsnotify_create(dir, dentry);
796         dget(dentry);
797 out:
798         mutex_unlock(&dir->i_mutex);
799         return dentry;
800 err_dput:
801         dput(dentry);
802         dentry = ERR_PTR(-ENOMEM);
803         printk(KERN_WARNING "%s: %s() failed to create pipe %s/%s (errno = %d)\n",
804                         __FILE__, __FUNCTION__, parent->d_name.name, name,
805                         -ENOMEM);
806         goto out;
807 }
808
809 /**
810  * rpc_unlink - remove a pipe
811  * @dentry: dentry for the pipe, as returned from rpc_mkpipe
812  *
813  * After this call, lookups will no longer find the pipe, and any
814  * attempts to read or write using preexisting opens of the pipe will
815  * return -EPIPE.
816  */
817 int
818 rpc_unlink(struct dentry *dentry)
819 {
820         struct dentry *parent;
821         struct inode *dir;
822         int error = 0;
823
824         parent = dget_parent(dentry);
825         dir = parent->d_inode;
826         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
827         if (--RPC_I(dentry->d_inode)->nkern_readwriters == 0) {
828                 rpc_close_pipes(dentry->d_inode);
829                 error = simple_unlink(dir, dentry);
830                 if (!error)
831                         d_delete(dentry);
832         }
833         dput(dentry);
834         mutex_unlock(&dir->i_mutex);
835         dput(parent);
836         return error;
837 }
838
839 /*
840  * populate the filesystem
841  */
842 static struct super_operations s_ops = {
843         .alloc_inode    = rpc_alloc_inode,
844         .destroy_inode  = rpc_destroy_inode,
845         .statfs         = simple_statfs,
846 };
847
848 #define RPCAUTH_GSSMAGIC 0x67596969
849
850 static int
851 rpc_fill_super(struct super_block *sb, void *data, int silent)
852 {
853         struct inode *inode;
854         struct dentry *root;
855
856         sb->s_blocksize = PAGE_CACHE_SIZE;
857         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
858         sb->s_magic = RPCAUTH_GSSMAGIC;
859         sb->s_op = &s_ops;
860         sb->s_time_gran = 1;
861
862         inode = rpc_get_inode(sb, S_IFDIR | 0755);
863         if (!inode)
864                 return -ENOMEM;
865         root = d_alloc_root(inode);
866         if (!root) {
867                 iput(inode);
868                 return -ENOMEM;
869         }
870         if (rpc_populate(root, files, RPCAUTH_Root + 1, RPCAUTH_RootEOF))
871                 goto out;
872         sb->s_root = root;
873         return 0;
874 out:
875         d_genocide(root);
876         dput(root);
877         return -ENOMEM;
878 }
879
880 static int
881 rpc_get_sb(struct file_system_type *fs_type,
882                 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
883 {
884         return get_sb_single(fs_type, flags, data, rpc_fill_super, mnt);
885 }
886
887 static struct file_system_type rpc_pipe_fs_type = {
888         .owner          = THIS_MODULE,
889         .name           = "rpc_pipefs",
890         .get_sb         = rpc_get_sb,
891         .kill_sb        = kill_litter_super,
892 };
893
894 static void
895 init_once(struct kmem_cache * cachep, void *foo)
896 {
897         struct rpc_inode *rpci = (struct rpc_inode *) foo;
898
899         inode_init_once(&rpci->vfs_inode);
900         rpci->private = NULL;
901         rpci->nreaders = 0;
902         rpci->nwriters = 0;
903         INIT_LIST_HEAD(&rpci->in_upcall);
904         INIT_LIST_HEAD(&rpci->in_downcall);
905         INIT_LIST_HEAD(&rpci->pipe);
906         rpci->pipelen = 0;
907         init_waitqueue_head(&rpci->waitq);
908         INIT_DELAYED_WORK(&rpci->queue_timeout,
909                             rpc_timeout_upcall_queue);
910         rpci->ops = NULL;
911 }
912
913 int register_rpc_pipefs(void)
914 {
915         int err;
916
917         rpc_inode_cachep = kmem_cache_create("rpc_inode_cache",
918                                 sizeof(struct rpc_inode),
919                                 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
920                                                 SLAB_MEM_SPREAD),
921                                 init_once);
922         if (!rpc_inode_cachep)
923                 return -ENOMEM;
924         err = register_filesystem(&rpc_pipe_fs_type);
925         if (err) {
926                 kmem_cache_destroy(rpc_inode_cachep);
927                 return err;
928         }
929
930         return 0;
931 }
932
933 void unregister_rpc_pipefs(void)
934 {
935         kmem_cache_destroy(rpc_inode_cachep);
936         unregister_filesystem(&rpc_pipe_fs_type);
937 }