SUNRPC: Allow the cache_detail to specify alternative upcall mechanisms
[safe/jmp/linux-2.6] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35
36 #define  RPCDBG_FACILITY RPCDBG_CACHE
37
38 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
39 static void cache_revisit_request(struct cache_head *item);
40
41 static void cache_init(struct cache_head *h)
42 {
43         time_t now = get_seconds();
44         h->next = NULL;
45         h->flags = 0;
46         kref_init(&h->ref);
47         h->expiry_time = now + CACHE_NEW_EXPIRY;
48         h->last_refresh = now;
49 }
50
51 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
52                                        struct cache_head *key, int hash)
53 {
54         struct cache_head **head,  **hp;
55         struct cache_head *new = NULL;
56
57         head = &detail->hash_table[hash];
58
59         read_lock(&detail->hash_lock);
60
61         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
62                 struct cache_head *tmp = *hp;
63                 if (detail->match(tmp, key)) {
64                         cache_get(tmp);
65                         read_unlock(&detail->hash_lock);
66                         return tmp;
67                 }
68         }
69         read_unlock(&detail->hash_lock);
70         /* Didn't find anything, insert an empty entry */
71
72         new = detail->alloc();
73         if (!new)
74                 return NULL;
75         /* must fully initialise 'new', else
76          * we might get lose if we need to
77          * cache_put it soon.
78          */
79         cache_init(new);
80         detail->init(new, key);
81
82         write_lock(&detail->hash_lock);
83
84         /* check if entry appeared while we slept */
85         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
86                 struct cache_head *tmp = *hp;
87                 if (detail->match(tmp, key)) {
88                         cache_get(tmp);
89                         write_unlock(&detail->hash_lock);
90                         cache_put(new, detail);
91                         return tmp;
92                 }
93         }
94         new->next = *head;
95         *head = new;
96         detail->entries++;
97         cache_get(new);
98         write_unlock(&detail->hash_lock);
99
100         return new;
101 }
102 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
103
104
105 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
106
107 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
108 {
109         head->expiry_time = expiry;
110         head->last_refresh = get_seconds();
111         return !test_and_set_bit(CACHE_VALID, &head->flags);
112 }
113
114 static void cache_fresh_unlocked(struct cache_head *head,
115                         struct cache_detail *detail, int new)
116 {
117         if (new)
118                 cache_revisit_request(head);
119         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
120                 cache_revisit_request(head);
121                 queue_loose(detail, head);
122         }
123 }
124
125 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
126                                        struct cache_head *new, struct cache_head *old, int hash)
127 {
128         /* The 'old' entry is to be replaced by 'new'.
129          * If 'old' is not VALID, we update it directly,
130          * otherwise we need to replace it
131          */
132         struct cache_head **head;
133         struct cache_head *tmp;
134         int is_new;
135
136         if (!test_bit(CACHE_VALID, &old->flags)) {
137                 write_lock(&detail->hash_lock);
138                 if (!test_bit(CACHE_VALID, &old->flags)) {
139                         if (test_bit(CACHE_NEGATIVE, &new->flags))
140                                 set_bit(CACHE_NEGATIVE, &old->flags);
141                         else
142                                 detail->update(old, new);
143                         is_new = cache_fresh_locked(old, new->expiry_time);
144                         write_unlock(&detail->hash_lock);
145                         cache_fresh_unlocked(old, detail, is_new);
146                         return old;
147                 }
148                 write_unlock(&detail->hash_lock);
149         }
150         /* We need to insert a new entry */
151         tmp = detail->alloc();
152         if (!tmp) {
153                 cache_put(old, detail);
154                 return NULL;
155         }
156         cache_init(tmp);
157         detail->init(tmp, old);
158         head = &detail->hash_table[hash];
159
160         write_lock(&detail->hash_lock);
161         if (test_bit(CACHE_NEGATIVE, &new->flags))
162                 set_bit(CACHE_NEGATIVE, &tmp->flags);
163         else
164                 detail->update(tmp, new);
165         tmp->next = *head;
166         *head = tmp;
167         detail->entries++;
168         cache_get(tmp);
169         is_new = cache_fresh_locked(tmp, new->expiry_time);
170         cache_fresh_locked(old, 0);
171         write_unlock(&detail->hash_lock);
172         cache_fresh_unlocked(tmp, detail, is_new);
173         cache_fresh_unlocked(old, detail, 0);
174         cache_put(old, detail);
175         return tmp;
176 }
177 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
178
179 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
180 {
181         if (!cd->cache_upcall)
182                 return -EINVAL;
183         return cd->cache_upcall(cd, h);
184 }
185
186 /*
187  * This is the generic cache management routine for all
188  * the authentication caches.
189  * It checks the currency of a cache item and will (later)
190  * initiate an upcall to fill it if needed.
191  *
192  *
193  * Returns 0 if the cache_head can be used, or cache_puts it and returns
194  * -EAGAIN if upcall is pending,
195  * -ETIMEDOUT if upcall failed and should be retried,
196  * -ENOENT if cache entry was negative
197  */
198 int cache_check(struct cache_detail *detail,
199                     struct cache_head *h, struct cache_req *rqstp)
200 {
201         int rv;
202         long refresh_age, age;
203
204         /* First decide return status as best we can */
205         if (!test_bit(CACHE_VALID, &h->flags) ||
206             h->expiry_time < get_seconds())
207                 rv = -EAGAIN;
208         else if (detail->flush_time > h->last_refresh)
209                 rv = -EAGAIN;
210         else {
211                 /* entry is valid */
212                 if (test_bit(CACHE_NEGATIVE, &h->flags))
213                         rv = -ENOENT;
214                 else rv = 0;
215         }
216
217         /* now see if we want to start an upcall */
218         refresh_age = (h->expiry_time - h->last_refresh);
219         age = get_seconds() - h->last_refresh;
220
221         if (rqstp == NULL) {
222                 if (rv == -EAGAIN)
223                         rv = -ENOENT;
224         } else if (rv == -EAGAIN || age > refresh_age/2) {
225                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
226                                 refresh_age, age);
227                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
228                         switch (cache_make_upcall(detail, h)) {
229                         case -EINVAL:
230                                 clear_bit(CACHE_PENDING, &h->flags);
231                                 if (rv == -EAGAIN) {
232                                         set_bit(CACHE_NEGATIVE, &h->flags);
233                                         cache_fresh_unlocked(h, detail,
234                                              cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
235                                         rv = -ENOENT;
236                                 }
237                                 break;
238
239                         case -EAGAIN:
240                                 clear_bit(CACHE_PENDING, &h->flags);
241                                 cache_revisit_request(h);
242                                 break;
243                         }
244                 }
245         }
246
247         if (rv == -EAGAIN)
248                 if (cache_defer_req(rqstp, h) != 0)
249                         rv = -ETIMEDOUT;
250
251         if (rv)
252                 cache_put(h, detail);
253         return rv;
254 }
255 EXPORT_SYMBOL_GPL(cache_check);
256
257 /*
258  * caches need to be periodically cleaned.
259  * For this we maintain a list of cache_detail and
260  * a current pointer into that list and into the table
261  * for that entry.
262  *
263  * Each time clean_cache is called it finds the next non-empty entry
264  * in the current table and walks the list in that entry
265  * looking for entries that can be removed.
266  *
267  * An entry gets removed if:
268  * - The expiry is before current time
269  * - The last_refresh time is before the flush_time for that cache
270  *
271  * later we might drop old entries with non-NEVER expiry if that table
272  * is getting 'full' for some definition of 'full'
273  *
274  * The question of "how often to scan a table" is an interesting one
275  * and is answered in part by the use of the "nextcheck" field in the
276  * cache_detail.
277  * When a scan of a table begins, the nextcheck field is set to a time
278  * that is well into the future.
279  * While scanning, if an expiry time is found that is earlier than the
280  * current nextcheck time, nextcheck is set to that expiry time.
281  * If the flush_time is ever set to a time earlier than the nextcheck
282  * time, the nextcheck time is then set to that flush_time.
283  *
284  * A table is then only scanned if the current time is at least
285  * the nextcheck time.
286  *
287  */
288
289 static LIST_HEAD(cache_list);
290 static DEFINE_SPINLOCK(cache_list_lock);
291 static struct cache_detail *current_detail;
292 static int current_index;
293
294 static const struct file_operations cache_file_operations;
295 static const struct file_operations content_file_operations;
296 static const struct file_operations cache_flush_operations;
297
298 static void do_cache_clean(struct work_struct *work);
299 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
300
301 static void remove_cache_proc_entries(struct cache_detail *cd)
302 {
303         if (cd->proc_ent == NULL)
304                 return;
305         if (cd->flush_ent)
306                 remove_proc_entry("flush", cd->proc_ent);
307         if (cd->channel_ent)
308                 remove_proc_entry("channel", cd->proc_ent);
309         if (cd->content_ent)
310                 remove_proc_entry("content", cd->proc_ent);
311         cd->proc_ent = NULL;
312         remove_proc_entry(cd->name, proc_net_rpc);
313 }
314
315 #ifdef CONFIG_PROC_FS
316 static int create_cache_proc_entries(struct cache_detail *cd)
317 {
318         struct proc_dir_entry *p;
319
320         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
321         if (cd->proc_ent == NULL)
322                 goto out_nomem;
323         cd->channel_ent = cd->content_ent = NULL;
324
325         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
326                              cd->proc_ent, &cache_flush_operations, cd);
327         cd->flush_ent = p;
328         if (p == NULL)
329                 goto out_nomem;
330
331         if (cd->cache_upcall || cd->cache_parse) {
332                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
333                                      cd->proc_ent, &cache_file_operations, cd);
334                 cd->channel_ent = p;
335                 if (p == NULL)
336                         goto out_nomem;
337         }
338         if (cd->cache_show) {
339                 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
340                                 cd->proc_ent, &content_file_operations, cd);
341                 cd->content_ent = p;
342                 if (p == NULL)
343                         goto out_nomem;
344         }
345         return 0;
346 out_nomem:
347         remove_cache_proc_entries(cd);
348         return -ENOMEM;
349 }
350 #else /* CONFIG_PROC_FS */
351 static int create_cache_proc_entries(struct cache_detail *cd)
352 {
353         return 0;
354 }
355 #endif
356
357 static void sunrpc_init_cache_detail(struct cache_detail *cd)
358 {
359         rwlock_init(&cd->hash_lock);
360         INIT_LIST_HEAD(&cd->queue);
361         spin_lock(&cache_list_lock);
362         cd->nextcheck = 0;
363         cd->entries = 0;
364         atomic_set(&cd->readers, 0);
365         cd->last_close = 0;
366         cd->last_warn = -1;
367         list_add(&cd->others, &cache_list);
368         spin_unlock(&cache_list_lock);
369
370         /* start the cleaning process */
371         schedule_delayed_work(&cache_cleaner, 0);
372 }
373
374 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
375 {
376         cache_purge(cd);
377         spin_lock(&cache_list_lock);
378         write_lock(&cd->hash_lock);
379         if (cd->entries || atomic_read(&cd->inuse)) {
380                 write_unlock(&cd->hash_lock);
381                 spin_unlock(&cache_list_lock);
382                 goto out;
383         }
384         if (current_detail == cd)
385                 current_detail = NULL;
386         list_del_init(&cd->others);
387         write_unlock(&cd->hash_lock);
388         spin_unlock(&cache_list_lock);
389         if (list_empty(&cache_list)) {
390                 /* module must be being unloaded so its safe to kill the worker */
391                 cancel_delayed_work_sync(&cache_cleaner);
392         }
393         return;
394 out:
395         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
396 }
397
398 int cache_register(struct cache_detail *cd)
399 {
400         int ret;
401
402         sunrpc_init_cache_detail(cd);
403         ret = create_cache_proc_entries(cd);
404         if (ret)
405                 sunrpc_destroy_cache_detail(cd);
406         return ret;
407 }
408 EXPORT_SYMBOL_GPL(cache_register);
409
410 void cache_unregister(struct cache_detail *cd)
411 {
412         remove_cache_proc_entries(cd);
413         sunrpc_destroy_cache_detail(cd);
414 }
415 EXPORT_SYMBOL_GPL(cache_unregister);
416
417 /* clean cache tries to find something to clean
418  * and cleans it.
419  * It returns 1 if it cleaned something,
420  *            0 if it didn't find anything this time
421  *           -1 if it fell off the end of the list.
422  */
423 static int cache_clean(void)
424 {
425         int rv = 0;
426         struct list_head *next;
427
428         spin_lock(&cache_list_lock);
429
430         /* find a suitable table if we don't already have one */
431         while (current_detail == NULL ||
432             current_index >= current_detail->hash_size) {
433                 if (current_detail)
434                         next = current_detail->others.next;
435                 else
436                         next = cache_list.next;
437                 if (next == &cache_list) {
438                         current_detail = NULL;
439                         spin_unlock(&cache_list_lock);
440                         return -1;
441                 }
442                 current_detail = list_entry(next, struct cache_detail, others);
443                 if (current_detail->nextcheck > get_seconds())
444                         current_index = current_detail->hash_size;
445                 else {
446                         current_index = 0;
447                         current_detail->nextcheck = get_seconds()+30*60;
448                 }
449         }
450
451         /* find a non-empty bucket in the table */
452         while (current_detail &&
453                current_index < current_detail->hash_size &&
454                current_detail->hash_table[current_index] == NULL)
455                 current_index++;
456
457         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
458
459         if (current_detail && current_index < current_detail->hash_size) {
460                 struct cache_head *ch, **cp;
461                 struct cache_detail *d;
462
463                 write_lock(&current_detail->hash_lock);
464
465                 /* Ok, now to clean this strand */
466
467                 cp = & current_detail->hash_table[current_index];
468                 ch = *cp;
469                 for (; ch; cp= & ch->next, ch= *cp) {
470                         if (current_detail->nextcheck > ch->expiry_time)
471                                 current_detail->nextcheck = ch->expiry_time+1;
472                         if (ch->expiry_time >= get_seconds()
473                             && ch->last_refresh >= current_detail->flush_time
474                                 )
475                                 continue;
476                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
477                                 queue_loose(current_detail, ch);
478
479                         if (atomic_read(&ch->ref.refcount) == 1)
480                                 break;
481                 }
482                 if (ch) {
483                         *cp = ch->next;
484                         ch->next = NULL;
485                         current_detail->entries--;
486                         rv = 1;
487                 }
488                 write_unlock(&current_detail->hash_lock);
489                 d = current_detail;
490                 if (!ch)
491                         current_index ++;
492                 spin_unlock(&cache_list_lock);
493                 if (ch)
494                         cache_put(ch, d);
495         } else
496                 spin_unlock(&cache_list_lock);
497
498         return rv;
499 }
500
501 /*
502  * We want to regularly clean the cache, so we need to schedule some work ...
503  */
504 static void do_cache_clean(struct work_struct *work)
505 {
506         int delay = 5;
507         if (cache_clean() == -1)
508                 delay = round_jiffies_relative(30*HZ);
509
510         if (list_empty(&cache_list))
511                 delay = 0;
512
513         if (delay)
514                 schedule_delayed_work(&cache_cleaner, delay);
515 }
516
517
518 /*
519  * Clean all caches promptly.  This just calls cache_clean
520  * repeatedly until we are sure that every cache has had a chance to
521  * be fully cleaned
522  */
523 void cache_flush(void)
524 {
525         while (cache_clean() != -1)
526                 cond_resched();
527         while (cache_clean() != -1)
528                 cond_resched();
529 }
530 EXPORT_SYMBOL_GPL(cache_flush);
531
532 void cache_purge(struct cache_detail *detail)
533 {
534         detail->flush_time = LONG_MAX;
535         detail->nextcheck = get_seconds();
536         cache_flush();
537         detail->flush_time = 1;
538 }
539 EXPORT_SYMBOL_GPL(cache_purge);
540
541
542 /*
543  * Deferral and Revisiting of Requests.
544  *
545  * If a cache lookup finds a pending entry, we
546  * need to defer the request and revisit it later.
547  * All deferred requests are stored in a hash table,
548  * indexed by "struct cache_head *".
549  * As it may be wasteful to store a whole request
550  * structure, we allow the request to provide a
551  * deferred form, which must contain a
552  * 'struct cache_deferred_req'
553  * This cache_deferred_req contains a method to allow
554  * it to be revisited when cache info is available
555  */
556
557 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
558 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
559
560 #define DFR_MAX 300     /* ??? */
561
562 static DEFINE_SPINLOCK(cache_defer_lock);
563 static LIST_HEAD(cache_defer_list);
564 static struct list_head cache_defer_hash[DFR_HASHSIZE];
565 static int cache_defer_cnt;
566
567 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
568 {
569         struct cache_deferred_req *dreq;
570         int hash = DFR_HASH(item);
571
572         if (cache_defer_cnt >= DFR_MAX) {
573                 /* too much in the cache, randomly drop this one,
574                  * or continue and drop the oldest below
575                  */
576                 if (net_random()&1)
577                         return -ETIMEDOUT;
578         }
579         dreq = req->defer(req);
580         if (dreq == NULL)
581                 return -ETIMEDOUT;
582
583         dreq->item = item;
584
585         spin_lock(&cache_defer_lock);
586
587         list_add(&dreq->recent, &cache_defer_list);
588
589         if (cache_defer_hash[hash].next == NULL)
590                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
591         list_add(&dreq->hash, &cache_defer_hash[hash]);
592
593         /* it is in, now maybe clean up */
594         dreq = NULL;
595         if (++cache_defer_cnt > DFR_MAX) {
596                 dreq = list_entry(cache_defer_list.prev,
597                                   struct cache_deferred_req, recent);
598                 list_del(&dreq->recent);
599                 list_del(&dreq->hash);
600                 cache_defer_cnt--;
601         }
602         spin_unlock(&cache_defer_lock);
603
604         if (dreq) {
605                 /* there was one too many */
606                 dreq->revisit(dreq, 1);
607         }
608         if (!test_bit(CACHE_PENDING, &item->flags)) {
609                 /* must have just been validated... */
610                 cache_revisit_request(item);
611         }
612         return 0;
613 }
614
615 static void cache_revisit_request(struct cache_head *item)
616 {
617         struct cache_deferred_req *dreq;
618         struct list_head pending;
619
620         struct list_head *lp;
621         int hash = DFR_HASH(item);
622
623         INIT_LIST_HEAD(&pending);
624         spin_lock(&cache_defer_lock);
625
626         lp = cache_defer_hash[hash].next;
627         if (lp) {
628                 while (lp != &cache_defer_hash[hash]) {
629                         dreq = list_entry(lp, struct cache_deferred_req, hash);
630                         lp = lp->next;
631                         if (dreq->item == item) {
632                                 list_del(&dreq->hash);
633                                 list_move(&dreq->recent, &pending);
634                                 cache_defer_cnt--;
635                         }
636                 }
637         }
638         spin_unlock(&cache_defer_lock);
639
640         while (!list_empty(&pending)) {
641                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
642                 list_del_init(&dreq->recent);
643                 dreq->revisit(dreq, 0);
644         }
645 }
646
647 void cache_clean_deferred(void *owner)
648 {
649         struct cache_deferred_req *dreq, *tmp;
650         struct list_head pending;
651
652
653         INIT_LIST_HEAD(&pending);
654         spin_lock(&cache_defer_lock);
655
656         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
657                 if (dreq->owner == owner) {
658                         list_del(&dreq->hash);
659                         list_move(&dreq->recent, &pending);
660                         cache_defer_cnt--;
661                 }
662         }
663         spin_unlock(&cache_defer_lock);
664
665         while (!list_empty(&pending)) {
666                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
667                 list_del_init(&dreq->recent);
668                 dreq->revisit(dreq, 1);
669         }
670 }
671
672 /*
673  * communicate with user-space
674  *
675  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
676  * On read, you get a full request, or block.
677  * On write, an update request is processed.
678  * Poll works if anything to read, and always allows write.
679  *
680  * Implemented by linked list of requests.  Each open file has
681  * a ->private that also exists in this list.  New requests are added
682  * to the end and may wakeup and preceding readers.
683  * New readers are added to the head.  If, on read, an item is found with
684  * CACHE_UPCALLING clear, we free it from the list.
685  *
686  */
687
688 static DEFINE_SPINLOCK(queue_lock);
689 static DEFINE_MUTEX(queue_io_mutex);
690
691 struct cache_queue {
692         struct list_head        list;
693         int                     reader; /* if 0, then request */
694 };
695 struct cache_request {
696         struct cache_queue      q;
697         struct cache_head       *item;
698         char                    * buf;
699         int                     len;
700         int                     readers;
701 };
702 struct cache_reader {
703         struct cache_queue      q;
704         int                     offset; /* if non-0, we have a refcnt on next request */
705 };
706
707 static ssize_t
708 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
709 {
710         struct cache_reader *rp = filp->private_data;
711         struct cache_request *rq;
712         struct inode *inode = filp->f_path.dentry->d_inode;
713         struct cache_detail *cd = PDE(inode)->data;
714         int err;
715
716         if (count == 0)
717                 return 0;
718
719         mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
720                               * readers on this file */
721  again:
722         spin_lock(&queue_lock);
723         /* need to find next request */
724         while (rp->q.list.next != &cd->queue &&
725                list_entry(rp->q.list.next, struct cache_queue, list)
726                ->reader) {
727                 struct list_head *next = rp->q.list.next;
728                 list_move(&rp->q.list, next);
729         }
730         if (rp->q.list.next == &cd->queue) {
731                 spin_unlock(&queue_lock);
732                 mutex_unlock(&inode->i_mutex);
733                 BUG_ON(rp->offset);
734                 return 0;
735         }
736         rq = container_of(rp->q.list.next, struct cache_request, q.list);
737         BUG_ON(rq->q.reader);
738         if (rp->offset == 0)
739                 rq->readers++;
740         spin_unlock(&queue_lock);
741
742         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
743                 err = -EAGAIN;
744                 spin_lock(&queue_lock);
745                 list_move(&rp->q.list, &rq->q.list);
746                 spin_unlock(&queue_lock);
747         } else {
748                 if (rp->offset + count > rq->len)
749                         count = rq->len - rp->offset;
750                 err = -EFAULT;
751                 if (copy_to_user(buf, rq->buf + rp->offset, count))
752                         goto out;
753                 rp->offset += count;
754                 if (rp->offset >= rq->len) {
755                         rp->offset = 0;
756                         spin_lock(&queue_lock);
757                         list_move(&rp->q.list, &rq->q.list);
758                         spin_unlock(&queue_lock);
759                 }
760                 err = 0;
761         }
762  out:
763         if (rp->offset == 0) {
764                 /* need to release rq */
765                 spin_lock(&queue_lock);
766                 rq->readers--;
767                 if (rq->readers == 0 &&
768                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
769                         list_del(&rq->q.list);
770                         spin_unlock(&queue_lock);
771                         cache_put(rq->item, cd);
772                         kfree(rq->buf);
773                         kfree(rq);
774                 } else
775                         spin_unlock(&queue_lock);
776         }
777         if (err == -EAGAIN)
778                 goto again;
779         mutex_unlock(&inode->i_mutex);
780         return err ? err :  count;
781 }
782
783 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
784                                  size_t count, struct cache_detail *cd)
785 {
786         ssize_t ret;
787
788         if (copy_from_user(kaddr, buf, count))
789                 return -EFAULT;
790         kaddr[count] = '\0';
791         ret = cd->cache_parse(cd, kaddr, count);
792         if (!ret)
793                 ret = count;
794         return ret;
795 }
796
797 static ssize_t cache_slow_downcall(const char __user *buf,
798                                    size_t count, struct cache_detail *cd)
799 {
800         static char write_buf[8192]; /* protected by queue_io_mutex */
801         ssize_t ret = -EINVAL;
802
803         if (count >= sizeof(write_buf))
804                 goto out;
805         mutex_lock(&queue_io_mutex);
806         ret = cache_do_downcall(write_buf, buf, count, cd);
807         mutex_unlock(&queue_io_mutex);
808 out:
809         return ret;
810 }
811
812 static ssize_t cache_downcall(struct address_space *mapping,
813                               const char __user *buf,
814                               size_t count, struct cache_detail *cd)
815 {
816         struct page *page;
817         char *kaddr;
818         ssize_t ret = -ENOMEM;
819
820         if (count >= PAGE_CACHE_SIZE)
821                 goto out_slow;
822
823         page = find_or_create_page(mapping, 0, GFP_KERNEL);
824         if (!page)
825                 goto out_slow;
826
827         kaddr = kmap(page);
828         ret = cache_do_downcall(kaddr, buf, count, cd);
829         kunmap(page);
830         unlock_page(page);
831         page_cache_release(page);
832         return ret;
833 out_slow:
834         return cache_slow_downcall(buf, count, cd);
835 }
836
837 static ssize_t
838 cache_write(struct file *filp, const char __user *buf, size_t count,
839             loff_t *ppos)
840 {
841         struct address_space *mapping = filp->f_mapping;
842         struct inode *inode = filp->f_path.dentry->d_inode;
843         struct cache_detail *cd = PDE(inode)->data;
844         ssize_t ret = -EINVAL;
845
846         if (!cd->cache_parse)
847                 goto out;
848
849         mutex_lock(&inode->i_mutex);
850         ret = cache_downcall(mapping, buf, count, cd);
851         mutex_unlock(&inode->i_mutex);
852 out:
853         return ret;
854 }
855
856 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
857
858 static unsigned int
859 cache_poll(struct file *filp, poll_table *wait)
860 {
861         unsigned int mask;
862         struct cache_reader *rp = filp->private_data;
863         struct cache_queue *cq;
864         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
865
866         poll_wait(filp, &queue_wait, wait);
867
868         /* alway allow write */
869         mask = POLL_OUT | POLLWRNORM;
870
871         if (!rp)
872                 return mask;
873
874         spin_lock(&queue_lock);
875
876         for (cq= &rp->q; &cq->list != &cd->queue;
877              cq = list_entry(cq->list.next, struct cache_queue, list))
878                 if (!cq->reader) {
879                         mask |= POLLIN | POLLRDNORM;
880                         break;
881                 }
882         spin_unlock(&queue_lock);
883         return mask;
884 }
885
886 static int
887 cache_ioctl(struct inode *ino, struct file *filp,
888             unsigned int cmd, unsigned long arg)
889 {
890         int len = 0;
891         struct cache_reader *rp = filp->private_data;
892         struct cache_queue *cq;
893         struct cache_detail *cd = PDE(ino)->data;
894
895         if (cmd != FIONREAD || !rp)
896                 return -EINVAL;
897
898         spin_lock(&queue_lock);
899
900         /* only find the length remaining in current request,
901          * or the length of the next request
902          */
903         for (cq= &rp->q; &cq->list != &cd->queue;
904              cq = list_entry(cq->list.next, struct cache_queue, list))
905                 if (!cq->reader) {
906                         struct cache_request *cr =
907                                 container_of(cq, struct cache_request, q);
908                         len = cr->len - rp->offset;
909                         break;
910                 }
911         spin_unlock(&queue_lock);
912
913         return put_user(len, (int __user *)arg);
914 }
915
916 static int
917 cache_open(struct inode *inode, struct file *filp)
918 {
919         struct cache_reader *rp = NULL;
920
921         nonseekable_open(inode, filp);
922         if (filp->f_mode & FMODE_READ) {
923                 struct cache_detail *cd = PDE(inode)->data;
924
925                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
926                 if (!rp)
927                         return -ENOMEM;
928                 rp->offset = 0;
929                 rp->q.reader = 1;
930                 atomic_inc(&cd->readers);
931                 spin_lock(&queue_lock);
932                 list_add(&rp->q.list, &cd->queue);
933                 spin_unlock(&queue_lock);
934         }
935         filp->private_data = rp;
936         return 0;
937 }
938
939 static int
940 cache_release(struct inode *inode, struct file *filp)
941 {
942         struct cache_reader *rp = filp->private_data;
943         struct cache_detail *cd = PDE(inode)->data;
944
945         if (rp) {
946                 spin_lock(&queue_lock);
947                 if (rp->offset) {
948                         struct cache_queue *cq;
949                         for (cq= &rp->q; &cq->list != &cd->queue;
950                              cq = list_entry(cq->list.next, struct cache_queue, list))
951                                 if (!cq->reader) {
952                                         container_of(cq, struct cache_request, q)
953                                                 ->readers--;
954                                         break;
955                                 }
956                         rp->offset = 0;
957                 }
958                 list_del(&rp->q.list);
959                 spin_unlock(&queue_lock);
960
961                 filp->private_data = NULL;
962                 kfree(rp);
963
964                 cd->last_close = get_seconds();
965                 atomic_dec(&cd->readers);
966         }
967         return 0;
968 }
969
970
971
972 static const struct file_operations cache_file_operations = {
973         .owner          = THIS_MODULE,
974         .llseek         = no_llseek,
975         .read           = cache_read,
976         .write          = cache_write,
977         .poll           = cache_poll,
978         .ioctl          = cache_ioctl, /* for FIONREAD */
979         .open           = cache_open,
980         .release        = cache_release,
981 };
982
983
984 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
985 {
986         struct cache_queue *cq;
987         spin_lock(&queue_lock);
988         list_for_each_entry(cq, &detail->queue, list)
989                 if (!cq->reader) {
990                         struct cache_request *cr = container_of(cq, struct cache_request, q);
991                         if (cr->item != ch)
992                                 continue;
993                         if (cr->readers != 0)
994                                 continue;
995                         list_del(&cr->q.list);
996                         spin_unlock(&queue_lock);
997                         cache_put(cr->item, detail);
998                         kfree(cr->buf);
999                         kfree(cr);
1000                         return;
1001                 }
1002         spin_unlock(&queue_lock);
1003 }
1004
1005 /*
1006  * Support routines for text-based upcalls.
1007  * Fields are separated by spaces.
1008  * Fields are either mangled to quote space tab newline slosh with slosh
1009  * or a hexified with a leading \x
1010  * Record is terminated with newline.
1011  *
1012  */
1013
1014 void qword_add(char **bpp, int *lp, char *str)
1015 {
1016         char *bp = *bpp;
1017         int len = *lp;
1018         char c;
1019
1020         if (len < 0) return;
1021
1022         while ((c=*str++) && len)
1023                 switch(c) {
1024                 case ' ':
1025                 case '\t':
1026                 case '\n':
1027                 case '\\':
1028                         if (len >= 4) {
1029                                 *bp++ = '\\';
1030                                 *bp++ = '0' + ((c & 0300)>>6);
1031                                 *bp++ = '0' + ((c & 0070)>>3);
1032                                 *bp++ = '0' + ((c & 0007)>>0);
1033                         }
1034                         len -= 4;
1035                         break;
1036                 default:
1037                         *bp++ = c;
1038                         len--;
1039                 }
1040         if (c || len <1) len = -1;
1041         else {
1042                 *bp++ = ' ';
1043                 len--;
1044         }
1045         *bpp = bp;
1046         *lp = len;
1047 }
1048 EXPORT_SYMBOL_GPL(qword_add);
1049
1050 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1051 {
1052         char *bp = *bpp;
1053         int len = *lp;
1054
1055         if (len < 0) return;
1056
1057         if (len > 2) {
1058                 *bp++ = '\\';
1059                 *bp++ = 'x';
1060                 len -= 2;
1061                 while (blen && len >= 2) {
1062                         unsigned char c = *buf++;
1063                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1064                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1065                         len -= 2;
1066                         blen--;
1067                 }
1068         }
1069         if (blen || len<1) len = -1;
1070         else {
1071                 *bp++ = ' ';
1072                 len--;
1073         }
1074         *bpp = bp;
1075         *lp = len;
1076 }
1077 EXPORT_SYMBOL_GPL(qword_addhex);
1078
1079 static void warn_no_listener(struct cache_detail *detail)
1080 {
1081         if (detail->last_warn != detail->last_close) {
1082                 detail->last_warn = detail->last_close;
1083                 if (detail->warn_no_listener)
1084                         detail->warn_no_listener(detail, detail->last_close != 0);
1085         }
1086 }
1087
1088 /*
1089  * register an upcall request to user-space and queue it up for read() by the
1090  * upcall daemon.
1091  *
1092  * Each request is at most one page long.
1093  */
1094 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1095                 void (*cache_request)(struct cache_detail *,
1096                                       struct cache_head *,
1097                                       char **,
1098                                       int *))
1099 {
1100
1101         char *buf;
1102         struct cache_request *crq;
1103         char *bp;
1104         int len;
1105
1106         if (atomic_read(&detail->readers) == 0 &&
1107             detail->last_close < get_seconds() - 30) {
1108                         warn_no_listener(detail);
1109                         return -EINVAL;
1110         }
1111
1112         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1113         if (!buf)
1114                 return -EAGAIN;
1115
1116         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1117         if (!crq) {
1118                 kfree(buf);
1119                 return -EAGAIN;
1120         }
1121
1122         bp = buf; len = PAGE_SIZE;
1123
1124         cache_request(detail, h, &bp, &len);
1125
1126         if (len < 0) {
1127                 kfree(buf);
1128                 kfree(crq);
1129                 return -EAGAIN;
1130         }
1131         crq->q.reader = 0;
1132         crq->item = cache_get(h);
1133         crq->buf = buf;
1134         crq->len = PAGE_SIZE - len;
1135         crq->readers = 0;
1136         spin_lock(&queue_lock);
1137         list_add_tail(&crq->q.list, &detail->queue);
1138         spin_unlock(&queue_lock);
1139         wake_up(&queue_wait);
1140         return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1143
1144 /*
1145  * parse a message from user-space and pass it
1146  * to an appropriate cache
1147  * Messages are, like requests, separated into fields by
1148  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1149  *
1150  * Message is
1151  *   reply cachename expiry key ... content....
1152  *
1153  * key and content are both parsed by cache
1154  */
1155
1156 #define isodigit(c) (isdigit(c) && c <= '7')
1157 int qword_get(char **bpp, char *dest, int bufsize)
1158 {
1159         /* return bytes copied, or -1 on error */
1160         char *bp = *bpp;
1161         int len = 0;
1162
1163         while (*bp == ' ') bp++;
1164
1165         if (bp[0] == '\\' && bp[1] == 'x') {
1166                 /* HEX STRING */
1167                 bp += 2;
1168                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1169                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1170                         bp++;
1171                         byte <<= 4;
1172                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1173                         *dest++ = byte;
1174                         bp++;
1175                         len++;
1176                 }
1177         } else {
1178                 /* text with \nnn octal quoting */
1179                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1180                         if (*bp == '\\' &&
1181                             isodigit(bp[1]) && (bp[1] <= '3') &&
1182                             isodigit(bp[2]) &&
1183                             isodigit(bp[3])) {
1184                                 int byte = (*++bp -'0');
1185                                 bp++;
1186                                 byte = (byte << 3) | (*bp++ - '0');
1187                                 byte = (byte << 3) | (*bp++ - '0');
1188                                 *dest++ = byte;
1189                                 len++;
1190                         } else {
1191                                 *dest++ = *bp++;
1192                                 len++;
1193                         }
1194                 }
1195         }
1196
1197         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1198                 return -1;
1199         while (*bp == ' ') bp++;
1200         *bpp = bp;
1201         *dest = '\0';
1202         return len;
1203 }
1204 EXPORT_SYMBOL_GPL(qword_get);
1205
1206
1207 /*
1208  * support /proc/sunrpc/cache/$CACHENAME/content
1209  * as a seqfile.
1210  * We call ->cache_show passing NULL for the item to
1211  * get a header, then pass each real item in the cache
1212  */
1213
1214 struct handle {
1215         struct cache_detail *cd;
1216 };
1217
1218 static void *c_start(struct seq_file *m, loff_t *pos)
1219         __acquires(cd->hash_lock)
1220 {
1221         loff_t n = *pos;
1222         unsigned hash, entry;
1223         struct cache_head *ch;
1224         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1225
1226
1227         read_lock(&cd->hash_lock);
1228         if (!n--)
1229                 return SEQ_START_TOKEN;
1230         hash = n >> 32;
1231         entry = n & ((1LL<<32) - 1);
1232
1233         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1234                 if (!entry--)
1235                         return ch;
1236         n &= ~((1LL<<32) - 1);
1237         do {
1238                 hash++;
1239                 n += 1LL<<32;
1240         } while(hash < cd->hash_size &&
1241                 cd->hash_table[hash]==NULL);
1242         if (hash >= cd->hash_size)
1243                 return NULL;
1244         *pos = n+1;
1245         return cd->hash_table[hash];
1246 }
1247
1248 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1249 {
1250         struct cache_head *ch = p;
1251         int hash = (*pos >> 32);
1252         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1253
1254         if (p == SEQ_START_TOKEN)
1255                 hash = 0;
1256         else if (ch->next == NULL) {
1257                 hash++;
1258                 *pos += 1LL<<32;
1259         } else {
1260                 ++*pos;
1261                 return ch->next;
1262         }
1263         *pos &= ~((1LL<<32) - 1);
1264         while (hash < cd->hash_size &&
1265                cd->hash_table[hash] == NULL) {
1266                 hash++;
1267                 *pos += 1LL<<32;
1268         }
1269         if (hash >= cd->hash_size)
1270                 return NULL;
1271         ++*pos;
1272         return cd->hash_table[hash];
1273 }
1274
1275 static void c_stop(struct seq_file *m, void *p)
1276         __releases(cd->hash_lock)
1277 {
1278         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1279         read_unlock(&cd->hash_lock);
1280 }
1281
1282 static int c_show(struct seq_file *m, void *p)
1283 {
1284         struct cache_head *cp = p;
1285         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1286
1287         if (p == SEQ_START_TOKEN)
1288                 return cd->cache_show(m, cd, NULL);
1289
1290         ifdebug(CACHE)
1291                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1292                            cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1293         cache_get(cp);
1294         if (cache_check(cd, cp, NULL))
1295                 /* cache_check does a cache_put on failure */
1296                 seq_printf(m, "# ");
1297         else
1298                 cache_put(cp, cd);
1299
1300         return cd->cache_show(m, cd, cp);
1301 }
1302
1303 static const struct seq_operations cache_content_op = {
1304         .start  = c_start,
1305         .next   = c_next,
1306         .stop   = c_stop,
1307         .show   = c_show,
1308 };
1309
1310 static int content_open(struct inode *inode, struct file *file)
1311 {
1312         struct handle *han;
1313         struct cache_detail *cd = PDE(inode)->data;
1314
1315         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1316         if (han == NULL)
1317                 return -ENOMEM;
1318
1319         han->cd = cd;
1320         return 0;
1321 }
1322
1323 static const struct file_operations content_file_operations = {
1324         .open           = content_open,
1325         .read           = seq_read,
1326         .llseek         = seq_lseek,
1327         .release        = seq_release_private,
1328 };
1329
1330 static ssize_t read_flush(struct file *file, char __user *buf,
1331                             size_t count, loff_t *ppos)
1332 {
1333         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1334         char tbuf[20];
1335         unsigned long p = *ppos;
1336         size_t len;
1337
1338         sprintf(tbuf, "%lu\n", cd->flush_time);
1339         len = strlen(tbuf);
1340         if (p >= len)
1341                 return 0;
1342         len -= p;
1343         if (len > count)
1344                 len = count;
1345         if (copy_to_user(buf, (void*)(tbuf+p), len))
1346                 return -EFAULT;
1347         *ppos += len;
1348         return len;
1349 }
1350
1351 static ssize_t write_flush(struct file * file, const char __user * buf,
1352                              size_t count, loff_t *ppos)
1353 {
1354         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1355         char tbuf[20];
1356         char *ep;
1357         long flushtime;
1358         if (*ppos || count > sizeof(tbuf)-1)
1359                 return -EINVAL;
1360         if (copy_from_user(tbuf, buf, count))
1361                 return -EFAULT;
1362         tbuf[count] = 0;
1363         flushtime = simple_strtoul(tbuf, &ep, 0);
1364         if (*ep && *ep != '\n')
1365                 return -EINVAL;
1366
1367         cd->flush_time = flushtime;
1368         cd->nextcheck = get_seconds();
1369         cache_flush();
1370
1371         *ppos += count;
1372         return count;
1373 }
1374
1375 static const struct file_operations cache_flush_operations = {
1376         .open           = nonseekable_open,
1377         .read           = read_flush,
1378         .write          = write_flush,
1379 };