RDS: Fix congestion issues for loopback
[safe/jmp/linux-2.6] / net / rds / ib_send.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37
38 #include "rds.h"
39 #include "rdma.h"
40 #include "ib.h"
41
42 static void rds_ib_send_rdma_complete(struct rds_message *rm,
43                                       int wc_status)
44 {
45         int notify_status;
46
47         switch (wc_status) {
48         case IB_WC_WR_FLUSH_ERR:
49                 return;
50
51         case IB_WC_SUCCESS:
52                 notify_status = RDS_RDMA_SUCCESS;
53                 break;
54
55         case IB_WC_REM_ACCESS_ERR:
56                 notify_status = RDS_RDMA_REMOTE_ERROR;
57                 break;
58
59         default:
60                 notify_status = RDS_RDMA_OTHER_ERROR;
61                 break;
62         }
63         rds_rdma_send_complete(rm, notify_status);
64 }
65
66 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
67                                    struct rds_rdma_op *op)
68 {
69         if (op->r_mapped) {
70                 ib_dma_unmap_sg(ic->i_cm_id->device,
71                         op->r_sg, op->r_nents,
72                         op->r_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
73                 op->r_mapped = 0;
74         }
75 }
76
77 static void rds_ib_send_unmap_rm(struct rds_ib_connection *ic,
78                           struct rds_ib_send_work *send,
79                           int wc_status)
80 {
81         struct rds_message *rm = send->s_rm;
82
83         rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
84
85         ib_dma_unmap_sg(ic->i_cm_id->device,
86                      rm->m_sg, rm->m_nents,
87                      DMA_TO_DEVICE);
88
89         if (rm->m_rdma_op != NULL) {
90                 rds_ib_send_unmap_rdma(ic, rm->m_rdma_op);
91
92                 /* If the user asked for a completion notification on this
93                  * message, we can implement three different semantics:
94                  *  1.  Notify when we received the ACK on the RDS message
95                  *      that was queued with the RDMA. This provides reliable
96                  *      notification of RDMA status at the expense of a one-way
97                  *      packet delay.
98                  *  2.  Notify when the IB stack gives us the completion event for
99                  *      the RDMA operation.
100                  *  3.  Notify when the IB stack gives us the completion event for
101                  *      the accompanying RDS messages.
102                  * Here, we implement approach #3. To implement approach #2,
103                  * call rds_rdma_send_complete from the cq_handler. To implement #1,
104                  * don't call rds_rdma_send_complete at all, and fall back to the notify
105                  * handling in the ACK processing code.
106                  *
107                  * Note: There's no need to explicitly sync any RDMA buffers using
108                  * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109                  * operation itself unmapped the RDMA buffers, which takes care
110                  * of synching.
111                  */
112                 rds_ib_send_rdma_complete(rm, wc_status);
113
114                 if (rm->m_rdma_op->r_write)
115                         rds_stats_add(s_send_rdma_bytes, rm->m_rdma_op->r_bytes);
116                 else
117                         rds_stats_add(s_recv_rdma_bytes, rm->m_rdma_op->r_bytes);
118         }
119
120         /* If anyone waited for this message to get flushed out, wake
121          * them up now */
122         rds_message_unmapped(rm);
123
124         rds_message_put(rm);
125         send->s_rm = NULL;
126 }
127
128 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
129 {
130         struct rds_ib_send_work *send;
131         u32 i;
132
133         for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
134                 struct ib_sge *sge;
135
136                 send->s_rm = NULL;
137                 send->s_op = NULL;
138
139                 send->s_wr.wr_id = i;
140                 send->s_wr.sg_list = send->s_sge;
141                 send->s_wr.num_sge = 1;
142                 send->s_wr.opcode = IB_WR_SEND;
143                 send->s_wr.send_flags = 0;
144                 send->s_wr.ex.imm_data = 0;
145
146                 sge = rds_ib_data_sge(ic, send->s_sge);
147                 sge->lkey = ic->i_mr->lkey;
148
149                 sge = rds_ib_header_sge(ic, send->s_sge);
150                 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
151                 sge->length = sizeof(struct rds_header);
152                 sge->lkey = ic->i_mr->lkey;
153         }
154 }
155
156 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
157 {
158         struct rds_ib_send_work *send;
159         u32 i;
160
161         for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
162                 if (send->s_wr.opcode == 0xdead)
163                         continue;
164                 if (send->s_rm)
165                         rds_ib_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
166                 if (send->s_op)
167                         rds_ib_send_unmap_rdma(ic, send->s_op);
168         }
169 }
170
171 /*
172  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
173  * operations performed in the send path.  As the sender allocs and potentially
174  * unallocs the next free entry in the ring it doesn't alter which is
175  * the next to be freed, which is what this is concerned with.
176  */
177 void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
178 {
179         struct rds_connection *conn = context;
180         struct rds_ib_connection *ic = conn->c_transport_data;
181         struct ib_wc wc;
182         struct rds_ib_send_work *send;
183         u32 completed;
184         u32 oldest;
185         u32 i = 0;
186         int ret;
187
188         rdsdebug("cq %p conn %p\n", cq, conn);
189         rds_ib_stats_inc(s_ib_tx_cq_call);
190         ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
191         if (ret)
192                 rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
193
194         while (ib_poll_cq(cq, 1, &wc) > 0) {
195                 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
196                          (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
197                          be32_to_cpu(wc.ex.imm_data));
198                 rds_ib_stats_inc(s_ib_tx_cq_event);
199
200                 if (wc.wr_id == RDS_IB_ACK_WR_ID) {
201                         if (ic->i_ack_queued + HZ/2 < jiffies)
202                                 rds_ib_stats_inc(s_ib_tx_stalled);
203                         rds_ib_ack_send_complete(ic);
204                         continue;
205                 }
206
207                 oldest = rds_ib_ring_oldest(&ic->i_send_ring);
208
209                 completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
210
211                 for (i = 0; i < completed; i++) {
212                         send = &ic->i_sends[oldest];
213
214                         /* In the error case, wc.opcode sometimes contains garbage */
215                         switch (send->s_wr.opcode) {
216                         case IB_WR_SEND:
217                                 if (send->s_rm)
218                                         rds_ib_send_unmap_rm(ic, send, wc.status);
219                                 break;
220                         case IB_WR_RDMA_WRITE:
221                         case IB_WR_RDMA_READ:
222                                 /* Nothing to be done - the SG list will be unmapped
223                                  * when the SEND completes. */
224                                 break;
225                         default:
226                                 if (printk_ratelimit())
227                                         printk(KERN_NOTICE
228                                                 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
229                                                 __func__, send->s_wr.opcode);
230                                 break;
231                         }
232
233                         send->s_wr.opcode = 0xdead;
234                         send->s_wr.num_sge = 1;
235                         if (send->s_queued + HZ/2 < jiffies)
236                                 rds_ib_stats_inc(s_ib_tx_stalled);
237
238                         /* If a RDMA operation produced an error, signal this right
239                          * away. If we don't, the subsequent SEND that goes with this
240                          * RDMA will be canceled with ERR_WFLUSH, and the application
241                          * never learn that the RDMA failed. */
242                         if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
243                                 struct rds_message *rm;
244
245                                 rm = rds_send_get_message(conn, send->s_op);
246                                 if (rm)
247                                         rds_ib_send_rdma_complete(rm, wc.status);
248                         }
249
250                         oldest = (oldest + 1) % ic->i_send_ring.w_nr;
251                 }
252
253                 rds_ib_ring_free(&ic->i_send_ring, completed);
254
255                 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
256                     test_bit(0, &conn->c_map_queued))
257                         queue_delayed_work(rds_wq, &conn->c_send_w, 0);
258
259                 /* We expect errors as the qp is drained during shutdown */
260                 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
261                         rds_ib_conn_error(conn,
262                                 "send completion on %pI4 "
263                                 "had status %u, disconnecting and reconnecting\n",
264                                 &conn->c_faddr, wc.status);
265                 }
266         }
267 }
268
269 /*
270  * This is the main function for allocating credits when sending
271  * messages.
272  *
273  * Conceptually, we have two counters:
274  *  -   send credits: this tells us how many WRs we're allowed
275  *      to submit without overruning the reciever's queue. For
276  *      each SEND WR we post, we decrement this by one.
277  *
278  *  -   posted credits: this tells us how many WRs we recently
279  *      posted to the receive queue. This value is transferred
280  *      to the peer as a "credit update" in a RDS header field.
281  *      Every time we transmit credits to the peer, we subtract
282  *      the amount of transferred credits from this counter.
283  *
284  * It is essential that we avoid situations where both sides have
285  * exhausted their send credits, and are unable to send new credits
286  * to the peer. We achieve this by requiring that we send at least
287  * one credit update to the peer before exhausting our credits.
288  * When new credits arrive, we subtract one credit that is withheld
289  * until we've posted new buffers and are ready to transmit these
290  * credits (see rds_ib_send_add_credits below).
291  *
292  * The RDS send code is essentially single-threaded; rds_send_xmit
293  * grabs c_send_lock to ensure exclusive access to the send ring.
294  * However, the ACK sending code is independent and can race with
295  * message SENDs.
296  *
297  * In the send path, we need to update the counters for send credits
298  * and the counter of posted buffers atomically - when we use the
299  * last available credit, we cannot allow another thread to race us
300  * and grab the posted credits counter.  Hence, we have to use a
301  * spinlock to protect the credit counter, or use atomics.
302  *
303  * Spinlocks shared between the send and the receive path are bad,
304  * because they create unnecessary delays. An early implementation
305  * using a spinlock showed a 5% degradation in throughput at some
306  * loads.
307  *
308  * This implementation avoids spinlocks completely, putting both
309  * counters into a single atomic, and updating that atomic using
310  * atomic_add (in the receive path, when receiving fresh credits),
311  * and using atomic_cmpxchg when updating the two counters.
312  */
313 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
314                              u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
315 {
316         unsigned int avail, posted, got = 0, advertise;
317         long oldval, newval;
318
319         *adv_credits = 0;
320         if (!ic->i_flowctl)
321                 return wanted;
322
323 try_again:
324         advertise = 0;
325         oldval = newval = atomic_read(&ic->i_credits);
326         posted = IB_GET_POST_CREDITS(oldval);
327         avail = IB_GET_SEND_CREDITS(oldval);
328
329         rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
330                         wanted, avail, posted);
331
332         /* The last credit must be used to send a credit update. */
333         if (avail && !posted)
334                 avail--;
335
336         if (avail < wanted) {
337                 struct rds_connection *conn = ic->i_cm_id->context;
338
339                 /* Oops, there aren't that many credits left! */
340                 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
341                 got = avail;
342         } else {
343                 /* Sometimes you get what you want, lalala. */
344                 got = wanted;
345         }
346         newval -= IB_SET_SEND_CREDITS(got);
347
348         /*
349          * If need_posted is non-zero, then the caller wants
350          * the posted regardless of whether any send credits are
351          * available.
352          */
353         if (posted && (got || need_posted)) {
354                 advertise = min_t(unsigned int, posted, max_posted);
355                 newval -= IB_SET_POST_CREDITS(advertise);
356         }
357
358         /* Finally bill everything */
359         if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
360                 goto try_again;
361
362         *adv_credits = advertise;
363         return got;
364 }
365
366 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
367 {
368         struct rds_ib_connection *ic = conn->c_transport_data;
369
370         if (credits == 0)
371                 return;
372
373         rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
374                         credits,
375                         IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
376                         test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
377
378         atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
379         if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
380                 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
381
382         WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
383
384         rds_ib_stats_inc(s_ib_rx_credit_updates);
385 }
386
387 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
388 {
389         struct rds_ib_connection *ic = conn->c_transport_data;
390
391         if (posted == 0)
392                 return;
393
394         atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
395
396         /* Decide whether to send an update to the peer now.
397          * If we would send a credit update for every single buffer we
398          * post, we would end up with an ACK storm (ACK arrives,
399          * consumes buffer, we refill the ring, send ACK to remote
400          * advertising the newly posted buffer... ad inf)
401          *
402          * Performance pretty much depends on how often we send
403          * credit updates - too frequent updates mean lots of ACKs.
404          * Too infrequent updates, and the peer will run out of
405          * credits and has to throttle.
406          * For the time being, 16 seems to be a good compromise.
407          */
408         if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
409                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410 }
411
412 static inline void
413 rds_ib_xmit_populate_wr(struct rds_ib_connection *ic,
414                 struct rds_ib_send_work *send, unsigned int pos,
415                 unsigned long buffer, unsigned int length,
416                 int send_flags)
417 {
418         struct ib_sge *sge;
419
420         WARN_ON(pos != send - ic->i_sends);
421
422         send->s_wr.send_flags = send_flags;
423         send->s_wr.opcode = IB_WR_SEND;
424         send->s_wr.num_sge = 2;
425         send->s_wr.next = NULL;
426         send->s_queued = jiffies;
427         send->s_op = NULL;
428
429         if (length != 0) {
430                 sge = rds_ib_data_sge(ic, send->s_sge);
431                 sge->addr = buffer;
432                 sge->length = length;
433                 sge->lkey = ic->i_mr->lkey;
434
435                 sge = rds_ib_header_sge(ic, send->s_sge);
436         } else {
437                 /* We're sending a packet with no payload. There is only
438                  * one SGE */
439                 send->s_wr.num_sge = 1;
440                 sge = &send->s_sge[0];
441         }
442
443         sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
444         sge->length = sizeof(struct rds_header);
445         sge->lkey = ic->i_mr->lkey;
446 }
447
448 /*
449  * This can be called multiple times for a given message.  The first time
450  * we see a message we map its scatterlist into the IB device so that
451  * we can provide that mapped address to the IB scatter gather entries
452  * in the IB work requests.  We translate the scatterlist into a series
453  * of work requests that fragment the message.  These work requests complete
454  * in order so we pass ownership of the message to the completion handler
455  * once we send the final fragment.
456  *
457  * The RDS core uses the c_send_lock to only enter this function once
458  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
459  * don't get out of sync and confuse the ring.
460  */
461 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
462                 unsigned int hdr_off, unsigned int sg, unsigned int off)
463 {
464         struct rds_ib_connection *ic = conn->c_transport_data;
465         struct ib_device *dev = ic->i_cm_id->device;
466         struct rds_ib_send_work *send = NULL;
467         struct rds_ib_send_work *first;
468         struct rds_ib_send_work *prev;
469         struct ib_send_wr *failed_wr;
470         struct scatterlist *scat;
471         u32 pos;
472         u32 i;
473         u32 work_alloc;
474         u32 credit_alloc;
475         u32 posted;
476         u32 adv_credits = 0;
477         int send_flags = 0;
478         int sent;
479         int ret;
480         int flow_controlled = 0;
481
482         BUG_ON(off % RDS_FRAG_SIZE);
483         BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
484
485         /* Do not send cong updates to IB loopback */
486         if (conn->c_loopback
487             && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
488                 rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
489                 return sizeof(struct rds_header) + RDS_CONG_MAP_BYTES;
490         }
491
492         /* FIXME we may overallocate here */
493         if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
494                 i = 1;
495         else
496                 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
497
498         work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
499         if (work_alloc == 0) {
500                 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
501                 rds_ib_stats_inc(s_ib_tx_ring_full);
502                 ret = -ENOMEM;
503                 goto out;
504         }
505
506         credit_alloc = work_alloc;
507         if (ic->i_flowctl) {
508                 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
509                 adv_credits += posted;
510                 if (credit_alloc < work_alloc) {
511                         rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
512                         work_alloc = credit_alloc;
513                         flow_controlled++;
514                 }
515                 if (work_alloc == 0) {
516                         set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
517                         rds_ib_stats_inc(s_ib_tx_throttle);
518                         ret = -ENOMEM;
519                         goto out;
520                 }
521         }
522
523         /* map the message the first time we see it */
524         if (ic->i_rm == NULL) {
525                 /*
526                 printk(KERN_NOTICE "rds_ib_xmit prep msg dport=%u flags=0x%x len=%d\n",
527                                 be16_to_cpu(rm->m_inc.i_hdr.h_dport),
528                                 rm->m_inc.i_hdr.h_flags,
529                                 be32_to_cpu(rm->m_inc.i_hdr.h_len));
530                    */
531                 if (rm->m_nents) {
532                         rm->m_count = ib_dma_map_sg(dev,
533                                          rm->m_sg, rm->m_nents, DMA_TO_DEVICE);
534                         rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->m_count);
535                         if (rm->m_count == 0) {
536                                 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
537                                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
538                                 ret = -ENOMEM; /* XXX ? */
539                                 goto out;
540                         }
541                 } else {
542                         rm->m_count = 0;
543                 }
544
545                 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
546                 ic->i_unsignaled_bytes = rds_ib_sysctl_max_unsig_bytes;
547                 rds_message_addref(rm);
548                 ic->i_rm = rm;
549
550                 /* Finalize the header */
551                 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
552                         rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
553                 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
554                         rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
555
556                 /* If it has a RDMA op, tell the peer we did it. This is
557                  * used by the peer to release use-once RDMA MRs. */
558                 if (rm->m_rdma_op) {
559                         struct rds_ext_header_rdma ext_hdr;
560
561                         ext_hdr.h_rdma_rkey = cpu_to_be32(rm->m_rdma_op->r_key);
562                         rds_message_add_extension(&rm->m_inc.i_hdr,
563                                         RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
564                 }
565                 if (rm->m_rdma_cookie) {
566                         rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
567                                         rds_rdma_cookie_key(rm->m_rdma_cookie),
568                                         rds_rdma_cookie_offset(rm->m_rdma_cookie));
569                 }
570
571                 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
572                  * we should not do this unless we have a chance of at least
573                  * sticking the header into the send ring. Which is why we
574                  * should call rds_ib_ring_alloc first. */
575                 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
576                 rds_message_make_checksum(&rm->m_inc.i_hdr);
577
578                 /*
579                  * Update adv_credits since we reset the ACK_REQUIRED bit.
580                  */
581                 rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
582                 adv_credits += posted;
583                 BUG_ON(adv_credits > 255);
584         }
585
586         send = &ic->i_sends[pos];
587         first = send;
588         prev = NULL;
589         scat = &rm->m_sg[sg];
590         sent = 0;
591         i = 0;
592
593         /* Sometimes you want to put a fence between an RDMA
594          * READ and the following SEND.
595          * We could either do this all the time
596          * or when requested by the user. Right now, we let
597          * the application choose.
598          */
599         if (rm->m_rdma_op && rm->m_rdma_op->r_fence)
600                 send_flags = IB_SEND_FENCE;
601
602         /*
603          * We could be copying the header into the unused tail of the page.
604          * That would need to be changed in the future when those pages might
605          * be mapped userspace pages or page cache pages.  So instead we always
606          * use a second sge and our long-lived ring of mapped headers.  We send
607          * the header after the data so that the data payload can be aligned on
608          * the receiver.
609          */
610
611         /* handle a 0-len message */
612         if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
613                 rds_ib_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
614                 goto add_header;
615         }
616
617         /* if there's data reference it with a chain of work reqs */
618         for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) {
619                 unsigned int len;
620
621                 send = &ic->i_sends[pos];
622
623                 len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
624                 rds_ib_xmit_populate_wr(ic, send, pos,
625                                 ib_sg_dma_address(dev, scat) + off, len,
626                                 send_flags);
627
628                 /*
629                  * We want to delay signaling completions just enough to get
630                  * the batching benefits but not so much that we create dead time
631                  * on the wire.
632                  */
633                 if (ic->i_unsignaled_wrs-- == 0) {
634                         ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
635                         send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
636                 }
637
638                 ic->i_unsignaled_bytes -= len;
639                 if (ic->i_unsignaled_bytes <= 0) {
640                         ic->i_unsignaled_bytes = rds_ib_sysctl_max_unsig_bytes;
641                         send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
642                 }
643
644                 /*
645                  * Always signal the last one if we're stopping due to flow control.
646                  */
647                 if (flow_controlled && i == (work_alloc-1))
648                         send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
649
650                 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
651                          &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
652
653                 sent += len;
654                 off += len;
655                 if (off == ib_sg_dma_len(dev, scat)) {
656                         scat++;
657                         off = 0;
658                 }
659
660 add_header:
661                 /* Tack on the header after the data. The header SGE should already
662                  * have been set up to point to the right header buffer. */
663                 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
664
665                 if (0) {
666                         struct rds_header *hdr = &ic->i_send_hdrs[pos];
667
668                         printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
669                                 be16_to_cpu(hdr->h_dport),
670                                 hdr->h_flags,
671                                 be32_to_cpu(hdr->h_len));
672                 }
673                 if (adv_credits) {
674                         struct rds_header *hdr = &ic->i_send_hdrs[pos];
675
676                         /* add credit and redo the header checksum */
677                         hdr->h_credit = adv_credits;
678                         rds_message_make_checksum(hdr);
679                         adv_credits = 0;
680                         rds_ib_stats_inc(s_ib_tx_credit_updates);
681                 }
682
683                 if (prev)
684                         prev->s_wr.next = &send->s_wr;
685                 prev = send;
686
687                 pos = (pos + 1) % ic->i_send_ring.w_nr;
688         }
689
690         /* Account the RDS header in the number of bytes we sent, but just once.
691          * The caller has no concept of fragmentation. */
692         if (hdr_off == 0)
693                 sent += sizeof(struct rds_header);
694
695         /* if we finished the message then send completion owns it */
696         if (scat == &rm->m_sg[rm->m_count]) {
697                 prev->s_rm = ic->i_rm;
698                 prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
699                 ic->i_rm = NULL;
700         }
701
702         if (i < work_alloc) {
703                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
704                 work_alloc = i;
705         }
706         if (ic->i_flowctl && i < credit_alloc)
707                 rds_ib_send_add_credits(conn, credit_alloc - i);
708
709         /* XXX need to worry about failed_wr and partial sends. */
710         failed_wr = &first->s_wr;
711         ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
712         rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
713                  first, &first->s_wr, ret, failed_wr);
714         BUG_ON(failed_wr != &first->s_wr);
715         if (ret) {
716                 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
717                        "returned %d\n", &conn->c_faddr, ret);
718                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
719                 if (prev->s_rm) {
720                         ic->i_rm = prev->s_rm;
721                         prev->s_rm = NULL;
722                 }
723
724                 rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
725                 goto out;
726         }
727
728         ret = sent;
729 out:
730         BUG_ON(adv_credits);
731         return ret;
732 }
733
734 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rds_rdma_op *op)
735 {
736         struct rds_ib_connection *ic = conn->c_transport_data;
737         struct rds_ib_send_work *send = NULL;
738         struct rds_ib_send_work *first;
739         struct rds_ib_send_work *prev;
740         struct ib_send_wr *failed_wr;
741         struct rds_ib_device *rds_ibdev;
742         struct scatterlist *scat;
743         unsigned long len;
744         u64 remote_addr = op->r_remote_addr;
745         u32 pos;
746         u32 work_alloc;
747         u32 i;
748         u32 j;
749         int sent;
750         int ret;
751         int num_sge;
752
753         rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
754
755         /* map the message the first time we see it */
756         if (!op->r_mapped) {
757                 op->r_count = ib_dma_map_sg(ic->i_cm_id->device,
758                                         op->r_sg, op->r_nents, (op->r_write) ?
759                                         DMA_TO_DEVICE : DMA_FROM_DEVICE);
760                 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->r_count);
761                 if (op->r_count == 0) {
762                         rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
763                         ret = -ENOMEM; /* XXX ? */
764                         goto out;
765                 }
766
767                 op->r_mapped = 1;
768         }
769
770         /*
771          * Instead of knowing how to return a partial rdma read/write we insist that there
772          * be enough work requests to send the entire message.
773          */
774         i = ceil(op->r_count, rds_ibdev->max_sge);
775
776         work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
777         if (work_alloc != i) {
778                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
779                 rds_ib_stats_inc(s_ib_tx_ring_full);
780                 ret = -ENOMEM;
781                 goto out;
782         }
783
784         send = &ic->i_sends[pos];
785         first = send;
786         prev = NULL;
787         scat = &op->r_sg[0];
788         sent = 0;
789         num_sge = op->r_count;
790
791         for (i = 0; i < work_alloc && scat != &op->r_sg[op->r_count]; i++) {
792                 send->s_wr.send_flags = 0;
793                 send->s_queued = jiffies;
794                 /*
795                  * We want to delay signaling completions just enough to get
796                  * the batching benefits but not so much that we create dead time on the wire.
797                  */
798                 if (ic->i_unsignaled_wrs-- == 0) {
799                         ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
800                         send->s_wr.send_flags = IB_SEND_SIGNALED;
801                 }
802
803                 send->s_wr.opcode = op->r_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
804                 send->s_wr.wr.rdma.remote_addr = remote_addr;
805                 send->s_wr.wr.rdma.rkey = op->r_key;
806                 send->s_op = op;
807
808                 if (num_sge > rds_ibdev->max_sge) {
809                         send->s_wr.num_sge = rds_ibdev->max_sge;
810                         num_sge -= rds_ibdev->max_sge;
811                 } else {
812                         send->s_wr.num_sge = num_sge;
813                 }
814
815                 send->s_wr.next = NULL;
816
817                 if (prev)
818                         prev->s_wr.next = &send->s_wr;
819
820                 for (j = 0; j < send->s_wr.num_sge && scat != &op->r_sg[op->r_count]; j++) {
821                         len = ib_sg_dma_len(ic->i_cm_id->device, scat);
822                         send->s_sge[j].addr =
823                                  ib_sg_dma_address(ic->i_cm_id->device, scat);
824                         send->s_sge[j].length = len;
825                         send->s_sge[j].lkey = ic->i_mr->lkey;
826
827                         sent += len;
828                         rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
829
830                         remote_addr += len;
831                         scat++;
832                 }
833
834                 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
835                         &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
836
837                 prev = send;
838                 if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
839                         send = ic->i_sends;
840         }
841
842         /* if we finished the message then send completion owns it */
843         if (scat == &op->r_sg[op->r_count])
844                 prev->s_wr.send_flags = IB_SEND_SIGNALED;
845
846         if (i < work_alloc) {
847                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
848                 work_alloc = i;
849         }
850
851         failed_wr = &first->s_wr;
852         ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
853         rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
854                  first, &first->s_wr, ret, failed_wr);
855         BUG_ON(failed_wr != &first->s_wr);
856         if (ret) {
857                 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
858                        "returned %d\n", &conn->c_faddr, ret);
859                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
860                 goto out;
861         }
862
863         if (unlikely(failed_wr != &first->s_wr)) {
864                 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
865                 BUG_ON(failed_wr != &first->s_wr);
866         }
867
868
869 out:
870         return ret;
871 }
872
873 void rds_ib_xmit_complete(struct rds_connection *conn)
874 {
875         struct rds_ib_connection *ic = conn->c_transport_data;
876
877         /* We may have a pending ACK or window update we were unable
878          * to send previously (due to flow control). Try again. */
879         rds_ib_attempt_ack(ic);
880 }