ed756c928bc4b669ae080e49304f8f03160c31fe
[safe/jmp/linux-2.6] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14  *      - new API and handling of conntrack/nat helpers
15  *      - now capable of multiple expectations for one master
16  * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17  *      - add usage/reference counts to ip_conntrack_expect
18  *      - export ip_conntrack[_expect]_{find_get,put} functions
19  * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20  *      - generalize L3 protocol denendent part.
21  * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22  *      - add support various size of conntrack structures.
23  * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24  *      - restructure nf_conn (introduce nf_conn_help)
25  *      - redesign 'features' how they were originally intended
26  * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27  *      - add support for L3 protocol module load on demand.
28  *
29  * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30  */
31
32 #include <linux/types.h>
33 #include <linux/netfilter.h>
34 #include <linux/module.h>
35 #include <linux/skbuff.h>
36 #include <linux/proc_fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/stddef.h>
39 #include <linux/slab.h>
40 #include <linux/random.h>
41 #include <linux/jhash.h>
42 #include <linux/err.h>
43 #include <linux/percpu.h>
44 #include <linux/moduleparam.h>
45 #include <linux/notifier.h>
46 #include <linux/kernel.h>
47 #include <linux/netdevice.h>
48 #include <linux/socket.h>
49
50 #include <net/netfilter/nf_conntrack.h>
51 #include <net/netfilter/nf_conntrack_l3proto.h>
52 #include <net/netfilter/nf_conntrack_l4proto.h>
53 #include <net/netfilter/nf_conntrack_expect.h>
54 #include <net/netfilter/nf_conntrack_helper.h>
55 #include <net/netfilter/nf_conntrack_core.h>
56
57 #define NF_CONNTRACK_VERSION    "0.5.0"
58
59 #if 0
60 #define DEBUGP printk
61 #else
62 #define DEBUGP(format, args...)
63 #endif
64
65 DEFINE_RWLOCK(nf_conntrack_lock);
66
67 /* nf_conntrack_standalone needs this */
68 atomic_t nf_conntrack_count = ATOMIC_INIT(0);
69 EXPORT_SYMBOL_GPL(nf_conntrack_count);
70
71 void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
72 unsigned int nf_conntrack_htable_size __read_mostly;
73 int nf_conntrack_max __read_mostly;
74 EXPORT_SYMBOL_GPL(nf_conntrack_max);
75 struct list_head *nf_conntrack_hash __read_mostly;
76 struct nf_conn nf_conntrack_untracked __read_mostly;
77 unsigned int nf_ct_log_invalid __read_mostly;
78 LIST_HEAD(unconfirmed);
79 static int nf_conntrack_vmalloc __read_mostly;
80
81 static unsigned int nf_conntrack_next_id;
82
83 DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
84 EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
85
86 /*
87  * This scheme offers various size of "struct nf_conn" dependent on
88  * features(helper, nat, ...)
89  */
90
91 #define NF_CT_FEATURES_NAMELEN  256
92 static struct {
93         /* name of slab cache. printed in /proc/slabinfo */
94         char *name;
95
96         /* size of slab cache */
97         size_t size;
98
99         /* slab cache pointer */
100         kmem_cache_t *cachep;
101
102         /* allocated slab cache + modules which uses this slab cache */
103         int use;
104
105 } nf_ct_cache[NF_CT_F_NUM];
106
107 /* protect members of nf_ct_cache except of "use" */
108 DEFINE_RWLOCK(nf_ct_cache_lock);
109
110 /* This avoids calling kmem_cache_create() with same name simultaneously */
111 static DEFINE_MUTEX(nf_ct_cache_mutex);
112
113 static int nf_conntrack_hash_rnd_initted;
114 static unsigned int nf_conntrack_hash_rnd;
115
116 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
117                                   unsigned int size, unsigned int rnd)
118 {
119         unsigned int a, b;
120         a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
121                   ((tuple->src.l3num) << 16) | tuple->dst.protonum);
122         b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
123                         (tuple->src.u.all << 16) | tuple->dst.u.all);
124
125         return jhash_2words(a, b, rnd) % size;
126 }
127
128 static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
129 {
130         return __hash_conntrack(tuple, nf_conntrack_htable_size,
131                                 nf_conntrack_hash_rnd);
132 }
133
134 int nf_conntrack_register_cache(u_int32_t features, const char *name,
135                                 size_t size)
136 {
137         int ret = 0;
138         char *cache_name;
139         kmem_cache_t *cachep;
140
141         DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
142                features, name, size);
143
144         if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
145                 DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
146                         features);
147                 return -EINVAL;
148         }
149
150         mutex_lock(&nf_ct_cache_mutex);
151
152         write_lock_bh(&nf_ct_cache_lock);
153         /* e.g: multiple helpers are loaded */
154         if (nf_ct_cache[features].use > 0) {
155                 DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
156                 if ((!strncmp(nf_ct_cache[features].name, name,
157                               NF_CT_FEATURES_NAMELEN))
158                     && nf_ct_cache[features].size == size) {
159                         DEBUGP("nf_conntrack_register_cache: reusing.\n");
160                         nf_ct_cache[features].use++;
161                         ret = 0;
162                 } else
163                         ret = -EBUSY;
164
165                 write_unlock_bh(&nf_ct_cache_lock);
166                 mutex_unlock(&nf_ct_cache_mutex);
167                 return ret;
168         }
169         write_unlock_bh(&nf_ct_cache_lock);
170
171         /*
172          * The memory space for name of slab cache must be alive until
173          * cache is destroyed.
174          */
175         cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
176         if (cache_name == NULL) {
177                 DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
178                 ret = -ENOMEM;
179                 goto out_up_mutex;
180         }
181
182         if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
183                                                 >= NF_CT_FEATURES_NAMELEN) {
184                 printk("nf_conntrack_register_cache: name too long\n");
185                 ret = -EINVAL;
186                 goto out_free_name;
187         }
188
189         cachep = kmem_cache_create(cache_name, size, 0, 0,
190                                    NULL, NULL);
191         if (!cachep) {
192                 printk("nf_conntrack_register_cache: Can't create slab cache "
193                        "for the features = 0x%x\n", features);
194                 ret = -ENOMEM;
195                 goto out_free_name;
196         }
197
198         write_lock_bh(&nf_ct_cache_lock);
199         nf_ct_cache[features].use = 1;
200         nf_ct_cache[features].size = size;
201         nf_ct_cache[features].cachep = cachep;
202         nf_ct_cache[features].name = cache_name;
203         write_unlock_bh(&nf_ct_cache_lock);
204
205         goto out_up_mutex;
206
207 out_free_name:
208         kfree(cache_name);
209 out_up_mutex:
210         mutex_unlock(&nf_ct_cache_mutex);
211         return ret;
212 }
213
214 /* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
215 void nf_conntrack_unregister_cache(u_int32_t features)
216 {
217         kmem_cache_t *cachep;
218         char *name;
219
220         /*
221          * This assures that kmem_cache_create() isn't called before destroying
222          * slab cache.
223          */
224         DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
225         mutex_lock(&nf_ct_cache_mutex);
226
227         write_lock_bh(&nf_ct_cache_lock);
228         if (--nf_ct_cache[features].use > 0) {
229                 write_unlock_bh(&nf_ct_cache_lock);
230                 mutex_unlock(&nf_ct_cache_mutex);
231                 return;
232         }
233         cachep = nf_ct_cache[features].cachep;
234         name = nf_ct_cache[features].name;
235         nf_ct_cache[features].cachep = NULL;
236         nf_ct_cache[features].name = NULL;
237         nf_ct_cache[features].size = 0;
238         write_unlock_bh(&nf_ct_cache_lock);
239
240         synchronize_net();
241
242         kmem_cache_destroy(cachep);
243         kfree(name);
244
245         mutex_unlock(&nf_ct_cache_mutex);
246 }
247
248 int
249 nf_ct_get_tuple(const struct sk_buff *skb,
250                 unsigned int nhoff,
251                 unsigned int dataoff,
252                 u_int16_t l3num,
253                 u_int8_t protonum,
254                 struct nf_conntrack_tuple *tuple,
255                 const struct nf_conntrack_l3proto *l3proto,
256                 const struct nf_conntrack_l4proto *l4proto)
257 {
258         NF_CT_TUPLE_U_BLANK(tuple);
259
260         tuple->src.l3num = l3num;
261         if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
262                 return 0;
263
264         tuple->dst.protonum = protonum;
265         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
266
267         return l4proto->pkt_to_tuple(skb, dataoff, tuple);
268 }
269
270 int
271 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
272                    const struct nf_conntrack_tuple *orig,
273                    const struct nf_conntrack_l3proto *l3proto,
274                    const struct nf_conntrack_l4proto *l4proto)
275 {
276         NF_CT_TUPLE_U_BLANK(inverse);
277
278         inverse->src.l3num = orig->src.l3num;
279         if (l3proto->invert_tuple(inverse, orig) == 0)
280                 return 0;
281
282         inverse->dst.dir = !orig->dst.dir;
283
284         inverse->dst.protonum = orig->dst.protonum;
285         return l4proto->invert_tuple(inverse, orig);
286 }
287
288 static void
289 clean_from_lists(struct nf_conn *ct)
290 {
291         DEBUGP("clean_from_lists(%p)\n", ct);
292         list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
293         list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
294
295         /* Destroy all pending expectations */
296         nf_ct_remove_expectations(ct);
297 }
298
299 static void
300 destroy_conntrack(struct nf_conntrack *nfct)
301 {
302         struct nf_conn *ct = (struct nf_conn *)nfct;
303         struct nf_conn_help *help = nfct_help(ct);
304         struct nf_conntrack_l3proto *l3proto;
305         struct nf_conntrack_l4proto *l4proto;
306
307         DEBUGP("destroy_conntrack(%p)\n", ct);
308         NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
309         NF_CT_ASSERT(!timer_pending(&ct->timeout));
310
311         nf_conntrack_event(IPCT_DESTROY, ct);
312         set_bit(IPS_DYING_BIT, &ct->status);
313
314         if (help && help->helper && help->helper->destroy)
315                 help->helper->destroy(ct);
316
317         /* To make sure we don't get any weird locking issues here:
318          * destroy_conntrack() MUST NOT be called with a write lock
319          * to nf_conntrack_lock!!! -HW */
320         l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
321         if (l3proto && l3proto->destroy)
322                 l3proto->destroy(ct);
323
324         l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
325         if (l4proto && l4proto->destroy)
326                 l4proto->destroy(ct);
327
328         if (nf_conntrack_destroyed)
329                 nf_conntrack_destroyed(ct);
330
331         write_lock_bh(&nf_conntrack_lock);
332         /* Expectations will have been removed in clean_from_lists,
333          * except TFTP can create an expectation on the first packet,
334          * before connection is in the list, so we need to clean here,
335          * too. */
336         nf_ct_remove_expectations(ct);
337
338         /* We overload first tuple to link into unconfirmed list. */
339         if (!nf_ct_is_confirmed(ct)) {
340                 BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
341                 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
342         }
343
344         NF_CT_STAT_INC(delete);
345         write_unlock_bh(&nf_conntrack_lock);
346
347         if (ct->master)
348                 nf_ct_put(ct->master);
349
350         DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
351         nf_conntrack_free(ct);
352 }
353
354 static void death_by_timeout(unsigned long ul_conntrack)
355 {
356         struct nf_conn *ct = (void *)ul_conntrack;
357
358         write_lock_bh(&nf_conntrack_lock);
359         /* Inside lock so preempt is disabled on module removal path.
360          * Otherwise we can get spurious warnings. */
361         NF_CT_STAT_INC(delete_list);
362         clean_from_lists(ct);
363         write_unlock_bh(&nf_conntrack_lock);
364         nf_ct_put(ct);
365 }
366
367 struct nf_conntrack_tuple_hash *
368 __nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
369                     const struct nf_conn *ignored_conntrack)
370 {
371         struct nf_conntrack_tuple_hash *h;
372         unsigned int hash = hash_conntrack(tuple);
373
374         list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
375                 if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
376                     nf_ct_tuple_equal(tuple, &h->tuple)) {
377                         NF_CT_STAT_INC(found);
378                         return h;
379                 }
380                 NF_CT_STAT_INC(searched);
381         }
382
383         return NULL;
384 }
385
386 /* Find a connection corresponding to a tuple. */
387 struct nf_conntrack_tuple_hash *
388 nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
389                       const struct nf_conn *ignored_conntrack)
390 {
391         struct nf_conntrack_tuple_hash *h;
392
393         read_lock_bh(&nf_conntrack_lock);
394         h = __nf_conntrack_find(tuple, ignored_conntrack);
395         if (h)
396                 atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
397         read_unlock_bh(&nf_conntrack_lock);
398
399         return h;
400 }
401
402 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
403                                        unsigned int hash,
404                                        unsigned int repl_hash) 
405 {
406         ct->id = ++nf_conntrack_next_id;
407         list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
408                  &nf_conntrack_hash[hash]);
409         list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
410                  &nf_conntrack_hash[repl_hash]);
411 }
412
413 void nf_conntrack_hash_insert(struct nf_conn *ct)
414 {
415         unsigned int hash, repl_hash;
416
417         hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
418         repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
419
420         write_lock_bh(&nf_conntrack_lock);
421         __nf_conntrack_hash_insert(ct, hash, repl_hash);
422         write_unlock_bh(&nf_conntrack_lock);
423 }
424
425 /* Confirm a connection given skb; places it in hash table */
426 int
427 __nf_conntrack_confirm(struct sk_buff **pskb)
428 {
429         unsigned int hash, repl_hash;
430         struct nf_conntrack_tuple_hash *h;
431         struct nf_conn *ct;
432         struct nf_conn_help *help;
433         enum ip_conntrack_info ctinfo;
434
435         ct = nf_ct_get(*pskb, &ctinfo);
436
437         /* ipt_REJECT uses nf_conntrack_attach to attach related
438            ICMP/TCP RST packets in other direction.  Actual packet
439            which created connection will be IP_CT_NEW or for an
440            expected connection, IP_CT_RELATED. */
441         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
442                 return NF_ACCEPT;
443
444         hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
445         repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
446
447         /* We're not in hash table, and we refuse to set up related
448            connections for unconfirmed conns.  But packet copies and
449            REJECT will give spurious warnings here. */
450         /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
451
452         /* No external references means noone else could have
453            confirmed us. */
454         NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
455         DEBUGP("Confirming conntrack %p\n", ct);
456
457         write_lock_bh(&nf_conntrack_lock);
458
459         /* See if there's one in the list already, including reverse:
460            NAT could have grabbed it without realizing, since we're
461            not in the hash.  If there is, we lost race. */
462         list_for_each_entry(h, &nf_conntrack_hash[hash], list)
463                 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
464                                       &h->tuple))
465                         goto out;
466         list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
467                 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
468                                       &h->tuple))
469                         goto out;
470
471         /* Remove from unconfirmed list */
472         list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
473
474         __nf_conntrack_hash_insert(ct, hash, repl_hash);
475         /* Timer relative to confirmation time, not original
476            setting time, otherwise we'd get timer wrap in
477            weird delay cases. */
478         ct->timeout.expires += jiffies;
479         add_timer(&ct->timeout);
480         atomic_inc(&ct->ct_general.use);
481         set_bit(IPS_CONFIRMED_BIT, &ct->status);
482         NF_CT_STAT_INC(insert);
483         write_unlock_bh(&nf_conntrack_lock);
484         help = nfct_help(ct);
485         if (help && help->helper)
486                 nf_conntrack_event_cache(IPCT_HELPER, *pskb);
487 #ifdef CONFIG_NF_NAT_NEEDED
488         if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
489             test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
490                 nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
491 #endif
492         nf_conntrack_event_cache(master_ct(ct) ?
493                                  IPCT_RELATED : IPCT_NEW, *pskb);
494         return NF_ACCEPT;
495
496 out:
497         NF_CT_STAT_INC(insert_failed);
498         write_unlock_bh(&nf_conntrack_lock);
499         return NF_DROP;
500 }
501
502 /* Returns true if a connection correspondings to the tuple (required
503    for NAT). */
504 int
505 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
506                          const struct nf_conn *ignored_conntrack)
507 {
508         struct nf_conntrack_tuple_hash *h;
509
510         read_lock_bh(&nf_conntrack_lock);
511         h = __nf_conntrack_find(tuple, ignored_conntrack);
512         read_unlock_bh(&nf_conntrack_lock);
513
514         return h != NULL;
515 }
516
517 /* There's a small race here where we may free a just-assured
518    connection.  Too bad: we're in trouble anyway. */
519 static int early_drop(struct list_head *chain)
520 {
521         /* Traverse backwards: gives us oldest, which is roughly LRU */
522         struct nf_conntrack_tuple_hash *h;
523         struct nf_conn *ct = NULL, *tmp;
524         int dropped = 0;
525
526         read_lock_bh(&nf_conntrack_lock);
527         list_for_each_entry_reverse(h, chain, list) {
528                 tmp = nf_ct_tuplehash_to_ctrack(h);
529                 if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
530                         ct = tmp;
531                         atomic_inc(&ct->ct_general.use);
532                         break;
533                 }
534         }
535         read_unlock_bh(&nf_conntrack_lock);
536
537         if (!ct)
538                 return dropped;
539
540         if (del_timer(&ct->timeout)) {
541                 death_by_timeout((unsigned long)ct);
542                 dropped = 1;
543                 NF_CT_STAT_INC(early_drop);
544         }
545         nf_ct_put(ct);
546         return dropped;
547 }
548
549 static struct nf_conn *
550 __nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
551                      const struct nf_conntrack_tuple *repl,
552                      const struct nf_conntrack_l3proto *l3proto,
553                      u_int32_t features)
554 {
555         struct nf_conn *conntrack = NULL;
556         struct nf_conntrack_helper *helper;
557
558         if (unlikely(!nf_conntrack_hash_rnd_initted)) {
559                 get_random_bytes(&nf_conntrack_hash_rnd, 4);
560                 nf_conntrack_hash_rnd_initted = 1;
561         }
562
563         /* We don't want any race condition at early drop stage */
564         atomic_inc(&nf_conntrack_count);
565
566         if (nf_conntrack_max
567             && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
568                 unsigned int hash = hash_conntrack(orig);
569                 /* Try dropping from this hash chain. */
570                 if (!early_drop(&nf_conntrack_hash[hash])) {
571                         atomic_dec(&nf_conntrack_count);
572                         if (net_ratelimit())
573                                 printk(KERN_WARNING
574                                        "nf_conntrack: table full, dropping"
575                                        " packet.\n");
576                         return ERR_PTR(-ENOMEM);
577                 }
578         }
579
580         /*  find features needed by this conntrack. */
581         features |= l3proto->get_features(orig);
582
583         /* FIXME: protect helper list per RCU */
584         read_lock_bh(&nf_conntrack_lock);
585         helper = __nf_ct_helper_find(repl);
586         /* NAT might want to assign a helper later */
587         if (helper || features & NF_CT_F_NAT)
588                 features |= NF_CT_F_HELP;
589         read_unlock_bh(&nf_conntrack_lock);
590
591         DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
592
593         read_lock_bh(&nf_ct_cache_lock);
594
595         if (unlikely(!nf_ct_cache[features].use)) {
596                 DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
597                         features);
598                 goto out;
599         }
600
601         conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
602         if (conntrack == NULL) {
603                 DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
604                 goto out;
605         }
606
607         memset(conntrack, 0, nf_ct_cache[features].size);
608         conntrack->features = features;
609         atomic_set(&conntrack->ct_general.use, 1);
610         conntrack->ct_general.destroy = destroy_conntrack;
611         conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
612         conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
613         /* Don't set timer yet: wait for confirmation */
614         init_timer(&conntrack->timeout);
615         conntrack->timeout.data = (unsigned long)conntrack;
616         conntrack->timeout.function = death_by_timeout;
617         read_unlock_bh(&nf_ct_cache_lock);
618
619         return conntrack;
620 out:
621         read_unlock_bh(&nf_ct_cache_lock);
622         atomic_dec(&nf_conntrack_count);
623         return conntrack;
624 }
625
626 struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
627                                    const struct nf_conntrack_tuple *repl)
628 {
629         struct nf_conntrack_l3proto *l3proto;
630
631         l3proto = __nf_ct_l3proto_find(orig->src.l3num);
632         return __nf_conntrack_alloc(orig, repl, l3proto, 0);
633 }
634
635 void nf_conntrack_free(struct nf_conn *conntrack)
636 {
637         u_int32_t features = conntrack->features;
638         NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
639         DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
640                conntrack);
641         kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
642         atomic_dec(&nf_conntrack_count);
643 }
644
645 /* Allocate a new conntrack: we return -ENOMEM if classification
646    failed due to stress.  Otherwise it really is unclassifiable. */
647 static struct nf_conntrack_tuple_hash *
648 init_conntrack(const struct nf_conntrack_tuple *tuple,
649                struct nf_conntrack_l3proto *l3proto,
650                struct nf_conntrack_l4proto *l4proto,
651                struct sk_buff *skb,
652                unsigned int dataoff)
653 {
654         struct nf_conn *conntrack;
655         struct nf_conntrack_tuple repl_tuple;
656         struct nf_conntrack_expect *exp;
657         u_int32_t features = 0;
658
659         if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
660                 DEBUGP("Can't invert tuple.\n");
661                 return NULL;
662         }
663
664         read_lock_bh(&nf_conntrack_lock);
665         exp = __nf_conntrack_expect_find(tuple);
666         if (exp && exp->helper)
667                 features = NF_CT_F_HELP;
668         read_unlock_bh(&nf_conntrack_lock);
669
670         conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto, features);
671         if (conntrack == NULL || IS_ERR(conntrack)) {
672                 DEBUGP("Can't allocate conntrack.\n");
673                 return (struct nf_conntrack_tuple_hash *)conntrack;
674         }
675
676         if (!l4proto->new(conntrack, skb, dataoff)) {
677                 nf_conntrack_free(conntrack);
678                 DEBUGP("init conntrack: can't track with proto module\n");
679                 return NULL;
680         }
681
682         write_lock_bh(&nf_conntrack_lock);
683         exp = find_expectation(tuple);
684
685         if (exp) {
686                 DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
687                         conntrack, exp);
688                 /* Welcome, Mr. Bond.  We've been expecting you... */
689                 __set_bit(IPS_EXPECTED_BIT, &conntrack->status);
690                 conntrack->master = exp->master;
691                 if (exp->helper)
692                         nfct_help(conntrack)->helper = exp->helper;
693 #ifdef CONFIG_NF_CONNTRACK_MARK
694                 conntrack->mark = exp->master->mark;
695 #endif
696 #ifdef CONFIG_NF_CONNTRACK_SECMARK
697                 conntrack->secmark = exp->master->secmark;
698 #endif
699                 nf_conntrack_get(&conntrack->master->ct_general);
700                 NF_CT_STAT_INC(expect_new);
701         } else {
702                 struct nf_conn_help *help = nfct_help(conntrack);
703
704                 if (help)
705                         help->helper = __nf_ct_helper_find(&repl_tuple);
706                 NF_CT_STAT_INC(new);
707         }
708
709         /* Overload tuple linked list to put us in unconfirmed list. */
710         list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
711
712         write_unlock_bh(&nf_conntrack_lock);
713
714         if (exp) {
715                 if (exp->expectfn)
716                         exp->expectfn(conntrack, exp);
717                 nf_conntrack_expect_put(exp);
718         }
719
720         return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
721 }
722
723 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
724 static inline struct nf_conn *
725 resolve_normal_ct(struct sk_buff *skb,
726                   unsigned int dataoff,
727                   u_int16_t l3num,
728                   u_int8_t protonum,
729                   struct nf_conntrack_l3proto *l3proto,
730                   struct nf_conntrack_l4proto *l4proto,
731                   int *set_reply,
732                   enum ip_conntrack_info *ctinfo)
733 {
734         struct nf_conntrack_tuple tuple;
735         struct nf_conntrack_tuple_hash *h;
736         struct nf_conn *ct;
737
738         if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
739                              dataoff, l3num, protonum, &tuple, l3proto,
740                              l4proto)) {
741                 DEBUGP("resolve_normal_ct: Can't get tuple\n");
742                 return NULL;
743         }
744
745         /* look for tuple match */
746         h = nf_conntrack_find_get(&tuple, NULL);
747         if (!h) {
748                 h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
749                 if (!h)
750                         return NULL;
751                 if (IS_ERR(h))
752                         return (void *)h;
753         }
754         ct = nf_ct_tuplehash_to_ctrack(h);
755
756         /* It exists; we have (non-exclusive) reference. */
757         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
758                 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
759                 /* Please set reply bit if this packet OK */
760                 *set_reply = 1;
761         } else {
762                 /* Once we've had two way comms, always ESTABLISHED. */
763                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
764                         DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
765                         *ctinfo = IP_CT_ESTABLISHED;
766                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
767                         DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
768                         *ctinfo = IP_CT_RELATED;
769                 } else {
770                         DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
771                         *ctinfo = IP_CT_NEW;
772                 }
773                 *set_reply = 0;
774         }
775         skb->nfct = &ct->ct_general;
776         skb->nfctinfo = *ctinfo;
777         return ct;
778 }
779
780 unsigned int
781 nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
782 {
783         struct nf_conn *ct;
784         enum ip_conntrack_info ctinfo;
785         struct nf_conntrack_l3proto *l3proto;
786         struct nf_conntrack_l4proto *l4proto;
787         unsigned int dataoff;
788         u_int8_t protonum;
789         int set_reply = 0;
790         int ret;
791
792         /* Previously seen (loopback or untracked)?  Ignore. */
793         if ((*pskb)->nfct) {
794                 NF_CT_STAT_INC(ignore);
795                 return NF_ACCEPT;
796         }
797
798         l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
799         if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
800                 DEBUGP("not prepared to track yet or error occured\n");
801                 return -ret;
802         }
803
804         l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
805
806         /* It may be an special packet, error, unclean...
807          * inverse of the return code tells to the netfilter
808          * core what to do with the packet. */
809         if (l4proto->error != NULL &&
810             (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
811                 NF_CT_STAT_INC(error);
812                 NF_CT_STAT_INC(invalid);
813                 return -ret;
814         }
815
816         ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
817                                &set_reply, &ctinfo);
818         if (!ct) {
819                 /* Not valid part of a connection */
820                 NF_CT_STAT_INC(invalid);
821                 return NF_ACCEPT;
822         }
823
824         if (IS_ERR(ct)) {
825                 /* Too stressed to deal. */
826                 NF_CT_STAT_INC(drop);
827                 return NF_DROP;
828         }
829
830         NF_CT_ASSERT((*pskb)->nfct);
831
832         ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
833         if (ret < 0) {
834                 /* Invalid: inverse of the return code tells
835                  * the netfilter core what to do */
836                 DEBUGP("nf_conntrack_in: Can't track with proto module\n");
837                 nf_conntrack_put((*pskb)->nfct);
838                 (*pskb)->nfct = NULL;
839                 NF_CT_STAT_INC(invalid);
840                 return -ret;
841         }
842
843         if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
844                 nf_conntrack_event_cache(IPCT_STATUS, *pskb);
845
846         return ret;
847 }
848
849 int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
850                          const struct nf_conntrack_tuple *orig)
851 {
852         return nf_ct_invert_tuple(inverse, orig,
853                                   __nf_ct_l3proto_find(orig->src.l3num),
854                                   __nf_ct_l4proto_find(orig->src.l3num,
855                                                      orig->dst.protonum));
856 }
857
858 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
859    implicitly racy: see __nf_conntrack_confirm */
860 void nf_conntrack_alter_reply(struct nf_conn *ct,
861                               const struct nf_conntrack_tuple *newreply)
862 {
863         struct nf_conn_help *help = nfct_help(ct);
864
865         write_lock_bh(&nf_conntrack_lock);
866         /* Should be unconfirmed, so not in hash table yet */
867         NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
868
869         DEBUGP("Altering reply tuple of %p to ", ct);
870         NF_CT_DUMP_TUPLE(newreply);
871
872         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
873         if (!ct->master && help && help->expecting == 0)
874                 help->helper = __nf_ct_helper_find(newreply);
875         write_unlock_bh(&nf_conntrack_lock);
876 }
877
878 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
879 void __nf_ct_refresh_acct(struct nf_conn *ct,
880                           enum ip_conntrack_info ctinfo,
881                           const struct sk_buff *skb,
882                           unsigned long extra_jiffies,
883                           int do_acct)
884 {
885         int event = 0;
886
887         NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
888         NF_CT_ASSERT(skb);
889
890         write_lock_bh(&nf_conntrack_lock);
891
892         /* Only update if this is not a fixed timeout */
893         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
894                 write_unlock_bh(&nf_conntrack_lock);
895                 return;
896         }
897
898         /* If not in hash table, timer will not be active yet */
899         if (!nf_ct_is_confirmed(ct)) {
900                 ct->timeout.expires = extra_jiffies;
901                 event = IPCT_REFRESH;
902         } else {
903                 unsigned long newtime = jiffies + extra_jiffies;
904
905                 /* Only update the timeout if the new timeout is at least
906                    HZ jiffies from the old timeout. Need del_timer for race
907                    avoidance (may already be dying). */
908                 if (newtime - ct->timeout.expires >= HZ
909                     && del_timer(&ct->timeout)) {
910                         ct->timeout.expires = newtime;
911                         add_timer(&ct->timeout);
912                         event = IPCT_REFRESH;
913                 }
914         }
915
916 #ifdef CONFIG_NF_CT_ACCT
917         if (do_acct) {
918                 ct->counters[CTINFO2DIR(ctinfo)].packets++;
919                 ct->counters[CTINFO2DIR(ctinfo)].bytes +=
920                         skb->len - (unsigned int)(skb->nh.raw - skb->data);
921
922                 if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
923                     || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
924                         event |= IPCT_COUNTER_FILLING;
925         }
926 #endif
927
928         write_unlock_bh(&nf_conntrack_lock);
929
930         /* must be unlocked when calling event cache */
931         if (event)
932                 nf_conntrack_event_cache(event, skb);
933 }
934
935 #if defined(CONFIG_NF_CT_NETLINK) || \
936     defined(CONFIG_NF_CT_NETLINK_MODULE)
937
938 #include <linux/netfilter/nfnetlink.h>
939 #include <linux/netfilter/nfnetlink_conntrack.h>
940 #include <linux/mutex.h>
941
942
943 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
944  * in ip_conntrack_core, since we don't want the protocols to autoload
945  * or depend on ctnetlink */
946 int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
947                                const struct nf_conntrack_tuple *tuple)
948 {
949         NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
950                 &tuple->src.u.tcp.port);
951         NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
952                 &tuple->dst.u.tcp.port);
953         return 0;
954
955 nfattr_failure:
956         return -1;
957 }
958
959 static const size_t cta_min_proto[CTA_PROTO_MAX] = {
960         [CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
961         [CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
962 };
963
964 int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
965                                struct nf_conntrack_tuple *t)
966 {
967         if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
968                 return -EINVAL;
969
970         if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
971                 return -EINVAL;
972
973         t->src.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
974         t->dst.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
975
976         return 0;
977 }
978 #endif
979
980 /* Used by ipt_REJECT and ip6t_REJECT. */
981 void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
982 {
983         struct nf_conn *ct;
984         enum ip_conntrack_info ctinfo;
985
986         /* This ICMP is in reverse direction to the packet which caused it */
987         ct = nf_ct_get(skb, &ctinfo);
988         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
989                 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
990         else
991                 ctinfo = IP_CT_RELATED;
992
993         /* Attach to new skbuff, and increment count */
994         nskb->nfct = &ct->ct_general;
995         nskb->nfctinfo = ctinfo;
996         nf_conntrack_get(nskb->nfct);
997 }
998
999 static inline int
1000 do_iter(const struct nf_conntrack_tuple_hash *i,
1001         int (*iter)(struct nf_conn *i, void *data),
1002         void *data)
1003 {
1004         return iter(nf_ct_tuplehash_to_ctrack(i), data);
1005 }
1006
1007 /* Bring out ya dead! */
1008 static struct nf_conn *
1009 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1010                 void *data, unsigned int *bucket)
1011 {
1012         struct nf_conntrack_tuple_hash *h;
1013         struct nf_conn *ct;
1014
1015         write_lock_bh(&nf_conntrack_lock);
1016         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1017                 list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
1018                         ct = nf_ct_tuplehash_to_ctrack(h);
1019                         if (iter(ct, data))
1020                                 goto found;
1021                 }
1022         }
1023         list_for_each_entry(h, &unconfirmed, list) {
1024                 ct = nf_ct_tuplehash_to_ctrack(h);
1025                 if (iter(ct, data))
1026                         goto found;
1027         }
1028         write_unlock_bh(&nf_conntrack_lock);
1029         return NULL;
1030 found:
1031         atomic_inc(&ct->ct_general.use);
1032         write_unlock_bh(&nf_conntrack_lock);
1033         return ct;
1034 }
1035
1036 void
1037 nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1038 {
1039         struct nf_conn *ct;
1040         unsigned int bucket = 0;
1041
1042         while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1043                 /* Time to push up daises... */
1044                 if (del_timer(&ct->timeout))
1045                         death_by_timeout((unsigned long)ct);
1046                 /* ... else the timer will get him soon. */
1047
1048                 nf_ct_put(ct);
1049         }
1050 }
1051
1052 static int kill_all(struct nf_conn *i, void *data)
1053 {
1054         return 1;
1055 }
1056
1057 static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1058 {
1059         if (vmalloced)
1060                 vfree(hash);
1061         else
1062                 free_pages((unsigned long)hash, 
1063                            get_order(sizeof(struct list_head) * size));
1064 }
1065
1066 void nf_conntrack_flush()
1067 {
1068         nf_ct_iterate_cleanup(kill_all, NULL);
1069 }
1070
1071 /* Mishearing the voices in his head, our hero wonders how he's
1072    supposed to kill the mall. */
1073 void nf_conntrack_cleanup(void)
1074 {
1075         int i;
1076
1077         ip_ct_attach = NULL;
1078
1079         /* This makes sure all current packets have passed through
1080            netfilter framework.  Roll on, two-stage module
1081            delete... */
1082         synchronize_net();
1083
1084         nf_ct_event_cache_flush();
1085  i_see_dead_people:
1086         nf_conntrack_flush();
1087         if (atomic_read(&nf_conntrack_count) != 0) {
1088                 schedule();
1089                 goto i_see_dead_people;
1090         }
1091         /* wait until all references to nf_conntrack_untracked are dropped */
1092         while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1093                 schedule();
1094
1095         for (i = 0; i < NF_CT_F_NUM; i++) {
1096                 if (nf_ct_cache[i].use == 0)
1097                         continue;
1098
1099                 NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1100                 nf_ct_cache[i].use = 1;
1101                 nf_conntrack_unregister_cache(i);
1102         }
1103         kmem_cache_destroy(nf_conntrack_expect_cachep);
1104         free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1105                             nf_conntrack_htable_size);
1106
1107         nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1108
1109         /* free l3proto protocol tables */
1110         for (i = 0; i < PF_MAX; i++)
1111                 if (nf_ct_protos[i]) {
1112                         kfree(nf_ct_protos[i]);
1113                         nf_ct_protos[i] = NULL;
1114                 }
1115 }
1116
1117 static struct list_head *alloc_hashtable(int size, int *vmalloced)
1118 {
1119         struct list_head *hash;
1120         unsigned int i;
1121
1122         *vmalloced = 0; 
1123         hash = (void*)__get_free_pages(GFP_KERNEL, 
1124                                        get_order(sizeof(struct list_head)
1125                                                  * size));
1126         if (!hash) { 
1127                 *vmalloced = 1;
1128                 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1129                 hash = vmalloc(sizeof(struct list_head) * size);
1130         }
1131
1132         if (hash)
1133                 for (i = 0; i < size; i++) 
1134                         INIT_LIST_HEAD(&hash[i]);
1135
1136         return hash;
1137 }
1138
1139 int set_hashsize(const char *val, struct kernel_param *kp)
1140 {
1141         int i, bucket, hashsize, vmalloced;
1142         int old_vmalloced, old_size;
1143         int rnd;
1144         struct list_head *hash, *old_hash;
1145         struct nf_conntrack_tuple_hash *h;
1146
1147         /* On boot, we can set this without any fancy locking. */
1148         if (!nf_conntrack_htable_size)
1149                 return param_set_uint(val, kp);
1150
1151         hashsize = simple_strtol(val, NULL, 0);
1152         if (!hashsize)
1153                 return -EINVAL;
1154
1155         hash = alloc_hashtable(hashsize, &vmalloced);
1156         if (!hash)
1157                 return -ENOMEM;
1158
1159         /* We have to rehahs for the new table anyway, so we also can
1160          * use a newrandom seed */
1161         get_random_bytes(&rnd, 4);
1162
1163         write_lock_bh(&nf_conntrack_lock);
1164         for (i = 0; i < nf_conntrack_htable_size; i++) {
1165                 while (!list_empty(&nf_conntrack_hash[i])) {
1166                         h = list_entry(nf_conntrack_hash[i].next,
1167                                        struct nf_conntrack_tuple_hash, list);
1168                         list_del(&h->list);
1169                         bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1170                         list_add_tail(&h->list, &hash[bucket]);
1171                 }
1172         }
1173         old_size = nf_conntrack_htable_size;
1174         old_vmalloced = nf_conntrack_vmalloc;
1175         old_hash = nf_conntrack_hash;
1176
1177         nf_conntrack_htable_size = hashsize;
1178         nf_conntrack_vmalloc = vmalloced;
1179         nf_conntrack_hash = hash;
1180         nf_conntrack_hash_rnd = rnd;
1181         write_unlock_bh(&nf_conntrack_lock);
1182
1183         free_conntrack_hash(old_hash, old_vmalloced, old_size);
1184         return 0;
1185 }
1186
1187 module_param_call(hashsize, set_hashsize, param_get_uint,
1188                   &nf_conntrack_htable_size, 0600);
1189
1190 int __init nf_conntrack_init(void)
1191 {
1192         unsigned int i;
1193         int ret;
1194
1195         /* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
1196          * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
1197         if (!nf_conntrack_htable_size) {
1198                 nf_conntrack_htable_size
1199                         = (((num_physpages << PAGE_SHIFT) / 16384)
1200                            / sizeof(struct list_head));
1201                 if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1202                         nf_conntrack_htable_size = 8192;
1203                 if (nf_conntrack_htable_size < 16)
1204                         nf_conntrack_htable_size = 16;
1205         }
1206         nf_conntrack_max = 8 * nf_conntrack_htable_size;
1207
1208         printk("nf_conntrack version %s (%u buckets, %d max)\n",
1209                NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1210                nf_conntrack_max);
1211
1212         nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1213                                             &nf_conntrack_vmalloc);
1214         if (!nf_conntrack_hash) {
1215                 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1216                 goto err_out;
1217         }
1218
1219         ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1220                                           sizeof(struct nf_conn));
1221         if (ret < 0) {
1222                 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1223                 goto err_free_hash;
1224         }
1225
1226         nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1227                                         sizeof(struct nf_conntrack_expect),
1228                                         0, 0, NULL, NULL);
1229         if (!nf_conntrack_expect_cachep) {
1230                 printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1231                 goto err_free_conntrack_slab;
1232         }
1233
1234         ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1235         if (ret < 0)
1236                 goto out_free_expect_slab;
1237
1238         /* Don't NEED lock here, but good form anyway. */
1239         write_lock_bh(&nf_conntrack_lock);
1240         for (i = 0; i < AF_MAX; i++)
1241                 nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1242         write_unlock_bh(&nf_conntrack_lock);
1243
1244         /* For use by REJECT target */
1245         ip_ct_attach = __nf_conntrack_attach;
1246
1247         /* Set up fake conntrack:
1248             - to never be deleted, not in any hashes */
1249         atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1250         /*  - and look it like as a confirmed connection */
1251         set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1252
1253         return ret;
1254
1255 out_free_expect_slab:
1256         kmem_cache_destroy(nf_conntrack_expect_cachep);
1257 err_free_conntrack_slab:
1258         nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1259 err_free_hash:
1260         free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1261                             nf_conntrack_htable_size);
1262 err_out:
1263         return -ENOMEM;
1264 }