mac80211: convert sta_info.pspoll to a flag
[safe/jmp/linux-2.6] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "ieee80211_led.h"
23 #include "wep.h"
24 #include "wpa.h"
25 #include "tkip.h"
26 #include "wme.h"
27
28 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
29                                 struct tid_ampdu_rx *tid_agg_rx,
30                                 struct sk_buff *skb, u16 mpdu_seq_num,
31                                 int bar_req);
32 /*
33  * monitor mode reception
34  *
35  * This function cleans up the SKB, i.e. it removes all the stuff
36  * only useful for monitoring.
37  */
38 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
39                                            struct sk_buff *skb,
40                                            int rtap_len)
41 {
42         skb_pull(skb, rtap_len);
43
44         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
45                 if (likely(skb->len > FCS_LEN))
46                         skb_trim(skb, skb->len - FCS_LEN);
47                 else {
48                         /* driver bug */
49                         WARN_ON(1);
50                         dev_kfree_skb(skb);
51                         skb = NULL;
52                 }
53         }
54
55         return skb;
56 }
57
58 static inline int should_drop_frame(struct ieee80211_rx_status *status,
59                                     struct sk_buff *skb,
60                                     int present_fcs_len,
61                                     int radiotap_len)
62 {
63         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
64
65         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
66                 return 1;
67         if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
68                 return 1;
69         if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
70                         cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
71             ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
72                         cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
73             ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
74                         cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
75                 return 1;
76         return 0;
77 }
78
79 /*
80  * This function copies a received frame to all monitor interfaces and
81  * returns a cleaned-up SKB that no longer includes the FCS nor the
82  * radiotap header the driver might have added.
83  */
84 static struct sk_buff *
85 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
86                      struct ieee80211_rx_status *status,
87                      struct ieee80211_rate *rate)
88 {
89         struct ieee80211_sub_if_data *sdata;
90         int needed_headroom = 0;
91         struct ieee80211_radiotap_header *rthdr;
92         __le64 *rttsft = NULL;
93         struct ieee80211_rtap_fixed_data {
94                 u8 flags;
95                 u8 rate;
96                 __le16 chan_freq;
97                 __le16 chan_flags;
98                 u8 antsignal;
99                 u8 padding_for_rxflags;
100                 __le16 rx_flags;
101         } __attribute__ ((packed)) *rtfixed;
102         struct sk_buff *skb, *skb2;
103         struct net_device *prev_dev = NULL;
104         int present_fcs_len = 0;
105         int rtap_len = 0;
106
107         /*
108          * First, we may need to make a copy of the skb because
109          *  (1) we need to modify it for radiotap (if not present), and
110          *  (2) the other RX handlers will modify the skb we got.
111          *
112          * We don't need to, of course, if we aren't going to return
113          * the SKB because it has a bad FCS/PLCP checksum.
114          */
115         if (status->flag & RX_FLAG_RADIOTAP)
116                 rtap_len = ieee80211_get_radiotap_len(origskb->data);
117         else
118                 /* room for radiotap header, always present fields and TSFT */
119                 needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
120
121         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
122                 present_fcs_len = FCS_LEN;
123
124         if (!local->monitors) {
125                 if (should_drop_frame(status, origskb, present_fcs_len,
126                                       rtap_len)) {
127                         dev_kfree_skb(origskb);
128                         return NULL;
129                 }
130
131                 return remove_monitor_info(local, origskb, rtap_len);
132         }
133
134         if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
135                 /* only need to expand headroom if necessary */
136                 skb = origskb;
137                 origskb = NULL;
138
139                 /*
140                  * This shouldn't trigger often because most devices have an
141                  * RX header they pull before we get here, and that should
142                  * be big enough for our radiotap information. We should
143                  * probably export the length to drivers so that we can have
144                  * them allocate enough headroom to start with.
145                  */
146                 if (skb_headroom(skb) < needed_headroom &&
147                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
148                         dev_kfree_skb(skb);
149                         return NULL;
150                 }
151         } else {
152                 /*
153                  * Need to make a copy and possibly remove radiotap header
154                  * and FCS from the original.
155                  */
156                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
157
158                 origskb = remove_monitor_info(local, origskb, rtap_len);
159
160                 if (!skb)
161                         return origskb;
162         }
163
164         /* if necessary, prepend radiotap information */
165         if (!(status->flag & RX_FLAG_RADIOTAP)) {
166                 rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
167                 rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
168                 if (status->flag & RX_FLAG_TSFT) {
169                         rttsft = (void *) skb_push(skb, sizeof(*rttsft));
170                         rtap_len += 8;
171                 }
172                 rthdr = (void *) skb_push(skb, sizeof(*rthdr));
173                 memset(rthdr, 0, sizeof(*rthdr));
174                 memset(rtfixed, 0, sizeof(*rtfixed));
175                 rthdr->it_present =
176                         cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
177                                     (1 << IEEE80211_RADIOTAP_RATE) |
178                                     (1 << IEEE80211_RADIOTAP_CHANNEL) |
179                                     (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
180                                     (1 << IEEE80211_RADIOTAP_RX_FLAGS));
181                 rtfixed->flags = 0;
182                 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
183                         rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
184
185                 if (rttsft) {
186                         *rttsft = cpu_to_le64(status->mactime);
187                         rthdr->it_present |=
188                                 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
189                 }
190
191                 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
192                 rtfixed->rx_flags = 0;
193                 if (status->flag &
194                     (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195                         rtfixed->rx_flags |=
196                                 cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
197
198                 rtfixed->rate = rate->bitrate / 5;
199
200                 rtfixed->chan_freq = cpu_to_le16(status->freq);
201
202                 if (status->band == IEEE80211_BAND_5GHZ)
203                         rtfixed->chan_flags =
204                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
205                                             IEEE80211_CHAN_5GHZ);
206                 else
207                         rtfixed->chan_flags =
208                                 cpu_to_le16(IEEE80211_CHAN_DYN |
209                                             IEEE80211_CHAN_2GHZ);
210
211                 rtfixed->antsignal = status->ssi;
212                 rthdr->it_len = cpu_to_le16(rtap_len);
213         }
214
215         skb_reset_mac_header(skb);
216         skb->ip_summed = CHECKSUM_UNNECESSARY;
217         skb->pkt_type = PACKET_OTHERHOST;
218         skb->protocol = htons(ETH_P_802_2);
219
220         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
221                 if (!netif_running(sdata->dev))
222                         continue;
223
224                 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
225                         continue;
226
227                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
228                         continue;
229
230                 if (prev_dev) {
231                         skb2 = skb_clone(skb, GFP_ATOMIC);
232                         if (skb2) {
233                                 skb2->dev = prev_dev;
234                                 netif_rx(skb2);
235                         }
236                 }
237
238                 prev_dev = sdata->dev;
239                 sdata->dev->stats.rx_packets++;
240                 sdata->dev->stats.rx_bytes += skb->len;
241         }
242
243         if (prev_dev) {
244                 skb->dev = prev_dev;
245                 netif_rx(skb);
246         } else
247                 dev_kfree_skb(skb);
248
249         return origskb;
250 }
251
252
253 static void ieee80211_parse_qos(struct ieee80211_txrx_data *rx)
254 {
255         u8 *data = rx->skb->data;
256         int tid;
257
258         /* does the frame have a qos control field? */
259         if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
260                 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
261                 /* frame has qos control */
262                 tid = qc[0] & QOS_CONTROL_TID_MASK;
263                 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
264                         rx->flags |= IEEE80211_TXRXD_RX_AMSDU;
265                 else
266                         rx->flags &= ~IEEE80211_TXRXD_RX_AMSDU;
267         } else {
268                 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
269                         /* Separate TID for management frames */
270                         tid = NUM_RX_DATA_QUEUES - 1;
271                 } else {
272                         /* no qos control present */
273                         tid = 0; /* 802.1d - Best Effort */
274                 }
275         }
276
277         I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
278         /* only a debug counter, sta might not be assigned properly yet */
279         if (rx->sta)
280                 I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
281
282         rx->u.rx.queue = tid;
283         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
284          * For now, set skb->priority to 0 for other cases. */
285         rx->skb->priority = (tid > 7) ? 0 : tid;
286 }
287
288 static void ieee80211_verify_ip_alignment(struct ieee80211_txrx_data *rx)
289 {
290 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
291         int hdrlen;
292
293         if (!WLAN_FC_DATA_PRESENT(rx->fc))
294                 return;
295
296         /*
297          * Drivers are required to align the payload data in a way that
298          * guarantees that the contained IP header is aligned to a four-
299          * byte boundary. In the case of regular frames, this simply means
300          * aligning the payload to a four-byte boundary (because either
301          * the IP header is directly contained, or IV/RFC1042 headers that
302          * have a length divisible by four are in front of it.
303          *
304          * With A-MSDU frames, however, the payload data address must
305          * yield two modulo four because there are 14-byte 802.3 headers
306          * within the A-MSDU frames that push the IP header further back
307          * to a multiple of four again. Thankfully, the specs were sane
308          * enough this time around to require padding each A-MSDU subframe
309          * to a length that is a multiple of four.
310          *
311          * Padding like atheros hardware adds which is inbetween the 802.11
312          * header and the payload is not supported, the driver is required
313          * to move the 802.11 header further back in that case.
314          */
315         hdrlen = ieee80211_get_hdrlen(rx->fc);
316         if (rx->flags & IEEE80211_TXRXD_RX_AMSDU)
317                 hdrlen += ETH_HLEN;
318         WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
319 #endif
320 }
321
322
323 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
324                                    struct sk_buff *skb,
325                                    struct ieee80211_rx_status *status,
326                                    struct ieee80211_rate *rate)
327 {
328         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
329         u32 load = 0, hdrtime;
330
331         /* Estimate total channel use caused by this frame */
332
333         /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
334          * 1 usec = 1/8 * (1080 / 10) = 13.5 */
335
336         if (status->band == IEEE80211_BAND_5GHZ ||
337             (status->band == IEEE80211_BAND_5GHZ &&
338              rate->flags & IEEE80211_RATE_ERP_G))
339                 hdrtime = CHAN_UTIL_HDR_SHORT;
340         else
341                 hdrtime = CHAN_UTIL_HDR_LONG;
342
343         load = hdrtime;
344         if (!is_multicast_ether_addr(hdr->addr1))
345                 load += hdrtime;
346
347         /* TODO: optimise again */
348         load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
349
350         /* Divide channel_use by 8 to avoid wrapping around the counter */
351         load >>= CHAN_UTIL_SHIFT;
352
353         return load;
354 }
355
356 /* rx handlers */
357
358 static ieee80211_rx_result
359 ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
360 {
361         if (rx->sta)
362                 rx->sta->channel_use_raw += rx->u.rx.load;
363         rx->sdata->channel_use_raw += rx->u.rx.load;
364         return RX_CONTINUE;
365 }
366
367 static ieee80211_rx_result
368 ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
369 {
370         struct ieee80211_local *local = rx->local;
371         struct sk_buff *skb = rx->skb;
372
373         if (unlikely(local->sta_hw_scanning))
374                 return ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
375
376         if (unlikely(local->sta_sw_scanning)) {
377                 /* drop all the other packets during a software scan anyway */
378                 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status)
379                     != RX_QUEUED)
380                         dev_kfree_skb(skb);
381                 return RX_QUEUED;
382         }
383
384         if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
385                 /* scanning finished during invoking of handlers */
386                 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
387                 return RX_DROP_UNUSABLE;
388         }
389
390         return RX_CONTINUE;
391 }
392
393 static ieee80211_rx_result
394 ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
395 {
396         struct ieee80211_hdr *hdr;
397         hdr = (struct ieee80211_hdr *) rx->skb->data;
398
399         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
400         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
401                 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
402                              rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
403                              hdr->seq_ctrl)) {
404                         if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
405                                 rx->local->dot11FrameDuplicateCount++;
406                                 rx->sta->num_duplicates++;
407                         }
408                         return RX_DROP_MONITOR;
409                 } else
410                         rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
411         }
412
413         if (unlikely(rx->skb->len < 16)) {
414                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
415                 return RX_DROP_MONITOR;
416         }
417
418         /* Drop disallowed frame classes based on STA auth/assoc state;
419          * IEEE 802.11, Chap 5.5.
420          *
421          * 80211.o does filtering only based on association state, i.e., it
422          * drops Class 3 frames from not associated stations. hostapd sends
423          * deauth/disassoc frames when needed. In addition, hostapd is
424          * responsible for filtering on both auth and assoc states.
425          */
426         if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
427                       ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
428                        (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
429                      rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
430                      (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
431                 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
432                      !(rx->fc & IEEE80211_FCTL_TODS) &&
433                      (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
434                     || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
435                         /* Drop IBSS frames and frames for other hosts
436                          * silently. */
437                         return RX_DROP_MONITOR;
438                 }
439
440                 return RX_DROP_MONITOR;
441         }
442
443         return RX_CONTINUE;
444 }
445
446
447 static ieee80211_rx_result
448 ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx)
449 {
450         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
451         int keyidx;
452         int hdrlen;
453         ieee80211_rx_result result = RX_DROP_UNUSABLE;
454         struct ieee80211_key *stakey = NULL;
455
456         /*
457          * Key selection 101
458          *
459          * There are three types of keys:
460          *  - GTK (group keys)
461          *  - PTK (pairwise keys)
462          *  - STK (station-to-station pairwise keys)
463          *
464          * When selecting a key, we have to distinguish between multicast
465          * (including broadcast) and unicast frames, the latter can only
466          * use PTKs and STKs while the former always use GTKs. Unless, of
467          * course, actual WEP keys ("pre-RSNA") are used, then unicast
468          * frames can also use key indizes like GTKs. Hence, if we don't
469          * have a PTK/STK we check the key index for a WEP key.
470          *
471          * Note that in a regular BSS, multicast frames are sent by the
472          * AP only, associated stations unicast the frame to the AP first
473          * which then multicasts it on their behalf.
474          *
475          * There is also a slight problem in IBSS mode: GTKs are negotiated
476          * with each station, that is something we don't currently handle.
477          * The spec seems to expect that one negotiates the same key with
478          * every station but there's no such requirement; VLANs could be
479          * possible.
480          */
481
482         if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
483                 return RX_CONTINUE;
484
485         /*
486          * No point in finding a key and decrypting if the frame is neither
487          * addressed to us nor a multicast frame.
488          */
489         if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
490                 return RX_CONTINUE;
491
492         if (rx->sta)
493                 stakey = rcu_dereference(rx->sta->key);
494
495         if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
496                 rx->key = stakey;
497         } else {
498                 /*
499                  * The device doesn't give us the IV so we won't be
500                  * able to look up the key. That's ok though, we
501                  * don't need to decrypt the frame, we just won't
502                  * be able to keep statistics accurate.
503                  * Except for key threshold notifications, should
504                  * we somehow allow the driver to tell us which key
505                  * the hardware used if this flag is set?
506                  */
507                 if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
508                     (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
509                         return RX_CONTINUE;
510
511                 hdrlen = ieee80211_get_hdrlen(rx->fc);
512
513                 if (rx->skb->len < 8 + hdrlen)
514                         return RX_DROP_UNUSABLE; /* TODO: count this? */
515
516                 /*
517                  * no need to call ieee80211_wep_get_keyidx,
518                  * it verifies a bunch of things we've done already
519                  */
520                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
521
522                 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
523
524                 /*
525                  * RSNA-protected unicast frames should always be sent with
526                  * pairwise or station-to-station keys, but for WEP we allow
527                  * using a key index as well.
528                  */
529                 if (rx->key && rx->key->conf.alg != ALG_WEP &&
530                     !is_multicast_ether_addr(hdr->addr1))
531                         rx->key = NULL;
532         }
533
534         if (rx->key) {
535                 rx->key->tx_rx_count++;
536                 /* TODO: add threshold stuff again */
537         } else {
538 #ifdef CONFIG_MAC80211_DEBUG
539                 if (net_ratelimit())
540                         printk(KERN_DEBUG "%s: RX protected frame,"
541                                " but have no key\n", rx->dev->name);
542 #endif /* CONFIG_MAC80211_DEBUG */
543                 return RX_DROP_MONITOR;
544         }
545
546         /* Check for weak IVs if possible */
547         if (rx->sta && rx->key->conf.alg == ALG_WEP &&
548             ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
549             (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
550              !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) &&
551             ieee80211_wep_is_weak_iv(rx->skb, rx->key))
552                 rx->sta->wep_weak_iv_count++;
553
554         switch (rx->key->conf.alg) {
555         case ALG_WEP:
556                 result = ieee80211_crypto_wep_decrypt(rx);
557                 break;
558         case ALG_TKIP:
559                 result = ieee80211_crypto_tkip_decrypt(rx);
560                 break;
561         case ALG_CCMP:
562                 result = ieee80211_crypto_ccmp_decrypt(rx);
563                 break;
564         }
565
566         /* either the frame has been decrypted or will be dropped */
567         rx->u.rx.status->flag |= RX_FLAG_DECRYPTED;
568
569         return result;
570 }
571
572 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
573 {
574         struct ieee80211_sub_if_data *sdata;
575         DECLARE_MAC_BUF(mac);
576
577         sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
578
579         if (sdata->bss)
580                 atomic_inc(&sdata->bss->num_sta_ps);
581         sta->flags |= WLAN_STA_PS;
582         sta->flags &= ~WLAN_STA_PSPOLL;
583 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
584         printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
585                dev->name, print_mac(mac, sta->addr), sta->aid);
586 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
587 }
588
589 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
590 {
591         struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
592         struct sk_buff *skb;
593         int sent = 0;
594         struct ieee80211_sub_if_data *sdata;
595         struct ieee80211_tx_packet_data *pkt_data;
596         DECLARE_MAC_BUF(mac);
597
598         sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
599         if (sdata->bss)
600                 atomic_dec(&sdata->bss->num_sta_ps);
601         sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM | WLAN_STA_PSPOLL);
602         if (!skb_queue_empty(&sta->ps_tx_buf)) {
603                 if (local->ops->set_tim)
604                         local->ops->set_tim(local_to_hw(local), sta->aid, 0);
605                 if (sdata->bss)
606                         bss_tim_clear(local, sdata->bss, sta->aid);
607         }
608 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
609         printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
610                dev->name, print_mac(mac, sta->addr), sta->aid);
611 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
612         /* Send all buffered frames to the station */
613         while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
614                 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
615                 sent++;
616                 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
617                 dev_queue_xmit(skb);
618         }
619         while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
620                 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
621                 local->total_ps_buffered--;
622                 sent++;
623 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
624                 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
625                        "since STA not sleeping anymore\n", dev->name,
626                        print_mac(mac, sta->addr), sta->aid);
627 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
628                 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
629                 dev_queue_xmit(skb);
630         }
631
632         return sent;
633 }
634
635 static ieee80211_rx_result
636 ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
637 {
638         struct sta_info *sta = rx->sta;
639         struct net_device *dev = rx->dev;
640         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
641
642         if (!sta)
643                 return RX_CONTINUE;
644
645         /* Update last_rx only for IBSS packets which are for the current
646          * BSSID to avoid keeping the current IBSS network alive in cases where
647          * other STAs are using different BSSID. */
648         if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
649                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
650                                                 IEEE80211_IF_TYPE_IBSS);
651                 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
652                         sta->last_rx = jiffies;
653         } else
654         if (!is_multicast_ether_addr(hdr->addr1) ||
655             rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
656                 /* Update last_rx only for unicast frames in order to prevent
657                  * the Probe Request frames (the only broadcast frames from a
658                  * STA in infrastructure mode) from keeping a connection alive.
659                  */
660                 sta->last_rx = jiffies;
661         }
662
663         if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
664                 return RX_CONTINUE;
665
666         sta->rx_fragments++;
667         sta->rx_bytes += rx->skb->len;
668         sta->last_rssi = rx->u.rx.status->ssi;
669         sta->last_signal = rx->u.rx.status->signal;
670         sta->last_noise = rx->u.rx.status->noise;
671
672         if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
673                 /* Change STA power saving mode only in the end of a frame
674                  * exchange sequence */
675                 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
676                         rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
677                 else if (!(sta->flags & WLAN_STA_PS) &&
678                          (rx->fc & IEEE80211_FCTL_PM))
679                         ap_sta_ps_start(dev, sta);
680         }
681
682         /* Drop data::nullfunc frames silently, since they are used only to
683          * control station power saving mode. */
684         if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
685             (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
686                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
687                 /* Update counter and free packet here to avoid counting this
688                  * as a dropped packed. */
689                 sta->rx_packets++;
690                 dev_kfree_skb(rx->skb);
691                 return RX_QUEUED;
692         }
693
694         return RX_CONTINUE;
695 } /* ieee80211_rx_h_sta_process */
696
697 static inline struct ieee80211_fragment_entry *
698 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
699                          unsigned int frag, unsigned int seq, int rx_queue,
700                          struct sk_buff **skb)
701 {
702         struct ieee80211_fragment_entry *entry;
703         int idx;
704
705         idx = sdata->fragment_next;
706         entry = &sdata->fragments[sdata->fragment_next++];
707         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
708                 sdata->fragment_next = 0;
709
710         if (!skb_queue_empty(&entry->skb_list)) {
711 #ifdef CONFIG_MAC80211_DEBUG
712                 struct ieee80211_hdr *hdr =
713                         (struct ieee80211_hdr *) entry->skb_list.next->data;
714                 DECLARE_MAC_BUF(mac);
715                 DECLARE_MAC_BUF(mac2);
716                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
717                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
718                        "addr1=%s addr2=%s\n",
719                        sdata->dev->name, idx,
720                        jiffies - entry->first_frag_time, entry->seq,
721                        entry->last_frag, print_mac(mac, hdr->addr1),
722                        print_mac(mac2, hdr->addr2));
723 #endif /* CONFIG_MAC80211_DEBUG */
724                 __skb_queue_purge(&entry->skb_list);
725         }
726
727         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
728         *skb = NULL;
729         entry->first_frag_time = jiffies;
730         entry->seq = seq;
731         entry->rx_queue = rx_queue;
732         entry->last_frag = frag;
733         entry->ccmp = 0;
734         entry->extra_len = 0;
735
736         return entry;
737 }
738
739 static inline struct ieee80211_fragment_entry *
740 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
741                           u16 fc, unsigned int frag, unsigned int seq,
742                           int rx_queue, struct ieee80211_hdr *hdr)
743 {
744         struct ieee80211_fragment_entry *entry;
745         int i, idx;
746
747         idx = sdata->fragment_next;
748         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
749                 struct ieee80211_hdr *f_hdr;
750                 u16 f_fc;
751
752                 idx--;
753                 if (idx < 0)
754                         idx = IEEE80211_FRAGMENT_MAX - 1;
755
756                 entry = &sdata->fragments[idx];
757                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
758                     entry->rx_queue != rx_queue ||
759                     entry->last_frag + 1 != frag)
760                         continue;
761
762                 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
763                 f_fc = le16_to_cpu(f_hdr->frame_control);
764
765                 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
766                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
767                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
768                         continue;
769
770                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
771                         __skb_queue_purge(&entry->skb_list);
772                         continue;
773                 }
774                 return entry;
775         }
776
777         return NULL;
778 }
779
780 static ieee80211_rx_result
781 ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
782 {
783         struct ieee80211_hdr *hdr;
784         u16 sc;
785         unsigned int frag, seq;
786         struct ieee80211_fragment_entry *entry;
787         struct sk_buff *skb;
788         DECLARE_MAC_BUF(mac);
789
790         hdr = (struct ieee80211_hdr *) rx->skb->data;
791         sc = le16_to_cpu(hdr->seq_ctrl);
792         frag = sc & IEEE80211_SCTL_FRAG;
793
794         if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
795                    (rx->skb)->len < 24 ||
796                    is_multicast_ether_addr(hdr->addr1))) {
797                 /* not fragmented */
798                 goto out;
799         }
800         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
801
802         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
803
804         if (frag == 0) {
805                 /* This is the first fragment of a new frame. */
806                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
807                                                  rx->u.rx.queue, &(rx->skb));
808                 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
809                     (rx->fc & IEEE80211_FCTL_PROTECTED)) {
810                         /* Store CCMP PN so that we can verify that the next
811                          * fragment has a sequential PN value. */
812                         entry->ccmp = 1;
813                         memcpy(entry->last_pn,
814                                rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
815                                CCMP_PN_LEN);
816                 }
817                 return RX_QUEUED;
818         }
819
820         /* This is a fragment for a frame that should already be pending in
821          * fragment cache. Add this fragment to the end of the pending entry.
822          */
823         entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
824                                           rx->u.rx.queue, hdr);
825         if (!entry) {
826                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
827                 return RX_DROP_MONITOR;
828         }
829
830         /* Verify that MPDUs within one MSDU have sequential PN values.
831          * (IEEE 802.11i, 8.3.3.4.5) */
832         if (entry->ccmp) {
833                 int i;
834                 u8 pn[CCMP_PN_LEN], *rpn;
835                 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
836                         return RX_DROP_UNUSABLE;
837                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
838                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
839                         pn[i]++;
840                         if (pn[i])
841                                 break;
842                 }
843                 rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
844                 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
845                         if (net_ratelimit())
846                                 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
847                                        "sequential A2=%s"
848                                        " PN=%02x%02x%02x%02x%02x%02x "
849                                        "(expected %02x%02x%02x%02x%02x%02x)\n",
850                                        rx->dev->name, print_mac(mac, hdr->addr2),
851                                        rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
852                                        rpn[5], pn[0], pn[1], pn[2], pn[3],
853                                        pn[4], pn[5]);
854                         return RX_DROP_UNUSABLE;
855                 }
856                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
857         }
858
859         skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
860         __skb_queue_tail(&entry->skb_list, rx->skb);
861         entry->last_frag = frag;
862         entry->extra_len += rx->skb->len;
863         if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
864                 rx->skb = NULL;
865                 return RX_QUEUED;
866         }
867
868         rx->skb = __skb_dequeue(&entry->skb_list);
869         if (skb_tailroom(rx->skb) < entry->extra_len) {
870                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
871                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
872                                               GFP_ATOMIC))) {
873                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
874                         __skb_queue_purge(&entry->skb_list);
875                         return RX_DROP_UNUSABLE;
876                 }
877         }
878         while ((skb = __skb_dequeue(&entry->skb_list))) {
879                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
880                 dev_kfree_skb(skb);
881         }
882
883         /* Complete frame has been reassembled - process it now */
884         rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
885
886  out:
887         if (rx->sta)
888                 rx->sta->rx_packets++;
889         if (is_multicast_ether_addr(hdr->addr1))
890                 rx->local->dot11MulticastReceivedFrameCount++;
891         else
892                 ieee80211_led_rx(rx->local);
893         return RX_CONTINUE;
894 }
895
896 static ieee80211_rx_result
897 ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
898 {
899         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
900         struct sk_buff *skb;
901         int no_pending_pkts;
902         DECLARE_MAC_BUF(mac);
903
904         if (likely(!rx->sta ||
905                    (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
906                    (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
907                    !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
908                 return RX_CONTINUE;
909
910         if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
911             (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
912                 return RX_DROP_UNUSABLE;
913
914         skb = skb_dequeue(&rx->sta->tx_filtered);
915         if (!skb) {
916                 skb = skb_dequeue(&rx->sta->ps_tx_buf);
917                 if (skb)
918                         rx->local->total_ps_buffered--;
919         }
920         no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
921                 skb_queue_empty(&rx->sta->ps_tx_buf);
922
923         if (skb) {
924                 struct ieee80211_hdr *hdr =
925                         (struct ieee80211_hdr *) skb->data;
926
927                 /*
928                  * Tell TX path to send one frame even though the STA may
929                  * still remain is PS mode after this frame exchange.
930                  */
931                 rx->sta->flags |= WLAN_STA_PSPOLL;
932
933 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
934                 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
935                        print_mac(mac, rx->sta->addr), rx->sta->aid,
936                        skb_queue_len(&rx->sta->ps_tx_buf));
937 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
938
939                 /* Use MoreData flag to indicate whether there are more
940                  * buffered frames for this STA */
941                 if (no_pending_pkts) {
942                         hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
943                         rx->sta->flags &= ~WLAN_STA_TIM;
944                 } else
945                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
946
947                 dev_queue_xmit(skb);
948
949                 if (no_pending_pkts) {
950                         if (rx->local->ops->set_tim)
951                                 rx->local->ops->set_tim(local_to_hw(rx->local),
952                                                        rx->sta->aid, 0);
953                         if (rx->sdata->bss)
954                                 bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
955                 }
956 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
957         } else if (!rx->u.rx.sent_ps_buffered) {
958                 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
959                        "though there is no buffered frames for it\n",
960                        rx->dev->name, print_mac(mac, rx->sta->addr));
961 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
962
963         }
964
965         /* Free PS Poll skb here instead of returning RX_DROP that would
966          * count as an dropped frame. */
967         dev_kfree_skb(rx->skb);
968
969         return RX_QUEUED;
970 }
971
972 static ieee80211_rx_result
973 ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
974 {
975         u16 fc = rx->fc;
976         u8 *data = rx->skb->data;
977         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
978
979         if (!WLAN_FC_IS_QOS_DATA(fc))
980                 return RX_CONTINUE;
981
982         /* remove the qos control field, update frame type and meta-data */
983         memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
984         hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
985         /* change frame type to non QOS */
986         rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
987         hdr->frame_control = cpu_to_le16(fc);
988
989         return RX_CONTINUE;
990 }
991
992 static int
993 ieee80211_802_1x_port_control(struct ieee80211_txrx_data *rx)
994 {
995         if (unlikely(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED))) {
996 #ifdef CONFIG_MAC80211_DEBUG
997                 if (net_ratelimit())
998                         printk(KERN_DEBUG "%s: dropped frame "
999                                "(unauthorized port)\n", rx->dev->name);
1000 #endif /* CONFIG_MAC80211_DEBUG */
1001                 return -EACCES;
1002         }
1003
1004         return 0;
1005 }
1006
1007 static int
1008 ieee80211_drop_unencrypted(struct ieee80211_txrx_data *rx)
1009 {
1010         /*
1011          * Pass through unencrypted frames if the hardware has
1012          * decrypted them already.
1013          */
1014         if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
1015                 return 0;
1016
1017         /* Drop unencrypted frames if key is set. */
1018         if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1019                      (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1020                      (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1021                      (rx->key || rx->sdata->drop_unencrypted))) {
1022                 if (net_ratelimit())
1023                         printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
1024                                "encryption\n", rx->dev->name);
1025                 return -EACCES;
1026         }
1027         return 0;
1028 }
1029
1030 static int
1031 ieee80211_data_to_8023(struct ieee80211_txrx_data *rx)
1032 {
1033         struct net_device *dev = rx->dev;
1034         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1035         u16 fc, hdrlen, ethertype;
1036         u8 *payload;
1037         u8 dst[ETH_ALEN];
1038         u8 src[ETH_ALEN];
1039         struct sk_buff *skb = rx->skb;
1040         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1041         DECLARE_MAC_BUF(mac);
1042         DECLARE_MAC_BUF(mac2);
1043         DECLARE_MAC_BUF(mac3);
1044         DECLARE_MAC_BUF(mac4);
1045
1046         fc = rx->fc;
1047
1048         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1049                 return -1;
1050
1051         hdrlen = ieee80211_get_hdrlen(fc);
1052
1053         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1054          * header
1055          * IEEE 802.11 address fields:
1056          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1057          *   0     0   DA    SA    BSSID n/a
1058          *   0     1   DA    BSSID SA    n/a
1059          *   1     0   BSSID SA    DA    n/a
1060          *   1     1   RA    TA    DA    SA
1061          */
1062
1063         switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1064         case IEEE80211_FCTL_TODS:
1065                 /* BSSID SA DA */
1066                 memcpy(dst, hdr->addr3, ETH_ALEN);
1067                 memcpy(src, hdr->addr2, ETH_ALEN);
1068
1069                 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1070                              sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1071                         if (net_ratelimit())
1072                                 printk(KERN_DEBUG "%s: dropped ToDS frame "
1073                                        "(BSSID=%s SA=%s DA=%s)\n",
1074                                        dev->name,
1075                                        print_mac(mac, hdr->addr1),
1076                                        print_mac(mac2, hdr->addr2),
1077                                        print_mac(mac3, hdr->addr3));
1078                         return -1;
1079                 }
1080                 break;
1081         case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1082                 /* RA TA DA SA */
1083                 memcpy(dst, hdr->addr3, ETH_ALEN);
1084                 memcpy(src, hdr->addr4, ETH_ALEN);
1085
1086                 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS)) {
1087                         if (net_ratelimit())
1088                                 printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1089                                        "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1090                                        rx->dev->name,
1091                                        print_mac(mac, hdr->addr1),
1092                                        print_mac(mac2, hdr->addr2),
1093                                        print_mac(mac3, hdr->addr3),
1094                                        print_mac(mac4, hdr->addr4));
1095                         return -1;
1096                 }
1097                 break;
1098         case IEEE80211_FCTL_FROMDS:
1099                 /* DA BSSID SA */
1100                 memcpy(dst, hdr->addr1, ETH_ALEN);
1101                 memcpy(src, hdr->addr3, ETH_ALEN);
1102
1103                 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1104                     (is_multicast_ether_addr(dst) &&
1105                      !compare_ether_addr(src, dev->dev_addr)))
1106                         return -1;
1107                 break;
1108         case 0:
1109                 /* DA SA BSSID */
1110                 memcpy(dst, hdr->addr1, ETH_ALEN);
1111                 memcpy(src, hdr->addr2, ETH_ALEN);
1112
1113                 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1114                         if (net_ratelimit()) {
1115                                 printk(KERN_DEBUG "%s: dropped IBSS frame "
1116                                        "(DA=%s SA=%s BSSID=%s)\n",
1117                                        dev->name,
1118                                        print_mac(mac, hdr->addr1),
1119                                        print_mac(mac2, hdr->addr2),
1120                                        print_mac(mac3, hdr->addr3));
1121                         }
1122                         return -1;
1123                 }
1124                 break;
1125         }
1126
1127         if (unlikely(skb->len - hdrlen < 8)) {
1128                 if (net_ratelimit()) {
1129                         printk(KERN_DEBUG "%s: RX too short data frame "
1130                                "payload\n", dev->name);
1131                 }
1132                 return -1;
1133         }
1134
1135         payload = skb->data + hdrlen;
1136         ethertype = (payload[6] << 8) | payload[7];
1137
1138         if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1139                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1140                    compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1141                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1142                  * replace EtherType */
1143                 skb_pull(skb, hdrlen + 6);
1144                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1145                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1146         } else {
1147                 struct ethhdr *ehdr;
1148                 __be16 len;
1149
1150                 skb_pull(skb, hdrlen);
1151                 len = htons(skb->len);
1152                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1153                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1154                 memcpy(ehdr->h_source, src, ETH_ALEN);
1155                 ehdr->h_proto = len;
1156         }
1157         return 0;
1158 }
1159
1160 /*
1161  * requires that rx->skb is a frame with ethernet header
1162  */
1163 static bool ieee80211_frame_allowed(struct ieee80211_txrx_data *rx)
1164 {
1165         static const u8 pae_group_addr[ETH_ALEN]
1166                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1167         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1168
1169         /*
1170          * Allow EAPOL frames to us/the PAE group address regardless
1171          * of whether the frame was encrypted or not.
1172          */
1173         if (ehdr->h_proto == htons(ETH_P_PAE) &&
1174             (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1175              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1176                 return true;
1177
1178         if (ieee80211_802_1x_port_control(rx) ||
1179             ieee80211_drop_unencrypted(rx))
1180                 return false;
1181
1182         return true;
1183 }
1184
1185 /*
1186  * requires that rx->skb is a frame with ethernet header
1187  */
1188 static void
1189 ieee80211_deliver_skb(struct ieee80211_txrx_data *rx)
1190 {
1191         struct net_device *dev = rx->dev;
1192         struct ieee80211_local *local = rx->local;
1193         struct sk_buff *skb, *xmit_skb;
1194         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1195         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1196         struct sta_info *dsta;
1197
1198         skb = rx->skb;
1199         xmit_skb = NULL;
1200
1201         if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1202                                       sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1203             (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
1204                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1205                         /*
1206                          * send multicast frames both to higher layers in
1207                          * local net stack and back to the wireless medium
1208                          */
1209                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1210                         if (!xmit_skb && net_ratelimit())
1211                                 printk(KERN_DEBUG "%s: failed to clone "
1212                                        "multicast frame\n", dev->name);
1213                 } else {
1214                         dsta = sta_info_get(local, skb->data);
1215                         if (dsta && dsta->dev == dev) {
1216                                 /*
1217                                  * The destination station is associated to
1218                                  * this AP (in this VLAN), so send the frame
1219                                  * directly to it and do not pass it to local
1220                                  * net stack.
1221                                  */
1222                                 xmit_skb = skb;
1223                                 skb = NULL;
1224                         }
1225                         if (dsta)
1226                                 sta_info_put(dsta);
1227                 }
1228         }
1229
1230         if (skb) {
1231                 /* deliver to local stack */
1232                 skb->protocol = eth_type_trans(skb, dev);
1233                 memset(skb->cb, 0, sizeof(skb->cb));
1234                 netif_rx(skb);
1235         }
1236
1237         if (xmit_skb) {
1238                 /* send to wireless media */
1239                 xmit_skb->protocol = htons(ETH_P_802_3);
1240                 skb_reset_network_header(xmit_skb);
1241                 skb_reset_mac_header(xmit_skb);
1242                 dev_queue_xmit(xmit_skb);
1243         }
1244 }
1245
1246 static ieee80211_rx_result
1247 ieee80211_rx_h_amsdu(struct ieee80211_txrx_data *rx)
1248 {
1249         struct net_device *dev = rx->dev;
1250         struct ieee80211_local *local = rx->local;
1251         u16 fc, ethertype;
1252         u8 *payload;
1253         struct sk_buff *skb = rx->skb, *frame = NULL;
1254         const struct ethhdr *eth;
1255         int remaining, err;
1256         u8 dst[ETH_ALEN];
1257         u8 src[ETH_ALEN];
1258         DECLARE_MAC_BUF(mac);
1259
1260         fc = rx->fc;
1261         if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1262                 return RX_CONTINUE;
1263
1264         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1265                 return RX_DROP_MONITOR;
1266
1267         if (!(rx->flags & IEEE80211_TXRXD_RX_AMSDU))
1268                 return RX_CONTINUE;
1269
1270         err = ieee80211_data_to_8023(rx);
1271         if (unlikely(err))
1272                 return RX_DROP_UNUSABLE;
1273
1274         skb->dev = dev;
1275
1276         dev->stats.rx_packets++;
1277         dev->stats.rx_bytes += skb->len;
1278
1279         /* skip the wrapping header */
1280         eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1281         if (!eth)
1282                 return RX_DROP_UNUSABLE;
1283
1284         while (skb != frame) {
1285                 u8 padding;
1286                 __be16 len = eth->h_proto;
1287                 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1288
1289                 remaining = skb->len;
1290                 memcpy(dst, eth->h_dest, ETH_ALEN);
1291                 memcpy(src, eth->h_source, ETH_ALEN);
1292
1293                 padding = ((4 - subframe_len) & 0x3);
1294                 /* the last MSDU has no padding */
1295                 if (subframe_len > remaining) {
1296                         printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
1297                         return RX_DROP_UNUSABLE;
1298                 }
1299
1300                 skb_pull(skb, sizeof(struct ethhdr));
1301                 /* if last subframe reuse skb */
1302                 if (remaining <= subframe_len + padding)
1303                         frame = skb;
1304                 else {
1305                         frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1306                                               subframe_len);
1307
1308                         if (frame == NULL)
1309                                 return RX_DROP_UNUSABLE;
1310
1311                         skb_reserve(frame, local->hw.extra_tx_headroom +
1312                                     sizeof(struct ethhdr));
1313                         memcpy(skb_put(frame, ntohs(len)), skb->data,
1314                                 ntohs(len));
1315
1316                         eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1317                                                         padding);
1318                         if (!eth) {
1319                                 printk(KERN_DEBUG "%s: wrong buffer size ",
1320                                        dev->name);
1321                                 dev_kfree_skb(frame);
1322                                 return RX_DROP_UNUSABLE;
1323                         }
1324                 }
1325
1326                 skb_reset_network_header(frame);
1327                 frame->dev = dev;
1328                 frame->priority = skb->priority;
1329                 rx->skb = frame;
1330
1331                 payload = frame->data;
1332                 ethertype = (payload[6] << 8) | payload[7];
1333
1334                 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1335                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1336                            compare_ether_addr(payload,
1337                                               bridge_tunnel_header) == 0)) {
1338                         /* remove RFC1042 or Bridge-Tunnel
1339                          * encapsulation and replace EtherType */
1340                         skb_pull(frame, 6);
1341                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1342                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1343                 } else {
1344                         memcpy(skb_push(frame, sizeof(__be16)),
1345                                &len, sizeof(__be16));
1346                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1347                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1348                 }
1349
1350                 if (!ieee80211_frame_allowed(rx)) {
1351                         if (skb == frame) /* last frame */
1352                                 return RX_DROP_UNUSABLE;
1353                         dev_kfree_skb(frame);
1354                         continue;
1355                 }
1356
1357                 ieee80211_deliver_skb(rx);
1358         }
1359
1360         return RX_QUEUED;
1361 }
1362
1363 static ieee80211_rx_result
1364 ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
1365 {
1366         struct net_device *dev = rx->dev;
1367         u16 fc;
1368         int err;
1369
1370         fc = rx->fc;
1371         if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1372                 return RX_CONTINUE;
1373
1374         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1375                 return RX_DROP_MONITOR;
1376
1377         err = ieee80211_data_to_8023(rx);
1378         if (unlikely(err))
1379                 return RX_DROP_UNUSABLE;
1380
1381         if (!ieee80211_frame_allowed(rx))
1382                 return RX_DROP_MONITOR;
1383
1384         rx->skb->dev = dev;
1385
1386         dev->stats.rx_packets++;
1387         dev->stats.rx_bytes += rx->skb->len;
1388
1389         ieee80211_deliver_skb(rx);
1390
1391         return RX_QUEUED;
1392 }
1393
1394 static ieee80211_rx_result
1395 ieee80211_rx_h_ctrl(struct ieee80211_txrx_data *rx)
1396 {
1397         struct ieee80211_local *local = rx->local;
1398         struct ieee80211_hw *hw = &local->hw;
1399         struct sk_buff *skb = rx->skb;
1400         struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1401         struct tid_ampdu_rx *tid_agg_rx;
1402         u16 start_seq_num;
1403         u16 tid;
1404
1405         if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1406                 return RX_CONTINUE;
1407
1408         if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1409                 if (!rx->sta)
1410                         return RX_CONTINUE;
1411                 tid = le16_to_cpu(bar->control) >> 12;
1412                 tid_agg_rx = &(rx->sta->ampdu_mlme.tid_rx[tid]);
1413                 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1414                         return RX_CONTINUE;
1415
1416                 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1417
1418                 /* reset session timer */
1419                 if (tid_agg_rx->timeout) {
1420                         unsigned long expires =
1421                                 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1422                         mod_timer(&tid_agg_rx->session_timer, expires);
1423                 }
1424
1425                 /* manage reordering buffer according to requested */
1426                 /* sequence number */
1427                 rcu_read_lock();
1428                 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1429                                                  start_seq_num, 1);
1430                 rcu_read_unlock();
1431                 return RX_DROP_UNUSABLE;
1432         }
1433
1434         return RX_CONTINUE;
1435 }
1436
1437 static ieee80211_rx_result
1438 ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
1439 {
1440         struct ieee80211_sub_if_data *sdata;
1441
1442         if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
1443                 return RX_DROP_MONITOR;
1444
1445         sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1446         if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1447              sdata->vif.type == IEEE80211_IF_TYPE_IBSS) &&
1448             !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1449                 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
1450         else
1451                 return RX_DROP_MONITOR;
1452
1453         return RX_QUEUED;
1454 }
1455
1456 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1457                                             struct ieee80211_hdr *hdr,
1458                                             struct ieee80211_txrx_data *rx)
1459 {
1460         int keyidx, hdrlen;
1461         DECLARE_MAC_BUF(mac);
1462         DECLARE_MAC_BUF(mac2);
1463
1464         hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1465         if (rx->skb->len >= hdrlen + 4)
1466                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1467         else
1468                 keyidx = -1;
1469
1470         if (net_ratelimit())
1471                 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1472                        "failure from %s to %s keyidx=%d\n",
1473                        dev->name, print_mac(mac, hdr->addr2),
1474                        print_mac(mac2, hdr->addr1), keyidx);
1475
1476         if (!rx->sta) {
1477                 /*
1478                  * Some hardware seem to generate incorrect Michael MIC
1479                  * reports; ignore them to avoid triggering countermeasures.
1480                  */
1481                 if (net_ratelimit())
1482                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1483                                "error for unknown address %s\n",
1484                                dev->name, print_mac(mac, hdr->addr2));
1485                 goto ignore;
1486         }
1487
1488         if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1489                 if (net_ratelimit())
1490                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1491                                "error for a frame with no PROTECTED flag (src "
1492                                "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1493                 goto ignore;
1494         }
1495
1496         if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1497                 /*
1498                  * APs with pairwise keys should never receive Michael MIC
1499                  * errors for non-zero keyidx because these are reserved for
1500                  * group keys and only the AP is sending real multicast
1501                  * frames in the BSS.
1502                  */
1503                 if (net_ratelimit())
1504                         printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1505                                "a frame with non-zero keyidx (%d)"
1506                                " (src %s)\n", dev->name, keyidx,
1507                                print_mac(mac, hdr->addr2));
1508                 goto ignore;
1509         }
1510
1511         if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1512             ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1513              (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1514                 if (net_ratelimit())
1515                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1516                                "error for a frame that cannot be encrypted "
1517                                "(fc=0x%04x) (src %s)\n",
1518                                dev->name, rx->fc, print_mac(mac, hdr->addr2));
1519                 goto ignore;
1520         }
1521
1522         mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1523  ignore:
1524         dev_kfree_skb(rx->skb);
1525         rx->skb = NULL;
1526 }
1527
1528 static void ieee80211_rx_cooked_monitor(struct ieee80211_txrx_data *rx)
1529 {
1530         struct ieee80211_sub_if_data *sdata;
1531         struct ieee80211_local *local = rx->local;
1532         struct ieee80211_rtap_hdr {
1533                 struct ieee80211_radiotap_header hdr;
1534                 u8 flags;
1535                 u8 rate;
1536                 __le16 chan_freq;
1537                 __le16 chan_flags;
1538         } __attribute__ ((packed)) *rthdr;
1539         struct sk_buff *skb = rx->skb, *skb2;
1540         struct net_device *prev_dev = NULL;
1541         struct ieee80211_rx_status *status = rx->u.rx.status;
1542
1543         if (rx->flags & IEEE80211_TXRXD_RX_CMNTR_REPORTED)
1544                 goto out_free_skb;
1545
1546         if (skb_headroom(skb) < sizeof(*rthdr) &&
1547             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1548                 goto out_free_skb;
1549
1550         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1551         memset(rthdr, 0, sizeof(*rthdr));
1552         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1553         rthdr->hdr.it_present =
1554                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1555                             (1 << IEEE80211_RADIOTAP_RATE) |
1556                             (1 << IEEE80211_RADIOTAP_CHANNEL));
1557
1558         rthdr->rate = rx->u.rx.rate->bitrate / 5;
1559         rthdr->chan_freq = cpu_to_le16(status->freq);
1560
1561         if (status->band == IEEE80211_BAND_5GHZ)
1562                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1563                                                 IEEE80211_CHAN_5GHZ);
1564         else
1565                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1566                                                 IEEE80211_CHAN_2GHZ);
1567
1568         skb_set_mac_header(skb, 0);
1569         skb->ip_summed = CHECKSUM_UNNECESSARY;
1570         skb->pkt_type = PACKET_OTHERHOST;
1571         skb->protocol = htons(ETH_P_802_2);
1572
1573         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1574                 if (!netif_running(sdata->dev))
1575                         continue;
1576
1577                 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1578                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1579                         continue;
1580
1581                 if (prev_dev) {
1582                         skb2 = skb_clone(skb, GFP_ATOMIC);
1583                         if (skb2) {
1584                                 skb2->dev = prev_dev;
1585                                 netif_rx(skb2);
1586                         }
1587                 }
1588
1589                 prev_dev = sdata->dev;
1590                 sdata->dev->stats.rx_packets++;
1591                 sdata->dev->stats.rx_bytes += skb->len;
1592         }
1593
1594         if (prev_dev) {
1595                 skb->dev = prev_dev;
1596                 netif_rx(skb);
1597                 skb = NULL;
1598         } else
1599                 goto out_free_skb;
1600
1601         rx->flags |= IEEE80211_TXRXD_RX_CMNTR_REPORTED;
1602         return;
1603
1604  out_free_skb:
1605         dev_kfree_skb(skb);
1606 }
1607
1608 typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_txrx_data *);
1609 static ieee80211_rx_handler ieee80211_rx_handlers[] =
1610 {
1611         ieee80211_rx_h_if_stats,
1612         ieee80211_rx_h_passive_scan,
1613         ieee80211_rx_h_check,
1614         ieee80211_rx_h_decrypt,
1615         ieee80211_rx_h_sta_process,
1616         ieee80211_rx_h_defragment,
1617         ieee80211_rx_h_ps_poll,
1618         ieee80211_rx_h_michael_mic_verify,
1619         /* this must be after decryption - so header is counted in MPDU mic
1620          * must be before pae and data, so QOS_DATA format frames
1621          * are not passed to user space by these functions
1622          */
1623         ieee80211_rx_h_remove_qos_control,
1624         ieee80211_rx_h_amsdu,
1625         ieee80211_rx_h_data,
1626         ieee80211_rx_h_ctrl,
1627         ieee80211_rx_h_mgmt,
1628         NULL
1629 };
1630
1631 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1632                                          struct ieee80211_txrx_data *rx,
1633                                          struct sk_buff *skb)
1634 {
1635         ieee80211_rx_handler *handler;
1636         ieee80211_rx_result res = RX_DROP_MONITOR;
1637
1638         rx->skb = skb;
1639         rx->sdata = sdata;
1640         rx->dev = sdata->dev;
1641
1642         for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) {
1643                 res = (*handler)(rx);
1644
1645                 switch (res) {
1646                 case RX_CONTINUE:
1647                         continue;
1648                 case RX_DROP_UNUSABLE:
1649                 case RX_DROP_MONITOR:
1650                         I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1651                         if (rx->sta)
1652                                 rx->sta->rx_dropped++;
1653                         break;
1654                 case RX_QUEUED:
1655                         I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1656                         break;
1657                 }
1658                 break;
1659         }
1660
1661         switch (res) {
1662         case RX_CONTINUE:
1663         case RX_DROP_MONITOR:
1664                 ieee80211_rx_cooked_monitor(rx);
1665                 break;
1666         case RX_DROP_UNUSABLE:
1667                 dev_kfree_skb(rx->skb);
1668                 break;
1669         }
1670 }
1671
1672 /* main receive path */
1673
1674 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1675                                 u8 *bssid, struct ieee80211_txrx_data *rx,
1676                                 struct ieee80211_hdr *hdr)
1677 {
1678         int multicast = is_multicast_ether_addr(hdr->addr1);
1679
1680         switch (sdata->vif.type) {
1681         case IEEE80211_IF_TYPE_STA:
1682                 if (!bssid)
1683                         return 0;
1684                 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1685                         if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1686                                 return 0;
1687                         rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1688                 } else if (!multicast &&
1689                            compare_ether_addr(sdata->dev->dev_addr,
1690                                               hdr->addr1) != 0) {
1691                         if (!(sdata->dev->flags & IFF_PROMISC))
1692                                 return 0;
1693                         rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1694                 }
1695                 break;
1696         case IEEE80211_IF_TYPE_IBSS:
1697                 if (!bssid)
1698                         return 0;
1699                 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1700                     (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)
1701                         return 1;
1702                 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1703                         if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1704                                 return 0;
1705                         rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1706                 } else if (!multicast &&
1707                            compare_ether_addr(sdata->dev->dev_addr,
1708                                               hdr->addr1) != 0) {
1709                         if (!(sdata->dev->flags & IFF_PROMISC))
1710                                 return 0;
1711                         rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1712                 } else if (!rx->sta)
1713                         rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1714                                                          bssid, hdr->addr2);
1715                 break;
1716         case IEEE80211_IF_TYPE_VLAN:
1717         case IEEE80211_IF_TYPE_AP:
1718                 if (!bssid) {
1719                         if (compare_ether_addr(sdata->dev->dev_addr,
1720                                                hdr->addr1))
1721                                 return 0;
1722                 } else if (!ieee80211_bssid_match(bssid,
1723                                         sdata->dev->dev_addr)) {
1724                         if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1725                                 return 0;
1726                         rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1727                 }
1728                 if (sdata->dev == sdata->local->mdev &&
1729                     !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1730                         /* do not receive anything via
1731                          * master device when not scanning */
1732                         return 0;
1733                 break;
1734         case IEEE80211_IF_TYPE_WDS:
1735                 if (bssid ||
1736                     (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1737                         return 0;
1738                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1739                         return 0;
1740                 break;
1741         case IEEE80211_IF_TYPE_MNTR:
1742                 /* take everything */
1743                 break;
1744         case IEEE80211_IF_TYPE_INVALID:
1745                 /* should never get here */
1746                 WARN_ON(1);
1747                 break;
1748         }
1749
1750         return 1;
1751 }
1752
1753 /*
1754  * This is the actual Rx frames handler. as it blongs to Rx path it must
1755  * be called with rcu_read_lock protection.
1756  */
1757 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1758                                          struct sk_buff *skb,
1759                                          struct ieee80211_rx_status *status,
1760                                          u32 load,
1761                                          struct ieee80211_rate *rate)
1762 {
1763         struct ieee80211_local *local = hw_to_local(hw);
1764         struct ieee80211_sub_if_data *sdata;
1765         struct ieee80211_hdr *hdr;
1766         struct ieee80211_txrx_data rx;
1767         u16 type;
1768         int prepares;
1769         struct ieee80211_sub_if_data *prev = NULL;
1770         struct sk_buff *skb_new;
1771         u8 *bssid;
1772
1773         hdr = (struct ieee80211_hdr *) skb->data;
1774         memset(&rx, 0, sizeof(rx));
1775         rx.skb = skb;
1776         rx.local = local;
1777
1778         rx.u.rx.status = status;
1779         rx.u.rx.load = load;
1780         rx.u.rx.rate = rate;
1781         rx.fc = le16_to_cpu(hdr->frame_control);
1782         type = rx.fc & IEEE80211_FCTL_FTYPE;
1783
1784         if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1785                 local->dot11ReceivedFragmentCount++;
1786
1787         rx.sta = sta_info_get(local, hdr->addr2);
1788         if (rx.sta) {
1789                 rx.dev = rx.sta->dev;
1790                 rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
1791         }
1792
1793         if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1794                 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1795                 goto end;
1796         }
1797
1798         if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1799                 rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
1800
1801         ieee80211_parse_qos(&rx);
1802         ieee80211_verify_ip_alignment(&rx);
1803
1804         skb = rx.skb;
1805
1806         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1807                 if (!netif_running(sdata->dev))
1808                         continue;
1809
1810                 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1811                         continue;
1812
1813                 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1814                 rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
1815                 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1816
1817                 if (!prepares)
1818                         continue;
1819
1820                 /*
1821                  * frame is destined for this interface, but if it's not
1822                  * also for the previous one we handle that after the
1823                  * loop to avoid copying the SKB once too much
1824                  */
1825
1826                 if (!prev) {
1827                         prev = sdata;
1828                         continue;
1829                 }
1830
1831                 /*
1832                  * frame was destined for the previous interface
1833                  * so invoke RX handlers for it
1834                  */
1835
1836                 skb_new = skb_copy(skb, GFP_ATOMIC);
1837                 if (!skb_new) {
1838                         if (net_ratelimit())
1839                                 printk(KERN_DEBUG "%s: failed to copy "
1840                                        "multicast frame for %s",
1841                                        wiphy_name(local->hw.wiphy),
1842                                        prev->dev->name);
1843                         continue;
1844                 }
1845                 rx.fc = le16_to_cpu(hdr->frame_control);
1846                 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1847                 prev = sdata;
1848         }
1849         if (prev) {
1850                 rx.fc = le16_to_cpu(hdr->frame_control);
1851                 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1852         } else
1853                 dev_kfree_skb(skb);
1854
1855  end:
1856         if (rx.sta)
1857                 sta_info_put(rx.sta);
1858 }
1859
1860 #define SEQ_MODULO 0x1000
1861 #define SEQ_MASK   0xfff
1862
1863 static inline int seq_less(u16 sq1, u16 sq2)
1864 {
1865         return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1866 }
1867
1868 static inline u16 seq_inc(u16 sq)
1869 {
1870         return ((sq + 1) & SEQ_MASK);
1871 }
1872
1873 static inline u16 seq_sub(u16 sq1, u16 sq2)
1874 {
1875         return ((sq1 - sq2) & SEQ_MASK);
1876 }
1877
1878
1879 /*
1880  * As it function blongs to Rx path it must be called with
1881  * the proper rcu_read_lock protection for its flow.
1882  */
1883 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1884                                 struct tid_ampdu_rx *tid_agg_rx,
1885                                 struct sk_buff *skb, u16 mpdu_seq_num,
1886                                 int bar_req)
1887 {
1888         struct ieee80211_local *local = hw_to_local(hw);
1889         struct ieee80211_rx_status status;
1890         u16 head_seq_num, buf_size;
1891         int index;
1892         u32 pkt_load;
1893         struct ieee80211_supported_band *sband;
1894         struct ieee80211_rate *rate;
1895
1896         buf_size = tid_agg_rx->buf_size;
1897         head_seq_num = tid_agg_rx->head_seq_num;
1898
1899         /* frame with out of date sequence number */
1900         if (seq_less(mpdu_seq_num, head_seq_num)) {
1901                 dev_kfree_skb(skb);
1902                 return 1;
1903         }
1904
1905         /* if frame sequence number exceeds our buffering window size or
1906          * block Ack Request arrived - release stored frames */
1907         if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
1908                 /* new head to the ordering buffer */
1909                 if (bar_req)
1910                         head_seq_num = mpdu_seq_num;
1911                 else
1912                         head_seq_num =
1913                                 seq_inc(seq_sub(mpdu_seq_num, buf_size));
1914                 /* release stored frames up to new head to stack */
1915                 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1916                         index = seq_sub(tid_agg_rx->head_seq_num,
1917                                 tid_agg_rx->ssn)
1918                                 % tid_agg_rx->buf_size;
1919
1920                         if (tid_agg_rx->reorder_buf[index]) {
1921                                 /* release the reordered frames to stack */
1922                                 memcpy(&status,
1923                                         tid_agg_rx->reorder_buf[index]->cb,
1924                                         sizeof(status));
1925                                 sband = local->hw.wiphy->bands[status.band];
1926                                 rate = &sband->bitrates[status.rate_idx];
1927                                 pkt_load = ieee80211_rx_load_stats(local,
1928                                                 tid_agg_rx->reorder_buf[index],
1929                                                 &status, rate);
1930                                 __ieee80211_rx_handle_packet(hw,
1931                                         tid_agg_rx->reorder_buf[index],
1932                                         &status, pkt_load, rate);
1933                                 tid_agg_rx->stored_mpdu_num--;
1934                                 tid_agg_rx->reorder_buf[index] = NULL;
1935                         }
1936                         tid_agg_rx->head_seq_num =
1937                                 seq_inc(tid_agg_rx->head_seq_num);
1938                 }
1939                 if (bar_req)
1940                         return 1;
1941         }
1942
1943         /* now the new frame is always in the range of the reordering */
1944         /* buffer window */
1945         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
1946                                 % tid_agg_rx->buf_size;
1947         /* check if we already stored this frame */
1948         if (tid_agg_rx->reorder_buf[index]) {
1949                 dev_kfree_skb(skb);
1950                 return 1;
1951         }
1952
1953         /* if arrived mpdu is in the right order and nothing else stored */
1954         /* release it immediately */
1955         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1956                         tid_agg_rx->stored_mpdu_num == 0) {
1957                 tid_agg_rx->head_seq_num =
1958                         seq_inc(tid_agg_rx->head_seq_num);
1959                 return 0;
1960         }
1961
1962         /* put the frame in the reordering buffer */
1963         tid_agg_rx->reorder_buf[index] = skb;
1964         tid_agg_rx->stored_mpdu_num++;
1965         /* release the buffer until next missing frame */
1966         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
1967                                                 % tid_agg_rx->buf_size;
1968         while (tid_agg_rx->reorder_buf[index]) {
1969                 /* release the reordered frame back to stack */
1970                 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
1971                         sizeof(status));
1972                 sband = local->hw.wiphy->bands[status.band];
1973                 rate = &sband->bitrates[status.rate_idx];
1974                 pkt_load = ieee80211_rx_load_stats(local,
1975                                         tid_agg_rx->reorder_buf[index],
1976                                         &status, rate);
1977                 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
1978                                              &status, pkt_load, rate);
1979                 tid_agg_rx->stored_mpdu_num--;
1980                 tid_agg_rx->reorder_buf[index] = NULL;
1981                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
1982                 index = seq_sub(tid_agg_rx->head_seq_num,
1983                         tid_agg_rx->ssn) % tid_agg_rx->buf_size;
1984         }
1985         return 1;
1986 }
1987
1988 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
1989                                      struct sk_buff *skb)
1990 {
1991         struct ieee80211_hw *hw = &local->hw;
1992         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1993         struct sta_info *sta;
1994         struct tid_ampdu_rx *tid_agg_rx;
1995         u16 fc, sc;
1996         u16 mpdu_seq_num;
1997         u8 ret = 0, *qc;
1998         int tid;
1999
2000         sta = sta_info_get(local, hdr->addr2);
2001         if (!sta)
2002                 return ret;
2003
2004         fc = le16_to_cpu(hdr->frame_control);
2005
2006         /* filter the QoS data rx stream according to
2007          * STA/TID and check if this STA/TID is on aggregation */
2008         if (!WLAN_FC_IS_QOS_DATA(fc))
2009                 goto end_reorder;
2010
2011         qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
2012         tid = qc[0] & QOS_CONTROL_TID_MASK;
2013         tid_agg_rx = &(sta->ampdu_mlme.tid_rx[tid]);
2014
2015         if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
2016                 goto end_reorder;
2017
2018         /* null data frames are excluded */
2019         if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
2020                 goto end_reorder;
2021
2022         /* new un-ordered ampdu frame - process it */
2023
2024         /* reset session timer */
2025         if (tid_agg_rx->timeout) {
2026                 unsigned long expires =
2027                         jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2028                 mod_timer(&tid_agg_rx->session_timer, expires);
2029         }
2030
2031         /* if this mpdu is fragmented - terminate rx aggregation session */
2032         sc = le16_to_cpu(hdr->seq_ctrl);
2033         if (sc & IEEE80211_SCTL_FRAG) {
2034                 ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr,
2035                         tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2036                 ret = 1;
2037                 goto end_reorder;
2038         }
2039
2040         /* according to mpdu sequence number deal with reordering buffer */
2041         mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2042         ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2043                                                 mpdu_seq_num, 0);
2044 end_reorder:
2045         if (sta)
2046                 sta_info_put(sta);
2047         return ret;
2048 }
2049
2050 /*
2051  * This is the receive path handler. It is called by a low level driver when an
2052  * 802.11 MPDU is received from the hardware.
2053  */
2054 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2055                     struct ieee80211_rx_status *status)
2056 {
2057         struct ieee80211_local *local = hw_to_local(hw);
2058         u32 pkt_load;
2059         struct ieee80211_rate *rate = NULL;
2060         struct ieee80211_supported_band *sband;
2061
2062         if (status->band < 0 ||
2063             status->band > IEEE80211_NUM_BANDS) {
2064                 WARN_ON(1);
2065                 return;
2066         }
2067
2068         sband = local->hw.wiphy->bands[status->band];
2069
2070         if (!sband ||
2071             status->rate_idx < 0 ||
2072             status->rate_idx >= sband->n_bitrates) {
2073                 WARN_ON(1);
2074                 return;
2075         }
2076
2077         rate = &sband->bitrates[status->rate_idx];
2078
2079         /*
2080          * key references and virtual interfaces are protected using RCU
2081          * and this requires that we are in a read-side RCU section during
2082          * receive processing
2083          */
2084         rcu_read_lock();
2085
2086         /*
2087          * Frames with failed FCS/PLCP checksum are not returned,
2088          * all other frames are returned without radiotap header
2089          * if it was previously present.
2090          * Also, frames with less than 16 bytes are dropped.
2091          */
2092         skb = ieee80211_rx_monitor(local, skb, status, rate);
2093         if (!skb) {
2094                 rcu_read_unlock();
2095                 return;
2096         }
2097
2098         pkt_load = ieee80211_rx_load_stats(local, skb, status, rate);
2099         local->channel_use_raw += pkt_load;
2100
2101         if (!ieee80211_rx_reorder_ampdu(local, skb))
2102                 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate);
2103
2104         rcu_read_unlock();
2105 }
2106 EXPORT_SYMBOL(__ieee80211_rx);
2107
2108 /* This is a version of the rx handler that can be called from hard irq
2109  * context. Post the skb on the queue and schedule the tasklet */
2110 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2111                           struct ieee80211_rx_status *status)
2112 {
2113         struct ieee80211_local *local = hw_to_local(hw);
2114
2115         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2116
2117         skb->dev = local->mdev;
2118         /* copy status into skb->cb for use by tasklet */
2119         memcpy(skb->cb, status, sizeof(*status));
2120         skb->pkt_type = IEEE80211_RX_MSG;
2121         skb_queue_tail(&local->skb_queue, skb);
2122         tasklet_schedule(&local->tasklet);
2123 }
2124 EXPORT_SYMBOL(ieee80211_rx_irqsafe);