[IPV6]: Add RFC4214 support
[safe/jmp/linux-2.6] / net / ipv6 / route.c
1 /*
2  *      Linux INET6 implementation
3  *      FIB front-end.
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 /*      Changes:
17  *
18  *      YOSHIFUJI Hideaki @USAGI
19  *              reworked default router selection.
20  *              - respect outgoing interface
21  *              - select from (probably) reachable routers (i.e.
22  *              routers in REACHABLE, STALE, DELAY or PROBE states).
23  *              - always select the same router if it is (probably)
24  *              reachable.  otherwise, round-robin the list.
25  *      Ville Nuorvala
26  *              Fixed routing subtrees.
27  */
28
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/types.h>
32 #include <linux/times.h>
33 #include <linux/socket.h>
34 #include <linux/sockios.h>
35 #include <linux/net.h>
36 #include <linux/route.h>
37 #include <linux/netdevice.h>
38 #include <linux/in6.h>
39 #include <linux/init.h>
40 #include <linux/if_arp.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <net/net_namespace.h>
44 #include <net/snmp.h>
45 #include <net/ipv6.h>
46 #include <net/ip6_fib.h>
47 #include <net/ip6_route.h>
48 #include <net/ndisc.h>
49 #include <net/addrconf.h>
50 #include <net/tcp.h>
51 #include <linux/rtnetlink.h>
52 #include <net/dst.h>
53 #include <net/xfrm.h>
54 #include <net/netevent.h>
55 #include <net/netlink.h>
56
57 #include <asm/uaccess.h>
58
59 #ifdef CONFIG_SYSCTL
60 #include <linux/sysctl.h>
61 #endif
62
63 /* Set to 3 to get tracing. */
64 #define RT6_DEBUG 2
65
66 #if RT6_DEBUG >= 3
67 #define RDBG(x) printk x
68 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
69 #else
70 #define RDBG(x)
71 #define RT6_TRACE(x...) do { ; } while (0)
72 #endif
73
74 #define CLONE_OFFLINK_ROUTE 0
75
76 static int ip6_rt_max_size = 4096;
77 static int ip6_rt_gc_min_interval = HZ / 2;
78 static int ip6_rt_gc_timeout = 60*HZ;
79 int ip6_rt_gc_interval = 30*HZ;
80 static int ip6_rt_gc_elasticity = 9;
81 static int ip6_rt_mtu_expires = 10*60*HZ;
82 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
83
84 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
85 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
86 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
87 static void             ip6_dst_destroy(struct dst_entry *);
88 static void             ip6_dst_ifdown(struct dst_entry *,
89                                        struct net_device *dev, int how);
90 static int               ip6_dst_gc(void);
91
92 static int              ip6_pkt_discard(struct sk_buff *skb);
93 static int              ip6_pkt_discard_out(struct sk_buff *skb);
94 static void             ip6_link_failure(struct sk_buff *skb);
95 static void             ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
96
97 #ifdef CONFIG_IPV6_ROUTE_INFO
98 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
99                                            struct in6_addr *gwaddr, int ifindex,
100                                            unsigned pref);
101 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
102                                            struct in6_addr *gwaddr, int ifindex);
103 #endif
104
105 static struct dst_ops ip6_dst_ops = {
106         .family                 =       AF_INET6,
107         .protocol               =       __constant_htons(ETH_P_IPV6),
108         .gc                     =       ip6_dst_gc,
109         .gc_thresh              =       1024,
110         .check                  =       ip6_dst_check,
111         .destroy                =       ip6_dst_destroy,
112         .ifdown                 =       ip6_dst_ifdown,
113         .negative_advice        =       ip6_negative_advice,
114         .link_failure           =       ip6_link_failure,
115         .update_pmtu            =       ip6_rt_update_pmtu,
116         .local_out              =       ip6_local_out,
117         .entry_size             =       sizeof(struct rt6_info),
118 };
119
120 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
121 {
122 }
123
124 static struct dst_ops ip6_dst_blackhole_ops = {
125         .family                 =       AF_INET6,
126         .protocol               =       __constant_htons(ETH_P_IPV6),
127         .destroy                =       ip6_dst_destroy,
128         .check                  =       ip6_dst_check,
129         .update_pmtu            =       ip6_rt_blackhole_update_pmtu,
130         .entry_size             =       sizeof(struct rt6_info),
131 };
132
133 struct rt6_info ip6_null_entry = {
134         .u = {
135                 .dst = {
136                         .__refcnt       = ATOMIC_INIT(1),
137                         .__use          = 1,
138                         .obsolete       = -1,
139                         .error          = -ENETUNREACH,
140                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
141                         .input          = ip6_pkt_discard,
142                         .output         = ip6_pkt_discard_out,
143                         .ops            = &ip6_dst_ops,
144                         .path           = (struct dst_entry*)&ip6_null_entry,
145                 }
146         },
147         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
148         .rt6i_metric    = ~(u32) 0,
149         .rt6i_ref       = ATOMIC_INIT(1),
150 };
151
152 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
153
154 static int ip6_pkt_prohibit(struct sk_buff *skb);
155 static int ip6_pkt_prohibit_out(struct sk_buff *skb);
156
157 struct rt6_info ip6_prohibit_entry = {
158         .u = {
159                 .dst = {
160                         .__refcnt       = ATOMIC_INIT(1),
161                         .__use          = 1,
162                         .obsolete       = -1,
163                         .error          = -EACCES,
164                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
165                         .input          = ip6_pkt_prohibit,
166                         .output         = ip6_pkt_prohibit_out,
167                         .ops            = &ip6_dst_ops,
168                         .path           = (struct dst_entry*)&ip6_prohibit_entry,
169                 }
170         },
171         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
172         .rt6i_metric    = ~(u32) 0,
173         .rt6i_ref       = ATOMIC_INIT(1),
174 };
175
176 struct rt6_info ip6_blk_hole_entry = {
177         .u = {
178                 .dst = {
179                         .__refcnt       = ATOMIC_INIT(1),
180                         .__use          = 1,
181                         .obsolete       = -1,
182                         .error          = -EINVAL,
183                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
184                         .input          = dst_discard,
185                         .output         = dst_discard,
186                         .ops            = &ip6_dst_ops,
187                         .path           = (struct dst_entry*)&ip6_blk_hole_entry,
188                 }
189         },
190         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
191         .rt6i_metric    = ~(u32) 0,
192         .rt6i_ref       = ATOMIC_INIT(1),
193 };
194
195 #endif
196
197 /* allocate dst with ip6_dst_ops */
198 static __inline__ struct rt6_info *ip6_dst_alloc(void)
199 {
200         return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
201 }
202
203 static void ip6_dst_destroy(struct dst_entry *dst)
204 {
205         struct rt6_info *rt = (struct rt6_info *)dst;
206         struct inet6_dev *idev = rt->rt6i_idev;
207
208         if (idev != NULL) {
209                 rt->rt6i_idev = NULL;
210                 in6_dev_put(idev);
211         }
212 }
213
214 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
215                            int how)
216 {
217         struct rt6_info *rt = (struct rt6_info *)dst;
218         struct inet6_dev *idev = rt->rt6i_idev;
219
220         if (dev != init_net.loopback_dev && idev != NULL && idev->dev == dev) {
221                 struct inet6_dev *loopback_idev = in6_dev_get(init_net.loopback_dev);
222                 if (loopback_idev != NULL) {
223                         rt->rt6i_idev = loopback_idev;
224                         in6_dev_put(idev);
225                 }
226         }
227 }
228
229 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
230 {
231         return (rt->rt6i_flags & RTF_EXPIRES &&
232                 time_after(jiffies, rt->rt6i_expires));
233 }
234
235 static inline int rt6_need_strict(struct in6_addr *daddr)
236 {
237         return (ipv6_addr_type(daddr) &
238                 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
239 }
240
241 /*
242  *      Route lookup. Any table->tb6_lock is implied.
243  */
244
245 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
246                                                     int oif,
247                                                     int strict)
248 {
249         struct rt6_info *local = NULL;
250         struct rt6_info *sprt;
251
252         if (oif) {
253                 for (sprt = rt; sprt; sprt = sprt->u.dst.rt6_next) {
254                         struct net_device *dev = sprt->rt6i_dev;
255                         if (dev->ifindex == oif)
256                                 return sprt;
257                         if (dev->flags & IFF_LOOPBACK) {
258                                 if (sprt->rt6i_idev == NULL ||
259                                     sprt->rt6i_idev->dev->ifindex != oif) {
260                                         if (strict && oif)
261                                                 continue;
262                                         if (local && (!oif ||
263                                                       local->rt6i_idev->dev->ifindex == oif))
264                                                 continue;
265                                 }
266                                 local = sprt;
267                         }
268                 }
269
270                 if (local)
271                         return local;
272
273                 if (strict)
274                         return &ip6_null_entry;
275         }
276         return rt;
277 }
278
279 #ifdef CONFIG_IPV6_ROUTER_PREF
280 static void rt6_probe(struct rt6_info *rt)
281 {
282         struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
283         /*
284          * Okay, this does not seem to be appropriate
285          * for now, however, we need to check if it
286          * is really so; aka Router Reachability Probing.
287          *
288          * Router Reachability Probe MUST be rate-limited
289          * to no more than one per minute.
290          */
291         if (!neigh || (neigh->nud_state & NUD_VALID))
292                 return;
293         read_lock_bh(&neigh->lock);
294         if (!(neigh->nud_state & NUD_VALID) &&
295             time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
296                 struct in6_addr mcaddr;
297                 struct in6_addr *target;
298
299                 neigh->updated = jiffies;
300                 read_unlock_bh(&neigh->lock);
301
302                 target = (struct in6_addr *)&neigh->primary_key;
303                 addrconf_addr_solict_mult(target, &mcaddr);
304                 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
305         } else
306                 read_unlock_bh(&neigh->lock);
307 }
308 #else
309 static inline void rt6_probe(struct rt6_info *rt)
310 {
311         return;
312 }
313 #endif
314
315 /*
316  * Default Router Selection (RFC 2461 6.3.6)
317  */
318 static inline int rt6_check_dev(struct rt6_info *rt, int oif)
319 {
320         struct net_device *dev = rt->rt6i_dev;
321         if (!oif || dev->ifindex == oif)
322                 return 2;
323         if ((dev->flags & IFF_LOOPBACK) &&
324             rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
325                 return 1;
326         return 0;
327 }
328
329 static inline int rt6_check_neigh(struct rt6_info *rt)
330 {
331         struct neighbour *neigh = rt->rt6i_nexthop;
332         int m;
333         if (rt->rt6i_flags & RTF_NONEXTHOP ||
334             !(rt->rt6i_flags & RTF_GATEWAY))
335                 m = 1;
336         else if (neigh) {
337                 read_lock_bh(&neigh->lock);
338                 if (neigh->nud_state & NUD_VALID)
339                         m = 2;
340 #ifdef CONFIG_IPV6_ROUTER_PREF
341                 else if (neigh->nud_state & NUD_FAILED)
342                         m = 0;
343 #endif
344                 else
345                         m = 1;
346                 read_unlock_bh(&neigh->lock);
347         } else
348                 m = 0;
349         return m;
350 }
351
352 static int rt6_score_route(struct rt6_info *rt, int oif,
353                            int strict)
354 {
355         int m, n;
356
357         m = rt6_check_dev(rt, oif);
358         if (!m && (strict & RT6_LOOKUP_F_IFACE))
359                 return -1;
360 #ifdef CONFIG_IPV6_ROUTER_PREF
361         m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
362 #endif
363         n = rt6_check_neigh(rt);
364         if (!n && (strict & RT6_LOOKUP_F_REACHABLE))
365                 return -1;
366         return m;
367 }
368
369 static struct rt6_info *find_match(struct rt6_info *rt, int oif, int strict,
370                                    int *mpri, struct rt6_info *match)
371 {
372         int m;
373
374         if (rt6_check_expired(rt))
375                 goto out;
376
377         m = rt6_score_route(rt, oif, strict);
378         if (m < 0)
379                 goto out;
380
381         if (m > *mpri) {
382                 if (strict & RT6_LOOKUP_F_REACHABLE)
383                         rt6_probe(match);
384                 *mpri = m;
385                 match = rt;
386         } else if (strict & RT6_LOOKUP_F_REACHABLE) {
387                 rt6_probe(rt);
388         }
389
390 out:
391         return match;
392 }
393
394 static struct rt6_info *find_rr_leaf(struct fib6_node *fn,
395                                      struct rt6_info *rr_head,
396                                      u32 metric, int oif, int strict)
397 {
398         struct rt6_info *rt, *match;
399         int mpri = -1;
400
401         match = NULL;
402         for (rt = rr_head; rt && rt->rt6i_metric == metric;
403              rt = rt->u.dst.rt6_next)
404                 match = find_match(rt, oif, strict, &mpri, match);
405         for (rt = fn->leaf; rt && rt != rr_head && rt->rt6i_metric == metric;
406              rt = rt->u.dst.rt6_next)
407                 match = find_match(rt, oif, strict, &mpri, match);
408
409         return match;
410 }
411
412 static struct rt6_info *rt6_select(struct fib6_node *fn, int oif, int strict)
413 {
414         struct rt6_info *match, *rt0;
415
416         RT6_TRACE("%s(fn->leaf=%p, oif=%d)\n",
417                   __FUNCTION__, fn->leaf, oif);
418
419         rt0 = fn->rr_ptr;
420         if (!rt0)
421                 fn->rr_ptr = rt0 = fn->leaf;
422
423         match = find_rr_leaf(fn, rt0, rt0->rt6i_metric, oif, strict);
424
425         if (!match &&
426             (strict & RT6_LOOKUP_F_REACHABLE)) {
427                 struct rt6_info *next = rt0->u.dst.rt6_next;
428
429                 /* no entries matched; do round-robin */
430                 if (!next || next->rt6i_metric != rt0->rt6i_metric)
431                         next = fn->leaf;
432
433                 if (next != rt0)
434                         fn->rr_ptr = next;
435         }
436
437         RT6_TRACE("%s() => %p\n",
438                   __FUNCTION__, match);
439
440         return (match ? match : &ip6_null_entry);
441 }
442
443 #ifdef CONFIG_IPV6_ROUTE_INFO
444 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
445                   struct in6_addr *gwaddr)
446 {
447         struct route_info *rinfo = (struct route_info *) opt;
448         struct in6_addr prefix_buf, *prefix;
449         unsigned int pref;
450         u32 lifetime;
451         struct rt6_info *rt;
452
453         if (len < sizeof(struct route_info)) {
454                 return -EINVAL;
455         }
456
457         /* Sanity check for prefix_len and length */
458         if (rinfo->length > 3) {
459                 return -EINVAL;
460         } else if (rinfo->prefix_len > 128) {
461                 return -EINVAL;
462         } else if (rinfo->prefix_len > 64) {
463                 if (rinfo->length < 2) {
464                         return -EINVAL;
465                 }
466         } else if (rinfo->prefix_len > 0) {
467                 if (rinfo->length < 1) {
468                         return -EINVAL;
469                 }
470         }
471
472         pref = rinfo->route_pref;
473         if (pref == ICMPV6_ROUTER_PREF_INVALID)
474                 pref = ICMPV6_ROUTER_PREF_MEDIUM;
475
476         lifetime = ntohl(rinfo->lifetime);
477         if (lifetime == 0xffffffff) {
478                 /* infinity */
479         } else if (lifetime > 0x7fffffff/HZ) {
480                 /* Avoid arithmetic overflow */
481                 lifetime = 0x7fffffff/HZ - 1;
482         }
483
484         if (rinfo->length == 3)
485                 prefix = (struct in6_addr *)rinfo->prefix;
486         else {
487                 /* this function is safe */
488                 ipv6_addr_prefix(&prefix_buf,
489                                  (struct in6_addr *)rinfo->prefix,
490                                  rinfo->prefix_len);
491                 prefix = &prefix_buf;
492         }
493
494         rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
495
496         if (rt && !lifetime) {
497                 ip6_del_rt(rt);
498                 rt = NULL;
499         }
500
501         if (!rt && lifetime)
502                 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
503                                         pref);
504         else if (rt)
505                 rt->rt6i_flags = RTF_ROUTEINFO |
506                                  (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
507
508         if (rt) {
509                 if (lifetime == 0xffffffff) {
510                         rt->rt6i_flags &= ~RTF_EXPIRES;
511                 } else {
512                         rt->rt6i_expires = jiffies + HZ * lifetime;
513                         rt->rt6i_flags |= RTF_EXPIRES;
514                 }
515                 dst_release(&rt->u.dst);
516         }
517         return 0;
518 }
519 #endif
520
521 #define BACKTRACK(saddr) \
522 do { \
523         if (rt == &ip6_null_entry) { \
524                 struct fib6_node *pn; \
525                 while (1) { \
526                         if (fn->fn_flags & RTN_TL_ROOT) \
527                                 goto out; \
528                         pn = fn->parent; \
529                         if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
530                                 fn = fib6_lookup(FIB6_SUBTREE(pn), NULL, saddr); \
531                         else \
532                                 fn = pn; \
533                         if (fn->fn_flags & RTN_RTINFO) \
534                                 goto restart; \
535                 } \
536         } \
537 } while(0)
538
539 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
540                                              struct flowi *fl, int flags)
541 {
542         struct fib6_node *fn;
543         struct rt6_info *rt;
544
545         read_lock_bh(&table->tb6_lock);
546         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
547 restart:
548         rt = fn->leaf;
549         rt = rt6_device_match(rt, fl->oif, flags);
550         BACKTRACK(&fl->fl6_src);
551 out:
552         dst_use(&rt->u.dst, jiffies);
553         read_unlock_bh(&table->tb6_lock);
554         return rt;
555
556 }
557
558 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
559                             int oif, int strict)
560 {
561         struct flowi fl = {
562                 .oif = oif,
563                 .nl_u = {
564                         .ip6_u = {
565                                 .daddr = *daddr,
566                         },
567                 },
568         };
569         struct dst_entry *dst;
570         int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
571
572         if (saddr) {
573                 memcpy(&fl.fl6_src, saddr, sizeof(*saddr));
574                 flags |= RT6_LOOKUP_F_HAS_SADDR;
575         }
576
577         dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
578         if (dst->error == 0)
579                 return (struct rt6_info *) dst;
580
581         dst_release(dst);
582
583         return NULL;
584 }
585
586 EXPORT_SYMBOL(rt6_lookup);
587
588 /* ip6_ins_rt is called with FREE table->tb6_lock.
589    It takes new route entry, the addition fails by any reason the
590    route is freed. In any case, if caller does not hold it, it may
591    be destroyed.
592  */
593
594 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
595 {
596         int err;
597         struct fib6_table *table;
598
599         table = rt->rt6i_table;
600         write_lock_bh(&table->tb6_lock);
601         err = fib6_add(&table->tb6_root, rt, info);
602         write_unlock_bh(&table->tb6_lock);
603
604         return err;
605 }
606
607 int ip6_ins_rt(struct rt6_info *rt)
608 {
609         return __ip6_ins_rt(rt, NULL);
610 }
611
612 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
613                                       struct in6_addr *saddr)
614 {
615         struct rt6_info *rt;
616
617         /*
618          *      Clone the route.
619          */
620
621         rt = ip6_rt_copy(ort);
622
623         if (rt) {
624                 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
625                         if (rt->rt6i_dst.plen != 128 &&
626                             ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
627                                 rt->rt6i_flags |= RTF_ANYCAST;
628                         ipv6_addr_copy(&rt->rt6i_gateway, daddr);
629                 }
630
631                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
632                 rt->rt6i_dst.plen = 128;
633                 rt->rt6i_flags |= RTF_CACHE;
634                 rt->u.dst.flags |= DST_HOST;
635
636 #ifdef CONFIG_IPV6_SUBTREES
637                 if (rt->rt6i_src.plen && saddr) {
638                         ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
639                         rt->rt6i_src.plen = 128;
640                 }
641 #endif
642
643                 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
644
645         }
646
647         return rt;
648 }
649
650 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
651 {
652         struct rt6_info *rt = ip6_rt_copy(ort);
653         if (rt) {
654                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
655                 rt->rt6i_dst.plen = 128;
656                 rt->rt6i_flags |= RTF_CACHE;
657                 rt->u.dst.flags |= DST_HOST;
658                 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
659         }
660         return rt;
661 }
662
663 static struct rt6_info *ip6_pol_route(struct fib6_table *table, int oif,
664                                             struct flowi *fl, int flags)
665 {
666         struct fib6_node *fn;
667         struct rt6_info *rt, *nrt;
668         int strict = 0;
669         int attempts = 3;
670         int err;
671         int reachable = ipv6_devconf.forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
672
673         strict |= flags & RT6_LOOKUP_F_IFACE;
674
675 relookup:
676         read_lock_bh(&table->tb6_lock);
677
678 restart_2:
679         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
680
681 restart:
682         rt = rt6_select(fn, oif, strict | reachable);
683         BACKTRACK(&fl->fl6_src);
684         if (rt == &ip6_null_entry ||
685             rt->rt6i_flags & RTF_CACHE)
686                 goto out;
687
688         dst_hold(&rt->u.dst);
689         read_unlock_bh(&table->tb6_lock);
690
691         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
692                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
693         else {
694 #if CLONE_OFFLINK_ROUTE
695                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
696 #else
697                 goto out2;
698 #endif
699         }
700
701         dst_release(&rt->u.dst);
702         rt = nrt ? : &ip6_null_entry;
703
704         dst_hold(&rt->u.dst);
705         if (nrt) {
706                 err = ip6_ins_rt(nrt);
707                 if (!err)
708                         goto out2;
709         }
710
711         if (--attempts <= 0)
712                 goto out2;
713
714         /*
715          * Race condition! In the gap, when table->tb6_lock was
716          * released someone could insert this route.  Relookup.
717          */
718         dst_release(&rt->u.dst);
719         goto relookup;
720
721 out:
722         if (reachable) {
723                 reachable = 0;
724                 goto restart_2;
725         }
726         dst_hold(&rt->u.dst);
727         read_unlock_bh(&table->tb6_lock);
728 out2:
729         rt->u.dst.lastuse = jiffies;
730         rt->u.dst.__use++;
731
732         return rt;
733 }
734
735 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
736                                             struct flowi *fl, int flags)
737 {
738         return ip6_pol_route(table, fl->iif, fl, flags);
739 }
740
741 void ip6_route_input(struct sk_buff *skb)
742 {
743         struct ipv6hdr *iph = ipv6_hdr(skb);
744         int flags = RT6_LOOKUP_F_HAS_SADDR;
745         struct flowi fl = {
746                 .iif = skb->dev->ifindex,
747                 .nl_u = {
748                         .ip6_u = {
749                                 .daddr = iph->daddr,
750                                 .saddr = iph->saddr,
751                                 .flowlabel = (* (__be32 *) iph)&IPV6_FLOWINFO_MASK,
752                         },
753                 },
754                 .mark = skb->mark,
755                 .proto = iph->nexthdr,
756         };
757
758         if (rt6_need_strict(&iph->daddr))
759                 flags |= RT6_LOOKUP_F_IFACE;
760
761         skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
762 }
763
764 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
765                                              struct flowi *fl, int flags)
766 {
767         return ip6_pol_route(table, fl->oif, fl, flags);
768 }
769
770 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
771 {
772         int flags = 0;
773
774         if (rt6_need_strict(&fl->fl6_dst))
775                 flags |= RT6_LOOKUP_F_IFACE;
776
777         if (!ipv6_addr_any(&fl->fl6_src))
778                 flags |= RT6_LOOKUP_F_HAS_SADDR;
779
780         return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
781 }
782
783 EXPORT_SYMBOL(ip6_route_output);
784
785 int ip6_dst_blackhole(struct sock *sk, struct dst_entry **dstp, struct flowi *fl)
786 {
787         struct rt6_info *ort = (struct rt6_info *) *dstp;
788         struct rt6_info *rt = (struct rt6_info *)
789                 dst_alloc(&ip6_dst_blackhole_ops);
790         struct dst_entry *new = NULL;
791
792         if (rt) {
793                 new = &rt->u.dst;
794
795                 atomic_set(&new->__refcnt, 1);
796                 new->__use = 1;
797                 new->input = dst_discard;
798                 new->output = dst_discard;
799
800                 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
801                 new->dev = ort->u.dst.dev;
802                 if (new->dev)
803                         dev_hold(new->dev);
804                 rt->rt6i_idev = ort->rt6i_idev;
805                 if (rt->rt6i_idev)
806                         in6_dev_hold(rt->rt6i_idev);
807                 rt->rt6i_expires = 0;
808
809                 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
810                 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
811                 rt->rt6i_metric = 0;
812
813                 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
814 #ifdef CONFIG_IPV6_SUBTREES
815                 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
816 #endif
817
818                 dst_free(new);
819         }
820
821         dst_release(*dstp);
822         *dstp = new;
823         return (new ? 0 : -ENOMEM);
824 }
825 EXPORT_SYMBOL_GPL(ip6_dst_blackhole);
826
827 /*
828  *      Destination cache support functions
829  */
830
831 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
832 {
833         struct rt6_info *rt;
834
835         rt = (struct rt6_info *) dst;
836
837         if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
838                 return dst;
839
840         return NULL;
841 }
842
843 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
844 {
845         struct rt6_info *rt = (struct rt6_info *) dst;
846
847         if (rt) {
848                 if (rt->rt6i_flags & RTF_CACHE)
849                         ip6_del_rt(rt);
850                 else
851                         dst_release(dst);
852         }
853         return NULL;
854 }
855
856 static void ip6_link_failure(struct sk_buff *skb)
857 {
858         struct rt6_info *rt;
859
860         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
861
862         rt = (struct rt6_info *) skb->dst;
863         if (rt) {
864                 if (rt->rt6i_flags&RTF_CACHE) {
865                         dst_set_expires(&rt->u.dst, 0);
866                         rt->rt6i_flags |= RTF_EXPIRES;
867                 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
868                         rt->rt6i_node->fn_sernum = -1;
869         }
870 }
871
872 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
873 {
874         struct rt6_info *rt6 = (struct rt6_info*)dst;
875
876         if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
877                 rt6->rt6i_flags |= RTF_MODIFIED;
878                 if (mtu < IPV6_MIN_MTU) {
879                         mtu = IPV6_MIN_MTU;
880                         dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
881                 }
882                 dst->metrics[RTAX_MTU-1] = mtu;
883                 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
884         }
885 }
886
887 static int ipv6_get_mtu(struct net_device *dev);
888
889 static inline unsigned int ipv6_advmss(unsigned int mtu)
890 {
891         mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
892
893         if (mtu < ip6_rt_min_advmss)
894                 mtu = ip6_rt_min_advmss;
895
896         /*
897          * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
898          * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
899          * IPV6_MAXPLEN is also valid and means: "any MSS,
900          * rely only on pmtu discovery"
901          */
902         if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
903                 mtu = IPV6_MAXPLEN;
904         return mtu;
905 }
906
907 static struct dst_entry *ndisc_dst_gc_list;
908 static DEFINE_SPINLOCK(ndisc_lock);
909
910 struct dst_entry *ndisc_dst_alloc(struct net_device *dev,
911                                   struct neighbour *neigh,
912                                   struct in6_addr *addr,
913                                   int (*output)(struct sk_buff *))
914 {
915         struct rt6_info *rt;
916         struct inet6_dev *idev = in6_dev_get(dev);
917
918         if (unlikely(idev == NULL))
919                 return NULL;
920
921         rt = ip6_dst_alloc();
922         if (unlikely(rt == NULL)) {
923                 in6_dev_put(idev);
924                 goto out;
925         }
926
927         dev_hold(dev);
928         if (neigh)
929                 neigh_hold(neigh);
930         else
931                 neigh = ndisc_get_neigh(dev, addr);
932
933         rt->rt6i_dev      = dev;
934         rt->rt6i_idev     = idev;
935         rt->rt6i_nexthop  = neigh;
936         atomic_set(&rt->u.dst.__refcnt, 1);
937         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
938         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
939         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
940         rt->u.dst.output  = output;
941
942 #if 0   /* there's no chance to use these for ndisc */
943         rt->u.dst.flags   = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST
944                                 ? DST_HOST
945                                 : 0;
946         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
947         rt->rt6i_dst.plen = 128;
948 #endif
949
950         spin_lock_bh(&ndisc_lock);
951         rt->u.dst.next = ndisc_dst_gc_list;
952         ndisc_dst_gc_list = &rt->u.dst;
953         spin_unlock_bh(&ndisc_lock);
954
955         fib6_force_start_gc();
956
957 out:
958         return &rt->u.dst;
959 }
960
961 int ndisc_dst_gc(int *more)
962 {
963         struct dst_entry *dst, *next, **pprev;
964         int freed;
965
966         next = NULL;
967         freed = 0;
968
969         spin_lock_bh(&ndisc_lock);
970         pprev = &ndisc_dst_gc_list;
971
972         while ((dst = *pprev) != NULL) {
973                 if (!atomic_read(&dst->__refcnt)) {
974                         *pprev = dst->next;
975                         dst_free(dst);
976                         freed++;
977                 } else {
978                         pprev = &dst->next;
979                         (*more)++;
980                 }
981         }
982
983         spin_unlock_bh(&ndisc_lock);
984
985         return freed;
986 }
987
988 static int ip6_dst_gc(void)
989 {
990         static unsigned expire = 30*HZ;
991         static unsigned long last_gc;
992         unsigned long now = jiffies;
993
994         if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
995             atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
996                 goto out;
997
998         expire++;
999         fib6_run_gc(expire);
1000         last_gc = now;
1001         if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
1002                 expire = ip6_rt_gc_timeout>>1;
1003
1004 out:
1005         expire -= expire>>ip6_rt_gc_elasticity;
1006         return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
1007 }
1008
1009 /* Clean host part of a prefix. Not necessary in radix tree,
1010    but results in cleaner routing tables.
1011
1012    Remove it only when all the things will work!
1013  */
1014
1015 static int ipv6_get_mtu(struct net_device *dev)
1016 {
1017         int mtu = IPV6_MIN_MTU;
1018         struct inet6_dev *idev;
1019
1020         idev = in6_dev_get(dev);
1021         if (idev) {
1022                 mtu = idev->cnf.mtu6;
1023                 in6_dev_put(idev);
1024         }
1025         return mtu;
1026 }
1027
1028 int ipv6_get_hoplimit(struct net_device *dev)
1029 {
1030         int hoplimit = ipv6_devconf.hop_limit;
1031         struct inet6_dev *idev;
1032
1033         idev = in6_dev_get(dev);
1034         if (idev) {
1035                 hoplimit = idev->cnf.hop_limit;
1036                 in6_dev_put(idev);
1037         }
1038         return hoplimit;
1039 }
1040
1041 /*
1042  *
1043  */
1044
1045 int ip6_route_add(struct fib6_config *cfg)
1046 {
1047         int err;
1048         struct rt6_info *rt = NULL;
1049         struct net_device *dev = NULL;
1050         struct inet6_dev *idev = NULL;
1051         struct fib6_table *table;
1052         int addr_type;
1053
1054         if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1055                 return -EINVAL;
1056 #ifndef CONFIG_IPV6_SUBTREES
1057         if (cfg->fc_src_len)
1058                 return -EINVAL;
1059 #endif
1060         if (cfg->fc_ifindex) {
1061                 err = -ENODEV;
1062                 dev = dev_get_by_index(&init_net, cfg->fc_ifindex);
1063                 if (!dev)
1064                         goto out;
1065                 idev = in6_dev_get(dev);
1066                 if (!idev)
1067                         goto out;
1068         }
1069
1070         if (cfg->fc_metric == 0)
1071                 cfg->fc_metric = IP6_RT_PRIO_USER;
1072
1073         table = fib6_new_table(cfg->fc_table);
1074         if (table == NULL) {
1075                 err = -ENOBUFS;
1076                 goto out;
1077         }
1078
1079         rt = ip6_dst_alloc();
1080
1081         if (rt == NULL) {
1082                 err = -ENOMEM;
1083                 goto out;
1084         }
1085
1086         rt->u.dst.obsolete = -1;
1087         rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1088
1089         if (cfg->fc_protocol == RTPROT_UNSPEC)
1090                 cfg->fc_protocol = RTPROT_BOOT;
1091         rt->rt6i_protocol = cfg->fc_protocol;
1092
1093         addr_type = ipv6_addr_type(&cfg->fc_dst);
1094
1095         if (addr_type & IPV6_ADDR_MULTICAST)
1096                 rt->u.dst.input = ip6_mc_input;
1097         else
1098                 rt->u.dst.input = ip6_forward;
1099
1100         rt->u.dst.output = ip6_output;
1101
1102         ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1103         rt->rt6i_dst.plen = cfg->fc_dst_len;
1104         if (rt->rt6i_dst.plen == 128)
1105                rt->u.dst.flags = DST_HOST;
1106
1107 #ifdef CONFIG_IPV6_SUBTREES
1108         ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1109         rt->rt6i_src.plen = cfg->fc_src_len;
1110 #endif
1111
1112         rt->rt6i_metric = cfg->fc_metric;
1113
1114         /* We cannot add true routes via loopback here,
1115            they would result in kernel looping; promote them to reject routes
1116          */
1117         if ((cfg->fc_flags & RTF_REJECT) ||
1118             (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1119                 /* hold loopback dev/idev if we haven't done so. */
1120                 if (dev != init_net.loopback_dev) {
1121                         if (dev) {
1122                                 dev_put(dev);
1123                                 in6_dev_put(idev);
1124                         }
1125                         dev = init_net.loopback_dev;
1126                         dev_hold(dev);
1127                         idev = in6_dev_get(dev);
1128                         if (!idev) {
1129                                 err = -ENODEV;
1130                                 goto out;
1131                         }
1132                 }
1133                 rt->u.dst.output = ip6_pkt_discard_out;
1134                 rt->u.dst.input = ip6_pkt_discard;
1135                 rt->u.dst.error = -ENETUNREACH;
1136                 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1137                 goto install_route;
1138         }
1139
1140         if (cfg->fc_flags & RTF_GATEWAY) {
1141                 struct in6_addr *gw_addr;
1142                 int gwa_type;
1143
1144                 gw_addr = &cfg->fc_gateway;
1145                 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1146                 gwa_type = ipv6_addr_type(gw_addr);
1147
1148                 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1149                         struct rt6_info *grt;
1150
1151                         /* IPv6 strictly inhibits using not link-local
1152                            addresses as nexthop address.
1153                            Otherwise, router will not able to send redirects.
1154                            It is very good, but in some (rare!) circumstances
1155                            (SIT, PtP, NBMA NOARP links) it is handy to allow
1156                            some exceptions. --ANK
1157                          */
1158                         err = -EINVAL;
1159                         if (!(gwa_type&IPV6_ADDR_UNICAST))
1160                                 goto out;
1161
1162                         grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1163
1164                         err = -EHOSTUNREACH;
1165                         if (grt == NULL)
1166                                 goto out;
1167                         if (dev) {
1168                                 if (dev != grt->rt6i_dev) {
1169                                         dst_release(&grt->u.dst);
1170                                         goto out;
1171                                 }
1172                         } else {
1173                                 dev = grt->rt6i_dev;
1174                                 idev = grt->rt6i_idev;
1175                                 dev_hold(dev);
1176                                 in6_dev_hold(grt->rt6i_idev);
1177                         }
1178                         if (!(grt->rt6i_flags&RTF_GATEWAY))
1179                                 err = 0;
1180                         dst_release(&grt->u.dst);
1181
1182                         if (err)
1183                                 goto out;
1184                 }
1185                 err = -EINVAL;
1186                 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1187                         goto out;
1188         }
1189
1190         err = -ENODEV;
1191         if (dev == NULL)
1192                 goto out;
1193
1194         if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1195                 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1196                 if (IS_ERR(rt->rt6i_nexthop)) {
1197                         err = PTR_ERR(rt->rt6i_nexthop);
1198                         rt->rt6i_nexthop = NULL;
1199                         goto out;
1200                 }
1201         }
1202
1203         rt->rt6i_flags = cfg->fc_flags;
1204
1205 install_route:
1206         if (cfg->fc_mx) {
1207                 struct nlattr *nla;
1208                 int remaining;
1209
1210                 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1211                         int type = nla_type(nla);
1212
1213                         if (type) {
1214                                 if (type > RTAX_MAX) {
1215                                         err = -EINVAL;
1216                                         goto out;
1217                                 }
1218
1219                                 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1220                         }
1221                 }
1222         }
1223
1224         if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1225                 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1226         if (!rt->u.dst.metrics[RTAX_MTU-1])
1227                 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1228         if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1229                 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1230         rt->u.dst.dev = dev;
1231         rt->rt6i_idev = idev;
1232         rt->rt6i_table = table;
1233         return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1234
1235 out:
1236         if (dev)
1237                 dev_put(dev);
1238         if (idev)
1239                 in6_dev_put(idev);
1240         if (rt)
1241                 dst_free(&rt->u.dst);
1242         return err;
1243 }
1244
1245 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1246 {
1247         int err;
1248         struct fib6_table *table;
1249
1250         if (rt == &ip6_null_entry)
1251                 return -ENOENT;
1252
1253         table = rt->rt6i_table;
1254         write_lock_bh(&table->tb6_lock);
1255
1256         err = fib6_del(rt, info);
1257         dst_release(&rt->u.dst);
1258
1259         write_unlock_bh(&table->tb6_lock);
1260
1261         return err;
1262 }
1263
1264 int ip6_del_rt(struct rt6_info *rt)
1265 {
1266         return __ip6_del_rt(rt, NULL);
1267 }
1268
1269 static int ip6_route_del(struct fib6_config *cfg)
1270 {
1271         struct fib6_table *table;
1272         struct fib6_node *fn;
1273         struct rt6_info *rt;
1274         int err = -ESRCH;
1275
1276         table = fib6_get_table(cfg->fc_table);
1277         if (table == NULL)
1278                 return err;
1279
1280         read_lock_bh(&table->tb6_lock);
1281
1282         fn = fib6_locate(&table->tb6_root,
1283                          &cfg->fc_dst, cfg->fc_dst_len,
1284                          &cfg->fc_src, cfg->fc_src_len);
1285
1286         if (fn) {
1287                 for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1288                         if (cfg->fc_ifindex &&
1289                             (rt->rt6i_dev == NULL ||
1290                              rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1291                                 continue;
1292                         if (cfg->fc_flags & RTF_GATEWAY &&
1293                             !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1294                                 continue;
1295                         if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1296                                 continue;
1297                         dst_hold(&rt->u.dst);
1298                         read_unlock_bh(&table->tb6_lock);
1299
1300                         return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1301                 }
1302         }
1303         read_unlock_bh(&table->tb6_lock);
1304
1305         return err;
1306 }
1307
1308 /*
1309  *      Handle redirects
1310  */
1311 struct ip6rd_flowi {
1312         struct flowi fl;
1313         struct in6_addr gateway;
1314 };
1315
1316 static struct rt6_info *__ip6_route_redirect(struct fib6_table *table,
1317                                              struct flowi *fl,
1318                                              int flags)
1319 {
1320         struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl;
1321         struct rt6_info *rt;
1322         struct fib6_node *fn;
1323
1324         /*
1325          * Get the "current" route for this destination and
1326          * check if the redirect has come from approriate router.
1327          *
1328          * RFC 2461 specifies that redirects should only be
1329          * accepted if they come from the nexthop to the target.
1330          * Due to the way the routes are chosen, this notion
1331          * is a bit fuzzy and one might need to check all possible
1332          * routes.
1333          */
1334
1335         read_lock_bh(&table->tb6_lock);
1336         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
1337 restart:
1338         for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1339                 /*
1340                  * Current route is on-link; redirect is always invalid.
1341                  *
1342                  * Seems, previous statement is not true. It could
1343                  * be node, which looks for us as on-link (f.e. proxy ndisc)
1344                  * But then router serving it might decide, that we should
1345                  * know truth 8)8) --ANK (980726).
1346                  */
1347                 if (rt6_check_expired(rt))
1348                         continue;
1349                 if (!(rt->rt6i_flags & RTF_GATEWAY))
1350                         continue;
1351                 if (fl->oif != rt->rt6i_dev->ifindex)
1352                         continue;
1353                 if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway))
1354                         continue;
1355                 break;
1356         }
1357
1358         if (!rt)
1359                 rt = &ip6_null_entry;
1360         BACKTRACK(&fl->fl6_src);
1361 out:
1362         dst_hold(&rt->u.dst);
1363
1364         read_unlock_bh(&table->tb6_lock);
1365
1366         return rt;
1367 };
1368
1369 static struct rt6_info *ip6_route_redirect(struct in6_addr *dest,
1370                                            struct in6_addr *src,
1371                                            struct in6_addr *gateway,
1372                                            struct net_device *dev)
1373 {
1374         int flags = RT6_LOOKUP_F_HAS_SADDR;
1375         struct ip6rd_flowi rdfl = {
1376                 .fl = {
1377                         .oif = dev->ifindex,
1378                         .nl_u = {
1379                                 .ip6_u = {
1380                                         .daddr = *dest,
1381                                         .saddr = *src,
1382                                 },
1383                         },
1384                 },
1385                 .gateway = *gateway,
1386         };
1387
1388         if (rt6_need_strict(dest))
1389                 flags |= RT6_LOOKUP_F_IFACE;
1390
1391         return (struct rt6_info *)fib6_rule_lookup((struct flowi *)&rdfl, flags, __ip6_route_redirect);
1392 }
1393
1394 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1395                   struct in6_addr *saddr,
1396                   struct neighbour *neigh, u8 *lladdr, int on_link)
1397 {
1398         struct rt6_info *rt, *nrt = NULL;
1399         struct netevent_redirect netevent;
1400
1401         rt = ip6_route_redirect(dest, src, saddr, neigh->dev);
1402
1403         if (rt == &ip6_null_entry) {
1404                 if (net_ratelimit())
1405                         printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1406                                "for redirect target\n");
1407                 goto out;
1408         }
1409
1410         /*
1411          *      We have finally decided to accept it.
1412          */
1413
1414         neigh_update(neigh, lladdr, NUD_STALE,
1415                      NEIGH_UPDATE_F_WEAK_OVERRIDE|
1416                      NEIGH_UPDATE_F_OVERRIDE|
1417                      (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1418                                      NEIGH_UPDATE_F_ISROUTER))
1419                      );
1420
1421         /*
1422          * Redirect received -> path was valid.
1423          * Look, redirects are sent only in response to data packets,
1424          * so that this nexthop apparently is reachable. --ANK
1425          */
1426         dst_confirm(&rt->u.dst);
1427
1428         /* Duplicate redirect: silently ignore. */
1429         if (neigh == rt->u.dst.neighbour)
1430                 goto out;
1431
1432         nrt = ip6_rt_copy(rt);
1433         if (nrt == NULL)
1434                 goto out;
1435
1436         nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1437         if (on_link)
1438                 nrt->rt6i_flags &= ~RTF_GATEWAY;
1439
1440         ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1441         nrt->rt6i_dst.plen = 128;
1442         nrt->u.dst.flags |= DST_HOST;
1443
1444         ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1445         nrt->rt6i_nexthop = neigh_clone(neigh);
1446         /* Reset pmtu, it may be better */
1447         nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1448         nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1449
1450         if (ip6_ins_rt(nrt))
1451                 goto out;
1452
1453         netevent.old = &rt->u.dst;
1454         netevent.new = &nrt->u.dst;
1455         call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1456
1457         if (rt->rt6i_flags&RTF_CACHE) {
1458                 ip6_del_rt(rt);
1459                 return;
1460         }
1461
1462 out:
1463         dst_release(&rt->u.dst);
1464         return;
1465 }
1466
1467 /*
1468  *      Handle ICMP "packet too big" messages
1469  *      i.e. Path MTU discovery
1470  */
1471
1472 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1473                         struct net_device *dev, u32 pmtu)
1474 {
1475         struct rt6_info *rt, *nrt;
1476         int allfrag = 0;
1477
1478         rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1479         if (rt == NULL)
1480                 return;
1481
1482         if (pmtu >= dst_mtu(&rt->u.dst))
1483                 goto out;
1484
1485         if (pmtu < IPV6_MIN_MTU) {
1486                 /*
1487                  * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1488                  * MTU (1280) and a fragment header should always be included
1489                  * after a node receiving Too Big message reporting PMTU is
1490                  * less than the IPv6 Minimum Link MTU.
1491                  */
1492                 pmtu = IPV6_MIN_MTU;
1493                 allfrag = 1;
1494         }
1495
1496         /* New mtu received -> path was valid.
1497            They are sent only in response to data packets,
1498            so that this nexthop apparently is reachable. --ANK
1499          */
1500         dst_confirm(&rt->u.dst);
1501
1502         /* Host route. If it is static, it would be better
1503            not to override it, but add new one, so that
1504            when cache entry will expire old pmtu
1505            would return automatically.
1506          */
1507         if (rt->rt6i_flags & RTF_CACHE) {
1508                 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1509                 if (allfrag)
1510                         rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1511                 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1512                 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1513                 goto out;
1514         }
1515
1516         /* Network route.
1517            Two cases are possible:
1518            1. It is connected route. Action: COW
1519            2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1520          */
1521         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1522                 nrt = rt6_alloc_cow(rt, daddr, saddr);
1523         else
1524                 nrt = rt6_alloc_clone(rt, daddr);
1525
1526         if (nrt) {
1527                 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1528                 if (allfrag)
1529                         nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1530
1531                 /* According to RFC 1981, detecting PMTU increase shouldn't be
1532                  * happened within 5 mins, the recommended timer is 10 mins.
1533                  * Here this route expiration time is set to ip6_rt_mtu_expires
1534                  * which is 10 mins. After 10 mins the decreased pmtu is expired
1535                  * and detecting PMTU increase will be automatically happened.
1536                  */
1537                 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1538                 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1539
1540                 ip6_ins_rt(nrt);
1541         }
1542 out:
1543         dst_release(&rt->u.dst);
1544 }
1545
1546 /*
1547  *      Misc support functions
1548  */
1549
1550 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1551 {
1552         struct rt6_info *rt = ip6_dst_alloc();
1553
1554         if (rt) {
1555                 rt->u.dst.input = ort->u.dst.input;
1556                 rt->u.dst.output = ort->u.dst.output;
1557
1558                 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1559                 rt->u.dst.error = ort->u.dst.error;
1560                 rt->u.dst.dev = ort->u.dst.dev;
1561                 if (rt->u.dst.dev)
1562                         dev_hold(rt->u.dst.dev);
1563                 rt->rt6i_idev = ort->rt6i_idev;
1564                 if (rt->rt6i_idev)
1565                         in6_dev_hold(rt->rt6i_idev);
1566                 rt->u.dst.lastuse = jiffies;
1567                 rt->rt6i_expires = 0;
1568
1569                 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1570                 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1571                 rt->rt6i_metric = 0;
1572
1573                 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1574 #ifdef CONFIG_IPV6_SUBTREES
1575                 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1576 #endif
1577                 rt->rt6i_table = ort->rt6i_table;
1578         }
1579         return rt;
1580 }
1581
1582 #ifdef CONFIG_IPV6_ROUTE_INFO
1583 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1584                                            struct in6_addr *gwaddr, int ifindex)
1585 {
1586         struct fib6_node *fn;
1587         struct rt6_info *rt = NULL;
1588         struct fib6_table *table;
1589
1590         table = fib6_get_table(RT6_TABLE_INFO);
1591         if (table == NULL)
1592                 return NULL;
1593
1594         write_lock_bh(&table->tb6_lock);
1595         fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1596         if (!fn)
1597                 goto out;
1598
1599         for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1600                 if (rt->rt6i_dev->ifindex != ifindex)
1601                         continue;
1602                 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1603                         continue;
1604                 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1605                         continue;
1606                 dst_hold(&rt->u.dst);
1607                 break;
1608         }
1609 out:
1610         write_unlock_bh(&table->tb6_lock);
1611         return rt;
1612 }
1613
1614 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1615                                            struct in6_addr *gwaddr, int ifindex,
1616                                            unsigned pref)
1617 {
1618         struct fib6_config cfg = {
1619                 .fc_table       = RT6_TABLE_INFO,
1620                 .fc_metric      = 1024,
1621                 .fc_ifindex     = ifindex,
1622                 .fc_dst_len     = prefixlen,
1623                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1624                                   RTF_UP | RTF_PREF(pref),
1625         };
1626
1627         ipv6_addr_copy(&cfg.fc_dst, prefix);
1628         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1629
1630         /* We should treat it as a default route if prefix length is 0. */
1631         if (!prefixlen)
1632                 cfg.fc_flags |= RTF_DEFAULT;
1633
1634         ip6_route_add(&cfg);
1635
1636         return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1637 }
1638 #endif
1639
1640 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1641 {
1642         struct rt6_info *rt;
1643         struct fib6_table *table;
1644
1645         table = fib6_get_table(RT6_TABLE_DFLT);
1646         if (table == NULL)
1647                 return NULL;
1648
1649         write_lock_bh(&table->tb6_lock);
1650         for (rt = table->tb6_root.leaf; rt; rt=rt->u.dst.rt6_next) {
1651                 if (dev == rt->rt6i_dev &&
1652                     ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1653                     ipv6_addr_equal(&rt->rt6i_gateway, addr))
1654                         break;
1655         }
1656         if (rt)
1657                 dst_hold(&rt->u.dst);
1658         write_unlock_bh(&table->tb6_lock);
1659         return rt;
1660 }
1661
1662 EXPORT_SYMBOL(rt6_get_dflt_router);
1663
1664 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1665                                      struct net_device *dev,
1666                                      unsigned int pref)
1667 {
1668         struct fib6_config cfg = {
1669                 .fc_table       = RT6_TABLE_DFLT,
1670                 .fc_metric      = 1024,
1671                 .fc_ifindex     = dev->ifindex,
1672                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1673                                   RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1674         };
1675
1676         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1677
1678         ip6_route_add(&cfg);
1679
1680         return rt6_get_dflt_router(gwaddr, dev);
1681 }
1682
1683 void rt6_purge_dflt_routers(void)
1684 {
1685         struct rt6_info *rt;
1686         struct fib6_table *table;
1687
1688         /* NOTE: Keep consistent with rt6_get_dflt_router */
1689         table = fib6_get_table(RT6_TABLE_DFLT);
1690         if (table == NULL)
1691                 return;
1692
1693 restart:
1694         read_lock_bh(&table->tb6_lock);
1695         for (rt = table->tb6_root.leaf; rt; rt = rt->u.dst.rt6_next) {
1696                 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1697                         dst_hold(&rt->u.dst);
1698                         read_unlock_bh(&table->tb6_lock);
1699                         ip6_del_rt(rt);
1700                         goto restart;
1701                 }
1702         }
1703         read_unlock_bh(&table->tb6_lock);
1704 }
1705
1706 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1707                                  struct fib6_config *cfg)
1708 {
1709         memset(cfg, 0, sizeof(*cfg));
1710
1711         cfg->fc_table = RT6_TABLE_MAIN;
1712         cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1713         cfg->fc_metric = rtmsg->rtmsg_metric;
1714         cfg->fc_expires = rtmsg->rtmsg_info;
1715         cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1716         cfg->fc_src_len = rtmsg->rtmsg_src_len;
1717         cfg->fc_flags = rtmsg->rtmsg_flags;
1718
1719         ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1720         ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1721         ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1722 }
1723
1724 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1725 {
1726         struct fib6_config cfg;
1727         struct in6_rtmsg rtmsg;
1728         int err;
1729
1730         switch(cmd) {
1731         case SIOCADDRT:         /* Add a route */
1732         case SIOCDELRT:         /* Delete a route */
1733                 if (!capable(CAP_NET_ADMIN))
1734                         return -EPERM;
1735                 err = copy_from_user(&rtmsg, arg,
1736                                      sizeof(struct in6_rtmsg));
1737                 if (err)
1738                         return -EFAULT;
1739
1740                 rtmsg_to_fib6_config(&rtmsg, &cfg);
1741
1742                 rtnl_lock();
1743                 switch (cmd) {
1744                 case SIOCADDRT:
1745                         err = ip6_route_add(&cfg);
1746                         break;
1747                 case SIOCDELRT:
1748                         err = ip6_route_del(&cfg);
1749                         break;
1750                 default:
1751                         err = -EINVAL;
1752                 }
1753                 rtnl_unlock();
1754
1755                 return err;
1756         }
1757
1758         return -EINVAL;
1759 }
1760
1761 /*
1762  *      Drop the packet on the floor
1763  */
1764
1765 static inline int ip6_pkt_drop(struct sk_buff *skb, int code,
1766                                int ipstats_mib_noroutes)
1767 {
1768         int type;
1769         switch (ipstats_mib_noroutes) {
1770         case IPSTATS_MIB_INNOROUTES:
1771                 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
1772                 if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED) {
1773                         IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INADDRERRORS);
1774                         break;
1775                 }
1776                 /* FALLTHROUGH */
1777         case IPSTATS_MIB_OUTNOROUTES:
1778                 IP6_INC_STATS(ip6_dst_idev(skb->dst), ipstats_mib_noroutes);
1779                 break;
1780         }
1781         icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0, skb->dev);
1782         kfree_skb(skb);
1783         return 0;
1784 }
1785
1786 static int ip6_pkt_discard(struct sk_buff *skb)
1787 {
1788         return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
1789 }
1790
1791 static int ip6_pkt_discard_out(struct sk_buff *skb)
1792 {
1793         skb->dev = skb->dst->dev;
1794         return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
1795 }
1796
1797 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1798
1799 static int ip6_pkt_prohibit(struct sk_buff *skb)
1800 {
1801         return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
1802 }
1803
1804 static int ip6_pkt_prohibit_out(struct sk_buff *skb)
1805 {
1806         skb->dev = skb->dst->dev;
1807         return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
1808 }
1809
1810 #endif
1811
1812 /*
1813  *      Allocate a dst for local (unicast / anycast) address.
1814  */
1815
1816 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1817                                     const struct in6_addr *addr,
1818                                     int anycast)
1819 {
1820         struct rt6_info *rt = ip6_dst_alloc();
1821
1822         if (rt == NULL)
1823                 return ERR_PTR(-ENOMEM);
1824
1825         dev_hold(init_net.loopback_dev);
1826         in6_dev_hold(idev);
1827
1828         rt->u.dst.flags = DST_HOST;
1829         rt->u.dst.input = ip6_input;
1830         rt->u.dst.output = ip6_output;
1831         rt->rt6i_dev = init_net.loopback_dev;
1832         rt->rt6i_idev = idev;
1833         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1834         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1835         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1836         rt->u.dst.obsolete = -1;
1837
1838         rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1839         if (anycast)
1840                 rt->rt6i_flags |= RTF_ANYCAST;
1841         else
1842                 rt->rt6i_flags |= RTF_LOCAL;
1843         rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1844         if (rt->rt6i_nexthop == NULL) {
1845                 dst_free(&rt->u.dst);
1846                 return ERR_PTR(-ENOMEM);
1847         }
1848
1849         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1850         rt->rt6i_dst.plen = 128;
1851         rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1852
1853         atomic_set(&rt->u.dst.__refcnt, 1);
1854
1855         return rt;
1856 }
1857
1858 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1859 {
1860         if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1861             rt != &ip6_null_entry) {
1862                 RT6_TRACE("deleted by ifdown %p\n", rt);
1863                 return -1;
1864         }
1865         return 0;
1866 }
1867
1868 void rt6_ifdown(struct net_device *dev)
1869 {
1870         fib6_clean_all(fib6_ifdown, 0, dev);
1871 }
1872
1873 struct rt6_mtu_change_arg
1874 {
1875         struct net_device *dev;
1876         unsigned mtu;
1877 };
1878
1879 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1880 {
1881         struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1882         struct inet6_dev *idev;
1883
1884         /* In IPv6 pmtu discovery is not optional,
1885            so that RTAX_MTU lock cannot disable it.
1886            We still use this lock to block changes
1887            caused by addrconf/ndisc.
1888         */
1889
1890         idev = __in6_dev_get(arg->dev);
1891         if (idev == NULL)
1892                 return 0;
1893
1894         /* For administrative MTU increase, there is no way to discover
1895            IPv6 PMTU increase, so PMTU increase should be updated here.
1896            Since RFC 1981 doesn't include administrative MTU increase
1897            update PMTU increase is a MUST. (i.e. jumbo frame)
1898          */
1899         /*
1900            If new MTU is less than route PMTU, this new MTU will be the
1901            lowest MTU in the path, update the route PMTU to reflect PMTU
1902            decreases; if new MTU is greater than route PMTU, and the
1903            old MTU is the lowest MTU in the path, update the route PMTU
1904            to reflect the increase. In this case if the other nodes' MTU
1905            also have the lowest MTU, TOO BIG MESSAGE will be lead to
1906            PMTU discouvery.
1907          */
1908         if (rt->rt6i_dev == arg->dev &&
1909             !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1910             (dst_mtu(&rt->u.dst) > arg->mtu ||
1911              (dst_mtu(&rt->u.dst) < arg->mtu &&
1912               dst_mtu(&rt->u.dst) == idev->cnf.mtu6))) {
1913                 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1914                 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1915         }
1916         return 0;
1917 }
1918
1919 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1920 {
1921         struct rt6_mtu_change_arg arg = {
1922                 .dev = dev,
1923                 .mtu = mtu,
1924         };
1925
1926         fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1927 }
1928
1929 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
1930         [RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
1931         [RTA_OIF]               = { .type = NLA_U32 },
1932         [RTA_IIF]               = { .type = NLA_U32 },
1933         [RTA_PRIORITY]          = { .type = NLA_U32 },
1934         [RTA_METRICS]           = { .type = NLA_NESTED },
1935 };
1936
1937 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1938                               struct fib6_config *cfg)
1939 {
1940         struct rtmsg *rtm;
1941         struct nlattr *tb[RTA_MAX+1];
1942         int err;
1943
1944         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1945         if (err < 0)
1946                 goto errout;
1947
1948         err = -EINVAL;
1949         rtm = nlmsg_data(nlh);
1950         memset(cfg, 0, sizeof(*cfg));
1951
1952         cfg->fc_table = rtm->rtm_table;
1953         cfg->fc_dst_len = rtm->rtm_dst_len;
1954         cfg->fc_src_len = rtm->rtm_src_len;
1955         cfg->fc_flags = RTF_UP;
1956         cfg->fc_protocol = rtm->rtm_protocol;
1957
1958         if (rtm->rtm_type == RTN_UNREACHABLE)
1959                 cfg->fc_flags |= RTF_REJECT;
1960
1961         cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1962         cfg->fc_nlinfo.nlh = nlh;
1963
1964         if (tb[RTA_GATEWAY]) {
1965                 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1966                 cfg->fc_flags |= RTF_GATEWAY;
1967         }
1968
1969         if (tb[RTA_DST]) {
1970                 int plen = (rtm->rtm_dst_len + 7) >> 3;
1971
1972                 if (nla_len(tb[RTA_DST]) < plen)
1973                         goto errout;
1974
1975                 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1976         }
1977
1978         if (tb[RTA_SRC]) {
1979                 int plen = (rtm->rtm_src_len + 7) >> 3;
1980
1981                 if (nla_len(tb[RTA_SRC]) < plen)
1982                         goto errout;
1983
1984                 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1985         }
1986
1987         if (tb[RTA_OIF])
1988                 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
1989
1990         if (tb[RTA_PRIORITY])
1991                 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
1992
1993         if (tb[RTA_METRICS]) {
1994                 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
1995                 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
1996         }
1997
1998         if (tb[RTA_TABLE])
1999                 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
2000
2001         err = 0;
2002 errout:
2003         return err;
2004 }
2005
2006 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2007 {
2008         struct net *net = skb->sk->sk_net;
2009         struct fib6_config cfg;
2010         int err;
2011
2012         if (net != &init_net)
2013                 return -EINVAL;
2014
2015         err = rtm_to_fib6_config(skb, nlh, &cfg);
2016         if (err < 0)
2017                 return err;
2018
2019         return ip6_route_del(&cfg);
2020 }
2021
2022 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2023 {
2024         struct net *net = skb->sk->sk_net;
2025         struct fib6_config cfg;
2026         int err;
2027
2028         if (net != &init_net)
2029                 return -EINVAL;
2030
2031         err = rtm_to_fib6_config(skb, nlh, &cfg);
2032         if (err < 0)
2033                 return err;
2034
2035         return ip6_route_add(&cfg);
2036 }
2037
2038 static inline size_t rt6_nlmsg_size(void)
2039 {
2040         return NLMSG_ALIGN(sizeof(struct rtmsg))
2041                + nla_total_size(16) /* RTA_SRC */
2042                + nla_total_size(16) /* RTA_DST */
2043                + nla_total_size(16) /* RTA_GATEWAY */
2044                + nla_total_size(16) /* RTA_PREFSRC */
2045                + nla_total_size(4) /* RTA_TABLE */
2046                + nla_total_size(4) /* RTA_IIF */
2047                + nla_total_size(4) /* RTA_OIF */
2048                + nla_total_size(4) /* RTA_PRIORITY */
2049                + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
2050                + nla_total_size(sizeof(struct rta_cacheinfo));
2051 }
2052
2053 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
2054                          struct in6_addr *dst, struct in6_addr *src,
2055                          int iif, int type, u32 pid, u32 seq,
2056                          int prefix, unsigned int flags)
2057 {
2058         struct rtmsg *rtm;
2059         struct nlmsghdr *nlh;
2060         long expires;
2061         u32 table;
2062
2063         if (prefix) {   /* user wants prefix routes only */
2064                 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
2065                         /* success since this is not a prefix route */
2066                         return 1;
2067                 }
2068         }
2069
2070         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
2071         if (nlh == NULL)
2072                 return -EMSGSIZE;
2073
2074         rtm = nlmsg_data(nlh);
2075         rtm->rtm_family = AF_INET6;
2076         rtm->rtm_dst_len = rt->rt6i_dst.plen;
2077         rtm->rtm_src_len = rt->rt6i_src.plen;
2078         rtm->rtm_tos = 0;
2079         if (rt->rt6i_table)
2080                 table = rt->rt6i_table->tb6_id;
2081         else
2082                 table = RT6_TABLE_UNSPEC;
2083         rtm->rtm_table = table;
2084         NLA_PUT_U32(skb, RTA_TABLE, table);
2085         if (rt->rt6i_flags&RTF_REJECT)
2086                 rtm->rtm_type = RTN_UNREACHABLE;
2087         else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
2088                 rtm->rtm_type = RTN_LOCAL;
2089         else
2090                 rtm->rtm_type = RTN_UNICAST;
2091         rtm->rtm_flags = 0;
2092         rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2093         rtm->rtm_protocol = rt->rt6i_protocol;
2094         if (rt->rt6i_flags&RTF_DYNAMIC)
2095                 rtm->rtm_protocol = RTPROT_REDIRECT;
2096         else if (rt->rt6i_flags & RTF_ADDRCONF)
2097                 rtm->rtm_protocol = RTPROT_KERNEL;
2098         else if (rt->rt6i_flags&RTF_DEFAULT)
2099                 rtm->rtm_protocol = RTPROT_RA;
2100
2101         if (rt->rt6i_flags&RTF_CACHE)
2102                 rtm->rtm_flags |= RTM_F_CLONED;
2103
2104         if (dst) {
2105                 NLA_PUT(skb, RTA_DST, 16, dst);
2106                 rtm->rtm_dst_len = 128;
2107         } else if (rtm->rtm_dst_len)
2108                 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
2109 #ifdef CONFIG_IPV6_SUBTREES
2110         if (src) {
2111                 NLA_PUT(skb, RTA_SRC, 16, src);
2112                 rtm->rtm_src_len = 128;
2113         } else if (rtm->rtm_src_len)
2114                 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
2115 #endif
2116         if (iif)
2117                 NLA_PUT_U32(skb, RTA_IIF, iif);
2118         else if (dst) {
2119                 struct in6_addr saddr_buf;
2120                 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2121                         NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2122         }
2123
2124         if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2125                 goto nla_put_failure;
2126
2127         if (rt->u.dst.neighbour)
2128                 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2129
2130         if (rt->u.dst.dev)
2131                 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2132
2133         NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2134
2135         expires = rt->rt6i_expires ? rt->rt6i_expires - jiffies : 0;
2136         if (rtnl_put_cacheinfo(skb, &rt->u.dst, 0, 0, 0,
2137                                expires, rt->u.dst.error) < 0)
2138                 goto nla_put_failure;
2139
2140         return nlmsg_end(skb, nlh);
2141
2142 nla_put_failure:
2143         nlmsg_cancel(skb, nlh);
2144         return -EMSGSIZE;
2145 }
2146
2147 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2148 {
2149         struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2150         int prefix;
2151
2152         if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2153                 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2154                 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2155         } else
2156                 prefix = 0;
2157
2158         return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2159                      NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2160                      prefix, NLM_F_MULTI);
2161 }
2162
2163 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2164 {
2165         struct net *net = in_skb->sk->sk_net;
2166         struct nlattr *tb[RTA_MAX+1];
2167         struct rt6_info *rt;
2168         struct sk_buff *skb;
2169         struct rtmsg *rtm;
2170         struct flowi fl;
2171         int err, iif = 0;
2172
2173         if (net != &init_net)
2174                 return -EINVAL;
2175
2176         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2177         if (err < 0)
2178                 goto errout;
2179
2180         err = -EINVAL;
2181         memset(&fl, 0, sizeof(fl));
2182
2183         if (tb[RTA_SRC]) {
2184                 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2185                         goto errout;
2186
2187                 ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2188         }
2189
2190         if (tb[RTA_DST]) {
2191                 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2192                         goto errout;
2193
2194                 ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2195         }
2196
2197         if (tb[RTA_IIF])
2198                 iif = nla_get_u32(tb[RTA_IIF]);
2199
2200         if (tb[RTA_OIF])
2201                 fl.oif = nla_get_u32(tb[RTA_OIF]);
2202
2203         if (iif) {
2204                 struct net_device *dev;
2205                 dev = __dev_get_by_index(&init_net, iif);
2206                 if (!dev) {
2207                         err = -ENODEV;
2208                         goto errout;
2209                 }
2210         }
2211
2212         skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2213         if (skb == NULL) {
2214                 err = -ENOBUFS;
2215                 goto errout;
2216         }
2217
2218         /* Reserve room for dummy headers, this skb can pass
2219            through good chunk of routing engine.
2220          */
2221         skb_reset_mac_header(skb);
2222         skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2223
2224         rt = (struct rt6_info*) ip6_route_output(NULL, &fl);
2225         skb->dst = &rt->u.dst;
2226
2227         err = rt6_fill_node(skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2228                             RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2229                             nlh->nlmsg_seq, 0, 0);
2230         if (err < 0) {
2231                 kfree_skb(skb);
2232                 goto errout;
2233         }
2234
2235         err = rtnl_unicast(skb, &init_net, NETLINK_CB(in_skb).pid);
2236 errout:
2237         return err;
2238 }
2239
2240 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2241 {
2242         struct sk_buff *skb;
2243         u32 pid = 0, seq = 0;
2244         struct nlmsghdr *nlh = NULL;
2245         int err = -ENOBUFS;
2246
2247         if (info) {
2248                 pid = info->pid;
2249                 nlh = info->nlh;
2250                 if (nlh)
2251                         seq = nlh->nlmsg_seq;
2252         }
2253
2254         skb = nlmsg_new(rt6_nlmsg_size(), gfp_any());
2255         if (skb == NULL)
2256                 goto errout;
2257
2258         err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2259         if (err < 0) {
2260                 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
2261                 WARN_ON(err == -EMSGSIZE);
2262                 kfree_skb(skb);
2263                 goto errout;
2264         }
2265         err = rtnl_notify(skb, &init_net, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2266 errout:
2267         if (err < 0)
2268                 rtnl_set_sk_err(&init_net, RTNLGRP_IPV6_ROUTE, err);
2269 }
2270
2271 /*
2272  *      /proc
2273  */
2274
2275 #ifdef CONFIG_PROC_FS
2276
2277 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2278
2279 struct rt6_proc_arg
2280 {
2281         char *buffer;
2282         int offset;
2283         int length;
2284         int skip;
2285         int len;
2286 };
2287
2288 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2289 {
2290         struct seq_file *m = p_arg;
2291
2292         seq_printf(m, NIP6_SEQFMT " %02x ", NIP6(rt->rt6i_dst.addr),
2293                    rt->rt6i_dst.plen);
2294
2295 #ifdef CONFIG_IPV6_SUBTREES
2296         seq_printf(m, NIP6_SEQFMT " %02x ", NIP6(rt->rt6i_src.addr),
2297                    rt->rt6i_src.plen);
2298 #else
2299         seq_puts(m, "00000000000000000000000000000000 00 ");
2300 #endif
2301
2302         if (rt->rt6i_nexthop) {
2303                 seq_printf(m, NIP6_SEQFMT,
2304                            NIP6(*((struct in6_addr *)rt->rt6i_nexthop->primary_key)));
2305         } else {
2306                 seq_puts(m, "00000000000000000000000000000000");
2307         }
2308         seq_printf(m, " %08x %08x %08x %08x %8s\n",
2309                    rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2310                    rt->u.dst.__use, rt->rt6i_flags,
2311                    rt->rt6i_dev ? rt->rt6i_dev->name : "");
2312         return 0;
2313 }
2314
2315 static int ipv6_route_show(struct seq_file *m, void *v)
2316 {
2317         fib6_clean_all(rt6_info_route, 0, m);
2318         return 0;
2319 }
2320
2321 static int ipv6_route_open(struct inode *inode, struct file *file)
2322 {
2323         return single_open(file, ipv6_route_show, NULL);
2324 }
2325
2326 static const struct file_operations ipv6_route_proc_fops = {
2327         .owner          = THIS_MODULE,
2328         .open           = ipv6_route_open,
2329         .read           = seq_read,
2330         .llseek         = seq_lseek,
2331         .release        = single_release,
2332 };
2333
2334 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2335 {
2336         seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2337                       rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2338                       rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2339                       rt6_stats.fib_rt_cache,
2340                       atomic_read(&ip6_dst_ops.entries),
2341                       rt6_stats.fib_discarded_routes);
2342
2343         return 0;
2344 }
2345
2346 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2347 {
2348         return single_open(file, rt6_stats_seq_show, NULL);
2349 }
2350
2351 static const struct file_operations rt6_stats_seq_fops = {
2352         .owner   = THIS_MODULE,
2353         .open    = rt6_stats_seq_open,
2354         .read    = seq_read,
2355         .llseek  = seq_lseek,
2356         .release = single_release,
2357 };
2358 #endif  /* CONFIG_PROC_FS */
2359
2360 #ifdef CONFIG_SYSCTL
2361
2362 static int flush_delay;
2363
2364 static
2365 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2366                               void __user *buffer, size_t *lenp, loff_t *ppos)
2367 {
2368         if (write) {
2369                 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2370                 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2371                 return 0;
2372         } else
2373                 return -EINVAL;
2374 }
2375
2376 ctl_table ipv6_route_table[] = {
2377         {
2378                 .procname       =       "flush",
2379                 .data           =       &flush_delay,
2380                 .maxlen         =       sizeof(int),
2381                 .mode           =       0200,
2382                 .proc_handler   =       &ipv6_sysctl_rtcache_flush
2383         },
2384         {
2385                 .ctl_name       =       NET_IPV6_ROUTE_GC_THRESH,
2386                 .procname       =       "gc_thresh",
2387                 .data           =       &ip6_dst_ops.gc_thresh,
2388                 .maxlen         =       sizeof(int),
2389                 .mode           =       0644,
2390                 .proc_handler   =       &proc_dointvec,
2391         },
2392         {
2393                 .ctl_name       =       NET_IPV6_ROUTE_MAX_SIZE,
2394                 .procname       =       "max_size",
2395                 .data           =       &ip6_rt_max_size,
2396                 .maxlen         =       sizeof(int),
2397                 .mode           =       0644,
2398                 .proc_handler   =       &proc_dointvec,
2399         },
2400         {
2401                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2402                 .procname       =       "gc_min_interval",
2403                 .data           =       &ip6_rt_gc_min_interval,
2404                 .maxlen         =       sizeof(int),
2405                 .mode           =       0644,
2406                 .proc_handler   =       &proc_dointvec_jiffies,
2407                 .strategy       =       &sysctl_jiffies,
2408         },
2409         {
2410                 .ctl_name       =       NET_IPV6_ROUTE_GC_TIMEOUT,
2411                 .procname       =       "gc_timeout",
2412                 .data           =       &ip6_rt_gc_timeout,
2413                 .maxlen         =       sizeof(int),
2414                 .mode           =       0644,
2415                 .proc_handler   =       &proc_dointvec_jiffies,
2416                 .strategy       =       &sysctl_jiffies,
2417         },
2418         {
2419                 .ctl_name       =       NET_IPV6_ROUTE_GC_INTERVAL,
2420                 .procname       =       "gc_interval",
2421                 .data           =       &ip6_rt_gc_interval,
2422                 .maxlen         =       sizeof(int),
2423                 .mode           =       0644,
2424                 .proc_handler   =       &proc_dointvec_jiffies,
2425                 .strategy       =       &sysctl_jiffies,
2426         },
2427         {
2428                 .ctl_name       =       NET_IPV6_ROUTE_GC_ELASTICITY,
2429                 .procname       =       "gc_elasticity",
2430                 .data           =       &ip6_rt_gc_elasticity,
2431                 .maxlen         =       sizeof(int),
2432                 .mode           =       0644,
2433                 .proc_handler   =       &proc_dointvec_jiffies,
2434                 .strategy       =       &sysctl_jiffies,
2435         },
2436         {
2437                 .ctl_name       =       NET_IPV6_ROUTE_MTU_EXPIRES,
2438                 .procname       =       "mtu_expires",
2439                 .data           =       &ip6_rt_mtu_expires,
2440                 .maxlen         =       sizeof(int),
2441                 .mode           =       0644,
2442                 .proc_handler   =       &proc_dointvec_jiffies,
2443                 .strategy       =       &sysctl_jiffies,
2444         },
2445         {
2446                 .ctl_name       =       NET_IPV6_ROUTE_MIN_ADVMSS,
2447                 .procname       =       "min_adv_mss",
2448                 .data           =       &ip6_rt_min_advmss,
2449                 .maxlen         =       sizeof(int),
2450                 .mode           =       0644,
2451                 .proc_handler   =       &proc_dointvec_jiffies,
2452                 .strategy       =       &sysctl_jiffies,
2453         },
2454         {
2455                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2456                 .procname       =       "gc_min_interval_ms",
2457                 .data           =       &ip6_rt_gc_min_interval,
2458                 .maxlen         =       sizeof(int),
2459                 .mode           =       0644,
2460                 .proc_handler   =       &proc_dointvec_ms_jiffies,
2461                 .strategy       =       &sysctl_ms_jiffies,
2462         },
2463         { .ctl_name = 0 }
2464 };
2465
2466 #endif
2467
2468 void __init ip6_route_init(void)
2469 {
2470         ip6_dst_ops.kmem_cachep =
2471                 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
2472                                   SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2473         ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops.kmem_cachep;
2474
2475         fib6_init();
2476         proc_net_fops_create(&init_net, "ipv6_route", 0, &ipv6_route_proc_fops);
2477         proc_net_fops_create(&init_net, "rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2478 #ifdef CONFIG_XFRM
2479         xfrm6_init();
2480 #endif
2481 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2482         fib6_rules_init();
2483 #endif
2484
2485         __rtnl_register(PF_INET6, RTM_NEWROUTE, inet6_rtm_newroute, NULL);
2486         __rtnl_register(PF_INET6, RTM_DELROUTE, inet6_rtm_delroute, NULL);
2487         __rtnl_register(PF_INET6, RTM_GETROUTE, inet6_rtm_getroute, NULL);
2488 }
2489
2490 void ip6_route_cleanup(void)
2491 {
2492 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2493         fib6_rules_cleanup();
2494 #endif
2495 #ifdef CONFIG_PROC_FS
2496         proc_net_remove(&init_net, "ipv6_route");
2497         proc_net_remove(&init_net, "rt6_stats");
2498 #endif
2499 #ifdef CONFIG_XFRM
2500         xfrm6_fini();
2501 #endif
2502         rt6_ifdown(NULL);
2503         fib6_gc_cleanup();
2504         kmem_cache_destroy(ip6_dst_ops.kmem_cachep);
2505 }