Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[safe/jmp/linux-2.6] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 /*
15  *      Changes:
16  *      Yuji SEKIYA @USAGI:     Support default route on router node;
17  *                              remove ip6_null_entry from the top of
18  *                              routing table.
19  *      Ville Nuorvala:         Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #ifdef  CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41
42 #define RT6_DEBUG 2
43
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
49
50 static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52 enum fib_walk_state_t
53 {
54 #ifdef CONFIG_IPV6_SUBTREES
55         FWS_S,
56 #endif
57         FWS_L,
58         FWS_R,
59         FWS_C,
60         FWS_U
61 };
62
63 struct fib6_cleaner_t
64 {
65         struct fib6_walker_t w;
66         struct net *net;
67         int (*func)(struct rt6_info *, void *arg);
68         void *arg;
69 };
70
71 static DEFINE_RWLOCK(fib6_walker_lock);
72
73 #ifdef CONFIG_IPV6_SUBTREES
74 #define FWS_INIT FWS_S
75 #else
76 #define FWS_INIT FWS_L
77 #endif
78
79 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80                               struct rt6_info *rt);
81 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83 static int fib6_walk(struct fib6_walker_t *w);
84 static int fib6_walk_continue(struct fib6_walker_t *w);
85
86 /*
87  *      A routing update causes an increase of the serial number on the
88  *      affected subtree. This allows for cached routes to be asynchronously
89  *      tested when modifications are made to the destination cache as a
90  *      result of redirects, path MTU changes, etc.
91  */
92
93 static __u32 rt_sernum;
94
95 static void fib6_gc_timer_cb(unsigned long arg);
96
97 static LIST_HEAD(fib6_walkers);
98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100 static inline void fib6_walker_link(struct fib6_walker_t *w)
101 {
102         write_lock_bh(&fib6_walker_lock);
103         list_add(&w->lh, &fib6_walkers);
104         write_unlock_bh(&fib6_walker_lock);
105 }
106
107 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108 {
109         write_lock_bh(&fib6_walker_lock);
110         list_del(&w->lh);
111         write_unlock_bh(&fib6_walker_lock);
112 }
113 static __inline__ u32 fib6_new_sernum(void)
114 {
115         u32 n = ++rt_sernum;
116         if ((__s32)n <= 0)
117                 rt_sernum = n = 1;
118         return n;
119 }
120
121 /*
122  *      Auxiliary address test functions for the radix tree.
123  *
124  *      These assume a 32bit processor (although it will work on
125  *      64bit processors)
126  */
127
128 /*
129  *      test bit
130  */
131 #if defined(__LITTLE_ENDIAN)
132 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
133 #else
134 # define BITOP_BE32_SWIZZLE     0
135 #endif
136
137 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
138 {
139         __be32 *addr = token;
140         /*
141          * Here,
142          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143          * is optimized version of
144          *      htonl(1 << ((~fn_bit)&0x1F))
145          * See include/asm-generic/bitops/le.h.
146          */
147         return (1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & addr[fn_bit >> 5];
148 }
149
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152         struct fib6_node *fn;
153
154         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155
156         return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161         kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166         if (atomic_dec_and_test(&rt->rt6i_ref))
167                 dst_free(&rt->u.dst);
168 }
169
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172         unsigned int h;
173
174         /*
175          * Initialize table lock at a single place to give lockdep a key,
176          * tables aren't visible prior to being linked to the list.
177          */
178         rwlock_init(&tb->tb6_lock);
179
180         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181
182         /*
183          * No protection necessary, this is the only list mutatation
184          * operation, tables never disappear once they exist.
185          */
186         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193         struct fib6_table *table;
194
195         table = kzalloc(sizeof(*table), GFP_ATOMIC);
196         if (table != NULL) {
197                 table->tb6_id = id;
198                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200         }
201
202         return table;
203 }
204
205 struct fib6_table *fib6_new_table(struct net *net, u32 id)
206 {
207         struct fib6_table *tb;
208
209         if (id == 0)
210                 id = RT6_TABLE_MAIN;
211         tb = fib6_get_table(net, id);
212         if (tb)
213                 return tb;
214
215         tb = fib6_alloc_table(net, id);
216         if (tb != NULL)
217                 fib6_link_table(net, tb);
218
219         return tb;
220 }
221
222 struct fib6_table *fib6_get_table(struct net *net, u32 id)
223 {
224         struct fib6_table *tb;
225         struct hlist_head *head;
226         struct hlist_node *node;
227         unsigned int h;
228
229         if (id == 0)
230                 id = RT6_TABLE_MAIN;
231         h = id & (FIB6_TABLE_HASHSZ - 1);
232         rcu_read_lock();
233         head = &net->ipv6.fib_table_hash[h];
234         hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
235                 if (tb->tb6_id == id) {
236                         rcu_read_unlock();
237                         return tb;
238                 }
239         }
240         rcu_read_unlock();
241
242         return NULL;
243 }
244
245 static void __net_init fib6_tables_init(struct net *net)
246 {
247         fib6_link_table(net, net->ipv6.fib6_main_tbl);
248         fib6_link_table(net, net->ipv6.fib6_local_tbl);
249 }
250 #else
251
252 struct fib6_table *fib6_new_table(struct net *net, u32 id)
253 {
254         return fib6_get_table(net, id);
255 }
256
257 struct fib6_table *fib6_get_table(struct net *net, u32 id)
258 {
259           return net->ipv6.fib6_main_tbl;
260 }
261
262 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
263                                    int flags, pol_lookup_t lookup)
264 {
265         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270         fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 }
272
273 #endif
274
275 static int fib6_dump_node(struct fib6_walker_t *w)
276 {
277         int res;
278         struct rt6_info *rt;
279
280         for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
281                 res = rt6_dump_route(rt, w->args);
282                 if (res < 0) {
283                         /* Frame is full, suspend walking */
284                         w->leaf = rt;
285                         return 1;
286                 }
287                 WARN_ON(res == 0);
288         }
289         w->leaf = NULL;
290         return 0;
291 }
292
293 static void fib6_dump_end(struct netlink_callback *cb)
294 {
295         struct fib6_walker_t *w = (void*)cb->args[2];
296
297         if (w) {
298                 if (cb->args[4]) {
299                         cb->args[4] = 0;
300                         fib6_walker_unlink(w);
301                 }
302                 cb->args[2] = 0;
303                 kfree(w);
304         }
305         cb->done = (void*)cb->args[3];
306         cb->args[1] = 3;
307 }
308
309 static int fib6_dump_done(struct netlink_callback *cb)
310 {
311         fib6_dump_end(cb);
312         return cb->done ? cb->done(cb) : 0;
313 }
314
315 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
316                            struct netlink_callback *cb)
317 {
318         struct fib6_walker_t *w;
319         int res;
320
321         w = (void *)cb->args[2];
322         w->root = &table->tb6_root;
323
324         if (cb->args[4] == 0) {
325                 w->count = 0;
326                 w->skip = 0;
327
328                 read_lock_bh(&table->tb6_lock);
329                 res = fib6_walk(w);
330                 read_unlock_bh(&table->tb6_lock);
331                 if (res > 0) {
332                         cb->args[4] = 1;
333                         cb->args[5] = w->root->fn_sernum;
334                 }
335         } else {
336                 if (cb->args[5] != w->root->fn_sernum) {
337                         /* Begin at the root if the tree changed */
338                         cb->args[5] = w->root->fn_sernum;
339                         w->state = FWS_INIT;
340                         w->node = w->root;
341                         w->skip = w->count;
342                 } else
343                         w->skip = 0;
344
345                 read_lock_bh(&table->tb6_lock);
346                 res = fib6_walk_continue(w);
347                 read_unlock_bh(&table->tb6_lock);
348                 if (res <= 0) {
349                         fib6_walker_unlink(w);
350                         cb->args[4] = 0;
351                 }
352         }
353
354         return res;
355 }
356
357 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
358 {
359         struct net *net = sock_net(skb->sk);
360         unsigned int h, s_h;
361         unsigned int e = 0, s_e;
362         struct rt6_rtnl_dump_arg arg;
363         struct fib6_walker_t *w;
364         struct fib6_table *tb;
365         struct hlist_node *node;
366         struct hlist_head *head;
367         int res = 0;
368
369         s_h = cb->args[0];
370         s_e = cb->args[1];
371
372         w = (void *)cb->args[2];
373         if (w == NULL) {
374                 /* New dump:
375                  *
376                  * 1. hook callback destructor.
377                  */
378                 cb->args[3] = (long)cb->done;
379                 cb->done = fib6_dump_done;
380
381                 /*
382                  * 2. allocate and initialize walker.
383                  */
384                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
385                 if (w == NULL)
386                         return -ENOMEM;
387                 w->func = fib6_dump_node;
388                 cb->args[2] = (long)w;
389         }
390
391         arg.skb = skb;
392         arg.cb = cb;
393         arg.net = net;
394         w->args = &arg;
395
396         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
397                 e = 0;
398                 head = &net->ipv6.fib_table_hash[h];
399                 hlist_for_each_entry(tb, node, head, tb6_hlist) {
400                         if (e < s_e)
401                                 goto next;
402                         res = fib6_dump_table(tb, skb, cb);
403                         if (res != 0)
404                                 goto out;
405 next:
406                         e++;
407                 }
408         }
409 out:
410         cb->args[1] = e;
411         cb->args[0] = h;
412
413         res = res < 0 ? res : skb->len;
414         if (res <= 0)
415                 fib6_dump_end(cb);
416         return res;
417 }
418
419 /*
420  *      Routing Table
421  *
422  *      return the appropriate node for a routing tree "add" operation
423  *      by either creating and inserting or by returning an existing
424  *      node.
425  */
426
427 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
428                                      int addrlen, int plen,
429                                      int offset)
430 {
431         struct fib6_node *fn, *in, *ln;
432         struct fib6_node *pn = NULL;
433         struct rt6key *key;
434         int     bit;
435         __be32  dir = 0;
436         __u32   sernum = fib6_new_sernum();
437
438         RT6_TRACE("fib6_add_1\n");
439
440         /* insert node in tree */
441
442         fn = root;
443
444         do {
445                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
446
447                 /*
448                  *      Prefix match
449                  */
450                 if (plen < fn->fn_bit ||
451                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
452                         goto insert_above;
453
454                 /*
455                  *      Exact match ?
456                  */
457
458                 if (plen == fn->fn_bit) {
459                         /* clean up an intermediate node */
460                         if ((fn->fn_flags & RTN_RTINFO) == 0) {
461                                 rt6_release(fn->leaf);
462                                 fn->leaf = NULL;
463                         }
464
465                         fn->fn_sernum = sernum;
466
467                         return fn;
468                 }
469
470                 /*
471                  *      We have more bits to go
472                  */
473
474                 /* Try to walk down on tree. */
475                 fn->fn_sernum = sernum;
476                 dir = addr_bit_set(addr, fn->fn_bit);
477                 pn = fn;
478                 fn = dir ? fn->right: fn->left;
479         } while (fn);
480
481         /*
482          *      We walked to the bottom of tree.
483          *      Create new leaf node without children.
484          */
485
486         ln = node_alloc();
487
488         if (ln == NULL)
489                 return NULL;
490         ln->fn_bit = plen;
491
492         ln->parent = pn;
493         ln->fn_sernum = sernum;
494
495         if (dir)
496                 pn->right = ln;
497         else
498                 pn->left  = ln;
499
500         return ln;
501
502
503 insert_above:
504         /*
505          * split since we don't have a common prefix anymore or
506          * we have a less significant route.
507          * we've to insert an intermediate node on the list
508          * this new node will point to the one we need to create
509          * and the current
510          */
511
512         pn = fn->parent;
513
514         /* find 1st bit in difference between the 2 addrs.
515
516            See comment in __ipv6_addr_diff: bit may be an invalid value,
517            but if it is >= plen, the value is ignored in any case.
518          */
519
520         bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
521
522         /*
523          *              (intermediate)[in]
524          *                /        \
525          *      (new leaf node)[ln] (old node)[fn]
526          */
527         if (plen > bit) {
528                 in = node_alloc();
529                 ln = node_alloc();
530
531                 if (in == NULL || ln == NULL) {
532                         if (in)
533                                 node_free(in);
534                         if (ln)
535                                 node_free(ln);
536                         return NULL;
537                 }
538
539                 /*
540                  * new intermediate node.
541                  * RTN_RTINFO will
542                  * be off since that an address that chooses one of
543                  * the branches would not match less specific routes
544                  * in the other branch
545                  */
546
547                 in->fn_bit = bit;
548
549                 in->parent = pn;
550                 in->leaf = fn->leaf;
551                 atomic_inc(&in->leaf->rt6i_ref);
552
553                 in->fn_sernum = sernum;
554
555                 /* update parent pointer */
556                 if (dir)
557                         pn->right = in;
558                 else
559                         pn->left  = in;
560
561                 ln->fn_bit = plen;
562
563                 ln->parent = in;
564                 fn->parent = in;
565
566                 ln->fn_sernum = sernum;
567
568                 if (addr_bit_set(addr, bit)) {
569                         in->right = ln;
570                         in->left  = fn;
571                 } else {
572                         in->left  = ln;
573                         in->right = fn;
574                 }
575         } else { /* plen <= bit */
576
577                 /*
578                  *              (new leaf node)[ln]
579                  *                /        \
580                  *           (old node)[fn] NULL
581                  */
582
583                 ln = node_alloc();
584
585                 if (ln == NULL)
586                         return NULL;
587
588                 ln->fn_bit = plen;
589
590                 ln->parent = pn;
591
592                 ln->fn_sernum = sernum;
593
594                 if (dir)
595                         pn->right = ln;
596                 else
597                         pn->left  = ln;
598
599                 if (addr_bit_set(&key->addr, plen))
600                         ln->right = fn;
601                 else
602                         ln->left  = fn;
603
604                 fn->parent = ln;
605         }
606         return ln;
607 }
608
609 /*
610  *      Insert routing information in a node.
611  */
612
613 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
614                             struct nl_info *info)
615 {
616         struct rt6_info *iter = NULL;
617         struct rt6_info **ins;
618
619         ins = &fn->leaf;
620
621         for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
622                 /*
623                  *      Search for duplicates
624                  */
625
626                 if (iter->rt6i_metric == rt->rt6i_metric) {
627                         /*
628                          *      Same priority level
629                          */
630
631                         if (iter->rt6i_dev == rt->rt6i_dev &&
632                             iter->rt6i_idev == rt->rt6i_idev &&
633                             ipv6_addr_equal(&iter->rt6i_gateway,
634                                             &rt->rt6i_gateway)) {
635                                 if (!(iter->rt6i_flags&RTF_EXPIRES))
636                                         return -EEXIST;
637                                 iter->rt6i_expires = rt->rt6i_expires;
638                                 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
639                                         iter->rt6i_flags &= ~RTF_EXPIRES;
640                                         iter->rt6i_expires = 0;
641                                 }
642                                 return -EEXIST;
643                         }
644                 }
645
646                 if (iter->rt6i_metric > rt->rt6i_metric)
647                         break;
648
649                 ins = &iter->u.dst.rt6_next;
650         }
651
652         /* Reset round-robin state, if necessary */
653         if (ins == &fn->leaf)
654                 fn->rr_ptr = NULL;
655
656         /*
657          *      insert node
658          */
659
660         rt->u.dst.rt6_next = iter;
661         *ins = rt;
662         rt->rt6i_node = fn;
663         atomic_inc(&rt->rt6i_ref);
664         inet6_rt_notify(RTM_NEWROUTE, rt, info);
665         info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
666
667         if ((fn->fn_flags & RTN_RTINFO) == 0) {
668                 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
669                 fn->fn_flags |= RTN_RTINFO;
670         }
671
672         return 0;
673 }
674
675 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
676 {
677         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
678             (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
679                 mod_timer(&net->ipv6.ip6_fib_timer,
680                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
681 }
682
683 void fib6_force_start_gc(struct net *net)
684 {
685         if (!timer_pending(&net->ipv6.ip6_fib_timer))
686                 mod_timer(&net->ipv6.ip6_fib_timer,
687                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
688 }
689
690 /*
691  *      Add routing information to the routing tree.
692  *      <destination addr>/<source addr>
693  *      with source addr info in sub-trees
694  */
695
696 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
697 {
698         struct fib6_node *fn, *pn = NULL;
699         int err = -ENOMEM;
700
701         fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
702                         rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
703
704         if (fn == NULL)
705                 goto out;
706
707         pn = fn;
708
709 #ifdef CONFIG_IPV6_SUBTREES
710         if (rt->rt6i_src.plen) {
711                 struct fib6_node *sn;
712
713                 if (fn->subtree == NULL) {
714                         struct fib6_node *sfn;
715
716                         /*
717                          * Create subtree.
718                          *
719                          *              fn[main tree]
720                          *              |
721                          *              sfn[subtree root]
722                          *                 \
723                          *                  sn[new leaf node]
724                          */
725
726                         /* Create subtree root node */
727                         sfn = node_alloc();
728                         if (sfn == NULL)
729                                 goto st_failure;
730
731                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
732                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
733                         sfn->fn_flags = RTN_ROOT;
734                         sfn->fn_sernum = fib6_new_sernum();
735
736                         /* Now add the first leaf node to new subtree */
737
738                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
739                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
740                                         offsetof(struct rt6_info, rt6i_src));
741
742                         if (sn == NULL) {
743                                 /* If it is failed, discard just allocated
744                                    root, and then (in st_failure) stale node
745                                    in main tree.
746                                  */
747                                 node_free(sfn);
748                                 goto st_failure;
749                         }
750
751                         /* Now link new subtree to main tree */
752                         sfn->parent = fn;
753                         fn->subtree = sfn;
754                 } else {
755                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
756                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
757                                         offsetof(struct rt6_info, rt6i_src));
758
759                         if (sn == NULL)
760                                 goto st_failure;
761                 }
762
763                 if (fn->leaf == NULL) {
764                         fn->leaf = rt;
765                         atomic_inc(&rt->rt6i_ref);
766                 }
767                 fn = sn;
768         }
769 #endif
770
771         err = fib6_add_rt2node(fn, rt, info);
772
773         if (err == 0) {
774                 fib6_start_gc(info->nl_net, rt);
775                 if (!(rt->rt6i_flags&RTF_CACHE))
776                         fib6_prune_clones(info->nl_net, pn, rt);
777         }
778
779 out:
780         if (err) {
781 #ifdef CONFIG_IPV6_SUBTREES
782                 /*
783                  * If fib6_add_1 has cleared the old leaf pointer in the
784                  * super-tree leaf node we have to find a new one for it.
785                  */
786                 if (pn != fn && pn->leaf == rt) {
787                         pn->leaf = NULL;
788                         atomic_dec(&rt->rt6i_ref);
789                 }
790                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
791                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
792 #if RT6_DEBUG >= 2
793                         if (!pn->leaf) {
794                                 WARN_ON(pn->leaf == NULL);
795                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
796                         }
797 #endif
798                         atomic_inc(&pn->leaf->rt6i_ref);
799                 }
800 #endif
801                 dst_free(&rt->u.dst);
802         }
803         return err;
804
805 #ifdef CONFIG_IPV6_SUBTREES
806         /* Subtree creation failed, probably main tree node
807            is orphan. If it is, shoot it.
808          */
809 st_failure:
810         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
811                 fib6_repair_tree(info->nl_net, fn);
812         dst_free(&rt->u.dst);
813         return err;
814 #endif
815 }
816
817 /*
818  *      Routing tree lookup
819  *
820  */
821
822 struct lookup_args {
823         int             offset;         /* key offset on rt6_info       */
824         struct in6_addr *addr;          /* search key                   */
825 };
826
827 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
828                                         struct lookup_args *args)
829 {
830         struct fib6_node *fn;
831         __be32 dir;
832
833         if (unlikely(args->offset == 0))
834                 return NULL;
835
836         /*
837          *      Descend on a tree
838          */
839
840         fn = root;
841
842         for (;;) {
843                 struct fib6_node *next;
844
845                 dir = addr_bit_set(args->addr, fn->fn_bit);
846
847                 next = dir ? fn->right : fn->left;
848
849                 if (next) {
850                         fn = next;
851                         continue;
852                 }
853
854                 break;
855         }
856
857         while(fn) {
858                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
859                         struct rt6key *key;
860
861                         key = (struct rt6key *) ((u8 *) fn->leaf +
862                                                  args->offset);
863
864                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
865 #ifdef CONFIG_IPV6_SUBTREES
866                                 if (fn->subtree)
867                                         fn = fib6_lookup_1(fn->subtree, args + 1);
868 #endif
869                                 if (!fn || fn->fn_flags & RTN_RTINFO)
870                                         return fn;
871                         }
872                 }
873
874                 if (fn->fn_flags & RTN_ROOT)
875                         break;
876
877                 fn = fn->parent;
878         }
879
880         return NULL;
881 }
882
883 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
884                                struct in6_addr *saddr)
885 {
886         struct fib6_node *fn;
887         struct lookup_args args[] = {
888                 {
889                         .offset = offsetof(struct rt6_info, rt6i_dst),
890                         .addr = daddr,
891                 },
892 #ifdef CONFIG_IPV6_SUBTREES
893                 {
894                         .offset = offsetof(struct rt6_info, rt6i_src),
895                         .addr = saddr,
896                 },
897 #endif
898                 {
899                         .offset = 0,    /* sentinel */
900                 }
901         };
902
903         fn = fib6_lookup_1(root, daddr ? args : args + 1);
904
905         if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
906                 fn = root;
907
908         return fn;
909 }
910
911 /*
912  *      Get node with specified destination prefix (and source prefix,
913  *      if subtrees are used)
914  */
915
916
917 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
918                                         struct in6_addr *addr,
919                                         int plen, int offset)
920 {
921         struct fib6_node *fn;
922
923         for (fn = root; fn ; ) {
924                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
925
926                 /*
927                  *      Prefix match
928                  */
929                 if (plen < fn->fn_bit ||
930                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
931                         return NULL;
932
933                 if (plen == fn->fn_bit)
934                         return fn;
935
936                 /*
937                  *      We have more bits to go
938                  */
939                 if (addr_bit_set(addr, fn->fn_bit))
940                         fn = fn->right;
941                 else
942                         fn = fn->left;
943         }
944         return NULL;
945 }
946
947 struct fib6_node * fib6_locate(struct fib6_node *root,
948                                struct in6_addr *daddr, int dst_len,
949                                struct in6_addr *saddr, int src_len)
950 {
951         struct fib6_node *fn;
952
953         fn = fib6_locate_1(root, daddr, dst_len,
954                            offsetof(struct rt6_info, rt6i_dst));
955
956 #ifdef CONFIG_IPV6_SUBTREES
957         if (src_len) {
958                 WARN_ON(saddr == NULL);
959                 if (fn && fn->subtree)
960                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
961                                            offsetof(struct rt6_info, rt6i_src));
962         }
963 #endif
964
965         if (fn && fn->fn_flags&RTN_RTINFO)
966                 return fn;
967
968         return NULL;
969 }
970
971
972 /*
973  *      Deletion
974  *
975  */
976
977 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
978 {
979         if (fn->fn_flags&RTN_ROOT)
980                 return net->ipv6.ip6_null_entry;
981
982         while(fn) {
983                 if(fn->left)
984                         return fn->left->leaf;
985
986                 if(fn->right)
987                         return fn->right->leaf;
988
989                 fn = FIB6_SUBTREE(fn);
990         }
991         return NULL;
992 }
993
994 /*
995  *      Called to trim the tree of intermediate nodes when possible. "fn"
996  *      is the node we want to try and remove.
997  */
998
999 static struct fib6_node *fib6_repair_tree(struct net *net,
1000                                            struct fib6_node *fn)
1001 {
1002         int children;
1003         int nstate;
1004         struct fib6_node *child, *pn;
1005         struct fib6_walker_t *w;
1006         int iter = 0;
1007
1008         for (;;) {
1009                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1010                 iter++;
1011
1012                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1013                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1014                 WARN_ON(fn->leaf != NULL);
1015
1016                 children = 0;
1017                 child = NULL;
1018                 if (fn->right) child = fn->right, children |= 1;
1019                 if (fn->left) child = fn->left, children |= 2;
1020
1021                 if (children == 3 || FIB6_SUBTREE(fn)
1022 #ifdef CONFIG_IPV6_SUBTREES
1023                     /* Subtree root (i.e. fn) may have one child */
1024                     || (children && fn->fn_flags&RTN_ROOT)
1025 #endif
1026                     ) {
1027                         fn->leaf = fib6_find_prefix(net, fn);
1028 #if RT6_DEBUG >= 2
1029                         if (fn->leaf==NULL) {
1030                                 WARN_ON(!fn->leaf);
1031                                 fn->leaf = net->ipv6.ip6_null_entry;
1032                         }
1033 #endif
1034                         atomic_inc(&fn->leaf->rt6i_ref);
1035                         return fn->parent;
1036                 }
1037
1038                 pn = fn->parent;
1039 #ifdef CONFIG_IPV6_SUBTREES
1040                 if (FIB6_SUBTREE(pn) == fn) {
1041                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1042                         FIB6_SUBTREE(pn) = NULL;
1043                         nstate = FWS_L;
1044                 } else {
1045                         WARN_ON(fn->fn_flags & RTN_ROOT);
1046 #endif
1047                         if (pn->right == fn) pn->right = child;
1048                         else if (pn->left == fn) pn->left = child;
1049 #if RT6_DEBUG >= 2
1050                         else
1051                                 WARN_ON(1);
1052 #endif
1053                         if (child)
1054                                 child->parent = pn;
1055                         nstate = FWS_R;
1056 #ifdef CONFIG_IPV6_SUBTREES
1057                 }
1058 #endif
1059
1060                 read_lock(&fib6_walker_lock);
1061                 FOR_WALKERS(w) {
1062                         if (child == NULL) {
1063                                 if (w->root == fn) {
1064                                         w->root = w->node = NULL;
1065                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1066                                 } else if (w->node == fn) {
1067                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1068                                         w->node = pn;
1069                                         w->state = nstate;
1070                                 }
1071                         } else {
1072                                 if (w->root == fn) {
1073                                         w->root = child;
1074                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1075                                 }
1076                                 if (w->node == fn) {
1077                                         w->node = child;
1078                                         if (children&2) {
1079                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1080                                                 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1081                                         } else {
1082                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083                                                 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1084                                         }
1085                                 }
1086                         }
1087                 }
1088                 read_unlock(&fib6_walker_lock);
1089
1090                 node_free(fn);
1091                 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1092                         return pn;
1093
1094                 rt6_release(pn->leaf);
1095                 pn->leaf = NULL;
1096                 fn = pn;
1097         }
1098 }
1099
1100 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1101                            struct nl_info *info)
1102 {
1103         struct fib6_walker_t *w;
1104         struct rt6_info *rt = *rtp;
1105         struct net *net = info->nl_net;
1106
1107         RT6_TRACE("fib6_del_route\n");
1108
1109         /* Unlink it */
1110         *rtp = rt->u.dst.rt6_next;
1111         rt->rt6i_node = NULL;
1112         net->ipv6.rt6_stats->fib_rt_entries--;
1113         net->ipv6.rt6_stats->fib_discarded_routes++;
1114
1115         /* Reset round-robin state, if necessary */
1116         if (fn->rr_ptr == rt)
1117                 fn->rr_ptr = NULL;
1118
1119         /* Adjust walkers */
1120         read_lock(&fib6_walker_lock);
1121         FOR_WALKERS(w) {
1122                 if (w->state == FWS_C && w->leaf == rt) {
1123                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1124                         w->leaf = rt->u.dst.rt6_next;
1125                         if (w->leaf == NULL)
1126                                 w->state = FWS_U;
1127                 }
1128         }
1129         read_unlock(&fib6_walker_lock);
1130
1131         rt->u.dst.rt6_next = NULL;
1132
1133         /* If it was last route, expunge its radix tree node */
1134         if (fn->leaf == NULL) {
1135                 fn->fn_flags &= ~RTN_RTINFO;
1136                 net->ipv6.rt6_stats->fib_route_nodes--;
1137                 fn = fib6_repair_tree(net, fn);
1138         }
1139
1140         if (atomic_read(&rt->rt6i_ref) != 1) {
1141                 /* This route is used as dummy address holder in some split
1142                  * nodes. It is not leaked, but it still holds other resources,
1143                  * which must be released in time. So, scan ascendant nodes
1144                  * and replace dummy references to this route with references
1145                  * to still alive ones.
1146                  */
1147                 while (fn) {
1148                         if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1149                                 fn->leaf = fib6_find_prefix(net, fn);
1150                                 atomic_inc(&fn->leaf->rt6i_ref);
1151                                 rt6_release(rt);
1152                         }
1153                         fn = fn->parent;
1154                 }
1155                 /* No more references are possible at this point. */
1156                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1157         }
1158
1159         inet6_rt_notify(RTM_DELROUTE, rt, info);
1160         rt6_release(rt);
1161 }
1162
1163 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1164 {
1165         struct net *net = info->nl_net;
1166         struct fib6_node *fn = rt->rt6i_node;
1167         struct rt6_info **rtp;
1168
1169 #if RT6_DEBUG >= 2
1170         if (rt->u.dst.obsolete>0) {
1171                 WARN_ON(fn != NULL);
1172                 return -ENOENT;
1173         }
1174 #endif
1175         if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1176                 return -ENOENT;
1177
1178         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1179
1180         if (!(rt->rt6i_flags&RTF_CACHE)) {
1181                 struct fib6_node *pn = fn;
1182 #ifdef CONFIG_IPV6_SUBTREES
1183                 /* clones of this route might be in another subtree */
1184                 if (rt->rt6i_src.plen) {
1185                         while (!(pn->fn_flags&RTN_ROOT))
1186                                 pn = pn->parent;
1187                         pn = pn->parent;
1188                 }
1189 #endif
1190                 fib6_prune_clones(info->nl_net, pn, rt);
1191         }
1192
1193         /*
1194          *      Walk the leaf entries looking for ourself
1195          */
1196
1197         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1198                 if (*rtp == rt) {
1199                         fib6_del_route(fn, rtp, info);
1200                         return 0;
1201                 }
1202         }
1203         return -ENOENT;
1204 }
1205
1206 /*
1207  *      Tree traversal function.
1208  *
1209  *      Certainly, it is not interrupt safe.
1210  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1211  *      It means, that we can modify tree during walking
1212  *      and use this function for garbage collection, clone pruning,
1213  *      cleaning tree when a device goes down etc. etc.
1214  *
1215  *      It guarantees that every node will be traversed,
1216  *      and that it will be traversed only once.
1217  *
1218  *      Callback function w->func may return:
1219  *      0 -> continue walking.
1220  *      positive value -> walking is suspended (used by tree dumps,
1221  *      and probably by gc, if it will be split to several slices)
1222  *      negative value -> terminate walking.
1223  *
1224  *      The function itself returns:
1225  *      0   -> walk is complete.
1226  *      >0  -> walk is incomplete (i.e. suspended)
1227  *      <0  -> walk is terminated by an error.
1228  */
1229
1230 static int fib6_walk_continue(struct fib6_walker_t *w)
1231 {
1232         struct fib6_node *fn, *pn;
1233
1234         for (;;) {
1235                 fn = w->node;
1236                 if (fn == NULL)
1237                         return 0;
1238
1239                 if (w->prune && fn != w->root &&
1240                     fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1241                         w->state = FWS_C;
1242                         w->leaf = fn->leaf;
1243                 }
1244                 switch (w->state) {
1245 #ifdef CONFIG_IPV6_SUBTREES
1246                 case FWS_S:
1247                         if (FIB6_SUBTREE(fn)) {
1248                                 w->node = FIB6_SUBTREE(fn);
1249                                 continue;
1250                         }
1251                         w->state = FWS_L;
1252 #endif
1253                 case FWS_L:
1254                         if (fn->left) {
1255                                 w->node = fn->left;
1256                                 w->state = FWS_INIT;
1257                                 continue;
1258                         }
1259                         w->state = FWS_R;
1260                 case FWS_R:
1261                         if (fn->right) {
1262                                 w->node = fn->right;
1263                                 w->state = FWS_INIT;
1264                                 continue;
1265                         }
1266                         w->state = FWS_C;
1267                         w->leaf = fn->leaf;
1268                 case FWS_C:
1269                         if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1270                                 int err;
1271
1272                                 if (w->count < w->skip) {
1273                                         w->count++;
1274                                         continue;
1275                                 }
1276
1277                                 err = w->func(w);
1278                                 if (err)
1279                                         return err;
1280
1281                                 w->count++;
1282                                 continue;
1283                         }
1284                         w->state = FWS_U;
1285                 case FWS_U:
1286                         if (fn == w->root)
1287                                 return 0;
1288                         pn = fn->parent;
1289                         w->node = pn;
1290 #ifdef CONFIG_IPV6_SUBTREES
1291                         if (FIB6_SUBTREE(pn) == fn) {
1292                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1293                                 w->state = FWS_L;
1294                                 continue;
1295                         }
1296 #endif
1297                         if (pn->left == fn) {
1298                                 w->state = FWS_R;
1299                                 continue;
1300                         }
1301                         if (pn->right == fn) {
1302                                 w->state = FWS_C;
1303                                 w->leaf = w->node->leaf;
1304                                 continue;
1305                         }
1306 #if RT6_DEBUG >= 2
1307                         WARN_ON(1);
1308 #endif
1309                 }
1310         }
1311 }
1312
1313 static int fib6_walk(struct fib6_walker_t *w)
1314 {
1315         int res;
1316
1317         w->state = FWS_INIT;
1318         w->node = w->root;
1319
1320         fib6_walker_link(w);
1321         res = fib6_walk_continue(w);
1322         if (res <= 0)
1323                 fib6_walker_unlink(w);
1324         return res;
1325 }
1326
1327 static int fib6_clean_node(struct fib6_walker_t *w)
1328 {
1329         int res;
1330         struct rt6_info *rt;
1331         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1332         struct nl_info info = {
1333                 .nl_net = c->net,
1334         };
1335
1336         for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1337                 res = c->func(rt, c->arg);
1338                 if (res < 0) {
1339                         w->leaf = rt;
1340                         res = fib6_del(rt, &info);
1341                         if (res) {
1342 #if RT6_DEBUG >= 2
1343                                 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1344 #endif
1345                                 continue;
1346                         }
1347                         return 0;
1348                 }
1349                 WARN_ON(res != 0);
1350         }
1351         w->leaf = rt;
1352         return 0;
1353 }
1354
1355 /*
1356  *      Convenient frontend to tree walker.
1357  *
1358  *      func is called on each route.
1359  *              It may return -1 -> delete this route.
1360  *                            0  -> continue walking
1361  *
1362  *      prune==1 -> only immediate children of node (certainly,
1363  *      ignoring pure split nodes) will be scanned.
1364  */
1365
1366 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1367                             int (*func)(struct rt6_info *, void *arg),
1368                             int prune, void *arg)
1369 {
1370         struct fib6_cleaner_t c;
1371
1372         c.w.root = root;
1373         c.w.func = fib6_clean_node;
1374         c.w.prune = prune;
1375         c.w.count = 0;
1376         c.w.skip = 0;
1377         c.func = func;
1378         c.arg = arg;
1379         c.net = net;
1380
1381         fib6_walk(&c.w);
1382 }
1383
1384 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1385                     int prune, void *arg)
1386 {
1387         struct fib6_table *table;
1388         struct hlist_node *node;
1389         struct hlist_head *head;
1390         unsigned int h;
1391
1392         rcu_read_lock();
1393         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1394                 head = &net->ipv6.fib_table_hash[h];
1395                 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1396                         write_lock_bh(&table->tb6_lock);
1397                         fib6_clean_tree(net, &table->tb6_root,
1398                                         func, prune, arg);
1399                         write_unlock_bh(&table->tb6_lock);
1400                 }
1401         }
1402         rcu_read_unlock();
1403 }
1404
1405 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1406 {
1407         if (rt->rt6i_flags & RTF_CACHE) {
1408                 RT6_TRACE("pruning clone %p\n", rt);
1409                 return -1;
1410         }
1411
1412         return 0;
1413 }
1414
1415 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1416                               struct rt6_info *rt)
1417 {
1418         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1419 }
1420
1421 /*
1422  *      Garbage collection
1423  */
1424
1425 static struct fib6_gc_args
1426 {
1427         int                     timeout;
1428         int                     more;
1429 } gc_args;
1430
1431 static int fib6_age(struct rt6_info *rt, void *arg)
1432 {
1433         unsigned long now = jiffies;
1434
1435         /*
1436          *      check addrconf expiration here.
1437          *      Routes are expired even if they are in use.
1438          *
1439          *      Also age clones. Note, that clones are aged out
1440          *      only if they are not in use now.
1441          */
1442
1443         if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1444                 if (time_after(now, rt->rt6i_expires)) {
1445                         RT6_TRACE("expiring %p\n", rt);
1446                         return -1;
1447                 }
1448                 gc_args.more++;
1449         } else if (rt->rt6i_flags & RTF_CACHE) {
1450                 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1451                     time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1452                         RT6_TRACE("aging clone %p\n", rt);
1453                         return -1;
1454                 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1455                            (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1456                         RT6_TRACE("purging route %p via non-router but gateway\n",
1457                                   rt);
1458                         return -1;
1459                 }
1460                 gc_args.more++;
1461         }
1462
1463         return 0;
1464 }
1465
1466 static DEFINE_SPINLOCK(fib6_gc_lock);
1467
1468 void fib6_run_gc(unsigned long expires, struct net *net)
1469 {
1470         if (expires != ~0UL) {
1471                 spin_lock_bh(&fib6_gc_lock);
1472                 gc_args.timeout = expires ? (int)expires :
1473                         net->ipv6.sysctl.ip6_rt_gc_interval;
1474         } else {
1475                 if (!spin_trylock_bh(&fib6_gc_lock)) {
1476                         mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1477                         return;
1478                 }
1479                 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1480         }
1481
1482         gc_args.more = icmp6_dst_gc();
1483
1484         fib6_clean_all(net, fib6_age, 0, NULL);
1485
1486         if (gc_args.more)
1487                 mod_timer(&net->ipv6.ip6_fib_timer,
1488                           round_jiffies(jiffies
1489                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1490         else
1491                 del_timer(&net->ipv6.ip6_fib_timer);
1492         spin_unlock_bh(&fib6_gc_lock);
1493 }
1494
1495 static void fib6_gc_timer_cb(unsigned long arg)
1496 {
1497         fib6_run_gc(0, (struct net *)arg);
1498 }
1499
1500 static int __net_init fib6_net_init(struct net *net)
1501 {
1502         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1503
1504         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1505         if (!net->ipv6.rt6_stats)
1506                 goto out_timer;
1507
1508         net->ipv6.fib_table_hash = kcalloc(FIB6_TABLE_HASHSZ,
1509                                            sizeof(*net->ipv6.fib_table_hash),
1510                                            GFP_KERNEL);
1511         if (!net->ipv6.fib_table_hash)
1512                 goto out_rt6_stats;
1513
1514         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1515                                           GFP_KERNEL);
1516         if (!net->ipv6.fib6_main_tbl)
1517                 goto out_fib_table_hash;
1518
1519         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1520         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1521         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1522                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1523
1524 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1525         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1526                                            GFP_KERNEL);
1527         if (!net->ipv6.fib6_local_tbl)
1528                 goto out_fib6_main_tbl;
1529         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1530         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1531         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1532                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1533 #endif
1534         fib6_tables_init(net);
1535
1536         return 0;
1537
1538 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1539 out_fib6_main_tbl:
1540         kfree(net->ipv6.fib6_main_tbl);
1541 #endif
1542 out_fib_table_hash:
1543         kfree(net->ipv6.fib_table_hash);
1544 out_rt6_stats:
1545         kfree(net->ipv6.rt6_stats);
1546 out_timer:
1547         return -ENOMEM;
1548  }
1549
1550 static void fib6_net_exit(struct net *net)
1551 {
1552         rt6_ifdown(net, NULL);
1553         del_timer_sync(&net->ipv6.ip6_fib_timer);
1554
1555 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1556         kfree(net->ipv6.fib6_local_tbl);
1557 #endif
1558         kfree(net->ipv6.fib6_main_tbl);
1559         kfree(net->ipv6.fib_table_hash);
1560         kfree(net->ipv6.rt6_stats);
1561 }
1562
1563 static struct pernet_operations fib6_net_ops = {
1564         .init = fib6_net_init,
1565         .exit = fib6_net_exit,
1566 };
1567
1568 int __init fib6_init(void)
1569 {
1570         int ret = -ENOMEM;
1571
1572         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1573                                            sizeof(struct fib6_node),
1574                                            0, SLAB_HWCACHE_ALIGN,
1575                                            NULL);
1576         if (!fib6_node_kmem)
1577                 goto out;
1578
1579         ret = register_pernet_subsys(&fib6_net_ops);
1580         if (ret)
1581                 goto out_kmem_cache_create;
1582
1583         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1584         if (ret)
1585                 goto out_unregister_subsys;
1586 out:
1587         return ret;
1588
1589 out_unregister_subsys:
1590         unregister_pernet_subsys(&fib6_net_ops);
1591 out_kmem_cache_create:
1592         kmem_cache_destroy(fib6_node_kmem);
1593         goto out;
1594 }
1595
1596 void fib6_gc_cleanup(void)
1597 {
1598         unregister_pernet_subsys(&fib6_net_ops);
1599         kmem_cache_destroy(fib6_node_kmem);
1600 }