Blackfin: MPU: support XIP in async flash memory
[safe/jmp/linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124         struct inet_connection_sock *icsk = inet_csk(sk);
125         const unsigned int lss = icsk->icsk_ack.last_seg_size;
126         unsigned int len;
127
128         icsk->icsk_ack.last_seg_size = 0;
129
130         /* skb->len may jitter because of SACKs, even if peer
131          * sends good full-sized frames.
132          */
133         len = skb_shinfo(skb)->gso_size ? : skb->len;
134         if (len >= icsk->icsk_ack.rcv_mss) {
135                 icsk->icsk_ack.rcv_mss = len;
136         } else {
137                 /* Otherwise, we make more careful check taking into account,
138                  * that SACKs block is variable.
139                  *
140                  * "len" is invariant segment length, including TCP header.
141                  */
142                 len += skb->data - skb_transport_header(skb);
143                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
144                     /* If PSH is not set, packet should be
145                      * full sized, provided peer TCP is not badly broken.
146                      * This observation (if it is correct 8)) allows
147                      * to handle super-low mtu links fairly.
148                      */
149                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151                         /* Subtract also invariant (if peer is RFC compliant),
152                          * tcp header plus fixed timestamp option length.
153                          * Resulting "len" is MSS free of SACK jitter.
154                          */
155                         len -= tcp_sk(sk)->tcp_header_len;
156                         icsk->icsk_ack.last_seg_size = len;
157                         if (len == lss) {
158                                 icsk->icsk_ack.rcv_mss = len;
159                                 return;
160                         }
161                 }
162                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165         }
166 }
167
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170         struct inet_connection_sock *icsk = inet_csk(sk);
171         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172
173         if (quickacks == 0)
174                 quickacks = 2;
175         if (quickacks > icsk->icsk_ack.quick)
176                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181         struct inet_connection_sock *icsk = inet_csk(sk);
182         tcp_incr_quickack(sk);
183         icsk->icsk_ack.pingpong = 0;
184         icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193         const struct inet_connection_sock *icsk = inet_csk(sk);
194         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199         if (tp->ecn_flags & TCP_ECN_OK)
200                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205         if (tcp_hdr(skb)->cwr)
206                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216         if (tp->ecn_flags & TCP_ECN_OK) {
217                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219                 /* Funny extension: if ECT is not set on a segment,
220                  * it is surely retransmit. It is not in ECN RFC,
221                  * but Linux follows this rule. */
222                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223                         tcp_enter_quickack_mode((struct sock *)tp);
224         }
225 }
226
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230                 tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242                 return 1;
243         return 0;
244 }
245
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254                      sizeof(struct sk_buff);
255
256         if (sk->sk_sndbuf < 3 * sndmem)
257                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288         struct tcp_sock *tp = tcp_sk(sk);
289         /* Optimize this! */
290         int truesize = tcp_win_from_space(skb->truesize) >> 1;
291         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292
293         while (tp->rcv_ssthresh <= window) {
294                 if (truesize <= skb->len)
295                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296
297                 truesize >>= 1;
298                 window >>= 1;
299         }
300         return 0;
301 }
302
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305         struct tcp_sock *tp = tcp_sk(sk);
306
307         /* Check #1 */
308         if (tp->rcv_ssthresh < tp->window_clamp &&
309             (int)tp->rcv_ssthresh < tcp_space(sk) &&
310             !tcp_memory_pressure) {
311                 int incr;
312
313                 /* Check #2. Increase window, if skb with such overhead
314                  * will fit to rcvbuf in future.
315                  */
316                 if (tcp_win_from_space(skb->truesize) <= skb->len)
317                         incr = 2 * tp->advmss;
318                 else
319                         incr = __tcp_grow_window(sk, skb);
320
321                 if (incr) {
322                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323                                                tp->window_clamp);
324                         inet_csk(sk)->icsk_ack.quick |= 1;
325                 }
326         }
327 }
328
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333         struct tcp_sock *tp = tcp_sk(sk);
334         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335
336         /* Try to select rcvbuf so that 4 mss-sized segments
337          * will fit to window and corresponding skbs will fit to our rcvbuf.
338          * (was 3; 4 is minimum to allow fast retransmit to work.)
339          */
340         while (tcp_win_from_space(rcvmem) < tp->advmss)
341                 rcvmem += 128;
342         if (sk->sk_rcvbuf < 4 * rcvmem)
343                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351         struct tcp_sock *tp = tcp_sk(sk);
352         int maxwin;
353
354         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355                 tcp_fixup_rcvbuf(sk);
356         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357                 tcp_fixup_sndbuf(sk);
358
359         tp->rcvq_space.space = tp->rcv_wnd;
360
361         maxwin = tcp_full_space(sk);
362
363         if (tp->window_clamp >= maxwin) {
364                 tp->window_clamp = maxwin;
365
366                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367                         tp->window_clamp = max(maxwin -
368                                                (maxwin >> sysctl_tcp_app_win),
369                                                4 * tp->advmss);
370         }
371
372         /* Force reservation of one segment. */
373         if (sysctl_tcp_app_win &&
374             tp->window_clamp > 2 * tp->advmss &&
375             tp->window_clamp + tp->advmss > maxwin)
376                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377
378         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379         tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385         struct tcp_sock *tp = tcp_sk(sk);
386         struct inet_connection_sock *icsk = inet_csk(sk);
387
388         icsk->icsk_ack.quick = 0;
389
390         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392             !tcp_memory_pressure &&
393             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395                                     sysctl_tcp_rmem[2]);
396         }
397         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410         struct tcp_sock *tp = tcp_sk(sk);
411         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412
413         hint = min(hint, tp->rcv_wnd / 2);
414         hint = min(hint, TCP_MSS_DEFAULT);
415         hint = max(hint, TCP_MIN_MSS);
416
417         inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433         u32 new_sample = tp->rcv_rtt_est.rtt;
434         long m = sample;
435
436         if (m == 0)
437                 m = 1;
438
439         if (new_sample != 0) {
440                 /* If we sample in larger samples in the non-timestamp
441                  * case, we could grossly overestimate the RTT especially
442                  * with chatty applications or bulk transfer apps which
443                  * are stalled on filesystem I/O.
444                  *
445                  * Also, since we are only going for a minimum in the
446                  * non-timestamp case, we do not smooth things out
447                  * else with timestamps disabled convergence takes too
448                  * long.
449                  */
450                 if (!win_dep) {
451                         m -= (new_sample >> 3);
452                         new_sample += m;
453                 } else if (m < new_sample)
454                         new_sample = m << 3;
455         } else {
456                 /* No previous measure. */
457                 new_sample = m << 3;
458         }
459
460         if (tp->rcv_rtt_est.rtt != new_sample)
461                 tp->rcv_rtt_est.rtt = new_sample;
462 }
463
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466         if (tp->rcv_rtt_est.time == 0)
467                 goto new_measure;
468         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469                 return;
470         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471
472 new_measure:
473         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474         tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478                                           const struct sk_buff *skb)
479 {
480         struct tcp_sock *tp = tcp_sk(sk);
481         if (tp->rx_opt.rcv_tsecr &&
482             (TCP_SKB_CB(skb)->end_seq -
483              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493         struct tcp_sock *tp = tcp_sk(sk);
494         int time;
495         int space;
496
497         if (tp->rcvq_space.time == 0)
498                 goto new_measure;
499
500         time = tcp_time_stamp - tp->rcvq_space.time;
501         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502                 return;
503
504         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505
506         space = max(tp->rcvq_space.space, space);
507
508         if (tp->rcvq_space.space != space) {
509                 int rcvmem;
510
511                 tp->rcvq_space.space = space;
512
513                 if (sysctl_tcp_moderate_rcvbuf &&
514                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515                         int new_clamp = space;
516
517                         /* Receive space grows, normalize in order to
518                          * take into account packet headers and sk_buff
519                          * structure overhead.
520                          */
521                         space /= tp->advmss;
522                         if (!space)
523                                 space = 1;
524                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
525                                   16 + sizeof(struct sk_buff));
526                         while (tcp_win_from_space(rcvmem) < tp->advmss)
527                                 rcvmem += 128;
528                         space *= rcvmem;
529                         space = min(space, sysctl_tcp_rmem[2]);
530                         if (space > sk->sk_rcvbuf) {
531                                 sk->sk_rcvbuf = space;
532
533                                 /* Make the window clamp follow along.  */
534                                 tp->window_clamp = new_clamp;
535                         }
536                 }
537         }
538
539 new_measure:
540         tp->rcvq_space.seq = tp->copied_seq;
541         tp->rcvq_space.time = tcp_time_stamp;
542 }
543
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556         struct tcp_sock *tp = tcp_sk(sk);
557         struct inet_connection_sock *icsk = inet_csk(sk);
558         u32 now;
559
560         inet_csk_schedule_ack(sk);
561
562         tcp_measure_rcv_mss(sk, skb);
563
564         tcp_rcv_rtt_measure(tp);
565
566         now = tcp_time_stamp;
567
568         if (!icsk->icsk_ack.ato) {
569                 /* The _first_ data packet received, initialize
570                  * delayed ACK engine.
571                  */
572                 tcp_incr_quickack(sk);
573                 icsk->icsk_ack.ato = TCP_ATO_MIN;
574         } else {
575                 int m = now - icsk->icsk_ack.lrcvtime;
576
577                 if (m <= TCP_ATO_MIN / 2) {
578                         /* The fastest case is the first. */
579                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580                 } else if (m < icsk->icsk_ack.ato) {
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
583                                 icsk->icsk_ack.ato = icsk->icsk_rto;
584                 } else if (m > icsk->icsk_rto) {
585                         /* Too long gap. Apparently sender failed to
586                          * restart window, so that we send ACKs quickly.
587                          */
588                         tcp_incr_quickack(sk);
589                         sk_mem_reclaim(sk);
590                 }
591         }
592         icsk->icsk_ack.lrcvtime = now;
593
594         TCP_ECN_check_ce(tp, skb);
595
596         if (skb->len >= 128)
597                 tcp_grow_window(sk, skb);
598 }
599
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601  * routine either comes from timestamps, or from segments that were
602  * known _not_ to have been retransmitted [see Karn/Partridge
603  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604  * piece by Van Jacobson.
605  * NOTE: the next three routines used to be one big routine.
606  * To save cycles in the RFC 1323 implementation it was better to break
607  * it up into three procedures. -- erics
608  */
609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
610 {
611         struct tcp_sock *tp = tcp_sk(sk);
612         long m = mrtt; /* RTT */
613
614         /*      The following amusing code comes from Jacobson's
615          *      article in SIGCOMM '88.  Note that rtt and mdev
616          *      are scaled versions of rtt and mean deviation.
617          *      This is designed to be as fast as possible
618          *      m stands for "measurement".
619          *
620          *      On a 1990 paper the rto value is changed to:
621          *      RTO = rtt + 4 * mdev
622          *
623          * Funny. This algorithm seems to be very broken.
624          * These formulae increase RTO, when it should be decreased, increase
625          * too slowly, when it should be increased quickly, decrease too quickly
626          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627          * does not matter how to _calculate_ it. Seems, it was trap
628          * that VJ failed to avoid. 8)
629          */
630         if (m == 0)
631                 m = 1;
632         if (tp->srtt != 0) {
633                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
634                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
635                 if (m < 0) {
636                         m = -m;         /* m is now abs(error) */
637                         m -= (tp->mdev >> 2);   /* similar update on mdev */
638                         /* This is similar to one of Eifel findings.
639                          * Eifel blocks mdev updates when rtt decreases.
640                          * This solution is a bit different: we use finer gain
641                          * for mdev in this case (alpha*beta).
642                          * Like Eifel it also prevents growth of rto,
643                          * but also it limits too fast rto decreases,
644                          * happening in pure Eifel.
645                          */
646                         if (m > 0)
647                                 m >>= 3;
648                 } else {
649                         m -= (tp->mdev >> 2);   /* similar update on mdev */
650                 }
651                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
652                 if (tp->mdev > tp->mdev_max) {
653                         tp->mdev_max = tp->mdev;
654                         if (tp->mdev_max > tp->rttvar)
655                                 tp->rttvar = tp->mdev_max;
656                 }
657                 if (after(tp->snd_una, tp->rtt_seq)) {
658                         if (tp->mdev_max < tp->rttvar)
659                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660                         tp->rtt_seq = tp->snd_nxt;
661                         tp->mdev_max = tcp_rto_min(sk);
662                 }
663         } else {
664                 /* no previous measure. */
665                 tp->srtt = m << 3;      /* take the measured time to be rtt */
666                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
667                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668                 tp->rtt_seq = tp->snd_nxt;
669         }
670 }
671
672 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
673  * routine referred to above.
674  */
675 static inline void tcp_set_rto(struct sock *sk)
676 {
677         const struct tcp_sock *tp = tcp_sk(sk);
678         /* Old crap is replaced with new one. 8)
679          *
680          * More seriously:
681          * 1. If rtt variance happened to be less 50msec, it is hallucination.
682          *    It cannot be less due to utterly erratic ACK generation made
683          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684          *    to do with delayed acks, because at cwnd>2 true delack timeout
685          *    is invisible. Actually, Linux-2.4 also generates erratic
686          *    ACKs in some circumstances.
687          */
688         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
689
690         /* 2. Fixups made earlier cannot be right.
691          *    If we do not estimate RTO correctly without them,
692          *    all the algo is pure shit and should be replaced
693          *    with correct one. It is exactly, which we pretend to do.
694          */
695
696         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697          * guarantees that rto is higher.
698          */
699         tcp_bound_rto(sk);
700 }
701
702 /* Save metrics learned by this TCP session.
703    This function is called only, when TCP finishes successfully
704    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
705  */
706 void tcp_update_metrics(struct sock *sk)
707 {
708         struct tcp_sock *tp = tcp_sk(sk);
709         struct dst_entry *dst = __sk_dst_get(sk);
710
711         if (sysctl_tcp_nometrics_save)
712                 return;
713
714         dst_confirm(dst);
715
716         if (dst && (dst->flags & DST_HOST)) {
717                 const struct inet_connection_sock *icsk = inet_csk(sk);
718                 int m;
719                 unsigned long rtt;
720
721                 if (icsk->icsk_backoff || !tp->srtt) {
722                         /* This session failed to estimate rtt. Why?
723                          * Probably, no packets returned in time.
724                          * Reset our results.
725                          */
726                         if (!(dst_metric_locked(dst, RTAX_RTT)))
727                                 dst->metrics[RTAX_RTT - 1] = 0;
728                         return;
729                 }
730
731                 rtt = dst_metric_rtt(dst, RTAX_RTT);
732                 m = rtt - tp->srtt;
733
734                 /* If newly calculated rtt larger than stored one,
735                  * store new one. Otherwise, use EWMA. Remember,
736                  * rtt overestimation is always better than underestimation.
737                  */
738                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
739                         if (m <= 0)
740                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
741                         else
742                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
743                 }
744
745                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
746                         unsigned long var;
747                         if (m < 0)
748                                 m = -m;
749
750                         /* Scale deviation to rttvar fixed point */
751                         m >>= 1;
752                         if (m < tp->mdev)
753                                 m = tp->mdev;
754
755                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
756                         if (m >= var)
757                                 var = m;
758                         else
759                                 var -= (var - m) >> 2;
760
761                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
762                 }
763
764                 if (tcp_in_initial_slowstart(tp)) {
765                         /* Slow start still did not finish. */
766                         if (dst_metric(dst, RTAX_SSTHRESH) &&
767                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
768                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
769                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
770                         if (!dst_metric_locked(dst, RTAX_CWND) &&
771                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
772                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
773                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
774                            icsk->icsk_ca_state == TCP_CA_Open) {
775                         /* Cong. avoidance phase, cwnd is reliable. */
776                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
777                                 dst->metrics[RTAX_SSTHRESH-1] =
778                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
779                         if (!dst_metric_locked(dst, RTAX_CWND))
780                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
781                 } else {
782                         /* Else slow start did not finish, cwnd is non-sense,
783                            ssthresh may be also invalid.
784                          */
785                         if (!dst_metric_locked(dst, RTAX_CWND))
786                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
787                         if (dst_metric(dst, RTAX_SSTHRESH) &&
788                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
791                 }
792
793                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
794                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
795                             tp->reordering != sysctl_tcp_reordering)
796                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
797                 }
798         }
799 }
800
801 /* Numbers are taken from RFC3390.
802  *
803  * John Heffner states:
804  *
805  *      The RFC specifies a window of no more than 4380 bytes
806  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
807  *      is a bit misleading because they use a clamp at 4380 bytes
808  *      rather than use a multiplier in the relevant range.
809  */
810 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
811 {
812         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
813
814         if (!cwnd) {
815                 if (tp->mss_cache > 1460)
816                         cwnd = 2;
817                 else
818                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
819         }
820         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
821 }
822
823 /* Set slow start threshold and cwnd not falling to slow start */
824 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
825 {
826         struct tcp_sock *tp = tcp_sk(sk);
827         const struct inet_connection_sock *icsk = inet_csk(sk);
828
829         tp->prior_ssthresh = 0;
830         tp->bytes_acked = 0;
831         if (icsk->icsk_ca_state < TCP_CA_CWR) {
832                 tp->undo_marker = 0;
833                 if (set_ssthresh)
834                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
835                 tp->snd_cwnd = min(tp->snd_cwnd,
836                                    tcp_packets_in_flight(tp) + 1U);
837                 tp->snd_cwnd_cnt = 0;
838                 tp->high_seq = tp->snd_nxt;
839                 tp->snd_cwnd_stamp = tcp_time_stamp;
840                 TCP_ECN_queue_cwr(tp);
841
842                 tcp_set_ca_state(sk, TCP_CA_CWR);
843         }
844 }
845
846 /*
847  * Packet counting of FACK is based on in-order assumptions, therefore TCP
848  * disables it when reordering is detected
849  */
850 static void tcp_disable_fack(struct tcp_sock *tp)
851 {
852         /* RFC3517 uses different metric in lost marker => reset on change */
853         if (tcp_is_fack(tp))
854                 tp->lost_skb_hint = NULL;
855         tp->rx_opt.sack_ok &= ~2;
856 }
857
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock *tp)
860 {
861         tp->rx_opt.sack_ok |= 4;
862 }
863
864 /* Initialize metrics on socket. */
865
866 static void tcp_init_metrics(struct sock *sk)
867 {
868         struct tcp_sock *tp = tcp_sk(sk);
869         struct dst_entry *dst = __sk_dst_get(sk);
870
871         if (dst == NULL)
872                 goto reset;
873
874         dst_confirm(dst);
875
876         if (dst_metric_locked(dst, RTAX_CWND))
877                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
878         if (dst_metric(dst, RTAX_SSTHRESH)) {
879                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
880                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
881                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
882         }
883         if (dst_metric(dst, RTAX_REORDERING) &&
884             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
885                 tcp_disable_fack(tp);
886                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
887         }
888
889         if (dst_metric(dst, RTAX_RTT) == 0)
890                 goto reset;
891
892         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
893                 goto reset;
894
895         /* Initial rtt is determined from SYN,SYN-ACK.
896          * The segment is small and rtt may appear much
897          * less than real one. Use per-dst memory
898          * to make it more realistic.
899          *
900          * A bit of theory. RTT is time passed after "normal" sized packet
901          * is sent until it is ACKed. In normal circumstances sending small
902          * packets force peer to delay ACKs and calculation is correct too.
903          * The algorithm is adaptive and, provided we follow specs, it
904          * NEVER underestimate RTT. BUT! If peer tries to make some clever
905          * tricks sort of "quick acks" for time long enough to decrease RTT
906          * to low value, and then abruptly stops to do it and starts to delay
907          * ACKs, wait for troubles.
908          */
909         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
910                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
911                 tp->rtt_seq = tp->snd_nxt;
912         }
913         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
914                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
915                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
916         }
917         tcp_set_rto(sk);
918         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
919                 goto reset;
920
921 cwnd:
922         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
923         tp->snd_cwnd_stamp = tcp_time_stamp;
924         return;
925
926 reset:
927         /* Play conservative. If timestamps are not
928          * supported, TCP will fail to recalculate correct
929          * rtt, if initial rto is too small. FORGET ALL AND RESET!
930          */
931         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
932                 tp->srtt = 0;
933                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
934                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
935         }
936         goto cwnd;
937 }
938
939 static void tcp_update_reordering(struct sock *sk, const int metric,
940                                   const int ts)
941 {
942         struct tcp_sock *tp = tcp_sk(sk);
943         if (metric > tp->reordering) {
944                 int mib_idx;
945
946                 tp->reordering = min(TCP_MAX_REORDERING, metric);
947
948                 /* This exciting event is worth to be remembered. 8) */
949                 if (ts)
950                         mib_idx = LINUX_MIB_TCPTSREORDER;
951                 else if (tcp_is_reno(tp))
952                         mib_idx = LINUX_MIB_TCPRENOREORDER;
953                 else if (tcp_is_fack(tp))
954                         mib_idx = LINUX_MIB_TCPFACKREORDER;
955                 else
956                         mib_idx = LINUX_MIB_TCPSACKREORDER;
957
958                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
959 #if FASTRETRANS_DEBUG > 1
960                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962                        tp->reordering,
963                        tp->fackets_out,
964                        tp->sacked_out,
965                        tp->undo_marker ? tp->undo_retrans : 0);
966 #endif
967                 tcp_disable_fack(tp);
968         }
969 }
970
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
973 {
974         if ((tp->retransmit_skb_hint == NULL) ||
975             before(TCP_SKB_CB(skb)->seq,
976                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977                 tp->retransmit_skb_hint = skb;
978
979         if (!tp->lost_out ||
980             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
982 }
983
984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
985 {
986         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987                 tcp_verify_retransmit_hint(tp, skb);
988
989                 tp->lost_out += tcp_skb_pcount(skb);
990                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991         }
992 }
993
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995                                             struct sk_buff *skb)
996 {
997         tcp_verify_retransmit_hint(tp, skb);
998
999         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1006  *
1007  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008  * Packets in queue with these bits set are counted in variables
1009  * sacked_out, retrans_out and lost_out, correspondingly.
1010  *
1011  * Valid combinations are:
1012  * Tag  InFlight        Description
1013  * 0    1               - orig segment is in flight.
1014  * S    0               - nothing flies, orig reached receiver.
1015  * L    0               - nothing flies, orig lost by net.
1016  * R    2               - both orig and retransmit are in flight.
1017  * L|R  1               - orig is lost, retransmit is in flight.
1018  * S|R  1               - orig reached receiver, retrans is still in flight.
1019  * (L|S|R is logically valid, it could occur when L|R is sacked,
1020  *  but it is equivalent to plain S and code short-curcuits it to S.
1021  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1022  *
1023  * These 6 states form finite state machine, controlled by the following events:
1024  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026  * 3. Loss detection event of one of three flavors:
1027  *      A. Scoreboard estimator decided the packet is lost.
1028  *         A'. Reno "three dupacks" marks head of queue lost.
1029  *         A''. Its FACK modfication, head until snd.fack is lost.
1030  *      B. SACK arrives sacking data transmitted after never retransmitted
1031  *         hole was sent out.
1032  *      C. SACK arrives sacking SND.NXT at the moment, when the
1033  *         segment was retransmitted.
1034  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1035  *
1036  * It is pleasant to note, that state diagram turns out to be commutative,
1037  * so that we are allowed not to be bothered by order of our actions,
1038  * when multiple events arrive simultaneously. (see the function below).
1039  *
1040  * Reordering detection.
1041  * --------------------
1042  * Reordering metric is maximal distance, which a packet can be displaced
1043  * in packet stream. With SACKs we can estimate it:
1044  *
1045  * 1. SACK fills old hole and the corresponding segment was not
1046  *    ever retransmitted -> reordering. Alas, we cannot use it
1047  *    when segment was retransmitted.
1048  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049  *    for retransmitted and already SACKed segment -> reordering..
1050  * Both of these heuristics are not used in Loss state, when we cannot
1051  * account for retransmits accurately.
1052  *
1053  * SACK block validation.
1054  * ----------------------
1055  *
1056  * SACK block range validation checks that the received SACK block fits to
1057  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058  * Note that SND.UNA is not included to the range though being valid because
1059  * it means that the receiver is rather inconsistent with itself reporting
1060  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061  * perfectly valid, however, in light of RFC2018 which explicitly states
1062  * that "SACK block MUST reflect the newest segment.  Even if the newest
1063  * segment is going to be discarded ...", not that it looks very clever
1064  * in case of head skb. Due to potentional receiver driven attacks, we
1065  * choose to avoid immediate execution of a walk in write queue due to
1066  * reneging and defer head skb's loss recovery to standard loss recovery
1067  * procedure that will eventually trigger (nothing forbids us doing this).
1068  *
1069  * Implements also blockage to start_seq wrap-around. Problem lies in the
1070  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071  * there's no guarantee that it will be before snd_nxt (n). The problem
1072  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073  * wrap (s_w):
1074  *
1075  *         <- outs wnd ->                          <- wrapzone ->
1076  *         u     e      n                         u_w   e_w  s n_w
1077  *         |     |      |                          |     |   |  |
1078  * |<------------+------+----- TCP seqno space --------------+---------->|
1079  * ...-- <2^31 ->|                                           |<--------...
1080  * ...---- >2^31 ------>|                                    |<--------...
1081  *
1082  * Current code wouldn't be vulnerable but it's better still to discard such
1083  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086  * equal to the ideal case (infinite seqno space without wrap caused issues).
1087  *
1088  * With D-SACK the lower bound is extended to cover sequence space below
1089  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090  * again, D-SACK block must not to go across snd_una (for the same reason as
1091  * for the normal SACK blocks, explained above). But there all simplicity
1092  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093  * fully below undo_marker they do not affect behavior in anyway and can
1094  * therefore be safely ignored. In rare cases (which are more or less
1095  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096  * fragmentation and packet reordering past skb's retransmission. To consider
1097  * them correctly, the acceptable range must be extended even more though
1098  * the exact amount is rather hard to quantify. However, tp->max_window can
1099  * be used as an exaggerated estimate.
1100  */
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102                                   u32 start_seq, u32 end_seq)
1103 {
1104         /* Too far in future, or reversed (interpretation is ambiguous) */
1105         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106                 return 0;
1107
1108         /* Nasty start_seq wrap-around check (see comments above) */
1109         if (!before(start_seq, tp->snd_nxt))
1110                 return 0;
1111
1112         /* In outstanding window? ...This is valid exit for D-SACKs too.
1113          * start_seq == snd_una is non-sensical (see comments above)
1114          */
1115         if (after(start_seq, tp->snd_una))
1116                 return 1;
1117
1118         if (!is_dsack || !tp->undo_marker)
1119                 return 0;
1120
1121         /* ...Then it's D-SACK, and must reside below snd_una completely */
1122         if (!after(end_seq, tp->snd_una))
1123                 return 0;
1124
1125         if (!before(start_seq, tp->undo_marker))
1126                 return 1;
1127
1128         /* Too old */
1129         if (!after(end_seq, tp->undo_marker))
1130                 return 0;
1131
1132         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133          *   start_seq < undo_marker and end_seq >= undo_marker.
1134          */
1135         return !before(start_seq, end_seq - tp->max_window);
1136 }
1137
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139  * Event "C". Later note: FACK people cheated me again 8), we have to account
1140  * for reordering! Ugly, but should help.
1141  *
1142  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143  * less than what is now known to be received by the other end (derived from
1144  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145  * retransmitted skbs to avoid some costly processing per ACKs.
1146  */
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1148 {
1149         const struct inet_connection_sock *icsk = inet_csk(sk);
1150         struct tcp_sock *tp = tcp_sk(sk);
1151         struct sk_buff *skb;
1152         int cnt = 0;
1153         u32 new_low_seq = tp->snd_nxt;
1154         u32 received_upto = tcp_highest_sack_seq(tp);
1155
1156         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157             !after(received_upto, tp->lost_retrans_low) ||
1158             icsk->icsk_ca_state != TCP_CA_Recovery)
1159                 return;
1160
1161         tcp_for_write_queue(skb, sk) {
1162                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1163
1164                 if (skb == tcp_send_head(sk))
1165                         break;
1166                 if (cnt == tp->retrans_out)
1167                         break;
1168                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169                         continue;
1170
1171                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172                         continue;
1173
1174                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1175                  * constraint here (see above) but figuring out that at
1176                  * least tp->reordering SACK blocks reside between ack_seq
1177                  * and received_upto is not easy task to do cheaply with
1178                  * the available datastructures.
1179                  *
1180                  * Whether FACK should check here for tp->reordering segs
1181                  * in-between one could argue for either way (it would be
1182                  * rather simple to implement as we could count fack_count
1183                  * during the walk and do tp->fackets_out - fack_count).
1184                  */
1185                 if (after(received_upto, ack_seq)) {
1186                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187                         tp->retrans_out -= tcp_skb_pcount(skb);
1188
1189                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1190                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191                 } else {
1192                         if (before(ack_seq, new_low_seq))
1193                                 new_low_seq = ack_seq;
1194                         cnt += tcp_skb_pcount(skb);
1195                 }
1196         }
1197
1198         if (tp->retrans_out)
1199                 tp->lost_retrans_low = new_low_seq;
1200 }
1201
1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203                            struct tcp_sack_block_wire *sp, int num_sacks,
1204                            u32 prior_snd_una)
1205 {
1206         struct tcp_sock *tp = tcp_sk(sk);
1207         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209         int dup_sack = 0;
1210
1211         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212                 dup_sack = 1;
1213                 tcp_dsack_seen(tp);
1214                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215         } else if (num_sacks > 1) {
1216                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1218
1219                 if (!after(end_seq_0, end_seq_1) &&
1220                     !before(start_seq_0, start_seq_1)) {
1221                         dup_sack = 1;
1222                         tcp_dsack_seen(tp);
1223                         NET_INC_STATS_BH(sock_net(sk),
1224                                         LINUX_MIB_TCPDSACKOFORECV);
1225                 }
1226         }
1227
1228         /* D-SACK for already forgotten data... Do dumb counting. */
1229         if (dup_sack &&
1230             !after(end_seq_0, prior_snd_una) &&
1231             after(end_seq_0, tp->undo_marker))
1232                 tp->undo_retrans--;
1233
1234         return dup_sack;
1235 }
1236
1237 struct tcp_sacktag_state {
1238         int reord;
1239         int fack_count;
1240         int flag;
1241 };
1242
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244  * the incoming SACK may not exactly match but we can find smaller MSS
1245  * aligned portion of it that matches. Therefore we might need to fragment
1246  * which may fail and creates some hassle (caller must handle error case
1247  * returns).
1248  *
1249  * FIXME: this could be merged to shift decision code
1250  */
1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252                                  u32 start_seq, u32 end_seq)
1253 {
1254         int in_sack, err;
1255         unsigned int pkt_len;
1256         unsigned int mss;
1257
1258         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1260
1261         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263                 mss = tcp_skb_mss(skb);
1264                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1265
1266                 if (!in_sack) {
1267                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268                         if (pkt_len < mss)
1269                                 pkt_len = mss;
1270                 } else {
1271                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272                         if (pkt_len < mss)
1273                                 return -EINVAL;
1274                 }
1275
1276                 /* Round if necessary so that SACKs cover only full MSSes
1277                  * and/or the remaining small portion (if present)
1278                  */
1279                 if (pkt_len > mss) {
1280                         unsigned int new_len = (pkt_len / mss) * mss;
1281                         if (!in_sack && new_len < pkt_len) {
1282                                 new_len += mss;
1283                                 if (new_len > skb->len)
1284                                         return 0;
1285                         }
1286                         pkt_len = new_len;
1287                 }
1288                 err = tcp_fragment(sk, skb, pkt_len, mss);
1289                 if (err < 0)
1290                         return err;
1291         }
1292
1293         return in_sack;
1294 }
1295
1296 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1297                           struct tcp_sacktag_state *state,
1298                           int dup_sack, int pcount)
1299 {
1300         struct tcp_sock *tp = tcp_sk(sk);
1301         u8 sacked = TCP_SKB_CB(skb)->sacked;
1302         int fack_count = state->fack_count;
1303
1304         /* Account D-SACK for retransmitted packet. */
1305         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1306                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1307                         tp->undo_retrans--;
1308                 if (sacked & TCPCB_SACKED_ACKED)
1309                         state->reord = min(fack_count, state->reord);
1310         }
1311
1312         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1313         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1314                 return sacked;
1315
1316         if (!(sacked & TCPCB_SACKED_ACKED)) {
1317                 if (sacked & TCPCB_SACKED_RETRANS) {
1318                         /* If the segment is not tagged as lost,
1319                          * we do not clear RETRANS, believing
1320                          * that retransmission is still in flight.
1321                          */
1322                         if (sacked & TCPCB_LOST) {
1323                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1324                                 tp->lost_out -= pcount;
1325                                 tp->retrans_out -= pcount;
1326                         }
1327                 } else {
1328                         if (!(sacked & TCPCB_RETRANS)) {
1329                                 /* New sack for not retransmitted frame,
1330                                  * which was in hole. It is reordering.
1331                                  */
1332                                 if (before(TCP_SKB_CB(skb)->seq,
1333                                            tcp_highest_sack_seq(tp)))
1334                                         state->reord = min(fack_count,
1335                                                            state->reord);
1336
1337                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1338                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1339                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1340                         }
1341
1342                         if (sacked & TCPCB_LOST) {
1343                                 sacked &= ~TCPCB_LOST;
1344                                 tp->lost_out -= pcount;
1345                         }
1346                 }
1347
1348                 sacked |= TCPCB_SACKED_ACKED;
1349                 state->flag |= FLAG_DATA_SACKED;
1350                 tp->sacked_out += pcount;
1351
1352                 fack_count += pcount;
1353
1354                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1355                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1356                     before(TCP_SKB_CB(skb)->seq,
1357                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1358                         tp->lost_cnt_hint += pcount;
1359
1360                 if (fack_count > tp->fackets_out)
1361                         tp->fackets_out = fack_count;
1362         }
1363
1364         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1365          * frames and clear it. undo_retrans is decreased above, L|R frames
1366          * are accounted above as well.
1367          */
1368         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1369                 sacked &= ~TCPCB_SACKED_RETRANS;
1370                 tp->retrans_out -= pcount;
1371         }
1372
1373         return sacked;
1374 }
1375
1376 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1377                            struct tcp_sacktag_state *state,
1378                            unsigned int pcount, int shifted, int mss,
1379                            int dup_sack)
1380 {
1381         struct tcp_sock *tp = tcp_sk(sk);
1382         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1383
1384         BUG_ON(!pcount);
1385
1386         /* Tweak before seqno plays */
1387         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1388             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1389                 tp->lost_cnt_hint += pcount;
1390
1391         TCP_SKB_CB(prev)->end_seq += shifted;
1392         TCP_SKB_CB(skb)->seq += shifted;
1393
1394         skb_shinfo(prev)->gso_segs += pcount;
1395         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1396         skb_shinfo(skb)->gso_segs -= pcount;
1397
1398         /* When we're adding to gso_segs == 1, gso_size will be zero,
1399          * in theory this shouldn't be necessary but as long as DSACK
1400          * code can come after this skb later on it's better to keep
1401          * setting gso_size to something.
1402          */
1403         if (!skb_shinfo(prev)->gso_size) {
1404                 skb_shinfo(prev)->gso_size = mss;
1405                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1406         }
1407
1408         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1409         if (skb_shinfo(skb)->gso_segs <= 1) {
1410                 skb_shinfo(skb)->gso_size = 0;
1411                 skb_shinfo(skb)->gso_type = 0;
1412         }
1413
1414         /* We discard results */
1415         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1416
1417         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1418         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1419
1420         if (skb->len > 0) {
1421                 BUG_ON(!tcp_skb_pcount(skb));
1422                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1423                 return 0;
1424         }
1425
1426         /* Whole SKB was eaten :-) */
1427
1428         if (skb == tp->retransmit_skb_hint)
1429                 tp->retransmit_skb_hint = prev;
1430         if (skb == tp->scoreboard_skb_hint)
1431                 tp->scoreboard_skb_hint = prev;
1432         if (skb == tp->lost_skb_hint) {
1433                 tp->lost_skb_hint = prev;
1434                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1435         }
1436
1437         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1438         if (skb == tcp_highest_sack(sk))
1439                 tcp_advance_highest_sack(sk, skb);
1440
1441         tcp_unlink_write_queue(skb, sk);
1442         sk_wmem_free_skb(sk, skb);
1443
1444         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1445
1446         return 1;
1447 }
1448
1449 /* I wish gso_size would have a bit more sane initialization than
1450  * something-or-zero which complicates things
1451  */
1452 static int tcp_skb_seglen(struct sk_buff *skb)
1453 {
1454         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1455 }
1456
1457 /* Shifting pages past head area doesn't work */
1458 static int skb_can_shift(struct sk_buff *skb)
1459 {
1460         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1461 }
1462
1463 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1464  * skb.
1465  */
1466 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1467                                           struct tcp_sacktag_state *state,
1468                                           u32 start_seq, u32 end_seq,
1469                                           int dup_sack)
1470 {
1471         struct tcp_sock *tp = tcp_sk(sk);
1472         struct sk_buff *prev;
1473         int mss;
1474         int pcount = 0;
1475         int len;
1476         int in_sack;
1477
1478         if (!sk_can_gso(sk))
1479                 goto fallback;
1480
1481         /* Normally R but no L won't result in plain S */
1482         if (!dup_sack &&
1483             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1484                 goto fallback;
1485         if (!skb_can_shift(skb))
1486                 goto fallback;
1487         /* This frame is about to be dropped (was ACKed). */
1488         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1489                 goto fallback;
1490
1491         /* Can only happen with delayed DSACK + discard craziness */
1492         if (unlikely(skb == tcp_write_queue_head(sk)))
1493                 goto fallback;
1494         prev = tcp_write_queue_prev(sk, skb);
1495
1496         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1497                 goto fallback;
1498
1499         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1500                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1501
1502         if (in_sack) {
1503                 len = skb->len;
1504                 pcount = tcp_skb_pcount(skb);
1505                 mss = tcp_skb_seglen(skb);
1506
1507                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1508                  * drop this restriction as unnecessary
1509                  */
1510                 if (mss != tcp_skb_seglen(prev))
1511                         goto fallback;
1512         } else {
1513                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1514                         goto noop;
1515                 /* CHECKME: This is non-MSS split case only?, this will
1516                  * cause skipped skbs due to advancing loop btw, original
1517                  * has that feature too
1518                  */
1519                 if (tcp_skb_pcount(skb) <= 1)
1520                         goto noop;
1521
1522                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1523                 if (!in_sack) {
1524                         /* TODO: head merge to next could be attempted here
1525                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1526                          * though it might not be worth of the additional hassle
1527                          *
1528                          * ...we can probably just fallback to what was done
1529                          * previously. We could try merging non-SACKed ones
1530                          * as well but it probably isn't going to buy off
1531                          * because later SACKs might again split them, and
1532                          * it would make skb timestamp tracking considerably
1533                          * harder problem.
1534                          */
1535                         goto fallback;
1536                 }
1537
1538                 len = end_seq - TCP_SKB_CB(skb)->seq;
1539                 BUG_ON(len < 0);
1540                 BUG_ON(len > skb->len);
1541
1542                 /* MSS boundaries should be honoured or else pcount will
1543                  * severely break even though it makes things bit trickier.
1544                  * Optimize common case to avoid most of the divides
1545                  */
1546                 mss = tcp_skb_mss(skb);
1547
1548                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1549                  * drop this restriction as unnecessary
1550                  */
1551                 if (mss != tcp_skb_seglen(prev))
1552                         goto fallback;
1553
1554                 if (len == mss) {
1555                         pcount = 1;
1556                 } else if (len < mss) {
1557                         goto noop;
1558                 } else {
1559                         pcount = len / mss;
1560                         len = pcount * mss;
1561                 }
1562         }
1563
1564         if (!skb_shift(prev, skb, len))
1565                 goto fallback;
1566         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1567                 goto out;
1568
1569         /* Hole filled allows collapsing with the next as well, this is very
1570          * useful when hole on every nth skb pattern happens
1571          */
1572         if (prev == tcp_write_queue_tail(sk))
1573                 goto out;
1574         skb = tcp_write_queue_next(sk, prev);
1575
1576         if (!skb_can_shift(skb) ||
1577             (skb == tcp_send_head(sk)) ||
1578             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1579             (mss != tcp_skb_seglen(skb)))
1580                 goto out;
1581
1582         len = skb->len;
1583         if (skb_shift(prev, skb, len)) {
1584                 pcount += tcp_skb_pcount(skb);
1585                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1586         }
1587
1588 out:
1589         state->fack_count += pcount;
1590         return prev;
1591
1592 noop:
1593         return skb;
1594
1595 fallback:
1596         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1597         return NULL;
1598 }
1599
1600 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1601                                         struct tcp_sack_block *next_dup,
1602                                         struct tcp_sacktag_state *state,
1603                                         u32 start_seq, u32 end_seq,
1604                                         int dup_sack_in)
1605 {
1606         struct tcp_sock *tp = tcp_sk(sk);
1607         struct sk_buff *tmp;
1608
1609         tcp_for_write_queue_from(skb, sk) {
1610                 int in_sack = 0;
1611                 int dup_sack = dup_sack_in;
1612
1613                 if (skb == tcp_send_head(sk))
1614                         break;
1615
1616                 /* queue is in-order => we can short-circuit the walk early */
1617                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1618                         break;
1619
1620                 if ((next_dup != NULL) &&
1621                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1622                         in_sack = tcp_match_skb_to_sack(sk, skb,
1623                                                         next_dup->start_seq,
1624                                                         next_dup->end_seq);
1625                         if (in_sack > 0)
1626                                 dup_sack = 1;
1627                 }
1628
1629                 /* skb reference here is a bit tricky to get right, since
1630                  * shifting can eat and free both this skb and the next,
1631                  * so not even _safe variant of the loop is enough.
1632                  */
1633                 if (in_sack <= 0) {
1634                         tmp = tcp_shift_skb_data(sk, skb, state,
1635                                                  start_seq, end_seq, dup_sack);
1636                         if (tmp != NULL) {
1637                                 if (tmp != skb) {
1638                                         skb = tmp;
1639                                         continue;
1640                                 }
1641
1642                                 in_sack = 0;
1643                         } else {
1644                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1645                                                                 start_seq,
1646                                                                 end_seq);
1647                         }
1648                 }
1649
1650                 if (unlikely(in_sack < 0))
1651                         break;
1652
1653                 if (in_sack) {
1654                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1655                                                                   state,
1656                                                                   dup_sack,
1657                                                                   tcp_skb_pcount(skb));
1658
1659                         if (!before(TCP_SKB_CB(skb)->seq,
1660                                     tcp_highest_sack_seq(tp)))
1661                                 tcp_advance_highest_sack(sk, skb);
1662                 }
1663
1664                 state->fack_count += tcp_skb_pcount(skb);
1665         }
1666         return skb;
1667 }
1668
1669 /* Avoid all extra work that is being done by sacktag while walking in
1670  * a normal way
1671  */
1672 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1673                                         struct tcp_sacktag_state *state,
1674                                         u32 skip_to_seq)
1675 {
1676         tcp_for_write_queue_from(skb, sk) {
1677                 if (skb == tcp_send_head(sk))
1678                         break;
1679
1680                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1681                         break;
1682
1683                 state->fack_count += tcp_skb_pcount(skb);
1684         }
1685         return skb;
1686 }
1687
1688 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1689                                                 struct sock *sk,
1690                                                 struct tcp_sack_block *next_dup,
1691                                                 struct tcp_sacktag_state *state,
1692                                                 u32 skip_to_seq)
1693 {
1694         if (next_dup == NULL)
1695                 return skb;
1696
1697         if (before(next_dup->start_seq, skip_to_seq)) {
1698                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1699                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1700                                        next_dup->start_seq, next_dup->end_seq,
1701                                        1);
1702         }
1703
1704         return skb;
1705 }
1706
1707 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1708 {
1709         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1710 }
1711
1712 static int
1713 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1714                         u32 prior_snd_una)
1715 {
1716         const struct inet_connection_sock *icsk = inet_csk(sk);
1717         struct tcp_sock *tp = tcp_sk(sk);
1718         unsigned char *ptr = (skb_transport_header(ack_skb) +
1719                               TCP_SKB_CB(ack_skb)->sacked);
1720         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1721         struct tcp_sack_block sp[TCP_NUM_SACKS];
1722         struct tcp_sack_block *cache;
1723         struct tcp_sacktag_state state;
1724         struct sk_buff *skb;
1725         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1726         int used_sacks;
1727         int found_dup_sack = 0;
1728         int i, j;
1729         int first_sack_index;
1730
1731         state.flag = 0;
1732         state.reord = tp->packets_out;
1733
1734         if (!tp->sacked_out) {
1735                 if (WARN_ON(tp->fackets_out))
1736                         tp->fackets_out = 0;
1737                 tcp_highest_sack_reset(sk);
1738         }
1739
1740         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1741                                          num_sacks, prior_snd_una);
1742         if (found_dup_sack)
1743                 state.flag |= FLAG_DSACKING_ACK;
1744
1745         /* Eliminate too old ACKs, but take into
1746          * account more or less fresh ones, they can
1747          * contain valid SACK info.
1748          */
1749         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1750                 return 0;
1751
1752         if (!tp->packets_out)
1753                 goto out;
1754
1755         used_sacks = 0;
1756         first_sack_index = 0;
1757         for (i = 0; i < num_sacks; i++) {
1758                 int dup_sack = !i && found_dup_sack;
1759
1760                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1761                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1762
1763                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1764                                             sp[used_sacks].start_seq,
1765                                             sp[used_sacks].end_seq)) {
1766                         int mib_idx;
1767
1768                         if (dup_sack) {
1769                                 if (!tp->undo_marker)
1770                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1771                                 else
1772                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1773                         } else {
1774                                 /* Don't count olds caused by ACK reordering */
1775                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1776                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1777                                         continue;
1778                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1779                         }
1780
1781                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1782                         if (i == 0)
1783                                 first_sack_index = -1;
1784                         continue;
1785                 }
1786
1787                 /* Ignore very old stuff early */
1788                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1789                         continue;
1790
1791                 used_sacks++;
1792         }
1793
1794         /* order SACK blocks to allow in order walk of the retrans queue */
1795         for (i = used_sacks - 1; i > 0; i--) {
1796                 for (j = 0; j < i; j++) {
1797                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1798                                 swap(sp[j], sp[j + 1]);
1799
1800                                 /* Track where the first SACK block goes to */
1801                                 if (j == first_sack_index)
1802                                         first_sack_index = j + 1;
1803                         }
1804                 }
1805         }
1806
1807         skb = tcp_write_queue_head(sk);
1808         state.fack_count = 0;
1809         i = 0;
1810
1811         if (!tp->sacked_out) {
1812                 /* It's already past, so skip checking against it */
1813                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1814         } else {
1815                 cache = tp->recv_sack_cache;
1816                 /* Skip empty blocks in at head of the cache */
1817                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1818                        !cache->end_seq)
1819                         cache++;
1820         }
1821
1822         while (i < used_sacks) {
1823                 u32 start_seq = sp[i].start_seq;
1824                 u32 end_seq = sp[i].end_seq;
1825                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1826                 struct tcp_sack_block *next_dup = NULL;
1827
1828                 if (found_dup_sack && ((i + 1) == first_sack_index))
1829                         next_dup = &sp[i + 1];
1830
1831                 /* Event "B" in the comment above. */
1832                 if (after(end_seq, tp->high_seq))
1833                         state.flag |= FLAG_DATA_LOST;
1834
1835                 /* Skip too early cached blocks */
1836                 while (tcp_sack_cache_ok(tp, cache) &&
1837                        !before(start_seq, cache->end_seq))
1838                         cache++;
1839
1840                 /* Can skip some work by looking recv_sack_cache? */
1841                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1842                     after(end_seq, cache->start_seq)) {
1843
1844                         /* Head todo? */
1845                         if (before(start_seq, cache->start_seq)) {
1846                                 skb = tcp_sacktag_skip(skb, sk, &state,
1847                                                        start_seq);
1848                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1849                                                        &state,
1850                                                        start_seq,
1851                                                        cache->start_seq,
1852                                                        dup_sack);
1853                         }
1854
1855                         /* Rest of the block already fully processed? */
1856                         if (!after(end_seq, cache->end_seq))
1857                                 goto advance_sp;
1858
1859                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1860                                                        &state,
1861                                                        cache->end_seq);
1862
1863                         /* ...tail remains todo... */
1864                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1865                                 /* ...but better entrypoint exists! */
1866                                 skb = tcp_highest_sack(sk);
1867                                 if (skb == NULL)
1868                                         break;
1869                                 state.fack_count = tp->fackets_out;
1870                                 cache++;
1871                                 goto walk;
1872                         }
1873
1874                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1875                         /* Check overlap against next cached too (past this one already) */
1876                         cache++;
1877                         continue;
1878                 }
1879
1880                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1881                         skb = tcp_highest_sack(sk);
1882                         if (skb == NULL)
1883                                 break;
1884                         state.fack_count = tp->fackets_out;
1885                 }
1886                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1887
1888 walk:
1889                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1890                                        start_seq, end_seq, dup_sack);
1891
1892 advance_sp:
1893                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1894                  * due to in-order walk
1895                  */
1896                 if (after(end_seq, tp->frto_highmark))
1897                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1898
1899                 i++;
1900         }
1901
1902         /* Clear the head of the cache sack blocks so we can skip it next time */
1903         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1904                 tp->recv_sack_cache[i].start_seq = 0;
1905                 tp->recv_sack_cache[i].end_seq = 0;
1906         }
1907         for (j = 0; j < used_sacks; j++)
1908                 tp->recv_sack_cache[i++] = sp[j];
1909
1910         tcp_mark_lost_retrans(sk);
1911
1912         tcp_verify_left_out(tp);
1913
1914         if ((state.reord < tp->fackets_out) &&
1915             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1916             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1917                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1918
1919 out:
1920
1921 #if FASTRETRANS_DEBUG > 0
1922         WARN_ON((int)tp->sacked_out < 0);
1923         WARN_ON((int)tp->lost_out < 0);
1924         WARN_ON((int)tp->retrans_out < 0);
1925         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1926 #endif
1927         return state.flag;
1928 }
1929
1930 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1931  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1932  */
1933 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1934 {
1935         u32 holes;
1936
1937         holes = max(tp->lost_out, 1U);
1938         holes = min(holes, tp->packets_out);
1939
1940         if ((tp->sacked_out + holes) > tp->packets_out) {
1941                 tp->sacked_out = tp->packets_out - holes;
1942                 return 1;
1943         }
1944         return 0;
1945 }
1946
1947 /* If we receive more dupacks than we expected counting segments
1948  * in assumption of absent reordering, interpret this as reordering.
1949  * The only another reason could be bug in receiver TCP.
1950  */
1951 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1952 {
1953         struct tcp_sock *tp = tcp_sk(sk);
1954         if (tcp_limit_reno_sacked(tp))
1955                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1956 }
1957
1958 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1959
1960 static void tcp_add_reno_sack(struct sock *sk)
1961 {
1962         struct tcp_sock *tp = tcp_sk(sk);
1963         tp->sacked_out++;
1964         tcp_check_reno_reordering(sk, 0);
1965         tcp_verify_left_out(tp);
1966 }
1967
1968 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1969
1970 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1971 {
1972         struct tcp_sock *tp = tcp_sk(sk);
1973
1974         if (acked > 0) {
1975                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1976                 if (acked - 1 >= tp->sacked_out)
1977                         tp->sacked_out = 0;
1978                 else
1979                         tp->sacked_out -= acked - 1;
1980         }
1981         tcp_check_reno_reordering(sk, acked);
1982         tcp_verify_left_out(tp);
1983 }
1984
1985 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1986 {
1987         tp->sacked_out = 0;
1988 }
1989
1990 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1991 {
1992         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1993 }
1994
1995 /* F-RTO can only be used if TCP has never retransmitted anything other than
1996  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1997  */
1998 int tcp_use_frto(struct sock *sk)
1999 {
2000         const struct tcp_sock *tp = tcp_sk(sk);
2001         const struct inet_connection_sock *icsk = inet_csk(sk);
2002         struct sk_buff *skb;
2003
2004         if (!sysctl_tcp_frto)
2005                 return 0;
2006
2007         /* MTU probe and F-RTO won't really play nicely along currently */
2008         if (icsk->icsk_mtup.probe_size)
2009                 return 0;
2010
2011         if (tcp_is_sackfrto(tp))
2012                 return 1;
2013
2014         /* Avoid expensive walking of rexmit queue if possible */
2015         if (tp->retrans_out > 1)
2016                 return 0;
2017
2018         skb = tcp_write_queue_head(sk);
2019         if (tcp_skb_is_last(sk, skb))
2020                 return 1;
2021         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2022         tcp_for_write_queue_from(skb, sk) {
2023                 if (skb == tcp_send_head(sk))
2024                         break;
2025                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2026                         return 0;
2027                 /* Short-circuit when first non-SACKed skb has been checked */
2028                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2029                         break;
2030         }
2031         return 1;
2032 }
2033
2034 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2035  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2036  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2037  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2038  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2039  * bits are handled if the Loss state is really to be entered (in
2040  * tcp_enter_frto_loss).
2041  *
2042  * Do like tcp_enter_loss() would; when RTO expires the second time it
2043  * does:
2044  *  "Reduce ssthresh if it has not yet been made inside this window."
2045  */
2046 void tcp_enter_frto(struct sock *sk)
2047 {
2048         const struct inet_connection_sock *icsk = inet_csk(sk);
2049         struct tcp_sock *tp = tcp_sk(sk);
2050         struct sk_buff *skb;
2051
2052         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2053             tp->snd_una == tp->high_seq ||
2054             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2055              !icsk->icsk_retransmits)) {
2056                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2057                 /* Our state is too optimistic in ssthresh() call because cwnd
2058                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2059                  * recovery has not yet completed. Pattern would be this: RTO,
2060                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2061                  * up here twice).
2062                  * RFC4138 should be more specific on what to do, even though
2063                  * RTO is quite unlikely to occur after the first Cumulative ACK
2064                  * due to back-off and complexity of triggering events ...
2065                  */
2066                 if (tp->frto_counter) {
2067                         u32 stored_cwnd;
2068                         stored_cwnd = tp->snd_cwnd;
2069                         tp->snd_cwnd = 2;
2070                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071                         tp->snd_cwnd = stored_cwnd;
2072                 } else {
2073                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074                 }
2075                 /* ... in theory, cong.control module could do "any tricks" in
2076                  * ssthresh(), which means that ca_state, lost bits and lost_out
2077                  * counter would have to be faked before the call occurs. We
2078                  * consider that too expensive, unlikely and hacky, so modules
2079                  * using these in ssthresh() must deal these incompatibility
2080                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2081                  */
2082                 tcp_ca_event(sk, CA_EVENT_FRTO);
2083         }
2084
2085         tp->undo_marker = tp->snd_una;
2086         tp->undo_retrans = 0;
2087
2088         skb = tcp_write_queue_head(sk);
2089         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090                 tp->undo_marker = 0;
2091         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2092                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2093                 tp->retrans_out -= tcp_skb_pcount(skb);
2094         }
2095         tcp_verify_left_out(tp);
2096
2097         /* Too bad if TCP was application limited */
2098         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2099
2100         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2101          * The last condition is necessary at least in tp->frto_counter case.
2102          */
2103         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2104             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2105             after(tp->high_seq, tp->snd_una)) {
2106                 tp->frto_highmark = tp->high_seq;
2107         } else {
2108                 tp->frto_highmark = tp->snd_nxt;
2109         }
2110         tcp_set_ca_state(sk, TCP_CA_Disorder);
2111         tp->high_seq = tp->snd_nxt;
2112         tp->frto_counter = 1;
2113 }
2114
2115 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2116  * which indicates that we should follow the traditional RTO recovery,
2117  * i.e. mark everything lost and do go-back-N retransmission.
2118  */
2119 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2120 {
2121         struct tcp_sock *tp = tcp_sk(sk);
2122         struct sk_buff *skb;
2123
2124         tp->lost_out = 0;
2125         tp->retrans_out = 0;
2126         if (tcp_is_reno(tp))
2127                 tcp_reset_reno_sack(tp);
2128
2129         tcp_for_write_queue(skb, sk) {
2130                 if (skb == tcp_send_head(sk))
2131                         break;
2132
2133                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2134                 /*
2135                  * Count the retransmission made on RTO correctly (only when
2136                  * waiting for the first ACK and did not get it)...
2137                  */
2138                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2139                         /* For some reason this R-bit might get cleared? */
2140                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2141                                 tp->retrans_out += tcp_skb_pcount(skb);
2142                         /* ...enter this if branch just for the first segment */
2143                         flag |= FLAG_DATA_ACKED;
2144                 } else {
2145                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2146                                 tp->undo_marker = 0;
2147                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2148                 }
2149
2150                 /* Marking forward transmissions that were made after RTO lost
2151                  * can cause unnecessary retransmissions in some scenarios,
2152                  * SACK blocks will mitigate that in some but not in all cases.
2153                  * We used to not mark them but it was causing break-ups with
2154                  * receivers that do only in-order receival.
2155                  *
2156                  * TODO: we could detect presence of such receiver and select
2157                  * different behavior per flow.
2158                  */
2159                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2160                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2161                         tp->lost_out += tcp_skb_pcount(skb);
2162                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2163                 }
2164         }
2165         tcp_verify_left_out(tp);
2166
2167         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2168         tp->snd_cwnd_cnt = 0;
2169         tp->snd_cwnd_stamp = tcp_time_stamp;
2170         tp->frto_counter = 0;
2171         tp->bytes_acked = 0;
2172
2173         tp->reordering = min_t(unsigned int, tp->reordering,
2174                                sysctl_tcp_reordering);
2175         tcp_set_ca_state(sk, TCP_CA_Loss);
2176         tp->high_seq = tp->snd_nxt;
2177         TCP_ECN_queue_cwr(tp);
2178
2179         tcp_clear_all_retrans_hints(tp);
2180 }
2181
2182 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2183 {
2184         tp->retrans_out = 0;
2185         tp->lost_out = 0;
2186
2187         tp->undo_marker = 0;
2188         tp->undo_retrans = 0;
2189 }
2190
2191 void tcp_clear_retrans(struct tcp_sock *tp)
2192 {
2193         tcp_clear_retrans_partial(tp);
2194
2195         tp->fackets_out = 0;
2196         tp->sacked_out = 0;
2197 }
2198
2199 /* Enter Loss state. If "how" is not zero, forget all SACK information
2200  * and reset tags completely, otherwise preserve SACKs. If receiver
2201  * dropped its ofo queue, we will know this due to reneging detection.
2202  */
2203 void tcp_enter_loss(struct sock *sk, int how)
2204 {
2205         const struct inet_connection_sock *icsk = inet_csk(sk);
2206         struct tcp_sock *tp = tcp_sk(sk);
2207         struct sk_buff *skb;
2208
2209         /* Reduce ssthresh if it has not yet been made inside this window. */
2210         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2211             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2212                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2213                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2214                 tcp_ca_event(sk, CA_EVENT_LOSS);
2215         }
2216         tp->snd_cwnd       = 1;
2217         tp->snd_cwnd_cnt   = 0;
2218         tp->snd_cwnd_stamp = tcp_time_stamp;
2219
2220         tp->bytes_acked = 0;
2221         tcp_clear_retrans_partial(tp);
2222
2223         if (tcp_is_reno(tp))
2224                 tcp_reset_reno_sack(tp);
2225
2226         if (!how) {
2227                 /* Push undo marker, if it was plain RTO and nothing
2228                  * was retransmitted. */
2229                 tp->undo_marker = tp->snd_una;
2230         } else {
2231                 tp->sacked_out = 0;
2232                 tp->fackets_out = 0;
2233         }
2234         tcp_clear_all_retrans_hints(tp);
2235
2236         tcp_for_write_queue(skb, sk) {
2237                 if (skb == tcp_send_head(sk))
2238                         break;
2239
2240                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2241                         tp->undo_marker = 0;
2242                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2243                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2244                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2245                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2246                         tp->lost_out += tcp_skb_pcount(skb);
2247                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2248                 }
2249         }
2250         tcp_verify_left_out(tp);
2251
2252         tp->reordering = min_t(unsigned int, tp->reordering,
2253                                sysctl_tcp_reordering);
2254         tcp_set_ca_state(sk, TCP_CA_Loss);
2255         tp->high_seq = tp->snd_nxt;
2256         TCP_ECN_queue_cwr(tp);
2257         /* Abort F-RTO algorithm if one is in progress */
2258         tp->frto_counter = 0;
2259 }
2260
2261 /* If ACK arrived pointing to a remembered SACK, it means that our
2262  * remembered SACKs do not reflect real state of receiver i.e.
2263  * receiver _host_ is heavily congested (or buggy).
2264  *
2265  * Do processing similar to RTO timeout.
2266  */
2267 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2268 {
2269         if (flag & FLAG_SACK_RENEGING) {
2270                 struct inet_connection_sock *icsk = inet_csk(sk);
2271                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2272
2273                 tcp_enter_loss(sk, 1);
2274                 icsk->icsk_retransmits++;
2275                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2276                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2277                                           icsk->icsk_rto, TCP_RTO_MAX);
2278                 return 1;
2279         }
2280         return 0;
2281 }
2282
2283 static inline int tcp_fackets_out(struct tcp_sock *tp)
2284 {
2285         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2286 }
2287
2288 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2289  * counter when SACK is enabled (without SACK, sacked_out is used for
2290  * that purpose).
2291  *
2292  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2293  * segments up to the highest received SACK block so far and holes in
2294  * between them.
2295  *
2296  * With reordering, holes may still be in flight, so RFC3517 recovery
2297  * uses pure sacked_out (total number of SACKed segments) even though
2298  * it violates the RFC that uses duplicate ACKs, often these are equal
2299  * but when e.g. out-of-window ACKs or packet duplication occurs,
2300  * they differ. Since neither occurs due to loss, TCP should really
2301  * ignore them.
2302  */
2303 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2304 {
2305         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2306 }
2307
2308 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2309 {
2310         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2311 }
2312
2313 static inline int tcp_head_timedout(struct sock *sk)
2314 {
2315         struct tcp_sock *tp = tcp_sk(sk);
2316
2317         return tp->packets_out &&
2318                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2319 }
2320
2321 /* Linux NewReno/SACK/FACK/ECN state machine.
2322  * --------------------------------------
2323  *
2324  * "Open"       Normal state, no dubious events, fast path.
2325  * "Disorder"   In all the respects it is "Open",
2326  *              but requires a bit more attention. It is entered when
2327  *              we see some SACKs or dupacks. It is split of "Open"
2328  *              mainly to move some processing from fast path to slow one.
2329  * "CWR"        CWND was reduced due to some Congestion Notification event.
2330  *              It can be ECN, ICMP source quench, local device congestion.
2331  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2332  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2333  *
2334  * tcp_fastretrans_alert() is entered:
2335  * - each incoming ACK, if state is not "Open"
2336  * - when arrived ACK is unusual, namely:
2337  *      * SACK
2338  *      * Duplicate ACK.
2339  *      * ECN ECE.
2340  *
2341  * Counting packets in flight is pretty simple.
2342  *
2343  *      in_flight = packets_out - left_out + retrans_out
2344  *
2345  *      packets_out is SND.NXT-SND.UNA counted in packets.
2346  *
2347  *      retrans_out is number of retransmitted segments.
2348  *
2349  *      left_out is number of segments left network, but not ACKed yet.
2350  *
2351  *              left_out = sacked_out + lost_out
2352  *
2353  *     sacked_out: Packets, which arrived to receiver out of order
2354  *                 and hence not ACKed. With SACKs this number is simply
2355  *                 amount of SACKed data. Even without SACKs
2356  *                 it is easy to give pretty reliable estimate of this number,
2357  *                 counting duplicate ACKs.
2358  *
2359  *       lost_out: Packets lost by network. TCP has no explicit
2360  *                 "loss notification" feedback from network (for now).
2361  *                 It means that this number can be only _guessed_.
2362  *                 Actually, it is the heuristics to predict lossage that
2363  *                 distinguishes different algorithms.
2364  *
2365  *      F.e. after RTO, when all the queue is considered as lost,
2366  *      lost_out = packets_out and in_flight = retrans_out.
2367  *
2368  *              Essentially, we have now two algorithms counting
2369  *              lost packets.
2370  *
2371  *              FACK: It is the simplest heuristics. As soon as we decided
2372  *              that something is lost, we decide that _all_ not SACKed
2373  *              packets until the most forward SACK are lost. I.e.
2374  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2375  *              It is absolutely correct estimate, if network does not reorder
2376  *              packets. And it loses any connection to reality when reordering
2377  *              takes place. We use FACK by default until reordering
2378  *              is suspected on the path to this destination.
2379  *
2380  *              NewReno: when Recovery is entered, we assume that one segment
2381  *              is lost (classic Reno). While we are in Recovery and
2382  *              a partial ACK arrives, we assume that one more packet
2383  *              is lost (NewReno). This heuristics are the same in NewReno
2384  *              and SACK.
2385  *
2386  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2387  *  deflation etc. CWND is real congestion window, never inflated, changes
2388  *  only according to classic VJ rules.
2389  *
2390  * Really tricky (and requiring careful tuning) part of algorithm
2391  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2392  * The first determines the moment _when_ we should reduce CWND and,
2393  * hence, slow down forward transmission. In fact, it determines the moment
2394  * when we decide that hole is caused by loss, rather than by a reorder.
2395  *
2396  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2397  * holes, caused by lost packets.
2398  *
2399  * And the most logically complicated part of algorithm is undo
2400  * heuristics. We detect false retransmits due to both too early
2401  * fast retransmit (reordering) and underestimated RTO, analyzing
2402  * timestamps and D-SACKs. When we detect that some segments were
2403  * retransmitted by mistake and CWND reduction was wrong, we undo
2404  * window reduction and abort recovery phase. This logic is hidden
2405  * inside several functions named tcp_try_undo_<something>.
2406  */
2407
2408 /* This function decides, when we should leave Disordered state
2409  * and enter Recovery phase, reducing congestion window.
2410  *
2411  * Main question: may we further continue forward transmission
2412  * with the same cwnd?
2413  */
2414 static int tcp_time_to_recover(struct sock *sk)
2415 {
2416         struct tcp_sock *tp = tcp_sk(sk);
2417         __u32 packets_out;
2418
2419         /* Do not perform any recovery during F-RTO algorithm */
2420         if (tp->frto_counter)
2421                 return 0;
2422
2423         /* Trick#1: The loss is proven. */
2424         if (tp->lost_out)
2425                 return 1;
2426
2427         /* Not-A-Trick#2 : Classic rule... */
2428         if (tcp_dupack_heuristics(tp) > tp->reordering)
2429                 return 1;
2430
2431         /* Trick#3 : when we use RFC2988 timer restart, fast
2432          * retransmit can be triggered by timeout of queue head.
2433          */
2434         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2435                 return 1;
2436
2437         /* Trick#4: It is still not OK... But will it be useful to delay
2438          * recovery more?
2439          */
2440         packets_out = tp->packets_out;
2441         if (packets_out <= tp->reordering &&
2442             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2443             !tcp_may_send_now(sk)) {
2444                 /* We have nothing to send. This connection is limited
2445                  * either by receiver window or by application.
2446                  */
2447                 return 1;
2448         }
2449
2450         return 0;
2451 }
2452
2453 /* New heuristics: it is possible only after we switched to restart timer
2454  * each time when something is ACKed. Hence, we can detect timed out packets
2455  * during fast retransmit without falling to slow start.
2456  *
2457  * Usefulness of this as is very questionable, since we should know which of
2458  * the segments is the next to timeout which is relatively expensive to find
2459  * in general case unless we add some data structure just for that. The
2460  * current approach certainly won't find the right one too often and when it
2461  * finally does find _something_ it usually marks large part of the window
2462  * right away (because a retransmission with a larger timestamp blocks the
2463  * loop from advancing). -ij
2464  */
2465 static void tcp_timeout_skbs(struct sock *sk)
2466 {
2467         struct tcp_sock *tp = tcp_sk(sk);
2468         struct sk_buff *skb;
2469
2470         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2471                 return;
2472
2473         skb = tp->scoreboard_skb_hint;
2474         if (tp->scoreboard_skb_hint == NULL)
2475                 skb = tcp_write_queue_head(sk);
2476
2477         tcp_for_write_queue_from(skb, sk) {
2478                 if (skb == tcp_send_head(sk))
2479                         break;
2480                 if (!tcp_skb_timedout(sk, skb))
2481                         break;
2482
2483                 tcp_skb_mark_lost(tp, skb);
2484         }
2485
2486         tp->scoreboard_skb_hint = skb;
2487
2488         tcp_verify_left_out(tp);
2489 }
2490
2491 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2492  * is against sacked "cnt", otherwise it's against facked "cnt"
2493  */
2494 static void tcp_mark_head_lost(struct sock *sk, int packets)
2495 {
2496         struct tcp_sock *tp = tcp_sk(sk);
2497         struct sk_buff *skb;
2498         int cnt, oldcnt;
2499         int err;
2500         unsigned int mss;
2501
2502         WARN_ON(packets > tp->packets_out);
2503         if (tp->lost_skb_hint) {
2504                 skb = tp->lost_skb_hint;
2505                 cnt = tp->lost_cnt_hint;
2506         } else {
2507                 skb = tcp_write_queue_head(sk);
2508                 cnt = 0;
2509         }
2510
2511         tcp_for_write_queue_from(skb, sk) {
2512                 if (skb == tcp_send_head(sk))
2513                         break;
2514                 /* TODO: do this better */
2515                 /* this is not the most efficient way to do this... */
2516                 tp->lost_skb_hint = skb;
2517                 tp->lost_cnt_hint = cnt;
2518
2519                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2520                         break;
2521
2522                 oldcnt = cnt;
2523                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2524                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2525                         cnt += tcp_skb_pcount(skb);
2526
2527                 if (cnt > packets) {
2528                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2529                                 break;
2530
2531                         mss = skb_shinfo(skb)->gso_size;
2532                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2533                         if (err < 0)
2534                                 break;
2535                         cnt = packets;
2536                 }
2537
2538                 tcp_skb_mark_lost(tp, skb);
2539         }
2540         tcp_verify_left_out(tp);
2541 }
2542
2543 /* Account newly detected lost packet(s) */
2544
2545 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2546 {
2547         struct tcp_sock *tp = tcp_sk(sk);
2548
2549         if (tcp_is_reno(tp)) {
2550                 tcp_mark_head_lost(sk, 1);
2551         } else if (tcp_is_fack(tp)) {
2552                 int lost = tp->fackets_out - tp->reordering;
2553                 if (lost <= 0)
2554                         lost = 1;
2555                 tcp_mark_head_lost(sk, lost);
2556         } else {
2557                 int sacked_upto = tp->sacked_out - tp->reordering;
2558                 if (sacked_upto < fast_rexmit)
2559                         sacked_upto = fast_rexmit;
2560                 tcp_mark_head_lost(sk, sacked_upto);
2561         }
2562
2563         tcp_timeout_skbs(sk);
2564 }
2565
2566 /* CWND moderation, preventing bursts due to too big ACKs
2567  * in dubious situations.
2568  */
2569 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2570 {
2571         tp->snd_cwnd = min(tp->snd_cwnd,
2572                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2573         tp->snd_cwnd_stamp = tcp_time_stamp;
2574 }
2575
2576 /* Lower bound on congestion window is slow start threshold
2577  * unless congestion avoidance choice decides to overide it.
2578  */
2579 static inline u32 tcp_cwnd_min(const struct sock *sk)
2580 {
2581         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2582
2583         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2584 }
2585
2586 /* Decrease cwnd each second ack. */
2587 static void tcp_cwnd_down(struct sock *sk, int flag)
2588 {
2589         struct tcp_sock *tp = tcp_sk(sk);
2590         int decr = tp->snd_cwnd_cnt + 1;
2591
2592         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2593             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2594                 tp->snd_cwnd_cnt = decr & 1;
2595                 decr >>= 1;
2596
2597                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2598                         tp->snd_cwnd -= decr;
2599
2600                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2601                 tp->snd_cwnd_stamp = tcp_time_stamp;
2602         }
2603 }
2604
2605 /* Nothing was retransmitted or returned timestamp is less
2606  * than timestamp of the first retransmission.
2607  */
2608 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2609 {
2610         return !tp->retrans_stamp ||
2611                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2612                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2613 }
2614
2615 /* Undo procedures. */
2616
2617 #if FASTRETRANS_DEBUG > 1
2618 static void DBGUNDO(struct sock *sk, const char *msg)
2619 {
2620         struct tcp_sock *tp = tcp_sk(sk);
2621         struct inet_sock *inet = inet_sk(sk);
2622
2623         if (sk->sk_family == AF_INET) {
2624                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2625                        msg,
2626                        &inet->daddr, ntohs(inet->dport),
2627                        tp->snd_cwnd, tcp_left_out(tp),
2628                        tp->snd_ssthresh, tp->prior_ssthresh,
2629                        tp->packets_out);
2630         }
2631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2632         else if (sk->sk_family == AF_INET6) {
2633                 struct ipv6_pinfo *np = inet6_sk(sk);
2634                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2635                        msg,
2636                        &np->daddr, ntohs(inet->dport),
2637                        tp->snd_cwnd, tcp_left_out(tp),
2638                        tp->snd_ssthresh, tp->prior_ssthresh,
2639                        tp->packets_out);
2640         }
2641 #endif
2642 }
2643 #else
2644 #define DBGUNDO(x...) do { } while (0)
2645 #endif
2646
2647 static void tcp_undo_cwr(struct sock *sk, const int undo)
2648 {
2649         struct tcp_sock *tp = tcp_sk(sk);
2650
2651         if (tp->prior_ssthresh) {
2652                 const struct inet_connection_sock *icsk = inet_csk(sk);
2653
2654                 if (icsk->icsk_ca_ops->undo_cwnd)
2655                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2656                 else
2657                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2658
2659                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2660                         tp->snd_ssthresh = tp->prior_ssthresh;
2661                         TCP_ECN_withdraw_cwr(tp);
2662                 }
2663         } else {
2664                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2665         }
2666         tcp_moderate_cwnd(tp);
2667         tp->snd_cwnd_stamp = tcp_time_stamp;
2668 }
2669
2670 static inline int tcp_may_undo(struct tcp_sock *tp)
2671 {
2672         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2673 }
2674
2675 /* People celebrate: "We love our President!" */
2676 static int tcp_try_undo_recovery(struct sock *sk)
2677 {
2678         struct tcp_sock *tp = tcp_sk(sk);
2679
2680         if (tcp_may_undo(tp)) {
2681                 int mib_idx;
2682
2683                 /* Happy end! We did not retransmit anything
2684                  * or our original transmission succeeded.
2685                  */
2686                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2687                 tcp_undo_cwr(sk, 1);
2688                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2689                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2690                 else
2691                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2692
2693                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2694                 tp->undo_marker = 0;
2695         }
2696         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2697                 /* Hold old state until something *above* high_seq
2698                  * is ACKed. For Reno it is MUST to prevent false
2699                  * fast retransmits (RFC2582). SACK TCP is safe. */
2700                 tcp_moderate_cwnd(tp);
2701                 return 1;
2702         }
2703         tcp_set_ca_state(sk, TCP_CA_Open);
2704         return 0;
2705 }
2706
2707 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2708 static void tcp_try_undo_dsack(struct sock *sk)
2709 {
2710         struct tcp_sock *tp = tcp_sk(sk);
2711
2712         if (tp->undo_marker && !tp->undo_retrans) {
2713                 DBGUNDO(sk, "D-SACK");
2714                 tcp_undo_cwr(sk, 1);
2715                 tp->undo_marker = 0;
2716                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2717         }
2718 }
2719
2720 /* We can clear retrans_stamp when there are no retransmissions in the
2721  * window. It would seem that it is trivially available for us in
2722  * tp->retrans_out, however, that kind of assumptions doesn't consider
2723  * what will happen if errors occur when sending retransmission for the
2724  * second time. ...It could the that such segment has only
2725  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2726  * the head skb is enough except for some reneging corner cases that
2727  * are not worth the effort.
2728  *
2729  * Main reason for all this complexity is the fact that connection dying
2730  * time now depends on the validity of the retrans_stamp, in particular,
2731  * that successive retransmissions of a segment must not advance
2732  * retrans_stamp under any conditions.
2733  */
2734 static int tcp_any_retrans_done(struct sock *sk)
2735 {
2736         struct tcp_sock *tp = tcp_sk(sk);
2737         struct sk_buff *skb;
2738
2739         if (tp->retrans_out)
2740                 return 1;
2741
2742         skb = tcp_write_queue_head(sk);
2743         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2744                 return 1;
2745
2746         return 0;
2747 }
2748
2749 /* Undo during fast recovery after partial ACK. */
2750
2751 static int tcp_try_undo_partial(struct sock *sk, int acked)
2752 {
2753         struct tcp_sock *tp = tcp_sk(sk);
2754         /* Partial ACK arrived. Force Hoe's retransmit. */
2755         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2756
2757         if (tcp_may_undo(tp)) {
2758                 /* Plain luck! Hole if filled with delayed
2759                  * packet, rather than with a retransmit.
2760                  */
2761                 if (!tcp_any_retrans_done(sk))
2762                         tp->retrans_stamp = 0;
2763
2764                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2765
2766                 DBGUNDO(sk, "Hoe");
2767                 tcp_undo_cwr(sk, 0);
2768                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2769
2770                 /* So... Do not make Hoe's retransmit yet.
2771                  * If the first packet was delayed, the rest
2772                  * ones are most probably delayed as well.
2773                  */
2774                 failed = 0;
2775         }
2776         return failed;
2777 }
2778
2779 /* Undo during loss recovery after partial ACK. */
2780 static int tcp_try_undo_loss(struct sock *sk)
2781 {
2782         struct tcp_sock *tp = tcp_sk(sk);
2783
2784         if (tcp_may_undo(tp)) {
2785                 struct sk_buff *skb;
2786                 tcp_for_write_queue(skb, sk) {
2787                         if (skb == tcp_send_head(sk))
2788                                 break;
2789                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2790                 }
2791
2792                 tcp_clear_all_retrans_hints(tp);
2793
2794                 DBGUNDO(sk, "partial loss");
2795                 tp->lost_out = 0;
2796                 tcp_undo_cwr(sk, 1);
2797                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2798                 inet_csk(sk)->icsk_retransmits = 0;
2799                 tp->undo_marker = 0;
2800                 if (tcp_is_sack(tp))
2801                         tcp_set_ca_state(sk, TCP_CA_Open);
2802                 return 1;
2803         }
2804         return 0;
2805 }
2806
2807 static inline void tcp_complete_cwr(struct sock *sk)
2808 {
2809         struct tcp_sock *tp = tcp_sk(sk);
2810         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2811         tp->snd_cwnd_stamp = tcp_time_stamp;
2812         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2813 }
2814
2815 static void tcp_try_keep_open(struct sock *sk)
2816 {
2817         struct tcp_sock *tp = tcp_sk(sk);
2818         int state = TCP_CA_Open;
2819
2820         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2821                 state = TCP_CA_Disorder;
2822
2823         if (inet_csk(sk)->icsk_ca_state != state) {
2824                 tcp_set_ca_state(sk, state);
2825                 tp->high_seq = tp->snd_nxt;
2826         }
2827 }
2828
2829 static void tcp_try_to_open(struct sock *sk, int flag)
2830 {
2831         struct tcp_sock *tp = tcp_sk(sk);
2832
2833         tcp_verify_left_out(tp);
2834
2835         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2836                 tp->retrans_stamp = 0;
2837
2838         if (flag & FLAG_ECE)
2839                 tcp_enter_cwr(sk, 1);
2840
2841         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2842                 tcp_try_keep_open(sk);
2843                 tcp_moderate_cwnd(tp);
2844         } else {
2845                 tcp_cwnd_down(sk, flag);
2846         }
2847 }
2848
2849 static void tcp_mtup_probe_failed(struct sock *sk)
2850 {
2851         struct inet_connection_sock *icsk = inet_csk(sk);
2852
2853         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2854         icsk->icsk_mtup.probe_size = 0;
2855 }
2856
2857 static void tcp_mtup_probe_success(struct sock *sk)
2858 {
2859         struct tcp_sock *tp = tcp_sk(sk);
2860         struct inet_connection_sock *icsk = inet_csk(sk);
2861
2862         /* FIXME: breaks with very large cwnd */
2863         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2864         tp->snd_cwnd = tp->snd_cwnd *
2865                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2866                        icsk->icsk_mtup.probe_size;
2867         tp->snd_cwnd_cnt = 0;
2868         tp->snd_cwnd_stamp = tcp_time_stamp;
2869         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2870
2871         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2872         icsk->icsk_mtup.probe_size = 0;
2873         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2874 }
2875
2876 /* Do a simple retransmit without using the backoff mechanisms in
2877  * tcp_timer. This is used for path mtu discovery.
2878  * The socket is already locked here.
2879  */
2880 void tcp_simple_retransmit(struct sock *sk)
2881 {
2882         const struct inet_connection_sock *icsk = inet_csk(sk);
2883         struct tcp_sock *tp = tcp_sk(sk);
2884         struct sk_buff *skb;
2885         unsigned int mss = tcp_current_mss(sk);
2886         u32 prior_lost = tp->lost_out;
2887
2888         tcp_for_write_queue(skb, sk) {
2889                 if (skb == tcp_send_head(sk))
2890                         break;
2891                 if (tcp_skb_seglen(skb) > mss &&
2892                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2893                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2894                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2895                                 tp->retrans_out -= tcp_skb_pcount(skb);
2896                         }
2897                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2898                 }
2899         }
2900
2901         tcp_clear_retrans_hints_partial(tp);
2902
2903         if (prior_lost == tp->lost_out)
2904                 return;
2905
2906         if (tcp_is_reno(tp))
2907                 tcp_limit_reno_sacked(tp);
2908
2909         tcp_verify_left_out(tp);
2910
2911         /* Don't muck with the congestion window here.
2912          * Reason is that we do not increase amount of _data_
2913          * in network, but units changed and effective
2914          * cwnd/ssthresh really reduced now.
2915          */
2916         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2917                 tp->high_seq = tp->snd_nxt;
2918                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2919                 tp->prior_ssthresh = 0;
2920                 tp->undo_marker = 0;
2921                 tcp_set_ca_state(sk, TCP_CA_Loss);
2922         }
2923         tcp_xmit_retransmit_queue(sk);
2924 }
2925
2926 /* Process an event, which can update packets-in-flight not trivially.
2927  * Main goal of this function is to calculate new estimate for left_out,
2928  * taking into account both packets sitting in receiver's buffer and
2929  * packets lost by network.
2930  *
2931  * Besides that it does CWND reduction, when packet loss is detected
2932  * and changes state of machine.
2933  *
2934  * It does _not_ decide what to send, it is made in function
2935  * tcp_xmit_retransmit_queue().
2936  */
2937 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2938 {
2939         struct inet_connection_sock *icsk = inet_csk(sk);
2940         struct tcp_sock *tp = tcp_sk(sk);
2941         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2942         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2943                                     (tcp_fackets_out(tp) > tp->reordering));
2944         int fast_rexmit = 0, mib_idx;
2945
2946         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2947                 tp->sacked_out = 0;
2948         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2949                 tp->fackets_out = 0;
2950
2951         /* Now state machine starts.
2952          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2953         if (flag & FLAG_ECE)
2954                 tp->prior_ssthresh = 0;
2955
2956         /* B. In all the states check for reneging SACKs. */
2957         if (tcp_check_sack_reneging(sk, flag))
2958                 return;
2959
2960         /* C. Process data loss notification, provided it is valid. */
2961         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2962             before(tp->snd_una, tp->high_seq) &&
2963             icsk->icsk_ca_state != TCP_CA_Open &&
2964             tp->fackets_out > tp->reordering) {
2965                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2966                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2967         }
2968
2969         /* D. Check consistency of the current state. */
2970         tcp_verify_left_out(tp);
2971
2972         /* E. Check state exit conditions. State can be terminated
2973          *    when high_seq is ACKed. */
2974         if (icsk->icsk_ca_state == TCP_CA_Open) {
2975                 WARN_ON(tp->retrans_out != 0);
2976                 tp->retrans_stamp = 0;
2977         } else if (!before(tp->snd_una, tp->high_seq)) {
2978                 switch (icsk->icsk_ca_state) {
2979                 case TCP_CA_Loss:
2980                         icsk->icsk_retransmits = 0;
2981                         if (tcp_try_undo_recovery(sk))
2982                                 return;
2983                         break;
2984
2985                 case TCP_CA_CWR:
2986                         /* CWR is to be held something *above* high_seq
2987                          * is ACKed for CWR bit to reach receiver. */
2988                         if (tp->snd_una != tp->high_seq) {
2989                                 tcp_complete_cwr(sk);
2990                                 tcp_set_ca_state(sk, TCP_CA_Open);
2991                         }
2992                         break;
2993
2994                 case TCP_CA_Disorder:
2995                         tcp_try_undo_dsack(sk);
2996                         if (!tp->undo_marker ||
2997                             /* For SACK case do not Open to allow to undo
2998                              * catching for all duplicate ACKs. */
2999                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3000                                 tp->undo_marker = 0;
3001                                 tcp_set_ca_state(sk, TCP_CA_Open);
3002                         }
3003                         break;
3004
3005                 case TCP_CA_Recovery:
3006                         if (tcp_is_reno(tp))
3007                                 tcp_reset_reno_sack(tp);
3008                         if (tcp_try_undo_recovery(sk))
3009                                 return;
3010                         tcp_complete_cwr(sk);
3011                         break;
3012                 }
3013         }
3014
3015         /* F. Process state. */
3016         switch (icsk->icsk_ca_state) {
3017         case TCP_CA_Recovery:
3018                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3019                         if (tcp_is_reno(tp) && is_dupack)
3020                                 tcp_add_reno_sack(sk);
3021                 } else
3022                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3023                 break;
3024         case TCP_CA_Loss:
3025                 if (flag & FLAG_DATA_ACKED)
3026                         icsk->icsk_retransmits = 0;
3027                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3028                         tcp_reset_reno_sack(tp);
3029                 if (!tcp_try_undo_loss(sk)) {
3030                         tcp_moderate_cwnd(tp);
3031                         tcp_xmit_retransmit_queue(sk);
3032                         return;
3033                 }
3034                 if (icsk->icsk_ca_state != TCP_CA_Open)
3035                         return;
3036                 /* Loss is undone; fall through to processing in Open state. */
3037         default:
3038                 if (tcp_is_reno(tp)) {
3039                         if (flag & FLAG_SND_UNA_ADVANCED)
3040                                 tcp_reset_reno_sack(tp);
3041                         if (is_dupack)
3042                                 tcp_add_reno_sack(sk);
3043                 }
3044
3045                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3046                         tcp_try_undo_dsack(sk);
3047
3048                 if (!tcp_time_to_recover(sk)) {
3049                         tcp_try_to_open(sk, flag);
3050                         return;
3051                 }
3052
3053                 /* MTU probe failure: don't reduce cwnd */
3054                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3055                     icsk->icsk_mtup.probe_size &&
3056                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3057                         tcp_mtup_probe_failed(sk);
3058                         /* Restores the reduction we did in tcp_mtup_probe() */
3059                         tp->snd_cwnd++;
3060                         tcp_simple_retransmit(sk);
3061                         return;
3062                 }
3063
3064                 /* Otherwise enter Recovery state */
3065
3066                 if (tcp_is_reno(tp))
3067                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3068                 else
3069                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3070
3071                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3072
3073                 tp->high_seq = tp->snd_nxt;
3074                 tp->prior_ssthresh = 0;
3075                 tp->undo_marker = tp->snd_una;
3076                 tp->undo_retrans = tp->retrans_out;
3077
3078                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3079                         if (!(flag & FLAG_ECE))
3080                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3081                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3082                         TCP_ECN_queue_cwr(tp);
3083                 }
3084
3085                 tp->bytes_acked = 0;
3086                 tp->snd_cwnd_cnt = 0;
3087                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3088                 fast_rexmit = 1;
3089         }
3090
3091         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3092                 tcp_update_scoreboard(sk, fast_rexmit);
3093         tcp_cwnd_down(sk, flag);
3094         tcp_xmit_retransmit_queue(sk);
3095 }
3096
3097 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3098 {
3099         tcp_rtt_estimator(sk, seq_rtt);
3100         tcp_set_rto(sk);
3101         inet_csk(sk)->icsk_backoff = 0;
3102 }
3103
3104 /* Read draft-ietf-tcplw-high-performance before mucking
3105  * with this code. (Supersedes RFC1323)
3106  */
3107 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3108 {
3109         /* RTTM Rule: A TSecr value received in a segment is used to
3110          * update the averaged RTT measurement only if the segment
3111          * acknowledges some new data, i.e., only if it advances the
3112          * left edge of the send window.
3113          *
3114          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3115          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3116          *
3117          * Changed: reset backoff as soon as we see the first valid sample.
3118          * If we do not, we get strongly overestimated rto. With timestamps
3119          * samples are accepted even from very old segments: f.e., when rtt=1
3120          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3121          * answer arrives rto becomes 120 seconds! If at least one of segments
3122          * in window is lost... Voila.                          --ANK (010210)
3123          */
3124         struct tcp_sock *tp = tcp_sk(sk);
3125
3126         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3127 }
3128
3129 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3130 {
3131         /* We don't have a timestamp. Can only use
3132          * packets that are not retransmitted to determine
3133          * rtt estimates. Also, we must not reset the
3134          * backoff for rto until we get a non-retransmitted
3135          * packet. This allows us to deal with a situation
3136          * where the network delay has increased suddenly.
3137          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3138          */
3139
3140         if (flag & FLAG_RETRANS_DATA_ACKED)
3141                 return;
3142
3143         tcp_valid_rtt_meas(sk, seq_rtt);
3144 }
3145
3146 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3147                                       const s32 seq_rtt)
3148 {
3149         const struct tcp_sock *tp = tcp_sk(sk);
3150         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3151         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3152                 tcp_ack_saw_tstamp(sk, flag);
3153         else if (seq_rtt >= 0)
3154                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3155 }
3156
3157 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3158 {
3159         const struct inet_connection_sock *icsk = inet_csk(sk);
3160         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3161         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3162 }
3163
3164 /* Restart timer after forward progress on connection.
3165  * RFC2988 recommends to restart timer to now+rto.
3166  */
3167 static void tcp_rearm_rto(struct sock *sk)
3168 {
3169         struct tcp_sock *tp = tcp_sk(sk);
3170
3171         if (!tp->packets_out) {
3172                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3173         } else {
3174                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3175                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3176         }
3177 }
3178
3179 /* If we get here, the whole TSO packet has not been acked. */
3180 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3181 {
3182         struct tcp_sock *tp = tcp_sk(sk);
3183         u32 packets_acked;
3184
3185         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3186
3187         packets_acked = tcp_skb_pcount(skb);
3188         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3189                 return 0;
3190         packets_acked -= tcp_skb_pcount(skb);
3191
3192         if (packets_acked) {
3193                 BUG_ON(tcp_skb_pcount(skb) == 0);
3194                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3195         }
3196
3197         return packets_acked;
3198 }
3199
3200 /* Remove acknowledged frames from the retransmission queue. If our packet
3201  * is before the ack sequence we can discard it as it's confirmed to have
3202  * arrived at the other end.
3203  */
3204 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3205                                u32 prior_snd_una)
3206 {
3207         struct tcp_sock *tp = tcp_sk(sk);
3208         const struct inet_connection_sock *icsk = inet_csk(sk);
3209         struct sk_buff *skb;
3210         u32 now = tcp_time_stamp;
3211         int fully_acked = 1;
3212         int flag = 0;
3213         u32 pkts_acked = 0;
3214         u32 reord = tp->packets_out;
3215         u32 prior_sacked = tp->sacked_out;
3216         s32 seq_rtt = -1;
3217         s32 ca_seq_rtt = -1;
3218         ktime_t last_ackt = net_invalid_timestamp();
3219
3220         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3221                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3222                 u32 acked_pcount;
3223                 u8 sacked = scb->sacked;
3224
3225                 /* Determine how many packets and what bytes were acked, tso and else */
3226                 if (after(scb->end_seq, tp->snd_una)) {
3227                         if (tcp_skb_pcount(skb) == 1 ||
3228                             !after(tp->snd_una, scb->seq))
3229                                 break;
3230
3231                         acked_pcount = tcp_tso_acked(sk, skb);
3232                         if (!acked_pcount)
3233                                 break;
3234
3235                         fully_acked = 0;
3236                 } else {
3237                         acked_pcount = tcp_skb_pcount(skb);
3238                 }
3239
3240                 if (sacked & TCPCB_RETRANS) {
3241                         if (sacked & TCPCB_SACKED_RETRANS)
3242                                 tp->retrans_out -= acked_pcount;
3243                         flag |= FLAG_RETRANS_DATA_ACKED;
3244                         ca_seq_rtt = -1;
3245                         seq_rtt = -1;
3246                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3247                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3248                 } else {
3249                         ca_seq_rtt = now - scb->when;
3250                         last_ackt = skb->tstamp;
3251                         if (seq_rtt < 0) {
3252                                 seq_rtt = ca_seq_rtt;
3253                         }
3254                         if (!(sacked & TCPCB_SACKED_ACKED))
3255                                 reord = min(pkts_acked, reord);
3256                 }
3257
3258                 if (sacked & TCPCB_SACKED_ACKED)
3259                         tp->sacked_out -= acked_pcount;
3260                 if (sacked & TCPCB_LOST)
3261                         tp->lost_out -= acked_pcount;
3262
3263                 tp->packets_out -= acked_pcount;
3264                 pkts_acked += acked_pcount;
3265
3266                 /* Initial outgoing SYN's get put onto the write_queue
3267                  * just like anything else we transmit.  It is not
3268                  * true data, and if we misinform our callers that
3269                  * this ACK acks real data, we will erroneously exit
3270                  * connection startup slow start one packet too
3271                  * quickly.  This is severely frowned upon behavior.
3272                  */
3273                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3274                         flag |= FLAG_DATA_ACKED;
3275                 } else {
3276                         flag |= FLAG_SYN_ACKED;
3277                         tp->retrans_stamp = 0;
3278                 }
3279
3280                 if (!fully_acked)
3281                         break;
3282
3283                 tcp_unlink_write_queue(skb, sk);
3284                 sk_wmem_free_skb(sk, skb);
3285                 tp->scoreboard_skb_hint = NULL;
3286                 if (skb == tp->retransmit_skb_hint)
3287                         tp->retransmit_skb_hint = NULL;
3288                 if (skb == tp->lost_skb_hint)
3289                         tp->lost_skb_hint = NULL;
3290         }
3291
3292         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3293                 tp->snd_up = tp->snd_una;
3294
3295         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3296                 flag |= FLAG_SACK_RENEGING;
3297
3298         if (flag & FLAG_ACKED) {
3299                 const struct tcp_congestion_ops *ca_ops
3300                         = inet_csk(sk)->icsk_ca_ops;
3301
3302                 if (unlikely(icsk->icsk_mtup.probe_size &&
3303                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3304                         tcp_mtup_probe_success(sk);
3305                 }
3306
3307                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3308                 tcp_rearm_rto(sk);
3309
3310                 if (tcp_is_reno(tp)) {
3311                         tcp_remove_reno_sacks(sk, pkts_acked);
3312                 } else {
3313                         int delta;
3314
3315                         /* Non-retransmitted hole got filled? That's reordering */
3316                         if (reord < prior_fackets)
3317                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3318
3319                         delta = tcp_is_fack(tp) ? pkts_acked :
3320                                                   prior_sacked - tp->sacked_out;
3321                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3322                 }
3323
3324                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3325
3326                 if (ca_ops->pkts_acked) {
3327                         s32 rtt_us = -1;
3328
3329                         /* Is the ACK triggering packet unambiguous? */
3330                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3331                                 /* High resolution needed and available? */
3332                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3333                                     !ktime_equal(last_ackt,
3334                                                  net_invalid_timestamp()))
3335                                         rtt_us = ktime_us_delta(ktime_get_real(),
3336                                                                 last_ackt);
3337                                 else if (ca_seq_rtt > 0)
3338                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3339                         }
3340
3341                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3342                 }
3343         }
3344
3345 #if FASTRETRANS_DEBUG > 0
3346         WARN_ON((int)tp->sacked_out < 0);
3347         WARN_ON((int)tp->lost_out < 0);
3348         WARN_ON((int)tp->retrans_out < 0);
3349         if (!tp->packets_out && tcp_is_sack(tp)) {
3350                 icsk = inet_csk(sk);
3351                 if (tp->lost_out) {
3352                         printk(KERN_DEBUG "Leak l=%u %d\n",
3353                                tp->lost_out, icsk->icsk_ca_state);
3354                         tp->lost_out = 0;
3355                 }
3356                 if (tp->sacked_out) {
3357                         printk(KERN_DEBUG "Leak s=%u %d\n",
3358                                tp->sacked_out, icsk->icsk_ca_state);
3359                         tp->sacked_out = 0;
3360                 }
3361                 if (tp->retrans_out) {
3362                         printk(KERN_DEBUG "Leak r=%u %d\n",
3363                                tp->retrans_out, icsk->icsk_ca_state);
3364                         tp->retrans_out = 0;
3365                 }
3366         }
3367 #endif
3368         return flag;
3369 }
3370
3371 static void tcp_ack_probe(struct sock *sk)
3372 {
3373         const struct tcp_sock *tp = tcp_sk(sk);
3374         struct inet_connection_sock *icsk = inet_csk(sk);
3375
3376         /* Was it a usable window open? */
3377
3378         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3379                 icsk->icsk_backoff = 0;
3380                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3381                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3382                  * This function is not for random using!
3383                  */
3384         } else {
3385                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3386                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3387                                           TCP_RTO_MAX);
3388         }
3389 }
3390
3391 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3392 {
3393         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3394                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3395 }
3396
3397 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3398 {
3399         const struct tcp_sock *tp = tcp_sk(sk);
3400         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3401                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3402 }
3403
3404 /* Check that window update is acceptable.
3405  * The function assumes that snd_una<=ack<=snd_next.
3406  */
3407 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3408                                         const u32 ack, const u32 ack_seq,
3409                                         const u32 nwin)
3410 {
3411         return (after(ack, tp->snd_una) ||
3412                 after(ack_seq, tp->snd_wl1) ||
3413                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3414 }
3415
3416 /* Update our send window.
3417  *
3418  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3419  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3420  */
3421 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3422                                  u32 ack_seq)
3423 {
3424         struct tcp_sock *tp = tcp_sk(sk);
3425         int flag = 0;
3426         u32 nwin = ntohs(tcp_hdr(skb)->window);
3427
3428         if (likely(!tcp_hdr(skb)->syn))
3429                 nwin <<= tp->rx_opt.snd_wscale;
3430
3431         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3432                 flag |= FLAG_WIN_UPDATE;
3433                 tcp_update_wl(tp, ack_seq);
3434
3435                 if (tp->snd_wnd != nwin) {
3436                         tp->snd_wnd = nwin;
3437
3438                         /* Note, it is the only place, where
3439                          * fast path is recovered for sending TCP.
3440                          */
3441                         tp->pred_flags = 0;
3442                         tcp_fast_path_check(sk);
3443
3444                         if (nwin > tp->max_window) {
3445                                 tp->max_window = nwin;
3446                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3447                         }
3448                 }
3449         }
3450
3451         tp->snd_una = ack;
3452
3453         return flag;
3454 }
3455
3456 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3457  * continue in congestion avoidance.
3458  */
3459 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3460 {
3461         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3462         tp->snd_cwnd_cnt = 0;
3463         tp->bytes_acked = 0;
3464         TCP_ECN_queue_cwr(tp);
3465         tcp_moderate_cwnd(tp);
3466 }
3467
3468 /* A conservative spurious RTO response algorithm: reduce cwnd using
3469  * rate halving and continue in congestion avoidance.
3470  */
3471 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3472 {
3473         tcp_enter_cwr(sk, 0);
3474 }
3475
3476 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3477 {
3478         if (flag & FLAG_ECE)
3479                 tcp_ratehalving_spur_to_response(sk);
3480         else
3481                 tcp_undo_cwr(sk, 1);
3482 }
3483
3484 /* F-RTO spurious RTO detection algorithm (RFC4138)
3485  *
3486  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3487  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3488  * window (but not to or beyond highest sequence sent before RTO):
3489  *   On First ACK,  send two new segments out.
3490  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3491  *                  algorithm is not part of the F-RTO detection algorithm
3492  *                  given in RFC4138 but can be selected separately).
3493  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3494  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3495  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3496  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3497  *
3498  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3499  * original window even after we transmit two new data segments.
3500  *
3501  * SACK version:
3502  *   on first step, wait until first cumulative ACK arrives, then move to
3503  *   the second step. In second step, the next ACK decides.
3504  *
3505  * F-RTO is implemented (mainly) in four functions:
3506  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3507  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3508  *     called when tcp_use_frto() showed green light
3509  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3510  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3511  *     to prove that the RTO is indeed spurious. It transfers the control
3512  *     from F-RTO to the conventional RTO recovery
3513  */
3514 static int tcp_process_frto(struct sock *sk, int flag)
3515 {
3516         struct tcp_sock *tp = tcp_sk(sk);
3517
3518         tcp_verify_left_out(tp);
3519
3520         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3521         if (flag & FLAG_DATA_ACKED)
3522                 inet_csk(sk)->icsk_retransmits = 0;
3523
3524         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3525             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3526                 tp->undo_marker = 0;
3527
3528         if (!before(tp->snd_una, tp->frto_highmark)) {
3529                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3530                 return 1;
3531         }
3532
3533         if (!tcp_is_sackfrto(tp)) {
3534                 /* RFC4138 shortcoming in step 2; should also have case c):
3535                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3536                  * data, winupdate
3537                  */
3538                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3539                         return 1;
3540
3541                 if (!(flag & FLAG_DATA_ACKED)) {
3542                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3543                                             flag);
3544                         return 1;
3545                 }
3546         } else {
3547                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3548                         /* Prevent sending of new data. */
3549                         tp->snd_cwnd = min(tp->snd_cwnd,
3550                                            tcp_packets_in_flight(tp));
3551                         return 1;
3552                 }
3553
3554                 if ((tp->frto_counter >= 2) &&
3555                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3556                      ((flag & FLAG_DATA_SACKED) &&
3557                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3558                         /* RFC4138 shortcoming (see comment above) */
3559                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3560                             (flag & FLAG_NOT_DUP))
3561                                 return 1;
3562
3563                         tcp_enter_frto_loss(sk, 3, flag);
3564                         return 1;
3565                 }
3566         }
3567
3568         if (tp->frto_counter == 1) {
3569                 /* tcp_may_send_now needs to see updated state */
3570                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3571                 tp->frto_counter = 2;
3572
3573                 if (!tcp_may_send_now(sk))
3574                         tcp_enter_frto_loss(sk, 2, flag);
3575
3576                 return 1;
3577         } else {
3578                 switch (sysctl_tcp_frto_response) {
3579                 case 2:
3580                         tcp_undo_spur_to_response(sk, flag);
3581                         break;
3582                 case 1:
3583                         tcp_conservative_spur_to_response(tp);
3584                         break;
3585                 default:
3586                         tcp_ratehalving_spur_to_response(sk);
3587                         break;
3588                 }
3589                 tp->frto_counter = 0;
3590                 tp->undo_marker = 0;
3591                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3592         }
3593         return 0;
3594 }
3595
3596 /* This routine deals with incoming acks, but not outgoing ones. */
3597 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3598 {
3599         struct inet_connection_sock *icsk = inet_csk(sk);
3600         struct tcp_sock *tp = tcp_sk(sk);
3601         u32 prior_snd_una = tp->snd_una;
3602         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3603         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3604         u32 prior_in_flight;
3605         u32 prior_fackets;
3606         int prior_packets;
3607         int frto_cwnd = 0;
3608
3609         /* If the ack is older than previous acks
3610          * then we can probably ignore it.
3611          */
3612         if (before(ack, prior_snd_una))
3613                 goto old_ack;
3614
3615         /* If the ack includes data we haven't sent yet, discard
3616          * this segment (RFC793 Section 3.9).
3617          */
3618         if (after(ack, tp->snd_nxt))
3619                 goto invalid_ack;
3620
3621         if (after(ack, prior_snd_una))
3622                 flag |= FLAG_SND_UNA_ADVANCED;
3623
3624         if (sysctl_tcp_abc) {
3625                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3626                         tp->bytes_acked += ack - prior_snd_una;
3627                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3628                         /* we assume just one segment left network */
3629                         tp->bytes_acked += min(ack - prior_snd_una,
3630                                                tp->mss_cache);
3631         }
3632
3633         prior_fackets = tp->fackets_out;
3634         prior_in_flight = tcp_packets_in_flight(tp);
3635
3636         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3637                 /* Window is constant, pure forward advance.
3638                  * No more checks are required.
3639                  * Note, we use the fact that SND.UNA>=SND.WL2.
3640                  */
3641                 tcp_update_wl(tp, ack_seq);
3642                 tp->snd_una = ack;
3643                 flag |= FLAG_WIN_UPDATE;
3644
3645                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3646
3647                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3648         } else {
3649                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3650                         flag |= FLAG_DATA;
3651                 else
3652                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3653
3654                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3655
3656                 if (TCP_SKB_CB(skb)->sacked)
3657                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3658
3659                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3660                         flag |= FLAG_ECE;
3661
3662                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3663         }
3664
3665         /* We passed data and got it acked, remove any soft error
3666          * log. Something worked...
3667          */
3668         sk->sk_err_soft = 0;
3669         icsk->icsk_probes_out = 0;
3670         tp->rcv_tstamp = tcp_time_stamp;
3671         prior_packets = tp->packets_out;
3672         if (!prior_packets)
3673                 goto no_queue;
3674
3675         /* See if we can take anything off of the retransmit queue. */
3676         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3677
3678         if (tp->frto_counter)
3679                 frto_cwnd = tcp_process_frto(sk, flag);
3680         /* Guarantee sacktag reordering detection against wrap-arounds */
3681         if (before(tp->frto_highmark, tp->snd_una))
3682                 tp->frto_highmark = 0;
3683
3684         if (tcp_ack_is_dubious(sk, flag)) {
3685                 /* Advance CWND, if state allows this. */
3686                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3687                     tcp_may_raise_cwnd(sk, flag))
3688                         tcp_cong_avoid(sk, ack, prior_in_flight);
3689                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3690                                       flag);
3691         } else {
3692                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3693                         tcp_cong_avoid(sk, ack, prior_in_flight);
3694         }
3695
3696         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3697                 dst_confirm(sk->sk_dst_cache);
3698
3699         return 1;
3700
3701 no_queue:
3702         /* If this ack opens up a zero window, clear backoff.  It was
3703          * being used to time the probes, and is probably far higher than
3704          * it needs to be for normal retransmission.
3705          */
3706         if (tcp_send_head(sk))
3707                 tcp_ack_probe(sk);
3708         return 1;
3709
3710 invalid_ack:
3711         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3712         return -1;
3713
3714 old_ack:
3715         if (TCP_SKB_CB(skb)->sacked) {
3716                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3717                 if (icsk->icsk_ca_state == TCP_CA_Open)
3718                         tcp_try_keep_open(sk);
3719         }
3720
3721         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3722         return 0;
3723 }
3724
3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3726  * But, this can also be called on packets in the established flow when
3727  * the fast version below fails.
3728  */
3729 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3730                        u8 **hvpp, int estab,  struct dst_entry *dst)
3731 {
3732         unsigned char *ptr;
3733         struct tcphdr *th = tcp_hdr(skb);
3734         int length = (th->doff * 4) - sizeof(struct tcphdr);
3735
3736         ptr = (unsigned char *)(th + 1);
3737         opt_rx->saw_tstamp = 0;
3738
3739         while (length > 0) {
3740                 int opcode = *ptr++;
3741                 int opsize;
3742
3743                 switch (opcode) {
3744                 case TCPOPT_EOL:
3745                         return;
3746                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3747                         length--;
3748                         continue;
3749                 default:
3750                         opsize = *ptr++;
3751                         if (opsize < 2) /* "silly options" */
3752                                 return;
3753                         if (opsize > length)
3754                                 return; /* don't parse partial options */
3755                         switch (opcode) {
3756                         case TCPOPT_MSS:
3757                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3758                                         u16 in_mss = get_unaligned_be16(ptr);
3759                                         if (in_mss) {
3760                                                 if (opt_rx->user_mss &&
3761                                                     opt_rx->user_mss < in_mss)
3762                                                         in_mss = opt_rx->user_mss;
3763                                                 opt_rx->mss_clamp = in_mss;
3764                                         }
3765                                 }
3766                                 break;
3767                         case TCPOPT_WINDOW:
3768                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3769                                     !estab && sysctl_tcp_window_scaling &&
3770                                     !dst_feature(dst, RTAX_FEATURE_NO_WSCALE)) {
3771                                         __u8 snd_wscale = *(__u8 *)ptr;
3772                                         opt_rx->wscale_ok = 1;
3773                                         if (snd_wscale > 14) {
3774                                                 if (net_ratelimit())
3775                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3776                                                                "scaling value %d >14 received.\n",
3777                                                                snd_wscale);
3778                                                 snd_wscale = 14;
3779                                         }
3780                                         opt_rx->snd_wscale = snd_wscale;
3781                                 }
3782                                 break;
3783                         case TCPOPT_TIMESTAMP:
3784                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3785                                     ((estab && opt_rx->tstamp_ok) ||
3786                                      (!estab && sysctl_tcp_timestamps &&
3787                                       !dst_feature(dst, RTAX_FEATURE_NO_TSTAMP)))) {
3788                                         opt_rx->saw_tstamp = 1;
3789                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3790                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3791                                 }
3792                                 break;
3793                         case TCPOPT_SACK_PERM:
3794                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3795                                     !estab && sysctl_tcp_sack &&
3796                                     !dst_feature(dst, RTAX_FEATURE_NO_SACK)) {
3797                                         opt_rx->sack_ok = 1;
3798                                         tcp_sack_reset(opt_rx);
3799                                 }
3800                                 break;
3801
3802                         case TCPOPT_SACK:
3803                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3804                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3805                                    opt_rx->sack_ok) {
3806                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3807                                 }
3808                                 break;
3809 #ifdef CONFIG_TCP_MD5SIG
3810                         case TCPOPT_MD5SIG:
3811                                 /*
3812                                  * The MD5 Hash has already been
3813                                  * checked (see tcp_v{4,6}_do_rcv()).
3814                                  */
3815                                 break;
3816 #endif
3817                         case TCPOPT_COOKIE:
3818                                 /* This option is variable length.
3819                                  */
3820                                 switch (opsize) {
3821                                 case TCPOLEN_COOKIE_BASE:
3822                                         /* not yet implemented */
3823                                         break;
3824                                 case TCPOLEN_COOKIE_PAIR:
3825                                         /* not yet implemented */
3826                                         break;
3827                                 case TCPOLEN_COOKIE_MIN+0:
3828                                 case TCPOLEN_COOKIE_MIN+2:
3829                                 case TCPOLEN_COOKIE_MIN+4:
3830                                 case TCPOLEN_COOKIE_MIN+6:
3831                                 case TCPOLEN_COOKIE_MAX:
3832                                         /* 16-bit multiple */
3833                                         opt_rx->cookie_plus = opsize;
3834                                         *hvpp = ptr;
3835                                 default:
3836                                         /* ignore option */
3837                                         break;
3838                                 };
3839                                 break;
3840                         };
3841
3842                         ptr += opsize-2;
3843                         length -= opsize;
3844                 }
3845         }
3846 }
3847
3848 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3849 {
3850         __be32 *ptr = (__be32 *)(th + 1);
3851
3852         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3853                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3854                 tp->rx_opt.saw_tstamp = 1;
3855                 ++ptr;
3856                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3857                 ++ptr;
3858                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3859                 return 1;
3860         }
3861         return 0;
3862 }
3863
3864 /* Fast parse options. This hopes to only see timestamps.
3865  * If it is wrong it falls back on tcp_parse_options().
3866  */
3867 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3868                                   struct tcp_sock *tp, u8 **hvpp)
3869 {
3870         /* In the spirit of fast parsing, compare doff directly to constant
3871          * values.  Because equality is used, short doff can be ignored here.
3872          */
3873         if (th->doff == (sizeof(*th) / 4)) {
3874                 tp->rx_opt.saw_tstamp = 0;
3875                 return 0;
3876         } else if (tp->rx_opt.tstamp_ok &&
3877                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3878                 if (tcp_parse_aligned_timestamp(tp, th))
3879                         return 1;
3880         }
3881         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3882         return 1;
3883 }
3884
3885 #ifdef CONFIG_TCP_MD5SIG
3886 /*
3887  * Parse MD5 Signature option
3888  */
3889 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3890 {
3891         int length = (th->doff << 2) - sizeof (*th);
3892         u8 *ptr = (u8*)(th + 1);
3893
3894         /* If the TCP option is too short, we can short cut */
3895         if (length < TCPOLEN_MD5SIG)
3896                 return NULL;
3897
3898         while (length > 0) {
3899                 int opcode = *ptr++;
3900                 int opsize;
3901
3902                 switch(opcode) {
3903                 case TCPOPT_EOL:
3904                         return NULL;
3905                 case TCPOPT_NOP:
3906                         length--;
3907                         continue;
3908                 default:
3909                         opsize = *ptr++;
3910                         if (opsize < 2 || opsize > length)
3911                                 return NULL;
3912                         if (opcode == TCPOPT_MD5SIG)
3913                                 return ptr;
3914                 }
3915                 ptr += opsize - 2;
3916                 length -= opsize;
3917         }
3918         return NULL;
3919 }
3920 #endif
3921
3922 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3923 {
3924         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3925         tp->rx_opt.ts_recent_stamp = get_seconds();
3926 }
3927
3928 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3929 {
3930         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3931                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3932                  * extra check below makes sure this can only happen
3933                  * for pure ACK frames.  -DaveM
3934                  *
3935                  * Not only, also it occurs for expired timestamps.
3936                  */
3937
3938                 if (tcp_paws_check(&tp->rx_opt, 0))
3939                         tcp_store_ts_recent(tp);
3940         }
3941 }
3942
3943 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3944  *
3945  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3946  * it can pass through stack. So, the following predicate verifies that
3947  * this segment is not used for anything but congestion avoidance or
3948  * fast retransmit. Moreover, we even are able to eliminate most of such
3949  * second order effects, if we apply some small "replay" window (~RTO)
3950  * to timestamp space.
3951  *
3952  * All these measures still do not guarantee that we reject wrapped ACKs
3953  * on networks with high bandwidth, when sequence space is recycled fastly,
3954  * but it guarantees that such events will be very rare and do not affect
3955  * connection seriously. This doesn't look nice, but alas, PAWS is really
3956  * buggy extension.
3957  *
3958  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3959  * states that events when retransmit arrives after original data are rare.
3960  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3961  * the biggest problem on large power networks even with minor reordering.
3962  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3963  * up to bandwidth of 18Gigabit/sec. 8) ]
3964  */
3965
3966 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3967 {
3968         struct tcp_sock *tp = tcp_sk(sk);
3969         struct tcphdr *th = tcp_hdr(skb);
3970         u32 seq = TCP_SKB_CB(skb)->seq;
3971         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3972
3973         return (/* 1. Pure ACK with correct sequence number. */
3974                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3975
3976                 /* 2. ... and duplicate ACK. */
3977                 ack == tp->snd_una &&
3978
3979                 /* 3. ... and does not update window. */
3980                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3981
3982                 /* 4. ... and sits in replay window. */
3983                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3984 }
3985
3986 static inline int tcp_paws_discard(const struct sock *sk,
3987                                    const struct sk_buff *skb)
3988 {
3989         const struct tcp_sock *tp = tcp_sk(sk);
3990
3991         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3992                !tcp_disordered_ack(sk, skb);
3993 }
3994
3995 /* Check segment sequence number for validity.
3996  *
3997  * Segment controls are considered valid, if the segment
3998  * fits to the window after truncation to the window. Acceptability
3999  * of data (and SYN, FIN, of course) is checked separately.
4000  * See tcp_data_queue(), for example.
4001  *
4002  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4003  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4004  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4005  * (borrowed from freebsd)
4006  */
4007
4008 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4009 {
4010         return  !before(end_seq, tp->rcv_wup) &&
4011                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4012 }
4013
4014 /* When we get a reset we do this. */
4015 static void tcp_reset(struct sock *sk)
4016 {
4017         /* We want the right error as BSD sees it (and indeed as we do). */
4018         switch (sk->sk_state) {
4019         case TCP_SYN_SENT:
4020                 sk->sk_err = ECONNREFUSED;
4021                 break;
4022         case TCP_CLOSE_WAIT:
4023                 sk->sk_err = EPIPE;
4024                 break;
4025         case TCP_CLOSE:
4026                 return;
4027         default:
4028                 sk->sk_err = ECONNRESET;
4029         }
4030
4031         if (!sock_flag(sk, SOCK_DEAD))
4032                 sk->sk_error_report(sk);
4033
4034         tcp_done(sk);
4035 }
4036
4037 /*
4038  *      Process the FIN bit. This now behaves as it is supposed to work
4039  *      and the FIN takes effect when it is validly part of sequence
4040  *      space. Not before when we get holes.
4041  *
4042  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4043  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4044  *      TIME-WAIT)
4045  *
4046  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4047  *      close and we go into CLOSING (and later onto TIME-WAIT)
4048  *
4049  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4050  */
4051 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4052 {
4053         struct tcp_sock *tp = tcp_sk(sk);
4054
4055         inet_csk_schedule_ack(sk);
4056
4057         sk->sk_shutdown |= RCV_SHUTDOWN;
4058         sock_set_flag(sk, SOCK_DONE);
4059
4060         switch (sk->sk_state) {
4061         case TCP_SYN_RECV:
4062         case TCP_ESTABLISHED:
4063                 /* Move to CLOSE_WAIT */
4064                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4065                 inet_csk(sk)->icsk_ack.pingpong = 1;
4066                 break;
4067
4068         case TCP_CLOSE_WAIT:
4069         case TCP_CLOSING:
4070                 /* Received a retransmission of the FIN, do
4071                  * nothing.
4072                  */
4073                 break;
4074         case TCP_LAST_ACK:
4075                 /* RFC793: Remain in the LAST-ACK state. */
4076                 break;
4077
4078         case TCP_FIN_WAIT1:
4079                 /* This case occurs when a simultaneous close
4080                  * happens, we must ack the received FIN and
4081                  * enter the CLOSING state.
4082                  */
4083                 tcp_send_ack(sk);
4084                 tcp_set_state(sk, TCP_CLOSING);
4085                 break;
4086         case TCP_FIN_WAIT2:
4087                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4088                 tcp_send_ack(sk);
4089                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4090                 break;
4091         default:
4092                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4093                  * cases we should never reach this piece of code.
4094                  */
4095                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4096                        __func__, sk->sk_state);
4097                 break;
4098         }
4099
4100         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4101          * Probably, we should reset in this case. For now drop them.
4102          */
4103         __skb_queue_purge(&tp->out_of_order_queue);
4104         if (tcp_is_sack(tp))
4105                 tcp_sack_reset(&tp->rx_opt);
4106         sk_mem_reclaim(sk);
4107
4108         if (!sock_flag(sk, SOCK_DEAD)) {
4109                 sk->sk_state_change(sk);
4110
4111                 /* Do not send POLL_HUP for half duplex close. */
4112                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4113                     sk->sk_state == TCP_CLOSE)
4114                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4115                 else
4116                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4117         }
4118 }
4119
4120 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4121                                   u32 end_seq)
4122 {
4123         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4124                 if (before(seq, sp->start_seq))
4125                         sp->start_seq = seq;
4126                 if (after(end_seq, sp->end_seq))
4127                         sp->end_seq = end_seq;
4128                 return 1;
4129         }
4130         return 0;
4131 }
4132
4133 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4134 {
4135         struct tcp_sock *tp = tcp_sk(sk);
4136         struct dst_entry *dst = __sk_dst_get(sk);
4137
4138         if (tcp_is_sack(tp) && sysctl_tcp_dsack &&
4139             !dst_feature(dst, RTAX_FEATURE_NO_DSACK)) {
4140                 int mib_idx;
4141
4142                 if (before(seq, tp->rcv_nxt))
4143                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4144                 else
4145                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4146
4147                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4148
4149                 tp->rx_opt.dsack = 1;
4150                 tp->duplicate_sack[0].start_seq = seq;
4151                 tp->duplicate_sack[0].end_seq = end_seq;
4152         }
4153 }
4154
4155 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4156 {
4157         struct tcp_sock *tp = tcp_sk(sk);
4158
4159         if (!tp->rx_opt.dsack)
4160                 tcp_dsack_set(sk, seq, end_seq);
4161         else
4162                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4163 }
4164
4165 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4166 {
4167         struct tcp_sock *tp = tcp_sk(sk);
4168         struct dst_entry *dst = __sk_dst_get(sk);
4169
4170         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4171             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4172                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4173                 tcp_enter_quickack_mode(sk);
4174
4175                 if (tcp_is_sack(tp) && sysctl_tcp_dsack &&
4176                     !dst_feature(dst, RTAX_FEATURE_NO_DSACK)) {
4177                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4178
4179                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4180                                 end_seq = tp->rcv_nxt;
4181                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4182                 }
4183         }
4184
4185         tcp_send_ack(sk);
4186 }
4187
4188 /* These routines update the SACK block as out-of-order packets arrive or
4189  * in-order packets close up the sequence space.
4190  */
4191 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4192 {
4193         int this_sack;
4194         struct tcp_sack_block *sp = &tp->selective_acks[0];
4195         struct tcp_sack_block *swalk = sp + 1;
4196
4197         /* See if the recent change to the first SACK eats into
4198          * or hits the sequence space of other SACK blocks, if so coalesce.
4199          */
4200         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4201                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4202                         int i;
4203
4204                         /* Zap SWALK, by moving every further SACK up by one slot.
4205                          * Decrease num_sacks.
4206                          */
4207                         tp->rx_opt.num_sacks--;
4208                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4209                                 sp[i] = sp[i + 1];
4210                         continue;
4211                 }
4212                 this_sack++, swalk++;
4213         }
4214 }
4215
4216 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4217 {
4218         struct tcp_sock *tp = tcp_sk(sk);
4219         struct tcp_sack_block *sp = &tp->selective_acks[0];
4220         int cur_sacks = tp->rx_opt.num_sacks;
4221         int this_sack;
4222
4223         if (!cur_sacks)
4224                 goto new_sack;
4225
4226         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4227                 if (tcp_sack_extend(sp, seq, end_seq)) {
4228                         /* Rotate this_sack to the first one. */
4229                         for (; this_sack > 0; this_sack--, sp--)
4230                                 swap(*sp, *(sp - 1));
4231                         if (cur_sacks > 1)
4232                                 tcp_sack_maybe_coalesce(tp);
4233                         return;
4234                 }
4235         }
4236
4237         /* Could not find an adjacent existing SACK, build a new one,
4238          * put it at the front, and shift everyone else down.  We
4239          * always know there is at least one SACK present already here.
4240          *
4241          * If the sack array is full, forget about the last one.
4242          */
4243         if (this_sack >= TCP_NUM_SACKS) {
4244                 this_sack--;
4245                 tp->rx_opt.num_sacks--;
4246                 sp--;
4247         }
4248         for (; this_sack > 0; this_sack--, sp--)
4249                 *sp = *(sp - 1);
4250
4251 new_sack:
4252         /* Build the new head SACK, and we're done. */
4253         sp->start_seq = seq;
4254         sp->end_seq = end_seq;
4255         tp->rx_opt.num_sacks++;
4256 }
4257
4258 /* RCV.NXT advances, some SACKs should be eaten. */
4259
4260 static void tcp_sack_remove(struct tcp_sock *tp)
4261 {
4262         struct tcp_sack_block *sp = &tp->selective_acks[0];
4263         int num_sacks = tp->rx_opt.num_sacks;
4264         int this_sack;
4265
4266         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4267         if (skb_queue_empty(&tp->out_of_order_queue)) {
4268                 tp->rx_opt.num_sacks = 0;
4269                 return;
4270         }
4271
4272         for (this_sack = 0; this_sack < num_sacks;) {
4273                 /* Check if the start of the sack is covered by RCV.NXT. */
4274                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4275                         int i;
4276
4277                         /* RCV.NXT must cover all the block! */
4278                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4279
4280                         /* Zap this SACK, by moving forward any other SACKS. */
4281                         for (i=this_sack+1; i < num_sacks; i++)
4282                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4283                         num_sacks--;
4284                         continue;
4285                 }
4286                 this_sack++;
4287                 sp++;
4288         }
4289         tp->rx_opt.num_sacks = num_sacks;
4290 }
4291
4292 /* This one checks to see if we can put data from the
4293  * out_of_order queue into the receive_queue.
4294  */
4295 static void tcp_ofo_queue(struct sock *sk)
4296 {
4297         struct tcp_sock *tp = tcp_sk(sk);
4298         __u32 dsack_high = tp->rcv_nxt;
4299         struct sk_buff *skb;
4300
4301         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4302                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4303                         break;
4304
4305                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4306                         __u32 dsack = dsack_high;
4307                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4308                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4309                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4310                 }
4311
4312                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4313                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4314                         __skb_unlink(skb, &tp->out_of_order_queue);
4315                         __kfree_skb(skb);
4316                         continue;
4317                 }
4318                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4319                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4320                            TCP_SKB_CB(skb)->end_seq);
4321
4322                 __skb_unlink(skb, &tp->out_of_order_queue);
4323                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4324                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4325                 if (tcp_hdr(skb)->fin)
4326                         tcp_fin(skb, sk, tcp_hdr(skb));
4327         }
4328 }
4329
4330 static int tcp_prune_ofo_queue(struct sock *sk);
4331 static int tcp_prune_queue(struct sock *sk);
4332
4333 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4334 {
4335         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4336             !sk_rmem_schedule(sk, size)) {
4337
4338                 if (tcp_prune_queue(sk) < 0)
4339                         return -1;
4340
4341                 if (!sk_rmem_schedule(sk, size)) {
4342                         if (!tcp_prune_ofo_queue(sk))
4343                                 return -1;
4344
4345                         if (!sk_rmem_schedule(sk, size))
4346                                 return -1;
4347                 }
4348         }
4349         return 0;
4350 }
4351
4352 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4353 {
4354         struct tcphdr *th = tcp_hdr(skb);
4355         struct tcp_sock *tp = tcp_sk(sk);
4356         int eaten = -1;
4357
4358         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4359                 goto drop;
4360
4361         __skb_pull(skb, th->doff * 4);
4362
4363         TCP_ECN_accept_cwr(tp, skb);
4364
4365         tp->rx_opt.dsack = 0;
4366
4367         /*  Queue data for delivery to the user.
4368          *  Packets in sequence go to the receive queue.
4369          *  Out of sequence packets to the out_of_order_queue.
4370          */
4371         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4372                 if (tcp_receive_window(tp) == 0)
4373                         goto out_of_window;
4374
4375                 /* Ok. In sequence. In window. */
4376                 if (tp->ucopy.task == current &&
4377                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4378                     sock_owned_by_user(sk) && !tp->urg_data) {
4379                         int chunk = min_t(unsigned int, skb->len,
4380                                           tp->ucopy.len);
4381
4382                         __set_current_state(TASK_RUNNING);
4383
4384                         local_bh_enable();
4385                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4386                                 tp->ucopy.len -= chunk;
4387                                 tp->copied_seq += chunk;
4388                                 eaten = (chunk == skb->len && !th->fin);
4389                                 tcp_rcv_space_adjust(sk);
4390                         }
4391                         local_bh_disable();
4392                 }
4393
4394                 if (eaten <= 0) {
4395 queue_and_out:
4396                         if (eaten < 0 &&
4397                             tcp_try_rmem_schedule(sk, skb->truesize))
4398                                 goto drop;
4399
4400                         skb_set_owner_r(skb, sk);
4401                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4402                 }
4403                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4404                 if (skb->len)
4405                         tcp_event_data_recv(sk, skb);
4406                 if (th->fin)
4407                         tcp_fin(skb, sk, th);
4408
4409                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4410                         tcp_ofo_queue(sk);
4411
4412                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4413                          * gap in queue is filled.
4414                          */
4415                         if (skb_queue_empty(&tp->out_of_order_queue))
4416                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4417                 }
4418
4419                 if (tp->rx_opt.num_sacks)
4420                         tcp_sack_remove(tp);
4421
4422                 tcp_fast_path_check(sk);
4423
4424                 if (eaten > 0)
4425                         __kfree_skb(skb);
4426                 else if (!sock_flag(sk, SOCK_DEAD))
4427                         sk->sk_data_ready(sk, 0);
4428                 return;
4429         }
4430
4431         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4432                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4433                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4434                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4435
4436 out_of_window:
4437                 tcp_enter_quickack_mode(sk);
4438                 inet_csk_schedule_ack(sk);
4439 drop:
4440                 __kfree_skb(skb);
4441                 return;
4442         }
4443
4444         /* Out of window. F.e. zero window probe. */
4445         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4446                 goto out_of_window;
4447
4448         tcp_enter_quickack_mode(sk);
4449
4450         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4451                 /* Partial packet, seq < rcv_next < end_seq */
4452                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4453                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4454                            TCP_SKB_CB(skb)->end_seq);
4455
4456                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4457
4458                 /* If window is closed, drop tail of packet. But after
4459                  * remembering D-SACK for its head made in previous line.
4460                  */
4461                 if (!tcp_receive_window(tp))
4462                         goto out_of_window;
4463                 goto queue_and_out;
4464         }
4465
4466         TCP_ECN_check_ce(tp, skb);
4467
4468         if (tcp_try_rmem_schedule(sk, skb->truesize))
4469                 goto drop;
4470
4471         /* Disable header prediction. */
4472         tp->pred_flags = 0;
4473         inet_csk_schedule_ack(sk);
4474
4475         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4476                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4477
4478         skb_set_owner_r(skb, sk);
4479
4480         if (!skb_peek(&tp->out_of_order_queue)) {
4481                 /* Initial out of order segment, build 1 SACK. */
4482                 if (tcp_is_sack(tp)) {
4483                         tp->rx_opt.num_sacks = 1;
4484                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4485                         tp->selective_acks[0].end_seq =
4486                                                 TCP_SKB_CB(skb)->end_seq;
4487                 }
4488                 __skb_queue_head(&tp->out_of_order_queue, skb);
4489         } else {
4490                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4491                 u32 seq = TCP_SKB_CB(skb)->seq;
4492                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4493
4494                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4495                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4496
4497                         if (!tp->rx_opt.num_sacks ||
4498                             tp->selective_acks[0].end_seq != seq)
4499                                 goto add_sack;
4500
4501                         /* Common case: data arrive in order after hole. */
4502                         tp->selective_acks[0].end_seq = end_seq;
4503                         return;
4504                 }
4505
4506                 /* Find place to insert this segment. */
4507                 while (1) {
4508                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4509                                 break;
4510                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4511                                 skb1 = NULL;
4512                                 break;
4513                         }
4514                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4515                 }
4516
4517                 /* Do skb overlap to previous one? */
4518                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4519                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4520                                 /* All the bits are present. Drop. */
4521                                 __kfree_skb(skb);
4522                                 tcp_dsack_set(sk, seq, end_seq);
4523                                 goto add_sack;
4524                         }
4525                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4526                                 /* Partial overlap. */
4527                                 tcp_dsack_set(sk, seq,
4528                                               TCP_SKB_CB(skb1)->end_seq);
4529                         } else {
4530                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4531                                                        skb1))
4532                                         skb1 = NULL;
4533                                 else
4534                                         skb1 = skb_queue_prev(
4535                                                 &tp->out_of_order_queue,
4536                                                 skb1);
4537                         }
4538                 }
4539                 if (!skb1)
4540                         __skb_queue_head(&tp->out_of_order_queue, skb);
4541                 else
4542                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4543
4544                 /* And clean segments covered by new one as whole. */
4545                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4546                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4547
4548                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4549                                 break;
4550                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4551                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4552                                                  end_seq);
4553                                 break;
4554                         }
4555                         __skb_unlink(skb1, &tp->out_of_order_queue);
4556                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4557                                          TCP_SKB_CB(skb1)->end_seq);
4558                         __kfree_skb(skb1);
4559                 }
4560
4561 add_sack:
4562                 if (tcp_is_sack(tp))
4563                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4564         }
4565 }
4566
4567 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4568                                         struct sk_buff_head *list)
4569 {
4570         struct sk_buff *next = NULL;
4571
4572         if (!skb_queue_is_last(list, skb))
4573                 next = skb_queue_next(list, skb);
4574
4575         __skb_unlink(skb, list);
4576         __kfree_skb(skb);
4577         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4578
4579         return next;
4580 }
4581
4582 /* Collapse contiguous sequence of skbs head..tail with
4583  * sequence numbers start..end.
4584  *
4585  * If tail is NULL, this means until the end of the list.
4586  *
4587  * Segments with FIN/SYN are not collapsed (only because this
4588  * simplifies code)
4589  */
4590 static void
4591 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4592              struct sk_buff *head, struct sk_buff *tail,
4593              u32 start, u32 end)
4594 {
4595         struct sk_buff *skb, *n;
4596         bool end_of_skbs;
4597
4598         /* First, check that queue is collapsible and find
4599          * the point where collapsing can be useful. */
4600         skb = head;
4601 restart:
4602         end_of_skbs = true;
4603         skb_queue_walk_from_safe(list, skb, n) {
4604                 if (skb == tail)
4605                         break;
4606                 /* No new bits? It is possible on ofo queue. */
4607                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4608                         skb = tcp_collapse_one(sk, skb, list);
4609                         if (!skb)
4610                                 break;
4611                         goto restart;
4612                 }
4613
4614                 /* The first skb to collapse is:
4615                  * - not SYN/FIN and
4616                  * - bloated or contains data before "start" or
4617                  *   overlaps to the next one.
4618                  */
4619                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4620                     (tcp_win_from_space(skb->truesize) > skb->len ||
4621                      before(TCP_SKB_CB(skb)->seq, start))) {
4622                         end_of_skbs = false;
4623                         break;
4624                 }
4625
4626                 if (!skb_queue_is_last(list, skb)) {
4627                         struct sk_buff *next = skb_queue_next(list, skb);
4628                         if (next != tail &&
4629                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4630                                 end_of_skbs = false;
4631                                 break;
4632                         }
4633                 }
4634
4635                 /* Decided to skip this, advance start seq. */
4636                 start = TCP_SKB_CB(skb)->end_seq;
4637         }
4638         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4639                 return;
4640
4641         while (before(start, end)) {
4642                 struct sk_buff *nskb;
4643                 unsigned int header = skb_headroom(skb);
4644                 int copy = SKB_MAX_ORDER(header, 0);
4645
4646                 /* Too big header? This can happen with IPv6. */
4647                 if (copy < 0)
4648                         return;
4649                 if (end - start < copy)
4650                         copy = end - start;
4651                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4652                 if (!nskb)
4653                         return;
4654
4655                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4656                 skb_set_network_header(nskb, (skb_network_header(skb) -
4657                                               skb->head));
4658                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4659                                                 skb->head));
4660                 skb_reserve(nskb, header);
4661                 memcpy(nskb->head, skb->head, header);
4662                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4663                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4664                 __skb_queue_before(list, skb, nskb);
4665                 skb_set_owner_r(nskb, sk);
4666
4667                 /* Copy data, releasing collapsed skbs. */
4668                 while (copy > 0) {
4669                         int offset = start - TCP_SKB_CB(skb)->seq;
4670                         int size = TCP_SKB_CB(skb)->end_seq - start;
4671
4672                         BUG_ON(offset < 0);
4673                         if (size > 0) {
4674                                 size = min(copy, size);
4675                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4676                                         BUG();
4677                                 TCP_SKB_CB(nskb)->end_seq += size;
4678                                 copy -= size;
4679                                 start += size;
4680                         }
4681                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4682                                 skb = tcp_collapse_one(sk, skb, list);
4683                                 if (!skb ||
4684                                     skb == tail ||
4685                                     tcp_hdr(skb)->syn ||
4686                                     tcp_hdr(skb)->fin)
4687                                         return;
4688                         }
4689                 }
4690         }
4691 }
4692
4693 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4694  * and tcp_collapse() them until all the queue is collapsed.
4695  */
4696 static void tcp_collapse_ofo_queue(struct sock *sk)
4697 {
4698         struct tcp_sock *tp = tcp_sk(sk);
4699         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4700         struct sk_buff *head;
4701         u32 start, end;
4702
4703         if (skb == NULL)
4704                 return;
4705
4706         start = TCP_SKB_CB(skb)->seq;
4707         end = TCP_SKB_CB(skb)->end_seq;
4708         head = skb;
4709
4710         for (;;) {
4711                 struct sk_buff *next = NULL;
4712
4713                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4714                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4715                 skb = next;
4716
4717                 /* Segment is terminated when we see gap or when
4718                  * we are at the end of all the queue. */
4719                 if (!skb ||
4720                     after(TCP_SKB_CB(skb)->seq, end) ||
4721                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4722                         tcp_collapse(sk, &tp->out_of_order_queue,
4723                                      head, skb, start, end);
4724                         head = skb;
4725                         if (!skb)
4726                                 break;
4727                         /* Start new segment */
4728                         start = TCP_SKB_CB(skb)->seq;
4729                         end = TCP_SKB_CB(skb)->end_seq;
4730                 } else {
4731                         if (before(TCP_SKB_CB(skb)->seq, start))
4732                                 start = TCP_SKB_CB(skb)->seq;
4733                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4734                                 end = TCP_SKB_CB(skb)->end_seq;
4735                 }
4736         }
4737 }
4738
4739 /*
4740  * Purge the out-of-order queue.
4741  * Return true if queue was pruned.
4742  */
4743 static int tcp_prune_ofo_queue(struct sock *sk)
4744 {
4745         struct tcp_sock *tp = tcp_sk(sk);
4746         int res = 0;
4747
4748         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4749                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4750                 __skb_queue_purge(&tp->out_of_order_queue);
4751
4752                 /* Reset SACK state.  A conforming SACK implementation will
4753                  * do the same at a timeout based retransmit.  When a connection
4754                  * is in a sad state like this, we care only about integrity
4755                  * of the connection not performance.
4756                  */
4757                 if (tp->rx_opt.sack_ok)
4758                         tcp_sack_reset(&tp->rx_opt);
4759                 sk_mem_reclaim(sk);
4760                 res = 1;
4761         }
4762         return res;
4763 }
4764
4765 /* Reduce allocated memory if we can, trying to get
4766  * the socket within its memory limits again.
4767  *
4768  * Return less than zero if we should start dropping frames
4769  * until the socket owning process reads some of the data
4770  * to stabilize the situation.
4771  */
4772 static int tcp_prune_queue(struct sock *sk)
4773 {
4774         struct tcp_sock *tp = tcp_sk(sk);
4775
4776         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4777
4778         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4779
4780         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4781                 tcp_clamp_window(sk);
4782         else if (tcp_memory_pressure)
4783                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4784
4785         tcp_collapse_ofo_queue(sk);
4786         if (!skb_queue_empty(&sk->sk_receive_queue))
4787                 tcp_collapse(sk, &sk->sk_receive_queue,
4788                              skb_peek(&sk->sk_receive_queue),
4789                              NULL,
4790                              tp->copied_seq, tp->rcv_nxt);
4791         sk_mem_reclaim(sk);
4792
4793         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4794                 return 0;
4795
4796         /* Collapsing did not help, destructive actions follow.
4797          * This must not ever occur. */
4798
4799         tcp_prune_ofo_queue(sk);
4800
4801         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802                 return 0;
4803
4804         /* If we are really being abused, tell the caller to silently
4805          * drop receive data on the floor.  It will get retransmitted
4806          * and hopefully then we'll have sufficient space.
4807          */
4808         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4809
4810         /* Massive buffer overcommit. */
4811         tp->pred_flags = 0;
4812         return -1;
4813 }
4814
4815 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4816  * As additional protections, we do not touch cwnd in retransmission phases,
4817  * and if application hit its sndbuf limit recently.
4818  */
4819 void tcp_cwnd_application_limited(struct sock *sk)
4820 {
4821         struct tcp_sock *tp = tcp_sk(sk);
4822
4823         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4824             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4825                 /* Limited by application or receiver window. */
4826                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4827                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4828                 if (win_used < tp->snd_cwnd) {
4829                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4830                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4831                 }
4832                 tp->snd_cwnd_used = 0;
4833         }
4834         tp->snd_cwnd_stamp = tcp_time_stamp;
4835 }
4836
4837 static int tcp_should_expand_sndbuf(struct sock *sk)
4838 {
4839         struct tcp_sock *tp = tcp_sk(sk);
4840
4841         /* If the user specified a specific send buffer setting, do
4842          * not modify it.
4843          */
4844         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4845                 return 0;
4846
4847         /* If we are under global TCP memory pressure, do not expand.  */
4848         if (tcp_memory_pressure)
4849                 return 0;
4850
4851         /* If we are under soft global TCP memory pressure, do not expand.  */
4852         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4853                 return 0;
4854
4855         /* If we filled the congestion window, do not expand.  */
4856         if (tp->packets_out >= tp->snd_cwnd)
4857                 return 0;
4858
4859         return 1;
4860 }
4861
4862 /* When incoming ACK allowed to free some skb from write_queue,
4863  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4864  * on the exit from tcp input handler.
4865  *
4866  * PROBLEM: sndbuf expansion does not work well with largesend.
4867  */
4868 static void tcp_new_space(struct sock *sk)
4869 {
4870         struct tcp_sock *tp = tcp_sk(sk);
4871
4872         if (tcp_should_expand_sndbuf(sk)) {
4873                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4874                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4875                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4876                                      tp->reordering + 1);
4877                 sndmem *= 2 * demanded;
4878                 if (sndmem > sk->sk_sndbuf)
4879                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4880                 tp->snd_cwnd_stamp = tcp_time_stamp;
4881         }
4882
4883         sk->sk_write_space(sk);
4884 }
4885
4886 static void tcp_check_space(struct sock *sk)
4887 {
4888         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4889                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4890                 if (sk->sk_socket &&
4891                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4892                         tcp_new_space(sk);
4893         }
4894 }
4895
4896 static inline void tcp_data_snd_check(struct sock *sk)
4897 {
4898         tcp_push_pending_frames(sk);
4899         tcp_check_space(sk);
4900 }
4901
4902 /*
4903  * Check if sending an ack is needed.
4904  */
4905 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4906 {
4907         struct tcp_sock *tp = tcp_sk(sk);
4908
4909             /* More than one full frame received... */
4910         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4911              /* ... and right edge of window advances far enough.
4912               * (tcp_recvmsg() will send ACK otherwise). Or...
4913               */
4914              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4915             /* We ACK each frame or... */
4916             tcp_in_quickack_mode(sk) ||
4917             /* We have out of order data. */
4918             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4919                 /* Then ack it now */
4920                 tcp_send_ack(sk);
4921         } else {
4922                 /* Else, send delayed ack. */
4923                 tcp_send_delayed_ack(sk);
4924         }
4925 }
4926
4927 static inline void tcp_ack_snd_check(struct sock *sk)
4928 {
4929         if (!inet_csk_ack_scheduled(sk)) {
4930                 /* We sent a data segment already. */
4931                 return;
4932         }
4933         __tcp_ack_snd_check(sk, 1);
4934 }
4935
4936 /*
4937  *      This routine is only called when we have urgent data
4938  *      signaled. Its the 'slow' part of tcp_urg. It could be
4939  *      moved inline now as tcp_urg is only called from one
4940  *      place. We handle URGent data wrong. We have to - as
4941  *      BSD still doesn't use the correction from RFC961.
4942  *      For 1003.1g we should support a new option TCP_STDURG to permit
4943  *      either form (or just set the sysctl tcp_stdurg).
4944  */
4945
4946 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4947 {
4948         struct tcp_sock *tp = tcp_sk(sk);
4949         u32 ptr = ntohs(th->urg_ptr);
4950
4951         if (ptr && !sysctl_tcp_stdurg)
4952                 ptr--;
4953         ptr += ntohl(th->seq);
4954
4955         /* Ignore urgent data that we've already seen and read. */
4956         if (after(tp->copied_seq, ptr))
4957                 return;
4958
4959         /* Do not replay urg ptr.
4960          *
4961          * NOTE: interesting situation not covered by specs.
4962          * Misbehaving sender may send urg ptr, pointing to segment,
4963          * which we already have in ofo queue. We are not able to fetch
4964          * such data and will stay in TCP_URG_NOTYET until will be eaten
4965          * by recvmsg(). Seems, we are not obliged to handle such wicked
4966          * situations. But it is worth to think about possibility of some
4967          * DoSes using some hypothetical application level deadlock.
4968          */
4969         if (before(ptr, tp->rcv_nxt))
4970                 return;
4971
4972         /* Do we already have a newer (or duplicate) urgent pointer? */
4973         if (tp->urg_data && !after(ptr, tp->urg_seq))
4974                 return;
4975
4976         /* Tell the world about our new urgent pointer. */
4977         sk_send_sigurg(sk);
4978
4979         /* We may be adding urgent data when the last byte read was
4980          * urgent. To do this requires some care. We cannot just ignore
4981          * tp->copied_seq since we would read the last urgent byte again
4982          * as data, nor can we alter copied_seq until this data arrives
4983          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4984          *
4985          * NOTE. Double Dutch. Rendering to plain English: author of comment
4986          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4987          * and expect that both A and B disappear from stream. This is _wrong_.
4988          * Though this happens in BSD with high probability, this is occasional.
4989          * Any application relying on this is buggy. Note also, that fix "works"
4990          * only in this artificial test. Insert some normal data between A and B and we will
4991          * decline of BSD again. Verdict: it is better to remove to trap
4992          * buggy users.
4993          */
4994         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4995             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4996                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4997                 tp->copied_seq++;
4998                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4999                         __skb_unlink(skb, &sk->sk_receive_queue);
5000                         __kfree_skb(skb);
5001                 }
5002         }
5003
5004         tp->urg_data = TCP_URG_NOTYET;
5005         tp->urg_seq = ptr;
5006
5007         /* Disable header prediction. */
5008         tp->pred_flags = 0;
5009 }
5010
5011 /* This is the 'fast' part of urgent handling. */
5012 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5013 {
5014         struct tcp_sock *tp = tcp_sk(sk);
5015
5016         /* Check if we get a new urgent pointer - normally not. */
5017         if (th->urg)
5018                 tcp_check_urg(sk, th);
5019
5020         /* Do we wait for any urgent data? - normally not... */
5021         if (tp->urg_data == TCP_URG_NOTYET) {
5022                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5023                           th->syn;
5024
5025                 /* Is the urgent pointer pointing into this packet? */
5026                 if (ptr < skb->len) {
5027                         u8 tmp;
5028                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5029                                 BUG();
5030                         tp->urg_data = TCP_URG_VALID | tmp;
5031                         if (!sock_flag(sk, SOCK_DEAD))
5032                                 sk->sk_data_ready(sk, 0);
5033                 }
5034         }
5035 }
5036
5037 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5038 {
5039         struct tcp_sock *tp = tcp_sk(sk);
5040         int chunk = skb->len - hlen;
5041         int err;
5042
5043         local_bh_enable();
5044         if (skb_csum_unnecessary(skb))
5045                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5046         else
5047                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5048                                                        tp->ucopy.iov);
5049
5050         if (!err) {
5051                 tp->ucopy.len -= chunk;
5052                 tp->copied_seq += chunk;
5053                 tcp_rcv_space_adjust(sk);
5054         }
5055
5056         local_bh_disable();
5057         return err;
5058 }
5059
5060 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5061                                             struct sk_buff *skb)
5062 {
5063         __sum16 result;
5064
5065         if (sock_owned_by_user(sk)) {
5066                 local_bh_enable();
5067                 result = __tcp_checksum_complete(skb);
5068                 local_bh_disable();
5069         } else {
5070                 result = __tcp_checksum_complete(skb);
5071         }
5072         return result;
5073 }
5074
5075 static inline int tcp_checksum_complete_user(struct sock *sk,
5076                                              struct sk_buff *skb)
5077 {
5078         return !skb_csum_unnecessary(skb) &&
5079                __tcp_checksum_complete_user(sk, skb);
5080 }
5081
5082 #ifdef CONFIG_NET_DMA
5083 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5084                                   int hlen)
5085 {
5086         struct tcp_sock *tp = tcp_sk(sk);
5087         int chunk = skb->len - hlen;
5088         int dma_cookie;
5089         int copied_early = 0;
5090
5091         if (tp->ucopy.wakeup)
5092                 return 0;
5093
5094         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5095                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5096
5097         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5098
5099                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5100                                                          skb, hlen,
5101                                                          tp->ucopy.iov, chunk,
5102                                                          tp->ucopy.pinned_list);
5103
5104                 if (dma_cookie < 0)
5105                         goto out;
5106
5107                 tp->ucopy.dma_cookie = dma_cookie;
5108                 copied_early = 1;
5109
5110                 tp->ucopy.len -= chunk;
5111                 tp->copied_seq += chunk;
5112                 tcp_rcv_space_adjust(sk);
5113
5114                 if ((tp->ucopy.len == 0) ||
5115                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5116                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5117                         tp->ucopy.wakeup = 1;
5118                         sk->sk_data_ready(sk, 0);
5119                 }
5120         } else if (chunk > 0) {
5121                 tp->ucopy.wakeup = 1;
5122                 sk->sk_data_ready(sk, 0);
5123         }
5124 out:
5125         return copied_early;
5126 }
5127 #endif /* CONFIG_NET_DMA */
5128
5129 /* Does PAWS and seqno based validation of an incoming segment, flags will
5130  * play significant role here.
5131  */
5132 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5133                               struct tcphdr *th, int syn_inerr)
5134 {
5135         u8 *hash_location;
5136         struct tcp_sock *tp = tcp_sk(sk);
5137
5138         /* RFC1323: H1. Apply PAWS check first. */
5139         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5140             tp->rx_opt.saw_tstamp &&
5141             tcp_paws_discard(sk, skb)) {
5142                 if (!th->rst) {
5143                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5144                         tcp_send_dupack(sk, skb);
5145                         goto discard;
5146                 }
5147                 /* Reset is accepted even if it did not pass PAWS. */
5148         }
5149
5150         /* Step 1: check sequence number */
5151         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5152                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5153                  * (RST) segments are validated by checking their SEQ-fields."
5154                  * And page 69: "If an incoming segment is not acceptable,
5155                  * an acknowledgment should be sent in reply (unless the RST
5156                  * bit is set, if so drop the segment and return)".
5157                  */
5158                 if (!th->rst)
5159                         tcp_send_dupack(sk, skb);
5160                 goto discard;
5161         }
5162
5163         /* Step 2: check RST bit */
5164         if (th->rst) {
5165                 tcp_reset(sk);
5166                 goto discard;
5167         }
5168
5169         /* ts_recent update must be made after we are sure that the packet
5170          * is in window.
5171          */
5172         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5173
5174         /* step 3: check security and precedence [ignored] */
5175
5176         /* step 4: Check for a SYN in window. */
5177         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5178                 if (syn_inerr)
5179                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5180                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5181                 tcp_reset(sk);
5182                 return -1;
5183         }
5184
5185         return 1;
5186
5187 discard:
5188         __kfree_skb(skb);
5189         return 0;
5190 }
5191
5192 /*
5193  *      TCP receive function for the ESTABLISHED state.
5194  *
5195  *      It is split into a fast path and a slow path. The fast path is
5196  *      disabled when:
5197  *      - A zero window was announced from us - zero window probing
5198  *        is only handled properly in the slow path.
5199  *      - Out of order segments arrived.
5200  *      - Urgent data is expected.
5201  *      - There is no buffer space left
5202  *      - Unexpected TCP flags/window values/header lengths are received
5203  *        (detected by checking the TCP header against pred_flags)
5204  *      - Data is sent in both directions. Fast path only supports pure senders
5205  *        or pure receivers (this means either the sequence number or the ack
5206  *        value must stay constant)
5207  *      - Unexpected TCP option.
5208  *
5209  *      When these conditions are not satisfied it drops into a standard
5210  *      receive procedure patterned after RFC793 to handle all cases.
5211  *      The first three cases are guaranteed by proper pred_flags setting,
5212  *      the rest is checked inline. Fast processing is turned on in
5213  *      tcp_data_queue when everything is OK.
5214  */
5215 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5216                         struct tcphdr *th, unsigned len)
5217 {
5218         struct tcp_sock *tp = tcp_sk(sk);
5219         int res;
5220
5221         /*
5222          *      Header prediction.
5223          *      The code loosely follows the one in the famous
5224          *      "30 instruction TCP receive" Van Jacobson mail.
5225          *
5226          *      Van's trick is to deposit buffers into socket queue
5227          *      on a device interrupt, to call tcp_recv function
5228          *      on the receive process context and checksum and copy
5229          *      the buffer to user space. smart...
5230          *
5231          *      Our current scheme is not silly either but we take the
5232          *      extra cost of the net_bh soft interrupt processing...
5233          *      We do checksum and copy also but from device to kernel.
5234          */
5235
5236         tp->rx_opt.saw_tstamp = 0;
5237
5238         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5239          *      if header_prediction is to be made
5240          *      'S' will always be tp->tcp_header_len >> 2
5241          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5242          *  turn it off (when there are holes in the receive
5243          *       space for instance)
5244          *      PSH flag is ignored.
5245          */
5246
5247         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5248             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5249             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5250                 int tcp_header_len = tp->tcp_header_len;
5251
5252                 /* Timestamp header prediction: tcp_header_len
5253                  * is automatically equal to th->doff*4 due to pred_flags
5254                  * match.
5255                  */
5256
5257                 /* Check timestamp */
5258                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5259                         /* No? Slow path! */
5260                         if (!tcp_parse_aligned_timestamp(tp, th))
5261                                 goto slow_path;
5262
5263                         /* If PAWS failed, check it more carefully in slow path */
5264                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5265                                 goto slow_path;
5266
5267                         /* DO NOT update ts_recent here, if checksum fails
5268                          * and timestamp was corrupted part, it will result
5269                          * in a hung connection since we will drop all
5270                          * future packets due to the PAWS test.
5271                          */
5272                 }
5273
5274                 if (len <= tcp_header_len) {
5275                         /* Bulk data transfer: sender */
5276                         if (len == tcp_header_len) {
5277                                 /* Predicted packet is in window by definition.
5278                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5279                                  * Hence, check seq<=rcv_wup reduces to:
5280                                  */
5281                                 if (tcp_header_len ==
5282                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5283                                     tp->rcv_nxt == tp->rcv_wup)
5284                                         tcp_store_ts_recent(tp);
5285
5286                                 /* We know that such packets are checksummed
5287                                  * on entry.
5288                                  */
5289                                 tcp_ack(sk, skb, 0);
5290                                 __kfree_skb(skb);
5291                                 tcp_data_snd_check(sk);
5292                                 return 0;
5293                         } else { /* Header too small */
5294                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5295                                 goto discard;
5296                         }
5297                 } else {
5298                         int eaten = 0;
5299                         int copied_early = 0;
5300
5301                         if (tp->copied_seq == tp->rcv_nxt &&
5302                             len - tcp_header_len <= tp->ucopy.len) {
5303 #ifdef CONFIG_NET_DMA
5304                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5305                                         copied_early = 1;
5306                                         eaten = 1;
5307                                 }
5308 #endif
5309                                 if (tp->ucopy.task == current &&
5310                                     sock_owned_by_user(sk) && !copied_early) {
5311                                         __set_current_state(TASK_RUNNING);
5312
5313                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5314                                                 eaten = 1;
5315                                 }
5316                                 if (eaten) {
5317                                         /* Predicted packet is in window by definition.
5318                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5319                                          * Hence, check seq<=rcv_wup reduces to:
5320                                          */
5321                                         if (tcp_header_len ==
5322                                             (sizeof(struct tcphdr) +
5323                                              TCPOLEN_TSTAMP_ALIGNED) &&
5324                                             tp->rcv_nxt == tp->rcv_wup)
5325                                                 tcp_store_ts_recent(tp);
5326
5327                                         tcp_rcv_rtt_measure_ts(sk, skb);
5328
5329                                         __skb_pull(skb, tcp_header_len);
5330                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5331                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5332                                 }
5333                                 if (copied_early)
5334                                         tcp_cleanup_rbuf(sk, skb->len);
5335                         }
5336                         if (!eaten) {
5337                                 if (tcp_checksum_complete_user(sk, skb))
5338                                         goto csum_error;
5339
5340                                 /* Predicted packet is in window by definition.
5341                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5342                                  * Hence, check seq<=rcv_wup reduces to:
5343                                  */
5344                                 if (tcp_header_len ==
5345                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5346                                     tp->rcv_nxt == tp->rcv_wup)
5347                                         tcp_store_ts_recent(tp);
5348
5349                                 tcp_rcv_rtt_measure_ts(sk, skb);
5350
5351                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5352                                         goto step5;
5353
5354                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5355
5356                                 /* Bulk data transfer: receiver */
5357                                 __skb_pull(skb, tcp_header_len);
5358                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5359                                 skb_set_owner_r(skb, sk);
5360                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5361                         }
5362
5363                         tcp_event_data_recv(sk, skb);
5364
5365                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5366                                 /* Well, only one small jumplet in fast path... */
5367                                 tcp_ack(sk, skb, FLAG_DATA);
5368                                 tcp_data_snd_check(sk);
5369                                 if (!inet_csk_ack_scheduled(sk))
5370                                         goto no_ack;
5371                         }
5372
5373                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5374                                 __tcp_ack_snd_check(sk, 0);
5375 no_ack:
5376 #ifdef CONFIG_NET_DMA
5377                         if (copied_early)
5378                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5379                         else
5380 #endif
5381                         if (eaten)
5382                                 __kfree_skb(skb);
5383                         else
5384                                 sk->sk_data_ready(sk, 0);
5385                         return 0;
5386                 }
5387         }
5388
5389 slow_path:
5390         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5391                 goto csum_error;
5392
5393         /*
5394          *      Standard slow path.
5395          */
5396
5397         res = tcp_validate_incoming(sk, skb, th, 1);
5398         if (res <= 0)
5399                 return -res;
5400
5401 step5:
5402         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5403                 goto discard;
5404
5405         tcp_rcv_rtt_measure_ts(sk, skb);
5406
5407         /* Process urgent data. */
5408         tcp_urg(sk, skb, th);
5409
5410         /* step 7: process the segment text */
5411         tcp_data_queue(sk, skb);
5412
5413         tcp_data_snd_check(sk);
5414         tcp_ack_snd_check(sk);
5415         return 0;
5416
5417 csum_error:
5418         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5419
5420 discard:
5421         __kfree_skb(skb);
5422         return 0;
5423 }
5424
5425 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5426                                          struct tcphdr *th, unsigned len)
5427 {
5428         u8 *hash_location;
5429         struct inet_connection_sock *icsk = inet_csk(sk);
5430         struct tcp_sock *tp = tcp_sk(sk);
5431         struct dst_entry *dst = __sk_dst_get(sk);
5432         struct tcp_cookie_values *cvp = tp->cookie_values;
5433         int saved_clamp = tp->rx_opt.mss_clamp;
5434
5435         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, dst);
5436
5437         if (th->ack) {
5438                 /* rfc793:
5439                  * "If the state is SYN-SENT then
5440                  *    first check the ACK bit
5441                  *      If the ACK bit is set
5442                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5443                  *        a reset (unless the RST bit is set, if so drop
5444                  *        the segment and return)"
5445                  *
5446                  *  We do not send data with SYN, so that RFC-correct
5447                  *  test reduces to:
5448                  */
5449                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5450                         goto reset_and_undo;
5451
5452                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5453                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5454                              tcp_time_stamp)) {
5455                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5456                         goto reset_and_undo;
5457                 }
5458
5459                 /* Now ACK is acceptable.
5460                  *
5461                  * "If the RST bit is set
5462                  *    If the ACK was acceptable then signal the user "error:
5463                  *    connection reset", drop the segment, enter CLOSED state,
5464                  *    delete TCB, and return."
5465                  */
5466
5467                 if (th->rst) {
5468                         tcp_reset(sk);
5469                         goto discard;
5470                 }
5471
5472                 /* rfc793:
5473                  *   "fifth, if neither of the SYN or RST bits is set then
5474                  *    drop the segment and return."
5475                  *
5476                  *    See note below!
5477                  *                                        --ANK(990513)
5478                  */
5479                 if (!th->syn)
5480                         goto discard_and_undo;
5481
5482                 /* rfc793:
5483                  *   "If the SYN bit is on ...
5484                  *    are acceptable then ...
5485                  *    (our SYN has been ACKed), change the connection
5486                  *    state to ESTABLISHED..."
5487                  */
5488
5489                 TCP_ECN_rcv_synack(tp, th);
5490
5491                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5492                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5493
5494                 /* Ok.. it's good. Set up sequence numbers and
5495                  * move to established.
5496                  */
5497                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5498                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5499
5500                 /* RFC1323: The window in SYN & SYN/ACK segments is
5501                  * never scaled.
5502                  */
5503                 tp->snd_wnd = ntohs(th->window);
5504                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5505
5506                 if (!tp->rx_opt.wscale_ok) {
5507                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5508                         tp->window_clamp = min(tp->window_clamp, 65535U);
5509                 }
5510
5511                 if (tp->rx_opt.saw_tstamp) {
5512                         tp->rx_opt.tstamp_ok       = 1;
5513                         tp->tcp_header_len =
5514                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5515                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5516                         tcp_store_ts_recent(tp);
5517                 } else {
5518                         tp->tcp_header_len = sizeof(struct tcphdr);
5519                 }
5520
5521                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5522                         tcp_enable_fack(tp);
5523
5524                 tcp_mtup_init(sk);
5525                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5526                 tcp_initialize_rcv_mss(sk);
5527
5528                 /* Remember, tcp_poll() does not lock socket!
5529                  * Change state from SYN-SENT only after copied_seq
5530                  * is initialized. */
5531                 tp->copied_seq = tp->rcv_nxt;
5532
5533                 if (cvp != NULL &&
5534                     cvp->cookie_pair_size > 0 &&
5535                     tp->rx_opt.cookie_plus > 0) {
5536                         int cookie_size = tp->rx_opt.cookie_plus
5537                                         - TCPOLEN_COOKIE_BASE;
5538                         int cookie_pair_size = cookie_size
5539                                              + cvp->cookie_desired;
5540
5541                         /* A cookie extension option was sent and returned.
5542                          * Note that each incoming SYNACK replaces the
5543                          * Responder cookie.  The initial exchange is most
5544                          * fragile, as protection against spoofing relies
5545                          * entirely upon the sequence and timestamp (above).
5546                          * This replacement strategy allows the correct pair to
5547                          * pass through, while any others will be filtered via
5548                          * Responder verification later.
5549                          */
5550                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5551                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5552                                        hash_location, cookie_size);
5553                                 cvp->cookie_pair_size = cookie_pair_size;
5554                         }
5555                 }
5556
5557                 smp_mb();
5558                 tcp_set_state(sk, TCP_ESTABLISHED);
5559
5560                 security_inet_conn_established(sk, skb);
5561
5562                 /* Make sure socket is routed, for correct metrics.  */
5563                 icsk->icsk_af_ops->rebuild_header(sk);
5564
5565                 tcp_init_metrics(sk);
5566
5567                 tcp_init_congestion_control(sk);
5568
5569                 /* Prevent spurious tcp_cwnd_restart() on first data
5570                  * packet.
5571                  */
5572                 tp->lsndtime = tcp_time_stamp;
5573
5574                 tcp_init_buffer_space(sk);
5575
5576                 if (sock_flag(sk, SOCK_KEEPOPEN))
5577                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5578
5579                 if (!tp->rx_opt.snd_wscale)
5580                         __tcp_fast_path_on(tp, tp->snd_wnd);
5581                 else
5582                         tp->pred_flags = 0;
5583
5584                 if (!sock_flag(sk, SOCK_DEAD)) {
5585                         sk->sk_state_change(sk);
5586                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5587                 }
5588
5589                 if (sk->sk_write_pending ||
5590                     icsk->icsk_accept_queue.rskq_defer_accept ||
5591                     icsk->icsk_ack.pingpong) {
5592                         /* Save one ACK. Data will be ready after
5593                          * several ticks, if write_pending is set.
5594                          *
5595                          * It may be deleted, but with this feature tcpdumps
5596                          * look so _wonderfully_ clever, that I was not able
5597                          * to stand against the temptation 8)     --ANK
5598                          */
5599                         inet_csk_schedule_ack(sk);
5600                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5601                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5602                         tcp_incr_quickack(sk);
5603                         tcp_enter_quickack_mode(sk);
5604                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5605                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5606
5607 discard:
5608                         __kfree_skb(skb);
5609                         return 0;
5610                 } else {
5611                         tcp_send_ack(sk);
5612                 }
5613                 return -1;
5614         }
5615
5616         /* No ACK in the segment */
5617
5618         if (th->rst) {
5619                 /* rfc793:
5620                  * "If the RST bit is set
5621                  *
5622                  *      Otherwise (no ACK) drop the segment and return."
5623                  */
5624
5625                 goto discard_and_undo;
5626         }
5627
5628         /* PAWS check. */
5629         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5630             tcp_paws_reject(&tp->rx_opt, 0))
5631                 goto discard_and_undo;
5632
5633         if (th->syn) {
5634                 /* We see SYN without ACK. It is attempt of
5635                  * simultaneous connect with crossed SYNs.
5636                  * Particularly, it can be connect to self.
5637                  */
5638                 tcp_set_state(sk, TCP_SYN_RECV);
5639
5640                 if (tp->rx_opt.saw_tstamp) {
5641                         tp->rx_opt.tstamp_ok = 1;
5642                         tcp_store_ts_recent(tp);
5643                         tp->tcp_header_len =
5644                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5645                 } else {
5646                         tp->tcp_header_len = sizeof(struct tcphdr);
5647                 }
5648
5649                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5650                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5651
5652                 /* RFC1323: The window in SYN & SYN/ACK segments is
5653                  * never scaled.
5654                  */
5655                 tp->snd_wnd    = ntohs(th->window);
5656                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5657                 tp->max_window = tp->snd_wnd;
5658
5659                 TCP_ECN_rcv_syn(tp, th);
5660
5661                 tcp_mtup_init(sk);
5662                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5663                 tcp_initialize_rcv_mss(sk);
5664
5665                 tcp_send_synack(sk);
5666 #if 0
5667                 /* Note, we could accept data and URG from this segment.
5668                  * There are no obstacles to make this.
5669                  *
5670                  * However, if we ignore data in ACKless segments sometimes,
5671                  * we have no reasons to accept it sometimes.
5672                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5673                  * is not flawless. So, discard packet for sanity.
5674                  * Uncomment this return to process the data.
5675                  */
5676                 return -1;
5677 #else
5678                 goto discard;
5679 #endif
5680         }
5681         /* "fifth, if neither of the SYN or RST bits is set then
5682          * drop the segment and return."
5683          */
5684
5685 discard_and_undo:
5686         tcp_clear_options(&tp->rx_opt);
5687         tp->rx_opt.mss_clamp = saved_clamp;
5688         goto discard;
5689
5690 reset_and_undo:
5691         tcp_clear_options(&tp->rx_opt);
5692         tp->rx_opt.mss_clamp = saved_clamp;
5693         return 1;
5694 }
5695
5696 /*
5697  *      This function implements the receiving procedure of RFC 793 for
5698  *      all states except ESTABLISHED and TIME_WAIT.
5699  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5700  *      address independent.
5701  */
5702
5703 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5704                           struct tcphdr *th, unsigned len)
5705 {
5706         struct tcp_sock *tp = tcp_sk(sk);
5707         struct inet_connection_sock *icsk = inet_csk(sk);
5708         int queued = 0;
5709         int res;
5710
5711         tp->rx_opt.saw_tstamp = 0;
5712
5713         switch (sk->sk_state) {
5714         case TCP_CLOSE:
5715                 goto discard;
5716
5717         case TCP_LISTEN:
5718                 if (th->ack)
5719                         return 1;
5720
5721                 if (th->rst)
5722                         goto discard;
5723
5724                 if (th->syn) {
5725                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5726                                 return 1;
5727
5728                         /* Now we have several options: In theory there is
5729                          * nothing else in the frame. KA9Q has an option to
5730                          * send data with the syn, BSD accepts data with the
5731                          * syn up to the [to be] advertised window and
5732                          * Solaris 2.1 gives you a protocol error. For now
5733                          * we just ignore it, that fits the spec precisely
5734                          * and avoids incompatibilities. It would be nice in
5735                          * future to drop through and process the data.
5736                          *
5737                          * Now that TTCP is starting to be used we ought to
5738                          * queue this data.
5739                          * But, this leaves one open to an easy denial of
5740                          * service attack, and SYN cookies can't defend
5741                          * against this problem. So, we drop the data
5742                          * in the interest of security over speed unless
5743                          * it's still in use.
5744                          */
5745                         kfree_skb(skb);
5746                         return 0;
5747                 }
5748                 goto discard;
5749
5750         case TCP_SYN_SENT:
5751                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5752                 if (queued >= 0)
5753                         return queued;
5754
5755                 /* Do step6 onward by hand. */
5756                 tcp_urg(sk, skb, th);
5757                 __kfree_skb(skb);
5758                 tcp_data_snd_check(sk);
5759                 return 0;
5760         }
5761
5762         res = tcp_validate_incoming(sk, skb, th, 0);
5763         if (res <= 0)
5764                 return -res;
5765
5766         /* step 5: check the ACK field */
5767         if (th->ack) {
5768                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5769
5770                 switch (sk->sk_state) {
5771                 case TCP_SYN_RECV:
5772                         if (acceptable) {
5773                                 tp->copied_seq = tp->rcv_nxt;
5774                                 smp_mb();
5775                                 tcp_set_state(sk, TCP_ESTABLISHED);
5776                                 sk->sk_state_change(sk);
5777
5778                                 /* Note, that this wakeup is only for marginal
5779                                  * crossed SYN case. Passively open sockets
5780                                  * are not waked up, because sk->sk_sleep ==
5781                                  * NULL and sk->sk_socket == NULL.
5782                                  */
5783                                 if (sk->sk_socket)
5784                                         sk_wake_async(sk,
5785                                                       SOCK_WAKE_IO, POLL_OUT);
5786
5787                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5788                                 tp->snd_wnd = ntohs(th->window) <<
5789                                               tp->rx_opt.snd_wscale;
5790                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5791
5792                                 /* tcp_ack considers this ACK as duplicate
5793                                  * and does not calculate rtt.
5794                                  * Fix it at least with timestamps.
5795                                  */
5796                                 if (tp->rx_opt.saw_tstamp &&
5797                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5798                                         tcp_ack_saw_tstamp(sk, 0);
5799
5800                                 if (tp->rx_opt.tstamp_ok)
5801                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5802
5803                                 /* Make sure socket is routed, for
5804                                  * correct metrics.
5805                                  */
5806                                 icsk->icsk_af_ops->rebuild_header(sk);
5807
5808                                 tcp_init_metrics(sk);
5809
5810                                 tcp_init_congestion_control(sk);
5811
5812                                 /* Prevent spurious tcp_cwnd_restart() on
5813                                  * first data packet.
5814                                  */
5815                                 tp->lsndtime = tcp_time_stamp;
5816
5817                                 tcp_mtup_init(sk);
5818                                 tcp_initialize_rcv_mss(sk);
5819                                 tcp_init_buffer_space(sk);
5820                                 tcp_fast_path_on(tp);
5821                         } else {
5822                                 return 1;
5823                         }
5824                         break;
5825
5826                 case TCP_FIN_WAIT1:
5827                         if (tp->snd_una == tp->write_seq) {
5828                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5829                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5830                                 dst_confirm(sk->sk_dst_cache);
5831
5832                                 if (!sock_flag(sk, SOCK_DEAD))
5833                                         /* Wake up lingering close() */
5834                                         sk->sk_state_change(sk);
5835                                 else {
5836                                         int tmo;
5837
5838                                         if (tp->linger2 < 0 ||
5839                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5840                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5841                                                 tcp_done(sk);
5842                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5843                                                 return 1;
5844                                         }
5845
5846                                         tmo = tcp_fin_time(sk);
5847                                         if (tmo > TCP_TIMEWAIT_LEN) {
5848                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5849                                         } else if (th->fin || sock_owned_by_user(sk)) {
5850                                                 /* Bad case. We could lose such FIN otherwise.
5851                                                  * It is not a big problem, but it looks confusing
5852                                                  * and not so rare event. We still can lose it now,
5853                                                  * if it spins in bh_lock_sock(), but it is really
5854                                                  * marginal case.
5855                                                  */
5856                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5857                                         } else {
5858                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5859                                                 goto discard;
5860                                         }
5861                                 }
5862                         }
5863                         break;
5864
5865                 case TCP_CLOSING:
5866                         if (tp->snd_una == tp->write_seq) {
5867                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5868                                 goto discard;
5869                         }
5870                         break;
5871
5872                 case TCP_LAST_ACK:
5873                         if (tp->snd_una == tp->write_seq) {
5874                                 tcp_update_metrics(sk);
5875                                 tcp_done(sk);
5876                                 goto discard;
5877                         }
5878                         break;
5879                 }
5880         } else
5881                 goto discard;
5882
5883         /* step 6: check the URG bit */
5884         tcp_urg(sk, skb, th);
5885
5886         /* step 7: process the segment text */
5887         switch (sk->sk_state) {
5888         case TCP_CLOSE_WAIT:
5889         case TCP_CLOSING:
5890         case TCP_LAST_ACK:
5891                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5892                         break;
5893         case TCP_FIN_WAIT1:
5894         case TCP_FIN_WAIT2:
5895                 /* RFC 793 says to queue data in these states,
5896                  * RFC 1122 says we MUST send a reset.
5897                  * BSD 4.4 also does reset.
5898                  */
5899                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5900                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5901                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5902                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5903                                 tcp_reset(sk);
5904                                 return 1;
5905                         }
5906                 }
5907                 /* Fall through */
5908         case TCP_ESTABLISHED:
5909                 tcp_data_queue(sk, skb);
5910                 queued = 1;
5911                 break;
5912         }
5913
5914         /* tcp_data could move socket to TIME-WAIT */
5915         if (sk->sk_state != TCP_CLOSE) {
5916                 tcp_data_snd_check(sk);
5917                 tcp_ack_snd_check(sk);
5918         }
5919
5920         if (!queued) {
5921 discard:
5922                 __kfree_skb(skb);
5923         }
5924         return 0;
5925 }
5926
5927 EXPORT_SYMBOL(sysctl_tcp_ecn);
5928 EXPORT_SYMBOL(sysctl_tcp_reordering);
5929 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5930 EXPORT_SYMBOL(tcp_parse_options);
5931 #ifdef CONFIG_TCP_MD5SIG
5932 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5933 #endif
5934 EXPORT_SYMBOL(tcp_rcv_established);
5935 EXPORT_SYMBOL(tcp_rcv_state_process);
5936 EXPORT_SYMBOL(tcp_initialize_rcv_mss);