net: Introduce sk_tx_queue_mapping
[safe/jmp/linux-2.6] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158   "sk_lock-AF_IEEE802154",
159   "sk_lock-AF_MAX"
160 };
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174   "slock-AF_IEEE802154",
175   "slock-AF_MAX"
176 };
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190   "clock-AF_IEEE802154",
191   "clock-AF_MAX"
192 };
193
194 /*
195  * sk_callback_lock locking rules are per-address-family,
196  * so split the lock classes by using a per-AF key:
197  */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199
200 /* Take into consideration the size of the struct sk_buff overhead in the
201  * determination of these values, since that is non-constant across
202  * platforms.  This makes socket queueing behavior and performance
203  * not depend upon such differences.
204  */
205 #define _SK_MEM_PACKETS         256
206 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222         struct timeval tv;
223
224         if (optlen < sizeof(tv))
225                 return -EINVAL;
226         if (copy_from_user(&tv, optval, sizeof(tv)))
227                 return -EFAULT;
228         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229                 return -EDOM;
230
231         if (tv.tv_sec < 0) {
232                 static int warned __read_mostly;
233
234                 *timeo_p = 0;
235                 if (warned < 10 && net_ratelimit()) {
236                         warned++;
237                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238                                "tries to set negative timeout\n",
239                                 current->comm, task_pid_nr(current));
240                 }
241                 return 0;
242         }
243         *timeo_p = MAX_SCHEDULE_TIMEOUT;
244         if (tv.tv_sec == 0 && tv.tv_usec == 0)
245                 return 0;
246         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248         return 0;
249 }
250
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253         static int warned;
254         static char warncomm[TASK_COMM_LEN];
255         if (strcmp(warncomm, current->comm) && warned < 5) {
256                 strcpy(warncomm,  current->comm);
257                 printk(KERN_WARNING "process `%s' is using obsolete "
258                        "%s SO_BSDCOMPAT\n", warncomm, name);
259                 warned++;
260         }
261 }
262
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265         if (sock_flag(sk, flag)) {
266                 sock_reset_flag(sk, flag);
267                 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268                     !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269                         net_disable_timestamp();
270                 }
271         }
272 }
273
274
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277         int err;
278         int skb_len;
279         unsigned long flags;
280         struct sk_buff_head *list = &sk->sk_receive_queue;
281
282         /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283            number of warnings when compiling with -W --ANK
284          */
285         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286             (unsigned)sk->sk_rcvbuf) {
287                 atomic_inc(&sk->sk_drops);
288                 return -ENOMEM;
289         }
290
291         err = sk_filter(sk, skb);
292         if (err)
293                 return err;
294
295         if (!sk_rmem_schedule(sk, skb->truesize)) {
296                 atomic_inc(&sk->sk_drops);
297                 return -ENOBUFS;
298         }
299
300         skb->dev = NULL;
301         skb_set_owner_r(skb, sk);
302
303         /* Cache the SKB length before we tack it onto the receive
304          * queue.  Once it is added it no longer belongs to us and
305          * may be freed by other threads of control pulling packets
306          * from the queue.
307          */
308         skb_len = skb->len;
309
310         spin_lock_irqsave(&list->lock, flags);
311         skb->dropcount = atomic_read(&sk->sk_drops);
312         __skb_queue_tail(list, skb);
313         spin_unlock_irqrestore(&list->lock, flags);
314
315         if (!sock_flag(sk, SOCK_DEAD))
316                 sk->sk_data_ready(sk, skb_len);
317         return 0;
318 }
319 EXPORT_SYMBOL(sock_queue_rcv_skb);
320
321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
322 {
323         int rc = NET_RX_SUCCESS;
324
325         if (sk_filter(sk, skb))
326                 goto discard_and_relse;
327
328         skb->dev = NULL;
329
330         if (nested)
331                 bh_lock_sock_nested(sk);
332         else
333                 bh_lock_sock(sk);
334         if (!sock_owned_by_user(sk)) {
335                 /*
336                  * trylock + unlock semantics:
337                  */
338                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
339
340                 rc = sk_backlog_rcv(sk, skb);
341
342                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343         } else
344                 sk_add_backlog(sk, skb);
345         bh_unlock_sock(sk);
346 out:
347         sock_put(sk);
348         return rc;
349 discard_and_relse:
350         kfree_skb(skb);
351         goto out;
352 }
353 EXPORT_SYMBOL(sk_receive_skb);
354
355 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
356 {
357         struct dst_entry *dst = sk->sk_dst_cache;
358
359         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
360                 sk_tx_queue_clear(sk);
361                 sk->sk_dst_cache = NULL;
362                 dst_release(dst);
363                 return NULL;
364         }
365
366         return dst;
367 }
368 EXPORT_SYMBOL(__sk_dst_check);
369
370 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
371 {
372         struct dst_entry *dst = sk_dst_get(sk);
373
374         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
375                 sk_dst_reset(sk);
376                 dst_release(dst);
377                 return NULL;
378         }
379
380         return dst;
381 }
382 EXPORT_SYMBOL(sk_dst_check);
383
384 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
385 {
386         int ret = -ENOPROTOOPT;
387 #ifdef CONFIG_NETDEVICES
388         struct net *net = sock_net(sk);
389         char devname[IFNAMSIZ];
390         int index;
391
392         /* Sorry... */
393         ret = -EPERM;
394         if (!capable(CAP_NET_RAW))
395                 goto out;
396
397         ret = -EINVAL;
398         if (optlen < 0)
399                 goto out;
400
401         /* Bind this socket to a particular device like "eth0",
402          * as specified in the passed interface name. If the
403          * name is "" or the option length is zero the socket
404          * is not bound.
405          */
406         if (optlen > IFNAMSIZ - 1)
407                 optlen = IFNAMSIZ - 1;
408         memset(devname, 0, sizeof(devname));
409
410         ret = -EFAULT;
411         if (copy_from_user(devname, optval, optlen))
412                 goto out;
413
414         if (devname[0] == '\0') {
415                 index = 0;
416         } else {
417                 struct net_device *dev = dev_get_by_name(net, devname);
418
419                 ret = -ENODEV;
420                 if (!dev)
421                         goto out;
422
423                 index = dev->ifindex;
424                 dev_put(dev);
425         }
426
427         lock_sock(sk);
428         sk->sk_bound_dev_if = index;
429         sk_dst_reset(sk);
430         release_sock(sk);
431
432         ret = 0;
433
434 out:
435 #endif
436
437         return ret;
438 }
439
440 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
441 {
442         if (valbool)
443                 sock_set_flag(sk, bit);
444         else
445                 sock_reset_flag(sk, bit);
446 }
447
448 /*
449  *      This is meant for all protocols to use and covers goings on
450  *      at the socket level. Everything here is generic.
451  */
452
453 int sock_setsockopt(struct socket *sock, int level, int optname,
454                     char __user *optval, unsigned int optlen)
455 {
456         struct sock *sk = sock->sk;
457         int val;
458         int valbool;
459         struct linger ling;
460         int ret = 0;
461
462         /*
463          *      Options without arguments
464          */
465
466         if (optname == SO_BINDTODEVICE)
467                 return sock_bindtodevice(sk, optval, optlen);
468
469         if (optlen < sizeof(int))
470                 return -EINVAL;
471
472         if (get_user(val, (int __user *)optval))
473                 return -EFAULT;
474
475         valbool = val ? 1 : 0;
476
477         lock_sock(sk);
478
479         switch (optname) {
480         case SO_DEBUG:
481                 if (val && !capable(CAP_NET_ADMIN))
482                         ret = -EACCES;
483                 else
484                         sock_valbool_flag(sk, SOCK_DBG, valbool);
485                 break;
486         case SO_REUSEADDR:
487                 sk->sk_reuse = valbool;
488                 break;
489         case SO_TYPE:
490         case SO_PROTOCOL:
491         case SO_DOMAIN:
492         case SO_ERROR:
493                 ret = -ENOPROTOOPT;
494                 break;
495         case SO_DONTROUTE:
496                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
497                 break;
498         case SO_BROADCAST:
499                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
500                 break;
501         case SO_SNDBUF:
502                 /* Don't error on this BSD doesn't and if you think
503                    about it this is right. Otherwise apps have to
504                    play 'guess the biggest size' games. RCVBUF/SNDBUF
505                    are treated in BSD as hints */
506
507                 if (val > sysctl_wmem_max)
508                         val = sysctl_wmem_max;
509 set_sndbuf:
510                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
511                 if ((val * 2) < SOCK_MIN_SNDBUF)
512                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
513                 else
514                         sk->sk_sndbuf = val * 2;
515
516                 /*
517                  *      Wake up sending tasks if we
518                  *      upped the value.
519                  */
520                 sk->sk_write_space(sk);
521                 break;
522
523         case SO_SNDBUFFORCE:
524                 if (!capable(CAP_NET_ADMIN)) {
525                         ret = -EPERM;
526                         break;
527                 }
528                 goto set_sndbuf;
529
530         case SO_RCVBUF:
531                 /* Don't error on this BSD doesn't and if you think
532                    about it this is right. Otherwise apps have to
533                    play 'guess the biggest size' games. RCVBUF/SNDBUF
534                    are treated in BSD as hints */
535
536                 if (val > sysctl_rmem_max)
537                         val = sysctl_rmem_max;
538 set_rcvbuf:
539                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
540                 /*
541                  * We double it on the way in to account for
542                  * "struct sk_buff" etc. overhead.   Applications
543                  * assume that the SO_RCVBUF setting they make will
544                  * allow that much actual data to be received on that
545                  * socket.
546                  *
547                  * Applications are unaware that "struct sk_buff" and
548                  * other overheads allocate from the receive buffer
549                  * during socket buffer allocation.
550                  *
551                  * And after considering the possible alternatives,
552                  * returning the value we actually used in getsockopt
553                  * is the most desirable behavior.
554                  */
555                 if ((val * 2) < SOCK_MIN_RCVBUF)
556                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
557                 else
558                         sk->sk_rcvbuf = val * 2;
559                 break;
560
561         case SO_RCVBUFFORCE:
562                 if (!capable(CAP_NET_ADMIN)) {
563                         ret = -EPERM;
564                         break;
565                 }
566                 goto set_rcvbuf;
567
568         case SO_KEEPALIVE:
569 #ifdef CONFIG_INET
570                 if (sk->sk_protocol == IPPROTO_TCP)
571                         tcp_set_keepalive(sk, valbool);
572 #endif
573                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
574                 break;
575
576         case SO_OOBINLINE:
577                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
578                 break;
579
580         case SO_NO_CHECK:
581                 sk->sk_no_check = valbool;
582                 break;
583
584         case SO_PRIORITY:
585                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
586                         sk->sk_priority = val;
587                 else
588                         ret = -EPERM;
589                 break;
590
591         case SO_LINGER:
592                 if (optlen < sizeof(ling)) {
593                         ret = -EINVAL;  /* 1003.1g */
594                         break;
595                 }
596                 if (copy_from_user(&ling, optval, sizeof(ling))) {
597                         ret = -EFAULT;
598                         break;
599                 }
600                 if (!ling.l_onoff)
601                         sock_reset_flag(sk, SOCK_LINGER);
602                 else {
603 #if (BITS_PER_LONG == 32)
604                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
605                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
606                         else
607 #endif
608                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
609                         sock_set_flag(sk, SOCK_LINGER);
610                 }
611                 break;
612
613         case SO_BSDCOMPAT:
614                 sock_warn_obsolete_bsdism("setsockopt");
615                 break;
616
617         case SO_PASSCRED:
618                 if (valbool)
619                         set_bit(SOCK_PASSCRED, &sock->flags);
620                 else
621                         clear_bit(SOCK_PASSCRED, &sock->flags);
622                 break;
623
624         case SO_TIMESTAMP:
625         case SO_TIMESTAMPNS:
626                 if (valbool)  {
627                         if (optname == SO_TIMESTAMP)
628                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629                         else
630                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
631                         sock_set_flag(sk, SOCK_RCVTSTAMP);
632                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
633                 } else {
634                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
635                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
636                 }
637                 break;
638
639         case SO_TIMESTAMPING:
640                 if (val & ~SOF_TIMESTAMPING_MASK) {
641                         ret = -EINVAL;
642                         break;
643                 }
644                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
645                                   val & SOF_TIMESTAMPING_TX_HARDWARE);
646                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
647                                   val & SOF_TIMESTAMPING_TX_SOFTWARE);
648                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
649                                   val & SOF_TIMESTAMPING_RX_HARDWARE);
650                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
651                         sock_enable_timestamp(sk,
652                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
653                 else
654                         sock_disable_timestamp(sk,
655                                                SOCK_TIMESTAMPING_RX_SOFTWARE);
656                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
657                                   val & SOF_TIMESTAMPING_SOFTWARE);
658                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
659                                   val & SOF_TIMESTAMPING_SYS_HARDWARE);
660                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
661                                   val & SOF_TIMESTAMPING_RAW_HARDWARE);
662                 break;
663
664         case SO_RCVLOWAT:
665                 if (val < 0)
666                         val = INT_MAX;
667                 sk->sk_rcvlowat = val ? : 1;
668                 break;
669
670         case SO_RCVTIMEO:
671                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
672                 break;
673
674         case SO_SNDTIMEO:
675                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
676                 break;
677
678         case SO_ATTACH_FILTER:
679                 ret = -EINVAL;
680                 if (optlen == sizeof(struct sock_fprog)) {
681                         struct sock_fprog fprog;
682
683                         ret = -EFAULT;
684                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
685                                 break;
686
687                         ret = sk_attach_filter(&fprog, sk);
688                 }
689                 break;
690
691         case SO_DETACH_FILTER:
692                 ret = sk_detach_filter(sk);
693                 break;
694
695         case SO_PASSSEC:
696                 if (valbool)
697                         set_bit(SOCK_PASSSEC, &sock->flags);
698                 else
699                         clear_bit(SOCK_PASSSEC, &sock->flags);
700                 break;
701         case SO_MARK:
702                 if (!capable(CAP_NET_ADMIN))
703                         ret = -EPERM;
704                 else
705                         sk->sk_mark = val;
706                 break;
707
708                 /* We implement the SO_SNDLOWAT etc to
709                    not be settable (1003.1g 5.3) */
710         case SO_RXQ_OVFL:
711                 if (valbool)
712                         sock_set_flag(sk, SOCK_RXQ_OVFL);
713                 else
714                         sock_reset_flag(sk, SOCK_RXQ_OVFL);
715                 break;
716         default:
717                 ret = -ENOPROTOOPT;
718                 break;
719         }
720         release_sock(sk);
721         return ret;
722 }
723 EXPORT_SYMBOL(sock_setsockopt);
724
725
726 int sock_getsockopt(struct socket *sock, int level, int optname,
727                     char __user *optval, int __user *optlen)
728 {
729         struct sock *sk = sock->sk;
730
731         union {
732                 int val;
733                 struct linger ling;
734                 struct timeval tm;
735         } v;
736
737         unsigned int lv = sizeof(int);
738         int len;
739
740         if (get_user(len, optlen))
741                 return -EFAULT;
742         if (len < 0)
743                 return -EINVAL;
744
745         memset(&v, 0, sizeof(v));
746
747         switch (optname) {
748         case SO_DEBUG:
749                 v.val = sock_flag(sk, SOCK_DBG);
750                 break;
751
752         case SO_DONTROUTE:
753                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
754                 break;
755
756         case SO_BROADCAST:
757                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
758                 break;
759
760         case SO_SNDBUF:
761                 v.val = sk->sk_sndbuf;
762                 break;
763
764         case SO_RCVBUF:
765                 v.val = sk->sk_rcvbuf;
766                 break;
767
768         case SO_REUSEADDR:
769                 v.val = sk->sk_reuse;
770                 break;
771
772         case SO_KEEPALIVE:
773                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
774                 break;
775
776         case SO_TYPE:
777                 v.val = sk->sk_type;
778                 break;
779
780         case SO_PROTOCOL:
781                 v.val = sk->sk_protocol;
782                 break;
783
784         case SO_DOMAIN:
785                 v.val = sk->sk_family;
786                 break;
787
788         case SO_ERROR:
789                 v.val = -sock_error(sk);
790                 if (v.val == 0)
791                         v.val = xchg(&sk->sk_err_soft, 0);
792                 break;
793
794         case SO_OOBINLINE:
795                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
796                 break;
797
798         case SO_NO_CHECK:
799                 v.val = sk->sk_no_check;
800                 break;
801
802         case SO_PRIORITY:
803                 v.val = sk->sk_priority;
804                 break;
805
806         case SO_LINGER:
807                 lv              = sizeof(v.ling);
808                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
809                 v.ling.l_linger = sk->sk_lingertime / HZ;
810                 break;
811
812         case SO_BSDCOMPAT:
813                 sock_warn_obsolete_bsdism("getsockopt");
814                 break;
815
816         case SO_TIMESTAMP:
817                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
818                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
819                 break;
820
821         case SO_TIMESTAMPNS:
822                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
823                 break;
824
825         case SO_TIMESTAMPING:
826                 v.val = 0;
827                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
828                         v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
829                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
830                         v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
831                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
832                         v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
833                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
834                         v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
835                 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
836                         v.val |= SOF_TIMESTAMPING_SOFTWARE;
837                 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
838                         v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
839                 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
840                         v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
841                 break;
842
843         case SO_RCVTIMEO:
844                 lv = sizeof(struct timeval);
845                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
846                         v.tm.tv_sec = 0;
847                         v.tm.tv_usec = 0;
848                 } else {
849                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
850                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
851                 }
852                 break;
853
854         case SO_SNDTIMEO:
855                 lv = sizeof(struct timeval);
856                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
857                         v.tm.tv_sec = 0;
858                         v.tm.tv_usec = 0;
859                 } else {
860                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
861                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
862                 }
863                 break;
864
865         case SO_RCVLOWAT:
866                 v.val = sk->sk_rcvlowat;
867                 break;
868
869         case SO_SNDLOWAT:
870                 v.val = 1;
871                 break;
872
873         case SO_PASSCRED:
874                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
875                 break;
876
877         case SO_PEERCRED:
878                 if (len > sizeof(sk->sk_peercred))
879                         len = sizeof(sk->sk_peercred);
880                 if (copy_to_user(optval, &sk->sk_peercred, len))
881                         return -EFAULT;
882                 goto lenout;
883
884         case SO_PEERNAME:
885         {
886                 char address[128];
887
888                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
889                         return -ENOTCONN;
890                 if (lv < len)
891                         return -EINVAL;
892                 if (copy_to_user(optval, address, len))
893                         return -EFAULT;
894                 goto lenout;
895         }
896
897         /* Dubious BSD thing... Probably nobody even uses it, but
898          * the UNIX standard wants it for whatever reason... -DaveM
899          */
900         case SO_ACCEPTCONN:
901                 v.val = sk->sk_state == TCP_LISTEN;
902                 break;
903
904         case SO_PASSSEC:
905                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
906                 break;
907
908         case SO_PEERSEC:
909                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
910
911         case SO_MARK:
912                 v.val = sk->sk_mark;
913                 break;
914
915         case SO_RXQ_OVFL:
916                 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
917                 break;
918
919         default:
920                 return -ENOPROTOOPT;
921         }
922
923         if (len > lv)
924                 len = lv;
925         if (copy_to_user(optval, &v, len))
926                 return -EFAULT;
927 lenout:
928         if (put_user(len, optlen))
929                 return -EFAULT;
930         return 0;
931 }
932
933 /*
934  * Initialize an sk_lock.
935  *
936  * (We also register the sk_lock with the lock validator.)
937  */
938 static inline void sock_lock_init(struct sock *sk)
939 {
940         sock_lock_init_class_and_name(sk,
941                         af_family_slock_key_strings[sk->sk_family],
942                         af_family_slock_keys + sk->sk_family,
943                         af_family_key_strings[sk->sk_family],
944                         af_family_keys + sk->sk_family);
945 }
946
947 /*
948  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
949  * even temporarly, because of RCU lookups. sk_node should also be left as is.
950  */
951 static void sock_copy(struct sock *nsk, const struct sock *osk)
952 {
953 #ifdef CONFIG_SECURITY_NETWORK
954         void *sptr = nsk->sk_security;
955 #endif
956         BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
957                      sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
958                      sizeof(osk->sk_tx_queue_mapping));
959         memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
960                osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
961 #ifdef CONFIG_SECURITY_NETWORK
962         nsk->sk_security = sptr;
963         security_sk_clone(osk, nsk);
964 #endif
965 }
966
967 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
968                 int family)
969 {
970         struct sock *sk;
971         struct kmem_cache *slab;
972
973         slab = prot->slab;
974         if (slab != NULL) {
975                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
976                 if (!sk)
977                         return sk;
978                 if (priority & __GFP_ZERO) {
979                         /*
980                          * caches using SLAB_DESTROY_BY_RCU should let
981                          * sk_node.next un-modified. Special care is taken
982                          * when initializing object to zero.
983                          */
984                         if (offsetof(struct sock, sk_node.next) != 0)
985                                 memset(sk, 0, offsetof(struct sock, sk_node.next));
986                         memset(&sk->sk_node.pprev, 0,
987                                prot->obj_size - offsetof(struct sock,
988                                                          sk_node.pprev));
989                 }
990         }
991         else
992                 sk = kmalloc(prot->obj_size, priority);
993
994         if (sk != NULL) {
995                 kmemcheck_annotate_bitfield(sk, flags);
996
997                 if (security_sk_alloc(sk, family, priority))
998                         goto out_free;
999
1000                 if (!try_module_get(prot->owner))
1001                         goto out_free_sec;
1002                 sk_tx_queue_clear(sk);
1003         }
1004
1005         return sk;
1006
1007 out_free_sec:
1008         security_sk_free(sk);
1009 out_free:
1010         if (slab != NULL)
1011                 kmem_cache_free(slab, sk);
1012         else
1013                 kfree(sk);
1014         return NULL;
1015 }
1016
1017 static void sk_prot_free(struct proto *prot, struct sock *sk)
1018 {
1019         struct kmem_cache *slab;
1020         struct module *owner;
1021
1022         owner = prot->owner;
1023         slab = prot->slab;
1024
1025         security_sk_free(sk);
1026         if (slab != NULL)
1027                 kmem_cache_free(slab, sk);
1028         else
1029                 kfree(sk);
1030         module_put(owner);
1031 }
1032
1033 /**
1034  *      sk_alloc - All socket objects are allocated here
1035  *      @net: the applicable net namespace
1036  *      @family: protocol family
1037  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1038  *      @prot: struct proto associated with this new sock instance
1039  */
1040 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1041                       struct proto *prot)
1042 {
1043         struct sock *sk;
1044
1045         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1046         if (sk) {
1047                 sk->sk_family = family;
1048                 /*
1049                  * See comment in struct sock definition to understand
1050                  * why we need sk_prot_creator -acme
1051                  */
1052                 sk->sk_prot = sk->sk_prot_creator = prot;
1053                 sock_lock_init(sk);
1054                 sock_net_set(sk, get_net(net));
1055                 atomic_set(&sk->sk_wmem_alloc, 1);
1056         }
1057
1058         return sk;
1059 }
1060 EXPORT_SYMBOL(sk_alloc);
1061
1062 static void __sk_free(struct sock *sk)
1063 {
1064         struct sk_filter *filter;
1065
1066         if (sk->sk_destruct)
1067                 sk->sk_destruct(sk);
1068
1069         filter = rcu_dereference(sk->sk_filter);
1070         if (filter) {
1071                 sk_filter_uncharge(sk, filter);
1072                 rcu_assign_pointer(sk->sk_filter, NULL);
1073         }
1074
1075         sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1076         sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1077
1078         if (atomic_read(&sk->sk_omem_alloc))
1079                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1080                        __func__, atomic_read(&sk->sk_omem_alloc));
1081
1082         put_net(sock_net(sk));
1083         sk_prot_free(sk->sk_prot_creator, sk);
1084 }
1085
1086 void sk_free(struct sock *sk)
1087 {
1088         /*
1089          * We substract one from sk_wmem_alloc and can know if
1090          * some packets are still in some tx queue.
1091          * If not null, sock_wfree() will call __sk_free(sk) later
1092          */
1093         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1094                 __sk_free(sk);
1095 }
1096 EXPORT_SYMBOL(sk_free);
1097
1098 /*
1099  * Last sock_put should drop referrence to sk->sk_net. It has already
1100  * been dropped in sk_change_net. Taking referrence to stopping namespace
1101  * is not an option.
1102  * Take referrence to a socket to remove it from hash _alive_ and after that
1103  * destroy it in the context of init_net.
1104  */
1105 void sk_release_kernel(struct sock *sk)
1106 {
1107         if (sk == NULL || sk->sk_socket == NULL)
1108                 return;
1109
1110         sock_hold(sk);
1111         sock_release(sk->sk_socket);
1112         release_net(sock_net(sk));
1113         sock_net_set(sk, get_net(&init_net));
1114         sock_put(sk);
1115 }
1116 EXPORT_SYMBOL(sk_release_kernel);
1117
1118 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1119 {
1120         struct sock *newsk;
1121
1122         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1123         if (newsk != NULL) {
1124                 struct sk_filter *filter;
1125
1126                 sock_copy(newsk, sk);
1127
1128                 /* SANITY */
1129                 get_net(sock_net(newsk));
1130                 sk_node_init(&newsk->sk_node);
1131                 sock_lock_init(newsk);
1132                 bh_lock_sock(newsk);
1133                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1134
1135                 atomic_set(&newsk->sk_rmem_alloc, 0);
1136                 /*
1137                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1138                  */
1139                 atomic_set(&newsk->sk_wmem_alloc, 1);
1140                 atomic_set(&newsk->sk_omem_alloc, 0);
1141                 skb_queue_head_init(&newsk->sk_receive_queue);
1142                 skb_queue_head_init(&newsk->sk_write_queue);
1143 #ifdef CONFIG_NET_DMA
1144                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1145 #endif
1146
1147                 rwlock_init(&newsk->sk_dst_lock);
1148                 rwlock_init(&newsk->sk_callback_lock);
1149                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1150                                 af_callback_keys + newsk->sk_family,
1151                                 af_family_clock_key_strings[newsk->sk_family]);
1152
1153                 newsk->sk_dst_cache     = NULL;
1154                 newsk->sk_wmem_queued   = 0;
1155                 newsk->sk_forward_alloc = 0;
1156                 newsk->sk_send_head     = NULL;
1157                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1158
1159                 sock_reset_flag(newsk, SOCK_DONE);
1160                 skb_queue_head_init(&newsk->sk_error_queue);
1161
1162                 filter = newsk->sk_filter;
1163                 if (filter != NULL)
1164                         sk_filter_charge(newsk, filter);
1165
1166                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1167                         /* It is still raw copy of parent, so invalidate
1168                          * destructor and make plain sk_free() */
1169                         newsk->sk_destruct = NULL;
1170                         sk_free(newsk);
1171                         newsk = NULL;
1172                         goto out;
1173                 }
1174
1175                 newsk->sk_err      = 0;
1176                 newsk->sk_priority = 0;
1177                 /*
1178                  * Before updating sk_refcnt, we must commit prior changes to memory
1179                  * (Documentation/RCU/rculist_nulls.txt for details)
1180                  */
1181                 smp_wmb();
1182                 atomic_set(&newsk->sk_refcnt, 2);
1183
1184                 /*
1185                  * Increment the counter in the same struct proto as the master
1186                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1187                  * is the same as sk->sk_prot->socks, as this field was copied
1188                  * with memcpy).
1189                  *
1190                  * This _changes_ the previous behaviour, where
1191                  * tcp_create_openreq_child always was incrementing the
1192                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1193                  * to be taken into account in all callers. -acme
1194                  */
1195                 sk_refcnt_debug_inc(newsk);
1196                 sk_set_socket(newsk, NULL);
1197                 newsk->sk_sleep  = NULL;
1198
1199                 if (newsk->sk_prot->sockets_allocated)
1200                         percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1201         }
1202 out:
1203         return newsk;
1204 }
1205 EXPORT_SYMBOL_GPL(sk_clone);
1206
1207 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1208 {
1209         __sk_dst_set(sk, dst);
1210         sk->sk_route_caps = dst->dev->features;
1211         if (sk->sk_route_caps & NETIF_F_GSO)
1212                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1213         if (sk_can_gso(sk)) {
1214                 if (dst->header_len) {
1215                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1216                 } else {
1217                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1218                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1219                 }
1220         }
1221 }
1222 EXPORT_SYMBOL_GPL(sk_setup_caps);
1223
1224 void __init sk_init(void)
1225 {
1226         if (totalram_pages <= 4096) {
1227                 sysctl_wmem_max = 32767;
1228                 sysctl_rmem_max = 32767;
1229                 sysctl_wmem_default = 32767;
1230                 sysctl_rmem_default = 32767;
1231         } else if (totalram_pages >= 131072) {
1232                 sysctl_wmem_max = 131071;
1233                 sysctl_rmem_max = 131071;
1234         }
1235 }
1236
1237 /*
1238  *      Simple resource managers for sockets.
1239  */
1240
1241
1242 /*
1243  * Write buffer destructor automatically called from kfree_skb.
1244  */
1245 void sock_wfree(struct sk_buff *skb)
1246 {
1247         struct sock *sk = skb->sk;
1248         unsigned int len = skb->truesize;
1249
1250         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1251                 /*
1252                  * Keep a reference on sk_wmem_alloc, this will be released
1253                  * after sk_write_space() call
1254                  */
1255                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1256                 sk->sk_write_space(sk);
1257                 len = 1;
1258         }
1259         /*
1260          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1261          * could not do because of in-flight packets
1262          */
1263         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1264                 __sk_free(sk);
1265 }
1266 EXPORT_SYMBOL(sock_wfree);
1267
1268 /*
1269  * Read buffer destructor automatically called from kfree_skb.
1270  */
1271 void sock_rfree(struct sk_buff *skb)
1272 {
1273         struct sock *sk = skb->sk;
1274
1275         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1276         sk_mem_uncharge(skb->sk, skb->truesize);
1277 }
1278 EXPORT_SYMBOL(sock_rfree);
1279
1280
1281 int sock_i_uid(struct sock *sk)
1282 {
1283         int uid;
1284
1285         read_lock(&sk->sk_callback_lock);
1286         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1287         read_unlock(&sk->sk_callback_lock);
1288         return uid;
1289 }
1290 EXPORT_SYMBOL(sock_i_uid);
1291
1292 unsigned long sock_i_ino(struct sock *sk)
1293 {
1294         unsigned long ino;
1295
1296         read_lock(&sk->sk_callback_lock);
1297         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1298         read_unlock(&sk->sk_callback_lock);
1299         return ino;
1300 }
1301 EXPORT_SYMBOL(sock_i_ino);
1302
1303 /*
1304  * Allocate a skb from the socket's send buffer.
1305  */
1306 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1307                              gfp_t priority)
1308 {
1309         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1310                 struct sk_buff *skb = alloc_skb(size, priority);
1311                 if (skb) {
1312                         skb_set_owner_w(skb, sk);
1313                         return skb;
1314                 }
1315         }
1316         return NULL;
1317 }
1318 EXPORT_SYMBOL(sock_wmalloc);
1319
1320 /*
1321  * Allocate a skb from the socket's receive buffer.
1322  */
1323 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1324                              gfp_t priority)
1325 {
1326         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1327                 struct sk_buff *skb = alloc_skb(size, priority);
1328                 if (skb) {
1329                         skb_set_owner_r(skb, sk);
1330                         return skb;
1331                 }
1332         }
1333         return NULL;
1334 }
1335
1336 /*
1337  * Allocate a memory block from the socket's option memory buffer.
1338  */
1339 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1340 {
1341         if ((unsigned)size <= sysctl_optmem_max &&
1342             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1343                 void *mem;
1344                 /* First do the add, to avoid the race if kmalloc
1345                  * might sleep.
1346                  */
1347                 atomic_add(size, &sk->sk_omem_alloc);
1348                 mem = kmalloc(size, priority);
1349                 if (mem)
1350                         return mem;
1351                 atomic_sub(size, &sk->sk_omem_alloc);
1352         }
1353         return NULL;
1354 }
1355 EXPORT_SYMBOL(sock_kmalloc);
1356
1357 /*
1358  * Free an option memory block.
1359  */
1360 void sock_kfree_s(struct sock *sk, void *mem, int size)
1361 {
1362         kfree(mem);
1363         atomic_sub(size, &sk->sk_omem_alloc);
1364 }
1365 EXPORT_SYMBOL(sock_kfree_s);
1366
1367 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1368    I think, these locks should be removed for datagram sockets.
1369  */
1370 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1371 {
1372         DEFINE_WAIT(wait);
1373
1374         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1375         for (;;) {
1376                 if (!timeo)
1377                         break;
1378                 if (signal_pending(current))
1379                         break;
1380                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1381                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1382                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1383                         break;
1384                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1385                         break;
1386                 if (sk->sk_err)
1387                         break;
1388                 timeo = schedule_timeout(timeo);
1389         }
1390         finish_wait(sk->sk_sleep, &wait);
1391         return timeo;
1392 }
1393
1394
1395 /*
1396  *      Generic send/receive buffer handlers
1397  */
1398
1399 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1400                                      unsigned long data_len, int noblock,
1401                                      int *errcode)
1402 {
1403         struct sk_buff *skb;
1404         gfp_t gfp_mask;
1405         long timeo;
1406         int err;
1407
1408         gfp_mask = sk->sk_allocation;
1409         if (gfp_mask & __GFP_WAIT)
1410                 gfp_mask |= __GFP_REPEAT;
1411
1412         timeo = sock_sndtimeo(sk, noblock);
1413         while (1) {
1414                 err = sock_error(sk);
1415                 if (err != 0)
1416                         goto failure;
1417
1418                 err = -EPIPE;
1419                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1420                         goto failure;
1421
1422                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1423                         skb = alloc_skb(header_len, gfp_mask);
1424                         if (skb) {
1425                                 int npages;
1426                                 int i;
1427
1428                                 /* No pages, we're done... */
1429                                 if (!data_len)
1430                                         break;
1431
1432                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1433                                 skb->truesize += data_len;
1434                                 skb_shinfo(skb)->nr_frags = npages;
1435                                 for (i = 0; i < npages; i++) {
1436                                         struct page *page;
1437                                         skb_frag_t *frag;
1438
1439                                         page = alloc_pages(sk->sk_allocation, 0);
1440                                         if (!page) {
1441                                                 err = -ENOBUFS;
1442                                                 skb_shinfo(skb)->nr_frags = i;
1443                                                 kfree_skb(skb);
1444                                                 goto failure;
1445                                         }
1446
1447                                         frag = &skb_shinfo(skb)->frags[i];
1448                                         frag->page = page;
1449                                         frag->page_offset = 0;
1450                                         frag->size = (data_len >= PAGE_SIZE ?
1451                                                       PAGE_SIZE :
1452                                                       data_len);
1453                                         data_len -= PAGE_SIZE;
1454                                 }
1455
1456                                 /* Full success... */
1457                                 break;
1458                         }
1459                         err = -ENOBUFS;
1460                         goto failure;
1461                 }
1462                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1463                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1464                 err = -EAGAIN;
1465                 if (!timeo)
1466                         goto failure;
1467                 if (signal_pending(current))
1468                         goto interrupted;
1469                 timeo = sock_wait_for_wmem(sk, timeo);
1470         }
1471
1472         skb_set_owner_w(skb, sk);
1473         return skb;
1474
1475 interrupted:
1476         err = sock_intr_errno(timeo);
1477 failure:
1478         *errcode = err;
1479         return NULL;
1480 }
1481 EXPORT_SYMBOL(sock_alloc_send_pskb);
1482
1483 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1484                                     int noblock, int *errcode)
1485 {
1486         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1487 }
1488 EXPORT_SYMBOL(sock_alloc_send_skb);
1489
1490 static void __lock_sock(struct sock *sk)
1491 {
1492         DEFINE_WAIT(wait);
1493
1494         for (;;) {
1495                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1496                                         TASK_UNINTERRUPTIBLE);
1497                 spin_unlock_bh(&sk->sk_lock.slock);
1498                 schedule();
1499                 spin_lock_bh(&sk->sk_lock.slock);
1500                 if (!sock_owned_by_user(sk))
1501                         break;
1502         }
1503         finish_wait(&sk->sk_lock.wq, &wait);
1504 }
1505
1506 static void __release_sock(struct sock *sk)
1507 {
1508         struct sk_buff *skb = sk->sk_backlog.head;
1509
1510         do {
1511                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1512                 bh_unlock_sock(sk);
1513
1514                 do {
1515                         struct sk_buff *next = skb->next;
1516
1517                         skb->next = NULL;
1518                         sk_backlog_rcv(sk, skb);
1519
1520                         /*
1521                          * We are in process context here with softirqs
1522                          * disabled, use cond_resched_softirq() to preempt.
1523                          * This is safe to do because we've taken the backlog
1524                          * queue private:
1525                          */
1526                         cond_resched_softirq();
1527
1528                         skb = next;
1529                 } while (skb != NULL);
1530
1531                 bh_lock_sock(sk);
1532         } while ((skb = sk->sk_backlog.head) != NULL);
1533 }
1534
1535 /**
1536  * sk_wait_data - wait for data to arrive at sk_receive_queue
1537  * @sk:    sock to wait on
1538  * @timeo: for how long
1539  *
1540  * Now socket state including sk->sk_err is changed only under lock,
1541  * hence we may omit checks after joining wait queue.
1542  * We check receive queue before schedule() only as optimization;
1543  * it is very likely that release_sock() added new data.
1544  */
1545 int sk_wait_data(struct sock *sk, long *timeo)
1546 {
1547         int rc;
1548         DEFINE_WAIT(wait);
1549
1550         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1551         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1552         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1553         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1554         finish_wait(sk->sk_sleep, &wait);
1555         return rc;
1556 }
1557 EXPORT_SYMBOL(sk_wait_data);
1558
1559 /**
1560  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1561  *      @sk: socket
1562  *      @size: memory size to allocate
1563  *      @kind: allocation type
1564  *
1565  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1566  *      rmem allocation. This function assumes that protocols which have
1567  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1568  */
1569 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1570 {
1571         struct proto *prot = sk->sk_prot;
1572         int amt = sk_mem_pages(size);
1573         int allocated;
1574
1575         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1576         allocated = atomic_add_return(amt, prot->memory_allocated);
1577
1578         /* Under limit. */
1579         if (allocated <= prot->sysctl_mem[0]) {
1580                 if (prot->memory_pressure && *prot->memory_pressure)
1581                         *prot->memory_pressure = 0;
1582                 return 1;
1583         }
1584
1585         /* Under pressure. */
1586         if (allocated > prot->sysctl_mem[1])
1587                 if (prot->enter_memory_pressure)
1588                         prot->enter_memory_pressure(sk);
1589
1590         /* Over hard limit. */
1591         if (allocated > prot->sysctl_mem[2])
1592                 goto suppress_allocation;
1593
1594         /* guarantee minimum buffer size under pressure */
1595         if (kind == SK_MEM_RECV) {
1596                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1597                         return 1;
1598         } else { /* SK_MEM_SEND */
1599                 if (sk->sk_type == SOCK_STREAM) {
1600                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1601                                 return 1;
1602                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1603                            prot->sysctl_wmem[0])
1604                                 return 1;
1605         }
1606
1607         if (prot->memory_pressure) {
1608                 int alloc;
1609
1610                 if (!*prot->memory_pressure)
1611                         return 1;
1612                 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1613                 if (prot->sysctl_mem[2] > alloc *
1614                     sk_mem_pages(sk->sk_wmem_queued +
1615                                  atomic_read(&sk->sk_rmem_alloc) +
1616                                  sk->sk_forward_alloc))
1617                         return 1;
1618         }
1619
1620 suppress_allocation:
1621
1622         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1623                 sk_stream_moderate_sndbuf(sk);
1624
1625                 /* Fail only if socket is _under_ its sndbuf.
1626                  * In this case we cannot block, so that we have to fail.
1627                  */
1628                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1629                         return 1;
1630         }
1631
1632         /* Alas. Undo changes. */
1633         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1634         atomic_sub(amt, prot->memory_allocated);
1635         return 0;
1636 }
1637 EXPORT_SYMBOL(__sk_mem_schedule);
1638
1639 /**
1640  *      __sk_reclaim - reclaim memory_allocated
1641  *      @sk: socket
1642  */
1643 void __sk_mem_reclaim(struct sock *sk)
1644 {
1645         struct proto *prot = sk->sk_prot;
1646
1647         atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1648                    prot->memory_allocated);
1649         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1650
1651         if (prot->memory_pressure && *prot->memory_pressure &&
1652             (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1653                 *prot->memory_pressure = 0;
1654 }
1655 EXPORT_SYMBOL(__sk_mem_reclaim);
1656
1657
1658 /*
1659  * Set of default routines for initialising struct proto_ops when
1660  * the protocol does not support a particular function. In certain
1661  * cases where it makes no sense for a protocol to have a "do nothing"
1662  * function, some default processing is provided.
1663  */
1664
1665 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1666 {
1667         return -EOPNOTSUPP;
1668 }
1669 EXPORT_SYMBOL(sock_no_bind);
1670
1671 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1672                     int len, int flags)
1673 {
1674         return -EOPNOTSUPP;
1675 }
1676 EXPORT_SYMBOL(sock_no_connect);
1677
1678 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1679 {
1680         return -EOPNOTSUPP;
1681 }
1682 EXPORT_SYMBOL(sock_no_socketpair);
1683
1684 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1685 {
1686         return -EOPNOTSUPP;
1687 }
1688 EXPORT_SYMBOL(sock_no_accept);
1689
1690 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1691                     int *len, int peer)
1692 {
1693         return -EOPNOTSUPP;
1694 }
1695 EXPORT_SYMBOL(sock_no_getname);
1696
1697 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1698 {
1699         return 0;
1700 }
1701 EXPORT_SYMBOL(sock_no_poll);
1702
1703 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1704 {
1705         return -EOPNOTSUPP;
1706 }
1707 EXPORT_SYMBOL(sock_no_ioctl);
1708
1709 int sock_no_listen(struct socket *sock, int backlog)
1710 {
1711         return -EOPNOTSUPP;
1712 }
1713 EXPORT_SYMBOL(sock_no_listen);
1714
1715 int sock_no_shutdown(struct socket *sock, int how)
1716 {
1717         return -EOPNOTSUPP;
1718 }
1719 EXPORT_SYMBOL(sock_no_shutdown);
1720
1721 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1722                     char __user *optval, unsigned int optlen)
1723 {
1724         return -EOPNOTSUPP;
1725 }
1726 EXPORT_SYMBOL(sock_no_setsockopt);
1727
1728 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1729                     char __user *optval, int __user *optlen)
1730 {
1731         return -EOPNOTSUPP;
1732 }
1733 EXPORT_SYMBOL(sock_no_getsockopt);
1734
1735 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1736                     size_t len)
1737 {
1738         return -EOPNOTSUPP;
1739 }
1740 EXPORT_SYMBOL(sock_no_sendmsg);
1741
1742 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1743                     size_t len, int flags)
1744 {
1745         return -EOPNOTSUPP;
1746 }
1747 EXPORT_SYMBOL(sock_no_recvmsg);
1748
1749 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1750 {
1751         /* Mirror missing mmap method error code */
1752         return -ENODEV;
1753 }
1754 EXPORT_SYMBOL(sock_no_mmap);
1755
1756 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1757 {
1758         ssize_t res;
1759         struct msghdr msg = {.msg_flags = flags};
1760         struct kvec iov;
1761         char *kaddr = kmap(page);
1762         iov.iov_base = kaddr + offset;
1763         iov.iov_len = size;
1764         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1765         kunmap(page);
1766         return res;
1767 }
1768 EXPORT_SYMBOL(sock_no_sendpage);
1769
1770 /*
1771  *      Default Socket Callbacks
1772  */
1773
1774 static void sock_def_wakeup(struct sock *sk)
1775 {
1776         read_lock(&sk->sk_callback_lock);
1777         if (sk_has_sleeper(sk))
1778                 wake_up_interruptible_all(sk->sk_sleep);
1779         read_unlock(&sk->sk_callback_lock);
1780 }
1781
1782 static void sock_def_error_report(struct sock *sk)
1783 {
1784         read_lock(&sk->sk_callback_lock);
1785         if (sk_has_sleeper(sk))
1786                 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1787         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1788         read_unlock(&sk->sk_callback_lock);
1789 }
1790
1791 static void sock_def_readable(struct sock *sk, int len)
1792 {
1793         read_lock(&sk->sk_callback_lock);
1794         if (sk_has_sleeper(sk))
1795                 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1796                                                 POLLRDNORM | POLLRDBAND);
1797         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1798         read_unlock(&sk->sk_callback_lock);
1799 }
1800
1801 static void sock_def_write_space(struct sock *sk)
1802 {
1803         read_lock(&sk->sk_callback_lock);
1804
1805         /* Do not wake up a writer until he can make "significant"
1806          * progress.  --DaveM
1807          */
1808         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1809                 if (sk_has_sleeper(sk))
1810                         wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1811                                                 POLLWRNORM | POLLWRBAND);
1812
1813                 /* Should agree with poll, otherwise some programs break */
1814                 if (sock_writeable(sk))
1815                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1816         }
1817
1818         read_unlock(&sk->sk_callback_lock);
1819 }
1820
1821 static void sock_def_destruct(struct sock *sk)
1822 {
1823         kfree(sk->sk_protinfo);
1824 }
1825
1826 void sk_send_sigurg(struct sock *sk)
1827 {
1828         if (sk->sk_socket && sk->sk_socket->file)
1829                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1830                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1831 }
1832 EXPORT_SYMBOL(sk_send_sigurg);
1833
1834 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1835                     unsigned long expires)
1836 {
1837         if (!mod_timer(timer, expires))
1838                 sock_hold(sk);
1839 }
1840 EXPORT_SYMBOL(sk_reset_timer);
1841
1842 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1843 {
1844         if (timer_pending(timer) && del_timer(timer))
1845                 __sock_put(sk);
1846 }
1847 EXPORT_SYMBOL(sk_stop_timer);
1848
1849 void sock_init_data(struct socket *sock, struct sock *sk)
1850 {
1851         skb_queue_head_init(&sk->sk_receive_queue);
1852         skb_queue_head_init(&sk->sk_write_queue);
1853         skb_queue_head_init(&sk->sk_error_queue);
1854 #ifdef CONFIG_NET_DMA
1855         skb_queue_head_init(&sk->sk_async_wait_queue);
1856 #endif
1857
1858         sk->sk_send_head        =       NULL;
1859
1860         init_timer(&sk->sk_timer);
1861
1862         sk->sk_allocation       =       GFP_KERNEL;
1863         sk->sk_rcvbuf           =       sysctl_rmem_default;
1864         sk->sk_sndbuf           =       sysctl_wmem_default;
1865         sk->sk_state            =       TCP_CLOSE;
1866         sk_set_socket(sk, sock);
1867
1868         sock_set_flag(sk, SOCK_ZAPPED);
1869
1870         if (sock) {
1871                 sk->sk_type     =       sock->type;
1872                 sk->sk_sleep    =       &sock->wait;
1873                 sock->sk        =       sk;
1874         } else
1875                 sk->sk_sleep    =       NULL;
1876
1877         rwlock_init(&sk->sk_dst_lock);
1878         rwlock_init(&sk->sk_callback_lock);
1879         lockdep_set_class_and_name(&sk->sk_callback_lock,
1880                         af_callback_keys + sk->sk_family,
1881                         af_family_clock_key_strings[sk->sk_family]);
1882
1883         sk->sk_state_change     =       sock_def_wakeup;
1884         sk->sk_data_ready       =       sock_def_readable;
1885         sk->sk_write_space      =       sock_def_write_space;
1886         sk->sk_error_report     =       sock_def_error_report;
1887         sk->sk_destruct         =       sock_def_destruct;
1888
1889         sk->sk_sndmsg_page      =       NULL;
1890         sk->sk_sndmsg_off       =       0;
1891
1892         sk->sk_peercred.pid     =       0;
1893         sk->sk_peercred.uid     =       -1;
1894         sk->sk_peercred.gid     =       -1;
1895         sk->sk_write_pending    =       0;
1896         sk->sk_rcvlowat         =       1;
1897         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1898         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1899
1900         sk->sk_stamp = ktime_set(-1L, 0);
1901
1902         /*
1903          * Before updating sk_refcnt, we must commit prior changes to memory
1904          * (Documentation/RCU/rculist_nulls.txt for details)
1905          */
1906         smp_wmb();
1907         atomic_set(&sk->sk_refcnt, 1);
1908         atomic_set(&sk->sk_drops, 0);
1909 }
1910 EXPORT_SYMBOL(sock_init_data);
1911
1912 void lock_sock_nested(struct sock *sk, int subclass)
1913 {
1914         might_sleep();
1915         spin_lock_bh(&sk->sk_lock.slock);
1916         if (sk->sk_lock.owned)
1917                 __lock_sock(sk);
1918         sk->sk_lock.owned = 1;
1919         spin_unlock(&sk->sk_lock.slock);
1920         /*
1921          * The sk_lock has mutex_lock() semantics here:
1922          */
1923         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1924         local_bh_enable();
1925 }
1926 EXPORT_SYMBOL(lock_sock_nested);
1927
1928 void release_sock(struct sock *sk)
1929 {
1930         /*
1931          * The sk_lock has mutex_unlock() semantics:
1932          */
1933         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1934
1935         spin_lock_bh(&sk->sk_lock.slock);
1936         if (sk->sk_backlog.tail)
1937                 __release_sock(sk);
1938         sk->sk_lock.owned = 0;
1939         if (waitqueue_active(&sk->sk_lock.wq))
1940                 wake_up(&sk->sk_lock.wq);
1941         spin_unlock_bh(&sk->sk_lock.slock);
1942 }
1943 EXPORT_SYMBOL(release_sock);
1944
1945 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1946 {
1947         struct timeval tv;
1948         if (!sock_flag(sk, SOCK_TIMESTAMP))
1949                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1950         tv = ktime_to_timeval(sk->sk_stamp);
1951         if (tv.tv_sec == -1)
1952                 return -ENOENT;
1953         if (tv.tv_sec == 0) {
1954                 sk->sk_stamp = ktime_get_real();
1955                 tv = ktime_to_timeval(sk->sk_stamp);
1956         }
1957         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1958 }
1959 EXPORT_SYMBOL(sock_get_timestamp);
1960
1961 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1962 {
1963         struct timespec ts;
1964         if (!sock_flag(sk, SOCK_TIMESTAMP))
1965                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1966         ts = ktime_to_timespec(sk->sk_stamp);
1967         if (ts.tv_sec == -1)
1968                 return -ENOENT;
1969         if (ts.tv_sec == 0) {
1970                 sk->sk_stamp = ktime_get_real();
1971                 ts = ktime_to_timespec(sk->sk_stamp);
1972         }
1973         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1974 }
1975 EXPORT_SYMBOL(sock_get_timestampns);
1976
1977 void sock_enable_timestamp(struct sock *sk, int flag)
1978 {
1979         if (!sock_flag(sk, flag)) {
1980                 sock_set_flag(sk, flag);
1981                 /*
1982                  * we just set one of the two flags which require net
1983                  * time stamping, but time stamping might have been on
1984                  * already because of the other one
1985                  */
1986                 if (!sock_flag(sk,
1987                                 flag == SOCK_TIMESTAMP ?
1988                                 SOCK_TIMESTAMPING_RX_SOFTWARE :
1989                                 SOCK_TIMESTAMP))
1990                         net_enable_timestamp();
1991         }
1992 }
1993
1994 /*
1995  *      Get a socket option on an socket.
1996  *
1997  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1998  *      asynchronous errors should be reported by getsockopt. We assume
1999  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2000  */
2001 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2002                            char __user *optval, int __user *optlen)
2003 {
2004         struct sock *sk = sock->sk;
2005
2006         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2007 }
2008 EXPORT_SYMBOL(sock_common_getsockopt);
2009
2010 #ifdef CONFIG_COMPAT
2011 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2012                                   char __user *optval, int __user *optlen)
2013 {
2014         struct sock *sk = sock->sk;
2015
2016         if (sk->sk_prot->compat_getsockopt != NULL)
2017                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2018                                                       optval, optlen);
2019         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2020 }
2021 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2022 #endif
2023
2024 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2025                         struct msghdr *msg, size_t size, int flags)
2026 {
2027         struct sock *sk = sock->sk;
2028         int addr_len = 0;
2029         int err;
2030
2031         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2032                                    flags & ~MSG_DONTWAIT, &addr_len);
2033         if (err >= 0)
2034                 msg->msg_namelen = addr_len;
2035         return err;
2036 }
2037 EXPORT_SYMBOL(sock_common_recvmsg);
2038
2039 /*
2040  *      Set socket options on an inet socket.
2041  */
2042 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2043                            char __user *optval, unsigned int optlen)
2044 {
2045         struct sock *sk = sock->sk;
2046
2047         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2048 }
2049 EXPORT_SYMBOL(sock_common_setsockopt);
2050
2051 #ifdef CONFIG_COMPAT
2052 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2053                                   char __user *optval, unsigned int optlen)
2054 {
2055         struct sock *sk = sock->sk;
2056
2057         if (sk->sk_prot->compat_setsockopt != NULL)
2058                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2059                                                       optval, optlen);
2060         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2061 }
2062 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2063 #endif
2064
2065 void sk_common_release(struct sock *sk)
2066 {
2067         if (sk->sk_prot->destroy)
2068                 sk->sk_prot->destroy(sk);
2069
2070         /*
2071          * Observation: when sock_common_release is called, processes have
2072          * no access to socket. But net still has.
2073          * Step one, detach it from networking:
2074          *
2075          * A. Remove from hash tables.
2076          */
2077
2078         sk->sk_prot->unhash(sk);
2079
2080         /*
2081          * In this point socket cannot receive new packets, but it is possible
2082          * that some packets are in flight because some CPU runs receiver and
2083          * did hash table lookup before we unhashed socket. They will achieve
2084          * receive queue and will be purged by socket destructor.
2085          *
2086          * Also we still have packets pending on receive queue and probably,
2087          * our own packets waiting in device queues. sock_destroy will drain
2088          * receive queue, but transmitted packets will delay socket destruction
2089          * until the last reference will be released.
2090          */
2091
2092         sock_orphan(sk);
2093
2094         xfrm_sk_free_policy(sk);
2095
2096         sk_refcnt_debug_release(sk);
2097         sock_put(sk);
2098 }
2099 EXPORT_SYMBOL(sk_common_release);
2100
2101 static DEFINE_RWLOCK(proto_list_lock);
2102 static LIST_HEAD(proto_list);
2103
2104 #ifdef CONFIG_PROC_FS
2105 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2106 struct prot_inuse {
2107         int val[PROTO_INUSE_NR];
2108 };
2109
2110 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2111
2112 #ifdef CONFIG_NET_NS
2113 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2114 {
2115         int cpu = smp_processor_id();
2116         per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2117 }
2118 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2119
2120 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2121 {
2122         int cpu, idx = prot->inuse_idx;
2123         int res = 0;
2124
2125         for_each_possible_cpu(cpu)
2126                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2127
2128         return res >= 0 ? res : 0;
2129 }
2130 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2131
2132 static int sock_inuse_init_net(struct net *net)
2133 {
2134         net->core.inuse = alloc_percpu(struct prot_inuse);
2135         return net->core.inuse ? 0 : -ENOMEM;
2136 }
2137
2138 static void sock_inuse_exit_net(struct net *net)
2139 {
2140         free_percpu(net->core.inuse);
2141 }
2142
2143 static struct pernet_operations net_inuse_ops = {
2144         .init = sock_inuse_init_net,
2145         .exit = sock_inuse_exit_net,
2146 };
2147
2148 static __init int net_inuse_init(void)
2149 {
2150         if (register_pernet_subsys(&net_inuse_ops))
2151                 panic("Cannot initialize net inuse counters");
2152
2153         return 0;
2154 }
2155
2156 core_initcall(net_inuse_init);
2157 #else
2158 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2159
2160 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2161 {
2162         __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2163 }
2164 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2165
2166 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2167 {
2168         int cpu, idx = prot->inuse_idx;
2169         int res = 0;
2170
2171         for_each_possible_cpu(cpu)
2172                 res += per_cpu(prot_inuse, cpu).val[idx];
2173
2174         return res >= 0 ? res : 0;
2175 }
2176 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2177 #endif
2178
2179 static void assign_proto_idx(struct proto *prot)
2180 {
2181         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2182
2183         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2184                 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2185                 return;
2186         }
2187
2188         set_bit(prot->inuse_idx, proto_inuse_idx);
2189 }
2190
2191 static void release_proto_idx(struct proto *prot)
2192 {
2193         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2194                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2195 }
2196 #else
2197 static inline void assign_proto_idx(struct proto *prot)
2198 {
2199 }
2200
2201 static inline void release_proto_idx(struct proto *prot)
2202 {
2203 }
2204 #endif
2205
2206 int proto_register(struct proto *prot, int alloc_slab)
2207 {
2208         if (alloc_slab) {
2209                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2210                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2211                                         NULL);
2212
2213                 if (prot->slab == NULL) {
2214                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2215                                prot->name);
2216                         goto out;
2217                 }
2218
2219                 if (prot->rsk_prot != NULL) {
2220                         static const char mask[] = "request_sock_%s";
2221
2222                         prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2223                         if (prot->rsk_prot->slab_name == NULL)
2224                                 goto out_free_sock_slab;
2225
2226                         sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2227                         prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2228                                                                  prot->rsk_prot->obj_size, 0,
2229                                                                  SLAB_HWCACHE_ALIGN, NULL);
2230
2231                         if (prot->rsk_prot->slab == NULL) {
2232                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2233                                        prot->name);
2234                                 goto out_free_request_sock_slab_name;
2235                         }
2236                 }
2237
2238                 if (prot->twsk_prot != NULL) {
2239                         static const char mask[] = "tw_sock_%s";
2240
2241                         prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2242
2243                         if (prot->twsk_prot->twsk_slab_name == NULL)
2244                                 goto out_free_request_sock_slab;
2245
2246                         sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2247                         prot->twsk_prot->twsk_slab =
2248                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2249                                                   prot->twsk_prot->twsk_obj_size,
2250                                                   0,
2251                                                   SLAB_HWCACHE_ALIGN |
2252                                                         prot->slab_flags,
2253                                                   NULL);
2254                         if (prot->twsk_prot->twsk_slab == NULL)
2255                                 goto out_free_timewait_sock_slab_name;
2256                 }
2257         }
2258
2259         write_lock(&proto_list_lock);
2260         list_add(&prot->node, &proto_list);
2261         assign_proto_idx(prot);
2262         write_unlock(&proto_list_lock);
2263         return 0;
2264
2265 out_free_timewait_sock_slab_name:
2266         kfree(prot->twsk_prot->twsk_slab_name);
2267 out_free_request_sock_slab:
2268         if (prot->rsk_prot && prot->rsk_prot->slab) {
2269                 kmem_cache_destroy(prot->rsk_prot->slab);
2270                 prot->rsk_prot->slab = NULL;
2271         }
2272 out_free_request_sock_slab_name:
2273         kfree(prot->rsk_prot->slab_name);
2274 out_free_sock_slab:
2275         kmem_cache_destroy(prot->slab);
2276         prot->slab = NULL;
2277 out:
2278         return -ENOBUFS;
2279 }
2280 EXPORT_SYMBOL(proto_register);
2281
2282 void proto_unregister(struct proto *prot)
2283 {
2284         write_lock(&proto_list_lock);
2285         release_proto_idx(prot);
2286         list_del(&prot->node);
2287         write_unlock(&proto_list_lock);
2288
2289         if (prot->slab != NULL) {
2290                 kmem_cache_destroy(prot->slab);
2291                 prot->slab = NULL;
2292         }
2293
2294         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2295                 kmem_cache_destroy(prot->rsk_prot->slab);
2296                 kfree(prot->rsk_prot->slab_name);
2297                 prot->rsk_prot->slab = NULL;
2298         }
2299
2300         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2301                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2302                 kfree(prot->twsk_prot->twsk_slab_name);
2303                 prot->twsk_prot->twsk_slab = NULL;
2304         }
2305 }
2306 EXPORT_SYMBOL(proto_unregister);
2307
2308 #ifdef CONFIG_PROC_FS
2309 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2310         __acquires(proto_list_lock)
2311 {
2312         read_lock(&proto_list_lock);
2313         return seq_list_start_head(&proto_list, *pos);
2314 }
2315
2316 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2317 {
2318         return seq_list_next(v, &proto_list, pos);
2319 }
2320
2321 static void proto_seq_stop(struct seq_file *seq, void *v)
2322         __releases(proto_list_lock)
2323 {
2324         read_unlock(&proto_list_lock);
2325 }
2326
2327 static char proto_method_implemented(const void *method)
2328 {
2329         return method == NULL ? 'n' : 'y';
2330 }
2331
2332 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2333 {
2334         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2335                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2336                    proto->name,
2337                    proto->obj_size,
2338                    sock_prot_inuse_get(seq_file_net(seq), proto),
2339                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2340                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2341                    proto->max_header,
2342                    proto->slab == NULL ? "no" : "yes",
2343                    module_name(proto->owner),
2344                    proto_method_implemented(proto->close),
2345                    proto_method_implemented(proto->connect),
2346                    proto_method_implemented(proto->disconnect),
2347                    proto_method_implemented(proto->accept),
2348                    proto_method_implemented(proto->ioctl),
2349                    proto_method_implemented(proto->init),
2350                    proto_method_implemented(proto->destroy),
2351                    proto_method_implemented(proto->shutdown),
2352                    proto_method_implemented(proto->setsockopt),
2353                    proto_method_implemented(proto->getsockopt),
2354                    proto_method_implemented(proto->sendmsg),
2355                    proto_method_implemented(proto->recvmsg),
2356                    proto_method_implemented(proto->sendpage),
2357                    proto_method_implemented(proto->bind),
2358                    proto_method_implemented(proto->backlog_rcv),
2359                    proto_method_implemented(proto->hash),
2360                    proto_method_implemented(proto->unhash),
2361                    proto_method_implemented(proto->get_port),
2362                    proto_method_implemented(proto->enter_memory_pressure));
2363 }
2364
2365 static int proto_seq_show(struct seq_file *seq, void *v)
2366 {
2367         if (v == &proto_list)
2368                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2369                            "protocol",
2370                            "size",
2371                            "sockets",
2372                            "memory",
2373                            "press",
2374                            "maxhdr",
2375                            "slab",
2376                            "module",
2377                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2378         else
2379                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2380         return 0;
2381 }
2382
2383 static const struct seq_operations proto_seq_ops = {
2384         .start  = proto_seq_start,
2385         .next   = proto_seq_next,
2386         .stop   = proto_seq_stop,
2387         .show   = proto_seq_show,
2388 };
2389
2390 static int proto_seq_open(struct inode *inode, struct file *file)
2391 {
2392         return seq_open_net(inode, file, &proto_seq_ops,
2393                             sizeof(struct seq_net_private));
2394 }
2395
2396 static const struct file_operations proto_seq_fops = {
2397         .owner          = THIS_MODULE,
2398         .open           = proto_seq_open,
2399         .read           = seq_read,
2400         .llseek         = seq_lseek,
2401         .release        = seq_release_net,
2402 };
2403
2404 static __net_init int proto_init_net(struct net *net)
2405 {
2406         if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2407                 return -ENOMEM;
2408
2409         return 0;
2410 }
2411
2412 static __net_exit void proto_exit_net(struct net *net)
2413 {
2414         proc_net_remove(net, "protocols");
2415 }
2416
2417
2418 static __net_initdata struct pernet_operations proto_net_ops = {
2419         .init = proto_init_net,
2420         .exit = proto_exit_net,
2421 };
2422
2423 static int __init proto_init(void)
2424 {
2425         return register_pernet_subsys(&proto_net_ops);
2426 }
2427
2428 subsys_initcall(proto_init);
2429
2430 #endif /* PROC_FS */