[NET]: Wrap netdevice hardware header creation.
[safe/jmp/linux-2.6] / net / core / neighbour.c
1 /*
2  *      Generic address resolution entity
3  *
4  *      Authors:
5  *      Pedro Roque             <roque@di.fc.ul.pt>
6  *      Alexey Kuznetsov        <kuznet@ms2.inr.ac.ru>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Fixes:
14  *      Vitaly E. Lavrov        releasing NULL neighbor in neigh_add.
15  *      Harald Welte            Add neighbour cache statistics like rtstat
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK         0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70    Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72    - All the scans/updates to hash buckets MUST be made under this lock.
73    - NOTHING clever should be made under this lock: no callbacks
74      to protocol backends, no attempts to send something to network.
75      It will result in deadlocks, if backend/driver wants to use neighbour
76      cache.
77    - If the entry requires some non-trivial actions, increase
78      its reference count and release table lock.
79
80    Neighbour entries are protected:
81    - with reference count.
82    - with rwlock neigh->lock
83
84    Reference count prevents destruction.
85
86    neigh->lock mainly serializes ll address data and its validity state.
87    However, the same lock is used to protect another entry fields:
88     - timer
89     - resolution queue
90
91    Again, nothing clever shall be made under neigh->lock,
92    the most complicated procedure, which we allow is dev->hard_header.
93    It is supposed, that dev->hard_header is simplistic and does
94    not make callbacks to neighbour tables.
95
96    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97    list of neighbour tables. This list is used only in process context,
98  */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104         kfree_skb(skb);
105         return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110         if (neigh->parms->neigh_cleanup)
111                 neigh->parms->neigh_cleanup(neigh);
112
113         __neigh_notify(neigh, RTM_DELNEIGH, 0);
114         neigh_release(neigh);
115 }
116
117 /*
118  * It is random distribution in the interval (1/2)*base...(3/2)*base.
119  * It corresponds to default IPv6 settings and is not overridable,
120  * because it is really reasonable choice.
121  */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125         return (base ? (net_random() % base) + (base >> 1) : 0);
126 }
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131         int shrunk = 0;
132         int i;
133
134         NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
135
136         write_lock_bh(&tbl->lock);
137         for (i = 0; i <= tbl->hash_mask; i++) {
138                 struct neighbour *n, **np;
139
140                 np = &tbl->hash_buckets[i];
141                 while ((n = *np) != NULL) {
142                         /* Neighbour record may be discarded if:
143                          * - nobody refers to it.
144                          * - it is not permanent
145                          */
146                         write_lock(&n->lock);
147                         if (atomic_read(&n->refcnt) == 1 &&
148                             !(n->nud_state & NUD_PERMANENT)) {
149                                 *np     = n->next;
150                                 n->dead = 1;
151                                 shrunk  = 1;
152                                 write_unlock(&n->lock);
153                                 neigh_cleanup_and_release(n);
154                                 continue;
155                         }
156                         write_unlock(&n->lock);
157                         np = &n->next;
158                 }
159         }
160
161         tbl->last_flush = jiffies;
162
163         write_unlock_bh(&tbl->lock);
164
165         return shrunk;
166 }
167
168 static int neigh_del_timer(struct neighbour *n)
169 {
170         if ((n->nud_state & NUD_IN_TIMER) &&
171             del_timer(&n->timer)) {
172                 neigh_release(n);
173                 return 1;
174         }
175         return 0;
176 }
177
178 static void pneigh_queue_purge(struct sk_buff_head *list)
179 {
180         struct sk_buff *skb;
181
182         while ((skb = skb_dequeue(list)) != NULL) {
183                 dev_put(skb->dev);
184                 kfree_skb(skb);
185         }
186 }
187
188 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
189 {
190         int i;
191
192         for (i = 0; i <= tbl->hash_mask; i++) {
193                 struct neighbour *n, **np = &tbl->hash_buckets[i];
194
195                 while ((n = *np) != NULL) {
196                         if (dev && n->dev != dev) {
197                                 np = &n->next;
198                                 continue;
199                         }
200                         *np = n->next;
201                         write_lock(&n->lock);
202                         neigh_del_timer(n);
203                         n->dead = 1;
204
205                         if (atomic_read(&n->refcnt) != 1) {
206                                 /* The most unpleasant situation.
207                                    We must destroy neighbour entry,
208                                    but someone still uses it.
209
210                                    The destroy will be delayed until
211                                    the last user releases us, but
212                                    we must kill timers etc. and move
213                                    it to safe state.
214                                  */
215                                 skb_queue_purge(&n->arp_queue);
216                                 n->output = neigh_blackhole;
217                                 if (n->nud_state & NUD_VALID)
218                                         n->nud_state = NUD_NOARP;
219                                 else
220                                         n->nud_state = NUD_NONE;
221                                 NEIGH_PRINTK2("neigh %p is stray.\n", n);
222                         }
223                         write_unlock(&n->lock);
224                         neigh_cleanup_and_release(n);
225                 }
226         }
227 }
228
229 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
230 {
231         write_lock_bh(&tbl->lock);
232         neigh_flush_dev(tbl, dev);
233         write_unlock_bh(&tbl->lock);
234 }
235
236 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
237 {
238         write_lock_bh(&tbl->lock);
239         neigh_flush_dev(tbl, dev);
240         pneigh_ifdown(tbl, dev);
241         write_unlock_bh(&tbl->lock);
242
243         del_timer_sync(&tbl->proxy_timer);
244         pneigh_queue_purge(&tbl->proxy_queue);
245         return 0;
246 }
247
248 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
249 {
250         struct neighbour *n = NULL;
251         unsigned long now = jiffies;
252         int entries;
253
254         entries = atomic_inc_return(&tbl->entries) - 1;
255         if (entries >= tbl->gc_thresh3 ||
256             (entries >= tbl->gc_thresh2 &&
257              time_after(now, tbl->last_flush + 5 * HZ))) {
258                 if (!neigh_forced_gc(tbl) &&
259                     entries >= tbl->gc_thresh3)
260                         goto out_entries;
261         }
262
263         n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
264         if (!n)
265                 goto out_entries;
266
267         skb_queue_head_init(&n->arp_queue);
268         rwlock_init(&n->lock);
269         n->updated        = n->used = now;
270         n->nud_state      = NUD_NONE;
271         n->output         = neigh_blackhole;
272         n->parms          = neigh_parms_clone(&tbl->parms);
273         init_timer(&n->timer);
274         n->timer.function = neigh_timer_handler;
275         n->timer.data     = (unsigned long)n;
276
277         NEIGH_CACHE_STAT_INC(tbl, allocs);
278         n->tbl            = tbl;
279         atomic_set(&n->refcnt, 1);
280         n->dead           = 1;
281 out:
282         return n;
283
284 out_entries:
285         atomic_dec(&tbl->entries);
286         goto out;
287 }
288
289 static struct neighbour **neigh_hash_alloc(unsigned int entries)
290 {
291         unsigned long size = entries * sizeof(struct neighbour *);
292         struct neighbour **ret;
293
294         if (size <= PAGE_SIZE) {
295                 ret = kzalloc(size, GFP_ATOMIC);
296         } else {
297                 ret = (struct neighbour **)
298                       __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
299         }
300         return ret;
301 }
302
303 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
304 {
305         unsigned long size = entries * sizeof(struct neighbour *);
306
307         if (size <= PAGE_SIZE)
308                 kfree(hash);
309         else
310                 free_pages((unsigned long)hash, get_order(size));
311 }
312
313 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
314 {
315         struct neighbour **new_hash, **old_hash;
316         unsigned int i, new_hash_mask, old_entries;
317
318         NEIGH_CACHE_STAT_INC(tbl, hash_grows);
319
320         BUG_ON(!is_power_of_2(new_entries));
321         new_hash = neigh_hash_alloc(new_entries);
322         if (!new_hash)
323                 return;
324
325         old_entries = tbl->hash_mask + 1;
326         new_hash_mask = new_entries - 1;
327         old_hash = tbl->hash_buckets;
328
329         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
330         for (i = 0; i < old_entries; i++) {
331                 struct neighbour *n, *next;
332
333                 for (n = old_hash[i]; n; n = next) {
334                         unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
335
336                         hash_val &= new_hash_mask;
337                         next = n->next;
338
339                         n->next = new_hash[hash_val];
340                         new_hash[hash_val] = n;
341                 }
342         }
343         tbl->hash_buckets = new_hash;
344         tbl->hash_mask = new_hash_mask;
345
346         neigh_hash_free(old_hash, old_entries);
347 }
348
349 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
350                                struct net_device *dev)
351 {
352         struct neighbour *n;
353         int key_len = tbl->key_len;
354         u32 hash_val = tbl->hash(pkey, dev);
355
356         NEIGH_CACHE_STAT_INC(tbl, lookups);
357
358         read_lock_bh(&tbl->lock);
359         for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
360                 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
361                         neigh_hold(n);
362                         NEIGH_CACHE_STAT_INC(tbl, hits);
363                         break;
364                 }
365         }
366         read_unlock_bh(&tbl->lock);
367         return n;
368 }
369
370 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
371 {
372         struct neighbour *n;
373         int key_len = tbl->key_len;
374         u32 hash_val = tbl->hash(pkey, NULL);
375
376         NEIGH_CACHE_STAT_INC(tbl, lookups);
377
378         read_lock_bh(&tbl->lock);
379         for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
380                 if (!memcmp(n->primary_key, pkey, key_len)) {
381                         neigh_hold(n);
382                         NEIGH_CACHE_STAT_INC(tbl, hits);
383                         break;
384                 }
385         }
386         read_unlock_bh(&tbl->lock);
387         return n;
388 }
389
390 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
391                                struct net_device *dev)
392 {
393         u32 hash_val;
394         int key_len = tbl->key_len;
395         int error;
396         struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
397
398         if (!n) {
399                 rc = ERR_PTR(-ENOBUFS);
400                 goto out;
401         }
402
403         memcpy(n->primary_key, pkey, key_len);
404         n->dev = dev;
405         dev_hold(dev);
406
407         /* Protocol specific setup. */
408         if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
409                 rc = ERR_PTR(error);
410                 goto out_neigh_release;
411         }
412
413         /* Device specific setup. */
414         if (n->parms->neigh_setup &&
415             (error = n->parms->neigh_setup(n)) < 0) {
416                 rc = ERR_PTR(error);
417                 goto out_neigh_release;
418         }
419
420         n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
421
422         write_lock_bh(&tbl->lock);
423
424         if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
425                 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
426
427         hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
428
429         if (n->parms->dead) {
430                 rc = ERR_PTR(-EINVAL);
431                 goto out_tbl_unlock;
432         }
433
434         for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
435                 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
436                         neigh_hold(n1);
437                         rc = n1;
438                         goto out_tbl_unlock;
439                 }
440         }
441
442         n->next = tbl->hash_buckets[hash_val];
443         tbl->hash_buckets[hash_val] = n;
444         n->dead = 0;
445         neigh_hold(n);
446         write_unlock_bh(&tbl->lock);
447         NEIGH_PRINTK2("neigh %p is created.\n", n);
448         rc = n;
449 out:
450         return rc;
451 out_tbl_unlock:
452         write_unlock_bh(&tbl->lock);
453 out_neigh_release:
454         neigh_release(n);
455         goto out;
456 }
457
458 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
459                                     struct net_device *dev, int creat)
460 {
461         struct pneigh_entry *n;
462         int key_len = tbl->key_len;
463         u32 hash_val = *(u32 *)(pkey + key_len - 4);
464
465         hash_val ^= (hash_val >> 16);
466         hash_val ^= hash_val >> 8;
467         hash_val ^= hash_val >> 4;
468         hash_val &= PNEIGH_HASHMASK;
469
470         read_lock_bh(&tbl->lock);
471
472         for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
473                 if (!memcmp(n->key, pkey, key_len) &&
474                     (n->dev == dev || !n->dev)) {
475                         read_unlock_bh(&tbl->lock);
476                         goto out;
477                 }
478         }
479         read_unlock_bh(&tbl->lock);
480         n = NULL;
481         if (!creat)
482                 goto out;
483
484         n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
485         if (!n)
486                 goto out;
487
488         memcpy(n->key, pkey, key_len);
489         n->dev = dev;
490         if (dev)
491                 dev_hold(dev);
492
493         if (tbl->pconstructor && tbl->pconstructor(n)) {
494                 if (dev)
495                         dev_put(dev);
496                 kfree(n);
497                 n = NULL;
498                 goto out;
499         }
500
501         write_lock_bh(&tbl->lock);
502         n->next = tbl->phash_buckets[hash_val];
503         tbl->phash_buckets[hash_val] = n;
504         write_unlock_bh(&tbl->lock);
505 out:
506         return n;
507 }
508
509
510 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
511                   struct net_device *dev)
512 {
513         struct pneigh_entry *n, **np;
514         int key_len = tbl->key_len;
515         u32 hash_val = *(u32 *)(pkey + key_len - 4);
516
517         hash_val ^= (hash_val >> 16);
518         hash_val ^= hash_val >> 8;
519         hash_val ^= hash_val >> 4;
520         hash_val &= PNEIGH_HASHMASK;
521
522         write_lock_bh(&tbl->lock);
523         for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
524              np = &n->next) {
525                 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
526                         *np = n->next;
527                         write_unlock_bh(&tbl->lock);
528                         if (tbl->pdestructor)
529                                 tbl->pdestructor(n);
530                         if (n->dev)
531                                 dev_put(n->dev);
532                         kfree(n);
533                         return 0;
534                 }
535         }
536         write_unlock_bh(&tbl->lock);
537         return -ENOENT;
538 }
539
540 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
541 {
542         struct pneigh_entry *n, **np;
543         u32 h;
544
545         for (h = 0; h <= PNEIGH_HASHMASK; h++) {
546                 np = &tbl->phash_buckets[h];
547                 while ((n = *np) != NULL) {
548                         if (!dev || n->dev == dev) {
549                                 *np = n->next;
550                                 if (tbl->pdestructor)
551                                         tbl->pdestructor(n);
552                                 if (n->dev)
553                                         dev_put(n->dev);
554                                 kfree(n);
555                                 continue;
556                         }
557                         np = &n->next;
558                 }
559         }
560         return -ENOENT;
561 }
562
563
564 /*
565  *      neighbour must already be out of the table;
566  *
567  */
568 void neigh_destroy(struct neighbour *neigh)
569 {
570         struct hh_cache *hh;
571
572         NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
573
574         if (!neigh->dead) {
575                 printk(KERN_WARNING
576                        "Destroying alive neighbour %p\n", neigh);
577                 dump_stack();
578                 return;
579         }
580
581         if (neigh_del_timer(neigh))
582                 printk(KERN_WARNING "Impossible event.\n");
583
584         while ((hh = neigh->hh) != NULL) {
585                 neigh->hh = hh->hh_next;
586                 hh->hh_next = NULL;
587
588                 write_seqlock_bh(&hh->hh_lock);
589                 hh->hh_output = neigh_blackhole;
590                 write_sequnlock_bh(&hh->hh_lock);
591                 if (atomic_dec_and_test(&hh->hh_refcnt))
592                         kfree(hh);
593         }
594
595         skb_queue_purge(&neigh->arp_queue);
596
597         dev_put(neigh->dev);
598         neigh_parms_put(neigh->parms);
599
600         NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
601
602         atomic_dec(&neigh->tbl->entries);
603         kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
604 }
605
606 /* Neighbour state is suspicious;
607    disable fast path.
608
609    Called with write_locked neigh.
610  */
611 static void neigh_suspect(struct neighbour *neigh)
612 {
613         struct hh_cache *hh;
614
615         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
616
617         neigh->output = neigh->ops->output;
618
619         for (hh = neigh->hh; hh; hh = hh->hh_next)
620                 hh->hh_output = neigh->ops->output;
621 }
622
623 /* Neighbour state is OK;
624    enable fast path.
625
626    Called with write_locked neigh.
627  */
628 static void neigh_connect(struct neighbour *neigh)
629 {
630         struct hh_cache *hh;
631
632         NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
633
634         neigh->output = neigh->ops->connected_output;
635
636         for (hh = neigh->hh; hh; hh = hh->hh_next)
637                 hh->hh_output = neigh->ops->hh_output;
638 }
639
640 static void neigh_periodic_timer(unsigned long arg)
641 {
642         struct neigh_table *tbl = (struct neigh_table *)arg;
643         struct neighbour *n, **np;
644         unsigned long expire, now = jiffies;
645
646         NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
647
648         write_lock(&tbl->lock);
649
650         /*
651          *      periodically recompute ReachableTime from random function
652          */
653
654         if (time_after(now, tbl->last_rand + 300 * HZ)) {
655                 struct neigh_parms *p;
656                 tbl->last_rand = now;
657                 for (p = &tbl->parms; p; p = p->next)
658                         p->reachable_time =
659                                 neigh_rand_reach_time(p->base_reachable_time);
660         }
661
662         np = &tbl->hash_buckets[tbl->hash_chain_gc];
663         tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
664
665         while ((n = *np) != NULL) {
666                 unsigned int state;
667
668                 write_lock(&n->lock);
669
670                 state = n->nud_state;
671                 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
672                         write_unlock(&n->lock);
673                         goto next_elt;
674                 }
675
676                 if (time_before(n->used, n->confirmed))
677                         n->used = n->confirmed;
678
679                 if (atomic_read(&n->refcnt) == 1 &&
680                     (state == NUD_FAILED ||
681                      time_after(now, n->used + n->parms->gc_staletime))) {
682                         *np = n->next;
683                         n->dead = 1;
684                         write_unlock(&n->lock);
685                         neigh_cleanup_and_release(n);
686                         continue;
687                 }
688                 write_unlock(&n->lock);
689
690 next_elt:
691                 np = &n->next;
692         }
693
694         /* Cycle through all hash buckets every base_reachable_time/2 ticks.
695          * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
696          * base_reachable_time.
697          */
698         expire = tbl->parms.base_reachable_time >> 1;
699         expire /= (tbl->hash_mask + 1);
700         if (!expire)
701                 expire = 1;
702
703         if (expire>HZ)
704                 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
705         else
706                 mod_timer(&tbl->gc_timer, now + expire);
707
708         write_unlock(&tbl->lock);
709 }
710
711 static __inline__ int neigh_max_probes(struct neighbour *n)
712 {
713         struct neigh_parms *p = n->parms;
714         return (n->nud_state & NUD_PROBE ?
715                 p->ucast_probes :
716                 p->ucast_probes + p->app_probes + p->mcast_probes);
717 }
718
719 static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
720 {
721         if (unlikely(mod_timer(&n->timer, when))) {
722                 printk("NEIGH: BUG, double timer add, state is %x\n",
723                        n->nud_state);
724                 dump_stack();
725         }
726 }
727
728 /* Called when a timer expires for a neighbour entry. */
729
730 static void neigh_timer_handler(unsigned long arg)
731 {
732         unsigned long now, next;
733         struct neighbour *neigh = (struct neighbour *)arg;
734         unsigned state;
735         int notify = 0;
736
737         write_lock(&neigh->lock);
738
739         state = neigh->nud_state;
740         now = jiffies;
741         next = now + HZ;
742
743         if (!(state & NUD_IN_TIMER)) {
744 #ifndef CONFIG_SMP
745                 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
746 #endif
747                 goto out;
748         }
749
750         if (state & NUD_REACHABLE) {
751                 if (time_before_eq(now,
752                                    neigh->confirmed + neigh->parms->reachable_time)) {
753                         NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
754                         next = neigh->confirmed + neigh->parms->reachable_time;
755                 } else if (time_before_eq(now,
756                                           neigh->used + neigh->parms->delay_probe_time)) {
757                         NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
758                         neigh->nud_state = NUD_DELAY;
759                         neigh->updated = jiffies;
760                         neigh_suspect(neigh);
761                         next = now + neigh->parms->delay_probe_time;
762                 } else {
763                         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
764                         neigh->nud_state = NUD_STALE;
765                         neigh->updated = jiffies;
766                         neigh_suspect(neigh);
767                         notify = 1;
768                 }
769         } else if (state & NUD_DELAY) {
770                 if (time_before_eq(now,
771                                    neigh->confirmed + neigh->parms->delay_probe_time)) {
772                         NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
773                         neigh->nud_state = NUD_REACHABLE;
774                         neigh->updated = jiffies;
775                         neigh_connect(neigh);
776                         notify = 1;
777                         next = neigh->confirmed + neigh->parms->reachable_time;
778                 } else {
779                         NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
780                         neigh->nud_state = NUD_PROBE;
781                         neigh->updated = jiffies;
782                         atomic_set(&neigh->probes, 0);
783                         next = now + neigh->parms->retrans_time;
784                 }
785         } else {
786                 /* NUD_PROBE|NUD_INCOMPLETE */
787                 next = now + neigh->parms->retrans_time;
788         }
789
790         if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
791             atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
792                 struct sk_buff *skb;
793
794                 neigh->nud_state = NUD_FAILED;
795                 neigh->updated = jiffies;
796                 notify = 1;
797                 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
798                 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
799
800                 /* It is very thin place. report_unreachable is very complicated
801                    routine. Particularly, it can hit the same neighbour entry!
802
803                    So that, we try to be accurate and avoid dead loop. --ANK
804                  */
805                 while (neigh->nud_state == NUD_FAILED &&
806                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
807                         write_unlock(&neigh->lock);
808                         neigh->ops->error_report(neigh, skb);
809                         write_lock(&neigh->lock);
810                 }
811                 skb_queue_purge(&neigh->arp_queue);
812         }
813
814         if (neigh->nud_state & NUD_IN_TIMER) {
815                 if (time_before(next, jiffies + HZ/2))
816                         next = jiffies + HZ/2;
817                 if (!mod_timer(&neigh->timer, next))
818                         neigh_hold(neigh);
819         }
820         if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
821                 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
822                 /* keep skb alive even if arp_queue overflows */
823                 if (skb)
824                         skb_get(skb);
825                 write_unlock(&neigh->lock);
826                 neigh->ops->solicit(neigh, skb);
827                 atomic_inc(&neigh->probes);
828                 if (skb)
829                         kfree_skb(skb);
830         } else {
831 out:
832                 write_unlock(&neigh->lock);
833         }
834
835         if (notify)
836                 neigh_update_notify(neigh);
837
838         neigh_release(neigh);
839 }
840
841 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
842 {
843         int rc;
844         unsigned long now;
845
846         write_lock_bh(&neigh->lock);
847
848         rc = 0;
849         if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
850                 goto out_unlock_bh;
851
852         now = jiffies;
853
854         if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
855                 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
856                         atomic_set(&neigh->probes, neigh->parms->ucast_probes);
857                         neigh->nud_state     = NUD_INCOMPLETE;
858                         neigh->updated = jiffies;
859                         neigh_hold(neigh);
860                         neigh_add_timer(neigh, now + 1);
861                 } else {
862                         neigh->nud_state = NUD_FAILED;
863                         neigh->updated = jiffies;
864                         write_unlock_bh(&neigh->lock);
865
866                         if (skb)
867                                 kfree_skb(skb);
868                         return 1;
869                 }
870         } else if (neigh->nud_state & NUD_STALE) {
871                 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
872                 neigh_hold(neigh);
873                 neigh->nud_state = NUD_DELAY;
874                 neigh->updated = jiffies;
875                 neigh_add_timer(neigh,
876                                 jiffies + neigh->parms->delay_probe_time);
877         }
878
879         if (neigh->nud_state == NUD_INCOMPLETE) {
880                 if (skb) {
881                         if (skb_queue_len(&neigh->arp_queue) >=
882                             neigh->parms->queue_len) {
883                                 struct sk_buff *buff;
884                                 buff = neigh->arp_queue.next;
885                                 __skb_unlink(buff, &neigh->arp_queue);
886                                 kfree_skb(buff);
887                         }
888                         __skb_queue_tail(&neigh->arp_queue, skb);
889                 }
890                 rc = 1;
891         }
892 out_unlock_bh:
893         write_unlock_bh(&neigh->lock);
894         return rc;
895 }
896
897 static void neigh_update_hhs(struct neighbour *neigh)
898 {
899         struct hh_cache *hh;
900         void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
901                 neigh->dev->header_cache_update;
902
903         if (update) {
904                 for (hh = neigh->hh; hh; hh = hh->hh_next) {
905                         write_seqlock_bh(&hh->hh_lock);
906                         update(hh, neigh->dev, neigh->ha);
907                         write_sequnlock_bh(&hh->hh_lock);
908                 }
909         }
910 }
911
912
913
914 /* Generic update routine.
915    -- lladdr is new lladdr or NULL, if it is not supplied.
916    -- new    is new state.
917    -- flags
918         NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
919                                 if it is different.
920         NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
921                                 lladdr instead of overriding it
922                                 if it is different.
923                                 It also allows to retain current state
924                                 if lladdr is unchanged.
925         NEIGH_UPDATE_F_ADMIN    means that the change is administrative.
926
927         NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
928                                 NTF_ROUTER flag.
929         NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
930                                 a router.
931
932    Caller MUST hold reference count on the entry.
933  */
934
935 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
936                  u32 flags)
937 {
938         u8 old;
939         int err;
940         int notify = 0;
941         struct net_device *dev;
942         int update_isrouter = 0;
943
944         write_lock_bh(&neigh->lock);
945
946         dev    = neigh->dev;
947         old    = neigh->nud_state;
948         err    = -EPERM;
949
950         if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
951             (old & (NUD_NOARP | NUD_PERMANENT)))
952                 goto out;
953
954         if (!(new & NUD_VALID)) {
955                 neigh_del_timer(neigh);
956                 if (old & NUD_CONNECTED)
957                         neigh_suspect(neigh);
958                 neigh->nud_state = new;
959                 err = 0;
960                 notify = old & NUD_VALID;
961                 goto out;
962         }
963
964         /* Compare new lladdr with cached one */
965         if (!dev->addr_len) {
966                 /* First case: device needs no address. */
967                 lladdr = neigh->ha;
968         } else if (lladdr) {
969                 /* The second case: if something is already cached
970                    and a new address is proposed:
971                    - compare new & old
972                    - if they are different, check override flag
973                  */
974                 if ((old & NUD_VALID) &&
975                     !memcmp(lladdr, neigh->ha, dev->addr_len))
976                         lladdr = neigh->ha;
977         } else {
978                 /* No address is supplied; if we know something,
979                    use it, otherwise discard the request.
980                  */
981                 err = -EINVAL;
982                 if (!(old & NUD_VALID))
983                         goto out;
984                 lladdr = neigh->ha;
985         }
986
987         if (new & NUD_CONNECTED)
988                 neigh->confirmed = jiffies;
989         neigh->updated = jiffies;
990
991         /* If entry was valid and address is not changed,
992            do not change entry state, if new one is STALE.
993          */
994         err = 0;
995         update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
996         if (old & NUD_VALID) {
997                 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
998                         update_isrouter = 0;
999                         if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1000                             (old & NUD_CONNECTED)) {
1001                                 lladdr = neigh->ha;
1002                                 new = NUD_STALE;
1003                         } else
1004                                 goto out;
1005                 } else {
1006                         if (lladdr == neigh->ha && new == NUD_STALE &&
1007                             ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1008                              (old & NUD_CONNECTED))
1009                             )
1010                                 new = old;
1011                 }
1012         }
1013
1014         if (new != old) {
1015                 neigh_del_timer(neigh);
1016                 if (new & NUD_IN_TIMER) {
1017                         neigh_hold(neigh);
1018                         neigh_add_timer(neigh, (jiffies +
1019                                                 ((new & NUD_REACHABLE) ?
1020                                                  neigh->parms->reachable_time :
1021                                                  0)));
1022                 }
1023                 neigh->nud_state = new;
1024         }
1025
1026         if (lladdr != neigh->ha) {
1027                 memcpy(&neigh->ha, lladdr, dev->addr_len);
1028                 neigh_update_hhs(neigh);
1029                 if (!(new & NUD_CONNECTED))
1030                         neigh->confirmed = jiffies -
1031                                       (neigh->parms->base_reachable_time << 1);
1032                 notify = 1;
1033         }
1034         if (new == old)
1035                 goto out;
1036         if (new & NUD_CONNECTED)
1037                 neigh_connect(neigh);
1038         else
1039                 neigh_suspect(neigh);
1040         if (!(old & NUD_VALID)) {
1041                 struct sk_buff *skb;
1042
1043                 /* Again: avoid dead loop if something went wrong */
1044
1045                 while (neigh->nud_state & NUD_VALID &&
1046                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1047                         struct neighbour *n1 = neigh;
1048                         write_unlock_bh(&neigh->lock);
1049                         /* On shaper/eql skb->dst->neighbour != neigh :( */
1050                         if (skb->dst && skb->dst->neighbour)
1051                                 n1 = skb->dst->neighbour;
1052                         n1->output(skb);
1053                         write_lock_bh(&neigh->lock);
1054                 }
1055                 skb_queue_purge(&neigh->arp_queue);
1056         }
1057 out:
1058         if (update_isrouter) {
1059                 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1060                         (neigh->flags | NTF_ROUTER) :
1061                         (neigh->flags & ~NTF_ROUTER);
1062         }
1063         write_unlock_bh(&neigh->lock);
1064
1065         if (notify)
1066                 neigh_update_notify(neigh);
1067
1068         return err;
1069 }
1070
1071 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1072                                  u8 *lladdr, void *saddr,
1073                                  struct net_device *dev)
1074 {
1075         struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1076                                                  lladdr || !dev->addr_len);
1077         if (neigh)
1078                 neigh_update(neigh, lladdr, NUD_STALE,
1079                              NEIGH_UPDATE_F_OVERRIDE);
1080         return neigh;
1081 }
1082
1083 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1084                           __be16 protocol)
1085 {
1086         struct hh_cache *hh;
1087         struct net_device *dev = dst->dev;
1088
1089         for (hh = n->hh; hh; hh = hh->hh_next)
1090                 if (hh->hh_type == protocol)
1091                         break;
1092
1093         if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1094                 seqlock_init(&hh->hh_lock);
1095                 hh->hh_type = protocol;
1096                 atomic_set(&hh->hh_refcnt, 0);
1097                 hh->hh_next = NULL;
1098                 if (dev->hard_header_cache(n, hh)) {
1099                         kfree(hh);
1100                         hh = NULL;
1101                 } else {
1102                         atomic_inc(&hh->hh_refcnt);
1103                         hh->hh_next = n->hh;
1104                         n->hh       = hh;
1105                         if (n->nud_state & NUD_CONNECTED)
1106                                 hh->hh_output = n->ops->hh_output;
1107                         else
1108                                 hh->hh_output = n->ops->output;
1109                 }
1110         }
1111         if (hh) {
1112                 atomic_inc(&hh->hh_refcnt);
1113                 dst->hh = hh;
1114         }
1115 }
1116
1117 /* This function can be used in contexts, where only old dev_queue_xmit
1118    worked, f.e. if you want to override normal output path (eql, shaper),
1119    but resolution is not made yet.
1120  */
1121
1122 int neigh_compat_output(struct sk_buff *skb)
1123 {
1124         struct net_device *dev = skb->dev;
1125
1126         __skb_pull(skb, skb_network_offset(skb));
1127
1128         if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1129                             skb->len) < 0 &&
1130             dev->rebuild_header(skb))
1131                 return 0;
1132
1133         return dev_queue_xmit(skb);
1134 }
1135
1136 /* Slow and careful. */
1137
1138 int neigh_resolve_output(struct sk_buff *skb)
1139 {
1140         struct dst_entry *dst = skb->dst;
1141         struct neighbour *neigh;
1142         int rc = 0;
1143
1144         if (!dst || !(neigh = dst->neighbour))
1145                 goto discard;
1146
1147         __skb_pull(skb, skb_network_offset(skb));
1148
1149         if (!neigh_event_send(neigh, skb)) {
1150                 int err;
1151                 struct net_device *dev = neigh->dev;
1152                 if (dev->hard_header_cache && !dst->hh) {
1153                         write_lock_bh(&neigh->lock);
1154                         if (!dst->hh)
1155                                 neigh_hh_init(neigh, dst, dst->ops->protocol);
1156                         err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1157                                               neigh->ha, NULL, skb->len);
1158                         write_unlock_bh(&neigh->lock);
1159                 } else {
1160                         read_lock_bh(&neigh->lock);
1161                         err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1162                                               neigh->ha, NULL, skb->len);
1163                         read_unlock_bh(&neigh->lock);
1164                 }
1165                 if (err >= 0)
1166                         rc = neigh->ops->queue_xmit(skb);
1167                 else
1168                         goto out_kfree_skb;
1169         }
1170 out:
1171         return rc;
1172 discard:
1173         NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1174                       dst, dst ? dst->neighbour : NULL);
1175 out_kfree_skb:
1176         rc = -EINVAL;
1177         kfree_skb(skb);
1178         goto out;
1179 }
1180
1181 /* As fast as possible without hh cache */
1182
1183 int neigh_connected_output(struct sk_buff *skb)
1184 {
1185         int err;
1186         struct dst_entry *dst = skb->dst;
1187         struct neighbour *neigh = dst->neighbour;
1188         struct net_device *dev = neigh->dev;
1189
1190         __skb_pull(skb, skb_network_offset(skb));
1191
1192         read_lock_bh(&neigh->lock);
1193         err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1194                               neigh->ha, NULL, skb->len);
1195         read_unlock_bh(&neigh->lock);
1196         if (err >= 0)
1197                 err = neigh->ops->queue_xmit(skb);
1198         else {
1199                 err = -EINVAL;
1200                 kfree_skb(skb);
1201         }
1202         return err;
1203 }
1204
1205 static void neigh_proxy_process(unsigned long arg)
1206 {
1207         struct neigh_table *tbl = (struct neigh_table *)arg;
1208         long sched_next = 0;
1209         unsigned long now = jiffies;
1210         struct sk_buff *skb;
1211
1212         spin_lock(&tbl->proxy_queue.lock);
1213
1214         skb = tbl->proxy_queue.next;
1215
1216         while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1217                 struct sk_buff *back = skb;
1218                 long tdif = NEIGH_CB(back)->sched_next - now;
1219
1220                 skb = skb->next;
1221                 if (tdif <= 0) {
1222                         struct net_device *dev = back->dev;
1223                         __skb_unlink(back, &tbl->proxy_queue);
1224                         if (tbl->proxy_redo && netif_running(dev))
1225                                 tbl->proxy_redo(back);
1226                         else
1227                                 kfree_skb(back);
1228
1229                         dev_put(dev);
1230                 } else if (!sched_next || tdif < sched_next)
1231                         sched_next = tdif;
1232         }
1233         del_timer(&tbl->proxy_timer);
1234         if (sched_next)
1235                 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1236         spin_unlock(&tbl->proxy_queue.lock);
1237 }
1238
1239 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1240                     struct sk_buff *skb)
1241 {
1242         unsigned long now = jiffies;
1243         unsigned long sched_next = now + (net_random() % p->proxy_delay);
1244
1245         if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1246                 kfree_skb(skb);
1247                 return;
1248         }
1249
1250         NEIGH_CB(skb)->sched_next = sched_next;
1251         NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1252
1253         spin_lock(&tbl->proxy_queue.lock);
1254         if (del_timer(&tbl->proxy_timer)) {
1255                 if (time_before(tbl->proxy_timer.expires, sched_next))
1256                         sched_next = tbl->proxy_timer.expires;
1257         }
1258         dst_release(skb->dst);
1259         skb->dst = NULL;
1260         dev_hold(skb->dev);
1261         __skb_queue_tail(&tbl->proxy_queue, skb);
1262         mod_timer(&tbl->proxy_timer, sched_next);
1263         spin_unlock(&tbl->proxy_queue.lock);
1264 }
1265
1266
1267 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1268                                       struct neigh_table *tbl)
1269 {
1270         struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1271
1272         if (p) {
1273                 p->tbl            = tbl;
1274                 atomic_set(&p->refcnt, 1);
1275                 INIT_RCU_HEAD(&p->rcu_head);
1276                 p->reachable_time =
1277                                 neigh_rand_reach_time(p->base_reachable_time);
1278                 if (dev) {
1279                         if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1280                                 kfree(p);
1281                                 return NULL;
1282                         }
1283
1284                         dev_hold(dev);
1285                         p->dev = dev;
1286                 }
1287                 p->sysctl_table = NULL;
1288                 write_lock_bh(&tbl->lock);
1289                 p->next         = tbl->parms.next;
1290                 tbl->parms.next = p;
1291                 write_unlock_bh(&tbl->lock);
1292         }
1293         return p;
1294 }
1295
1296 static void neigh_rcu_free_parms(struct rcu_head *head)
1297 {
1298         struct neigh_parms *parms =
1299                 container_of(head, struct neigh_parms, rcu_head);
1300
1301         neigh_parms_put(parms);
1302 }
1303
1304 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1305 {
1306         struct neigh_parms **p;
1307
1308         if (!parms || parms == &tbl->parms)
1309                 return;
1310         write_lock_bh(&tbl->lock);
1311         for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1312                 if (*p == parms) {
1313                         *p = parms->next;
1314                         parms->dead = 1;
1315                         write_unlock_bh(&tbl->lock);
1316                         if (parms->dev)
1317                                 dev_put(parms->dev);
1318                         call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1319                         return;
1320                 }
1321         }
1322         write_unlock_bh(&tbl->lock);
1323         NEIGH_PRINTK1("neigh_parms_release: not found\n");
1324 }
1325
1326 void neigh_parms_destroy(struct neigh_parms *parms)
1327 {
1328         kfree(parms);
1329 }
1330
1331 static struct lock_class_key neigh_table_proxy_queue_class;
1332
1333 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1334 {
1335         unsigned long now = jiffies;
1336         unsigned long phsize;
1337
1338         atomic_set(&tbl->parms.refcnt, 1);
1339         INIT_RCU_HEAD(&tbl->parms.rcu_head);
1340         tbl->parms.reachable_time =
1341                           neigh_rand_reach_time(tbl->parms.base_reachable_time);
1342
1343         if (!tbl->kmem_cachep)
1344                 tbl->kmem_cachep =
1345                         kmem_cache_create(tbl->id, tbl->entry_size, 0,
1346                                           SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1347                                           NULL);
1348         tbl->stats = alloc_percpu(struct neigh_statistics);
1349         if (!tbl->stats)
1350                 panic("cannot create neighbour cache statistics");
1351
1352 #ifdef CONFIG_PROC_FS
1353         tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
1354         if (!tbl->pde)
1355                 panic("cannot create neighbour proc dir entry");
1356         tbl->pde->proc_fops = &neigh_stat_seq_fops;
1357         tbl->pde->data = tbl;
1358 #endif
1359
1360         tbl->hash_mask = 1;
1361         tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1362
1363         phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1364         tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1365
1366         if (!tbl->hash_buckets || !tbl->phash_buckets)
1367                 panic("cannot allocate neighbour cache hashes");
1368
1369         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1370
1371         rwlock_init(&tbl->lock);
1372         init_timer(&tbl->gc_timer);
1373         tbl->gc_timer.data     = (unsigned long)tbl;
1374         tbl->gc_timer.function = neigh_periodic_timer;
1375         tbl->gc_timer.expires  = now + 1;
1376         add_timer(&tbl->gc_timer);
1377
1378         init_timer(&tbl->proxy_timer);
1379         tbl->proxy_timer.data     = (unsigned long)tbl;
1380         tbl->proxy_timer.function = neigh_proxy_process;
1381         skb_queue_head_init_class(&tbl->proxy_queue,
1382                         &neigh_table_proxy_queue_class);
1383
1384         tbl->last_flush = now;
1385         tbl->last_rand  = now + tbl->parms.reachable_time * 20;
1386 }
1387
1388 void neigh_table_init(struct neigh_table *tbl)
1389 {
1390         struct neigh_table *tmp;
1391
1392         neigh_table_init_no_netlink(tbl);
1393         write_lock(&neigh_tbl_lock);
1394         for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1395                 if (tmp->family == tbl->family)
1396                         break;
1397         }
1398         tbl->next       = neigh_tables;
1399         neigh_tables    = tbl;
1400         write_unlock(&neigh_tbl_lock);
1401
1402         if (unlikely(tmp)) {
1403                 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1404                        "family %d\n", tbl->family);
1405                 dump_stack();
1406         }
1407 }
1408
1409 int neigh_table_clear(struct neigh_table *tbl)
1410 {
1411         struct neigh_table **tp;
1412
1413         /* It is not clean... Fix it to unload IPv6 module safely */
1414         del_timer_sync(&tbl->gc_timer);
1415         del_timer_sync(&tbl->proxy_timer);
1416         pneigh_queue_purge(&tbl->proxy_queue);
1417         neigh_ifdown(tbl, NULL);
1418         if (atomic_read(&tbl->entries))
1419                 printk(KERN_CRIT "neighbour leakage\n");
1420         write_lock(&neigh_tbl_lock);
1421         for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1422                 if (*tp == tbl) {
1423                         *tp = tbl->next;
1424                         break;
1425                 }
1426         }
1427         write_unlock(&neigh_tbl_lock);
1428
1429         neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1430         tbl->hash_buckets = NULL;
1431
1432         kfree(tbl->phash_buckets);
1433         tbl->phash_buckets = NULL;
1434
1435         free_percpu(tbl->stats);
1436         tbl->stats = NULL;
1437
1438         return 0;
1439 }
1440
1441 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1442 {
1443         struct net *net = skb->sk->sk_net;
1444         struct ndmsg *ndm;
1445         struct nlattr *dst_attr;
1446         struct neigh_table *tbl;
1447         struct net_device *dev = NULL;
1448         int err = -EINVAL;
1449
1450         if (nlmsg_len(nlh) < sizeof(*ndm))
1451                 goto out;
1452
1453         dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1454         if (dst_attr == NULL)
1455                 goto out;
1456
1457         ndm = nlmsg_data(nlh);
1458         if (ndm->ndm_ifindex) {
1459                 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1460                 if (dev == NULL) {
1461                         err = -ENODEV;
1462                         goto out;
1463                 }
1464         }
1465
1466         read_lock(&neigh_tbl_lock);
1467         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1468                 struct neighbour *neigh;
1469
1470                 if (tbl->family != ndm->ndm_family)
1471                         continue;
1472                 read_unlock(&neigh_tbl_lock);
1473
1474                 if (nla_len(dst_attr) < tbl->key_len)
1475                         goto out_dev_put;
1476
1477                 if (ndm->ndm_flags & NTF_PROXY) {
1478                         err = pneigh_delete(tbl, nla_data(dst_attr), dev);
1479                         goto out_dev_put;
1480                 }
1481
1482                 if (dev == NULL)
1483                         goto out_dev_put;
1484
1485                 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1486                 if (neigh == NULL) {
1487                         err = -ENOENT;
1488                         goto out_dev_put;
1489                 }
1490
1491                 err = neigh_update(neigh, NULL, NUD_FAILED,
1492                                    NEIGH_UPDATE_F_OVERRIDE |
1493                                    NEIGH_UPDATE_F_ADMIN);
1494                 neigh_release(neigh);
1495                 goto out_dev_put;
1496         }
1497         read_unlock(&neigh_tbl_lock);
1498         err = -EAFNOSUPPORT;
1499
1500 out_dev_put:
1501         if (dev)
1502                 dev_put(dev);
1503 out:
1504         return err;
1505 }
1506
1507 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1508 {
1509         struct net *net = skb->sk->sk_net;
1510         struct ndmsg *ndm;
1511         struct nlattr *tb[NDA_MAX+1];
1512         struct neigh_table *tbl;
1513         struct net_device *dev = NULL;
1514         int err;
1515
1516         err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1517         if (err < 0)
1518                 goto out;
1519
1520         err = -EINVAL;
1521         if (tb[NDA_DST] == NULL)
1522                 goto out;
1523
1524         ndm = nlmsg_data(nlh);
1525         if (ndm->ndm_ifindex) {
1526                 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1527                 if (dev == NULL) {
1528                         err = -ENODEV;
1529                         goto out;
1530                 }
1531
1532                 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1533                         goto out_dev_put;
1534         }
1535
1536         read_lock(&neigh_tbl_lock);
1537         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1538                 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1539                 struct neighbour *neigh;
1540                 void *dst, *lladdr;
1541
1542                 if (tbl->family != ndm->ndm_family)
1543                         continue;
1544                 read_unlock(&neigh_tbl_lock);
1545
1546                 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1547                         goto out_dev_put;
1548                 dst = nla_data(tb[NDA_DST]);
1549                 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1550
1551                 if (ndm->ndm_flags & NTF_PROXY) {
1552                         struct pneigh_entry *pn;
1553
1554                         err = -ENOBUFS;
1555                         pn = pneigh_lookup(tbl, dst, dev, 1);
1556                         if (pn) {
1557                                 pn->flags = ndm->ndm_flags;
1558                                 err = 0;
1559                         }
1560                         goto out_dev_put;
1561                 }
1562
1563                 if (dev == NULL)
1564                         goto out_dev_put;
1565
1566                 neigh = neigh_lookup(tbl, dst, dev);
1567                 if (neigh == NULL) {
1568                         if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1569                                 err = -ENOENT;
1570                                 goto out_dev_put;
1571                         }
1572
1573                         neigh = __neigh_lookup_errno(tbl, dst, dev);
1574                         if (IS_ERR(neigh)) {
1575                                 err = PTR_ERR(neigh);
1576                                 goto out_dev_put;
1577                         }
1578                 } else {
1579                         if (nlh->nlmsg_flags & NLM_F_EXCL) {
1580                                 err = -EEXIST;
1581                                 neigh_release(neigh);
1582                                 goto out_dev_put;
1583                         }
1584
1585                         if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1586                                 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1587                 }
1588
1589                 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1590                 neigh_release(neigh);
1591                 goto out_dev_put;
1592         }
1593
1594         read_unlock(&neigh_tbl_lock);
1595         err = -EAFNOSUPPORT;
1596
1597 out_dev_put:
1598         if (dev)
1599                 dev_put(dev);
1600 out:
1601         return err;
1602 }
1603
1604 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1605 {
1606         struct nlattr *nest;
1607
1608         nest = nla_nest_start(skb, NDTA_PARMS);
1609         if (nest == NULL)
1610                 return -ENOBUFS;
1611
1612         if (parms->dev)
1613                 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1614
1615         NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1616         NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1617         NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1618         NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1619         NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1620         NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1621         NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1622         NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1623                       parms->base_reachable_time);
1624         NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1625         NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1626         NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1627         NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1628         NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1629         NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1630
1631         return nla_nest_end(skb, nest);
1632
1633 nla_put_failure:
1634         return nla_nest_cancel(skb, nest);
1635 }
1636
1637 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1638                               u32 pid, u32 seq, int type, int flags)
1639 {
1640         struct nlmsghdr *nlh;
1641         struct ndtmsg *ndtmsg;
1642
1643         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1644         if (nlh == NULL)
1645                 return -EMSGSIZE;
1646
1647         ndtmsg = nlmsg_data(nlh);
1648
1649         read_lock_bh(&tbl->lock);
1650         ndtmsg->ndtm_family = tbl->family;
1651         ndtmsg->ndtm_pad1   = 0;
1652         ndtmsg->ndtm_pad2   = 0;
1653
1654         NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1655         NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1656         NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1657         NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1658         NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1659
1660         {
1661                 unsigned long now = jiffies;
1662                 unsigned int flush_delta = now - tbl->last_flush;
1663                 unsigned int rand_delta = now - tbl->last_rand;
1664
1665                 struct ndt_config ndc = {
1666                         .ndtc_key_len           = tbl->key_len,
1667                         .ndtc_entry_size        = tbl->entry_size,
1668                         .ndtc_entries           = atomic_read(&tbl->entries),
1669                         .ndtc_last_flush        = jiffies_to_msecs(flush_delta),
1670                         .ndtc_last_rand         = jiffies_to_msecs(rand_delta),
1671                         .ndtc_hash_rnd          = tbl->hash_rnd,
1672                         .ndtc_hash_mask         = tbl->hash_mask,
1673                         .ndtc_hash_chain_gc     = tbl->hash_chain_gc,
1674                         .ndtc_proxy_qlen        = tbl->proxy_queue.qlen,
1675                 };
1676
1677                 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1678         }
1679
1680         {
1681                 int cpu;
1682                 struct ndt_stats ndst;
1683
1684                 memset(&ndst, 0, sizeof(ndst));
1685
1686                 for_each_possible_cpu(cpu) {
1687                         struct neigh_statistics *st;
1688
1689                         st = per_cpu_ptr(tbl->stats, cpu);
1690                         ndst.ndts_allocs                += st->allocs;
1691                         ndst.ndts_destroys              += st->destroys;
1692                         ndst.ndts_hash_grows            += st->hash_grows;
1693                         ndst.ndts_res_failed            += st->res_failed;
1694                         ndst.ndts_lookups               += st->lookups;
1695                         ndst.ndts_hits                  += st->hits;
1696                         ndst.ndts_rcv_probes_mcast      += st->rcv_probes_mcast;
1697                         ndst.ndts_rcv_probes_ucast      += st->rcv_probes_ucast;
1698                         ndst.ndts_periodic_gc_runs      += st->periodic_gc_runs;
1699                         ndst.ndts_forced_gc_runs        += st->forced_gc_runs;
1700                 }
1701
1702                 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1703         }
1704
1705         BUG_ON(tbl->parms.dev);
1706         if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1707                 goto nla_put_failure;
1708
1709         read_unlock_bh(&tbl->lock);
1710         return nlmsg_end(skb, nlh);
1711
1712 nla_put_failure:
1713         read_unlock_bh(&tbl->lock);
1714         nlmsg_cancel(skb, nlh);
1715         return -EMSGSIZE;
1716 }
1717
1718 static int neightbl_fill_param_info(struct sk_buff *skb,
1719                                     struct neigh_table *tbl,
1720                                     struct neigh_parms *parms,
1721                                     u32 pid, u32 seq, int type,
1722                                     unsigned int flags)
1723 {
1724         struct ndtmsg *ndtmsg;
1725         struct nlmsghdr *nlh;
1726
1727         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1728         if (nlh == NULL)
1729                 return -EMSGSIZE;
1730
1731         ndtmsg = nlmsg_data(nlh);
1732
1733         read_lock_bh(&tbl->lock);
1734         ndtmsg->ndtm_family = tbl->family;
1735         ndtmsg->ndtm_pad1   = 0;
1736         ndtmsg->ndtm_pad2   = 0;
1737
1738         if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1739             neightbl_fill_parms(skb, parms) < 0)
1740                 goto errout;
1741
1742         read_unlock_bh(&tbl->lock);
1743         return nlmsg_end(skb, nlh);
1744 errout:
1745         read_unlock_bh(&tbl->lock);
1746         nlmsg_cancel(skb, nlh);
1747         return -EMSGSIZE;
1748 }
1749
1750 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1751                                                       int ifindex)
1752 {
1753         struct neigh_parms *p;
1754
1755         for (p = &tbl->parms; p; p = p->next)
1756                 if ((p->dev && p->dev->ifindex == ifindex) ||
1757                     (!p->dev && !ifindex))
1758                         return p;
1759
1760         return NULL;
1761 }
1762
1763 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1764         [NDTA_NAME]             = { .type = NLA_STRING },
1765         [NDTA_THRESH1]          = { .type = NLA_U32 },
1766         [NDTA_THRESH2]          = { .type = NLA_U32 },
1767         [NDTA_THRESH3]          = { .type = NLA_U32 },
1768         [NDTA_GC_INTERVAL]      = { .type = NLA_U64 },
1769         [NDTA_PARMS]            = { .type = NLA_NESTED },
1770 };
1771
1772 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1773         [NDTPA_IFINDEX]                 = { .type = NLA_U32 },
1774         [NDTPA_QUEUE_LEN]               = { .type = NLA_U32 },
1775         [NDTPA_PROXY_QLEN]              = { .type = NLA_U32 },
1776         [NDTPA_APP_PROBES]              = { .type = NLA_U32 },
1777         [NDTPA_UCAST_PROBES]            = { .type = NLA_U32 },
1778         [NDTPA_MCAST_PROBES]            = { .type = NLA_U32 },
1779         [NDTPA_BASE_REACHABLE_TIME]     = { .type = NLA_U64 },
1780         [NDTPA_GC_STALETIME]            = { .type = NLA_U64 },
1781         [NDTPA_DELAY_PROBE_TIME]        = { .type = NLA_U64 },
1782         [NDTPA_RETRANS_TIME]            = { .type = NLA_U64 },
1783         [NDTPA_ANYCAST_DELAY]           = { .type = NLA_U64 },
1784         [NDTPA_PROXY_DELAY]             = { .type = NLA_U64 },
1785         [NDTPA_LOCKTIME]                = { .type = NLA_U64 },
1786 };
1787
1788 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1789 {
1790         struct neigh_table *tbl;
1791         struct ndtmsg *ndtmsg;
1792         struct nlattr *tb[NDTA_MAX+1];
1793         int err;
1794
1795         err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1796                           nl_neightbl_policy);
1797         if (err < 0)
1798                 goto errout;
1799
1800         if (tb[NDTA_NAME] == NULL) {
1801                 err = -EINVAL;
1802                 goto errout;
1803         }
1804
1805         ndtmsg = nlmsg_data(nlh);
1806         read_lock(&neigh_tbl_lock);
1807         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1808                 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1809                         continue;
1810
1811                 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1812                         break;
1813         }
1814
1815         if (tbl == NULL) {
1816                 err = -ENOENT;
1817                 goto errout_locked;
1818         }
1819
1820         /*
1821          * We acquire tbl->lock to be nice to the periodic timers and
1822          * make sure they always see a consistent set of values.
1823          */
1824         write_lock_bh(&tbl->lock);
1825
1826         if (tb[NDTA_PARMS]) {
1827                 struct nlattr *tbp[NDTPA_MAX+1];
1828                 struct neigh_parms *p;
1829                 int i, ifindex = 0;
1830
1831                 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1832                                        nl_ntbl_parm_policy);
1833                 if (err < 0)
1834                         goto errout_tbl_lock;
1835
1836                 if (tbp[NDTPA_IFINDEX])
1837                         ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1838
1839                 p = lookup_neigh_params(tbl, ifindex);
1840                 if (p == NULL) {
1841                         err = -ENOENT;
1842                         goto errout_tbl_lock;
1843                 }
1844
1845                 for (i = 1; i <= NDTPA_MAX; i++) {
1846                         if (tbp[i] == NULL)
1847                                 continue;
1848
1849                         switch (i) {
1850                         case NDTPA_QUEUE_LEN:
1851                                 p->queue_len = nla_get_u32(tbp[i]);
1852                                 break;
1853                         case NDTPA_PROXY_QLEN:
1854                                 p->proxy_qlen = nla_get_u32(tbp[i]);
1855                                 break;
1856                         case NDTPA_APP_PROBES:
1857                                 p->app_probes = nla_get_u32(tbp[i]);
1858                                 break;
1859                         case NDTPA_UCAST_PROBES:
1860                                 p->ucast_probes = nla_get_u32(tbp[i]);
1861                                 break;
1862                         case NDTPA_MCAST_PROBES:
1863                                 p->mcast_probes = nla_get_u32(tbp[i]);
1864                                 break;
1865                         case NDTPA_BASE_REACHABLE_TIME:
1866                                 p->base_reachable_time = nla_get_msecs(tbp[i]);
1867                                 break;
1868                         case NDTPA_GC_STALETIME:
1869                                 p->gc_staletime = nla_get_msecs(tbp[i]);
1870                                 break;
1871                         case NDTPA_DELAY_PROBE_TIME:
1872                                 p->delay_probe_time = nla_get_msecs(tbp[i]);
1873                                 break;
1874                         case NDTPA_RETRANS_TIME:
1875                                 p->retrans_time = nla_get_msecs(tbp[i]);
1876                                 break;
1877                         case NDTPA_ANYCAST_DELAY:
1878                                 p->anycast_delay = nla_get_msecs(tbp[i]);
1879                                 break;
1880                         case NDTPA_PROXY_DELAY:
1881                                 p->proxy_delay = nla_get_msecs(tbp[i]);
1882                                 break;
1883                         case NDTPA_LOCKTIME:
1884                                 p->locktime = nla_get_msecs(tbp[i]);
1885                                 break;
1886                         }
1887                 }
1888         }
1889
1890         if (tb[NDTA_THRESH1])
1891                 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1892
1893         if (tb[NDTA_THRESH2])
1894                 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1895
1896         if (tb[NDTA_THRESH3])
1897                 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1898
1899         if (tb[NDTA_GC_INTERVAL])
1900                 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1901
1902         err = 0;
1903
1904 errout_tbl_lock:
1905         write_unlock_bh(&tbl->lock);
1906 errout_locked:
1907         read_unlock(&neigh_tbl_lock);
1908 errout:
1909         return err;
1910 }
1911
1912 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1913 {
1914         int family, tidx, nidx = 0;
1915         int tbl_skip = cb->args[0];
1916         int neigh_skip = cb->args[1];
1917         struct neigh_table *tbl;
1918
1919         family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1920
1921         read_lock(&neigh_tbl_lock);
1922         for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1923                 struct neigh_parms *p;
1924
1925                 if (tidx < tbl_skip || (family && tbl->family != family))
1926                         continue;
1927
1928                 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1929                                        cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1930                                        NLM_F_MULTI) <= 0)
1931                         break;
1932
1933                 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) {
1934                         if (nidx < neigh_skip)
1935                                 continue;
1936
1937                         if (neightbl_fill_param_info(skb, tbl, p,
1938                                                      NETLINK_CB(cb->skb).pid,
1939                                                      cb->nlh->nlmsg_seq,
1940                                                      RTM_NEWNEIGHTBL,
1941                                                      NLM_F_MULTI) <= 0)
1942                                 goto out;
1943                 }
1944
1945                 neigh_skip = 0;
1946         }
1947 out:
1948         read_unlock(&neigh_tbl_lock);
1949         cb->args[0] = tidx;
1950         cb->args[1] = nidx;
1951
1952         return skb->len;
1953 }
1954
1955 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1956                            u32 pid, u32 seq, int type, unsigned int flags)
1957 {
1958         unsigned long now = jiffies;
1959         struct nda_cacheinfo ci;
1960         struct nlmsghdr *nlh;
1961         struct ndmsg *ndm;
1962
1963         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1964         if (nlh == NULL)
1965                 return -EMSGSIZE;
1966
1967         ndm = nlmsg_data(nlh);
1968         ndm->ndm_family  = neigh->ops->family;
1969         ndm->ndm_pad1    = 0;
1970         ndm->ndm_pad2    = 0;
1971         ndm->ndm_flags   = neigh->flags;
1972         ndm->ndm_type    = neigh->type;
1973         ndm->ndm_ifindex = neigh->dev->ifindex;
1974
1975         NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
1976
1977         read_lock_bh(&neigh->lock);
1978         ndm->ndm_state   = neigh->nud_state;
1979         if ((neigh->nud_state & NUD_VALID) &&
1980             nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
1981                 read_unlock_bh(&neigh->lock);
1982                 goto nla_put_failure;
1983         }
1984
1985         ci.ndm_used      = now - neigh->used;
1986         ci.ndm_confirmed = now - neigh->confirmed;
1987         ci.ndm_updated   = now - neigh->updated;
1988         ci.ndm_refcnt    = atomic_read(&neigh->refcnt) - 1;
1989         read_unlock_bh(&neigh->lock);
1990
1991         NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
1992         NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1993
1994         return nlmsg_end(skb, nlh);
1995
1996 nla_put_failure:
1997         nlmsg_cancel(skb, nlh);
1998         return -EMSGSIZE;
1999 }
2000
2001 static void neigh_update_notify(struct neighbour *neigh)
2002 {
2003         call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2004         __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2005 }
2006
2007 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2008                             struct netlink_callback *cb)
2009 {
2010         struct neighbour *n;
2011         int rc, h, s_h = cb->args[1];
2012         int idx, s_idx = idx = cb->args[2];
2013
2014         read_lock_bh(&tbl->lock);
2015         for (h = 0; h <= tbl->hash_mask; h++) {
2016                 if (h < s_h)
2017                         continue;
2018                 if (h > s_h)
2019                         s_idx = 0;
2020                 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
2021                         if (idx < s_idx)
2022                                 continue;
2023                         if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2024                                             cb->nlh->nlmsg_seq,
2025                                             RTM_NEWNEIGH,
2026                                             NLM_F_MULTI) <= 0) {
2027                                 read_unlock_bh(&tbl->lock);
2028                                 rc = -1;
2029                                 goto out;
2030                         }
2031                 }
2032         }
2033         read_unlock_bh(&tbl->lock);
2034         rc = skb->len;
2035 out:
2036         cb->args[1] = h;
2037         cb->args[2] = idx;
2038         return rc;
2039 }
2040
2041 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2042 {
2043         struct neigh_table *tbl;
2044         int t, family, s_t;
2045
2046         read_lock(&neigh_tbl_lock);
2047         family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2048         s_t = cb->args[0];
2049
2050         for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2051                 if (t < s_t || (family && tbl->family != family))
2052                         continue;
2053                 if (t > s_t)
2054                         memset(&cb->args[1], 0, sizeof(cb->args) -
2055                                                 sizeof(cb->args[0]));
2056                 if (neigh_dump_table(tbl, skb, cb) < 0)
2057                         break;
2058         }
2059         read_unlock(&neigh_tbl_lock);
2060
2061         cb->args[0] = t;
2062         return skb->len;
2063 }
2064
2065 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2066 {
2067         int chain;
2068
2069         read_lock_bh(&tbl->lock);
2070         for (chain = 0; chain <= tbl->hash_mask; chain++) {
2071                 struct neighbour *n;
2072
2073                 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2074                         cb(n, cookie);
2075         }
2076         read_unlock_bh(&tbl->lock);
2077 }
2078 EXPORT_SYMBOL(neigh_for_each);
2079
2080 /* The tbl->lock must be held as a writer and BH disabled. */
2081 void __neigh_for_each_release(struct neigh_table *tbl,
2082                               int (*cb)(struct neighbour *))
2083 {
2084         int chain;
2085
2086         for (chain = 0; chain <= tbl->hash_mask; chain++) {
2087                 struct neighbour *n, **np;
2088
2089                 np = &tbl->hash_buckets[chain];
2090                 while ((n = *np) != NULL) {
2091                         int release;
2092
2093                         write_lock(&n->lock);
2094                         release = cb(n);
2095                         if (release) {
2096                                 *np = n->next;
2097                                 n->dead = 1;
2098                         } else
2099                                 np = &n->next;
2100                         write_unlock(&n->lock);
2101                         if (release)
2102                                 neigh_cleanup_and_release(n);
2103                 }
2104         }
2105 }
2106 EXPORT_SYMBOL(__neigh_for_each_release);
2107
2108 #ifdef CONFIG_PROC_FS
2109
2110 static struct neighbour *neigh_get_first(struct seq_file *seq)
2111 {
2112         struct neigh_seq_state *state = seq->private;
2113         struct neigh_table *tbl = state->tbl;
2114         struct neighbour *n = NULL;
2115         int bucket = state->bucket;
2116
2117         state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2118         for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2119                 n = tbl->hash_buckets[bucket];
2120
2121                 while (n) {
2122                         if (state->neigh_sub_iter) {
2123                                 loff_t fakep = 0;
2124                                 void *v;
2125
2126                                 v = state->neigh_sub_iter(state, n, &fakep);
2127                                 if (!v)
2128                                         goto next;
2129                         }
2130                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2131                                 break;
2132                         if (n->nud_state & ~NUD_NOARP)
2133                                 break;
2134                 next:
2135                         n = n->next;
2136                 }
2137
2138                 if (n)
2139                         break;
2140         }
2141         state->bucket = bucket;
2142
2143         return n;
2144 }
2145
2146 static struct neighbour *neigh_get_next(struct seq_file *seq,
2147                                         struct neighbour *n,
2148                                         loff_t *pos)
2149 {
2150         struct neigh_seq_state *state = seq->private;
2151         struct neigh_table *tbl = state->tbl;
2152
2153         if (state->neigh_sub_iter) {
2154                 void *v = state->neigh_sub_iter(state, n, pos);
2155                 if (v)
2156                         return n;
2157         }
2158         n = n->next;
2159
2160         while (1) {
2161                 while (n) {
2162                         if (state->neigh_sub_iter) {
2163                                 void *v = state->neigh_sub_iter(state, n, pos);
2164                                 if (v)
2165                                         return n;
2166                                 goto next;
2167                         }
2168                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2169                                 break;
2170
2171                         if (n->nud_state & ~NUD_NOARP)
2172                                 break;
2173                 next:
2174                         n = n->next;
2175                 }
2176
2177                 if (n)
2178                         break;
2179
2180                 if (++state->bucket > tbl->hash_mask)
2181                         break;
2182
2183                 n = tbl->hash_buckets[state->bucket];
2184         }
2185
2186         if (n && pos)
2187                 --(*pos);
2188         return n;
2189 }
2190
2191 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2192 {
2193         struct neighbour *n = neigh_get_first(seq);
2194
2195         if (n) {
2196                 while (*pos) {
2197                         n = neigh_get_next(seq, n, pos);
2198                         if (!n)
2199                                 break;
2200                 }
2201         }
2202         return *pos ? NULL : n;
2203 }
2204
2205 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2206 {
2207         struct neigh_seq_state *state = seq->private;
2208         struct neigh_table *tbl = state->tbl;
2209         struct pneigh_entry *pn = NULL;
2210         int bucket = state->bucket;
2211
2212         state->flags |= NEIGH_SEQ_IS_PNEIGH;
2213         for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2214                 pn = tbl->phash_buckets[bucket];
2215                 if (pn)
2216                         break;
2217         }
2218         state->bucket = bucket;
2219
2220         return pn;
2221 }
2222
2223 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2224                                             struct pneigh_entry *pn,
2225                                             loff_t *pos)
2226 {
2227         struct neigh_seq_state *state = seq->private;
2228         struct neigh_table *tbl = state->tbl;
2229
2230         pn = pn->next;
2231         while (!pn) {
2232                 if (++state->bucket > PNEIGH_HASHMASK)
2233                         break;
2234                 pn = tbl->phash_buckets[state->bucket];
2235                 if (pn)
2236                         break;
2237         }
2238
2239         if (pn && pos)
2240                 --(*pos);
2241
2242         return pn;
2243 }
2244
2245 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2246 {
2247         struct pneigh_entry *pn = pneigh_get_first(seq);
2248
2249         if (pn) {
2250                 while (*pos) {
2251                         pn = pneigh_get_next(seq, pn, pos);
2252                         if (!pn)
2253                                 break;
2254                 }
2255         }
2256         return *pos ? NULL : pn;
2257 }
2258
2259 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2260 {
2261         struct neigh_seq_state *state = seq->private;
2262         void *rc;
2263
2264         rc = neigh_get_idx(seq, pos);
2265         if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2266                 rc = pneigh_get_idx(seq, pos);
2267
2268         return rc;
2269 }
2270
2271 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2272 {
2273         struct neigh_seq_state *state = seq->private;
2274         loff_t pos_minus_one;
2275
2276         state->tbl = tbl;
2277         state->bucket = 0;
2278         state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2279
2280         read_lock_bh(&tbl->lock);
2281
2282         pos_minus_one = *pos - 1;
2283         return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2284 }
2285 EXPORT_SYMBOL(neigh_seq_start);
2286
2287 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2288 {
2289         struct neigh_seq_state *state;
2290         void *rc;
2291
2292         if (v == SEQ_START_TOKEN) {
2293                 rc = neigh_get_idx(seq, pos);
2294                 goto out;
2295         }
2296
2297         state = seq->private;
2298         if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2299                 rc = neigh_get_next(seq, v, NULL);
2300                 if (rc)
2301                         goto out;
2302                 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2303                         rc = pneigh_get_first(seq);
2304         } else {
2305                 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2306                 rc = pneigh_get_next(seq, v, NULL);
2307         }
2308 out:
2309         ++(*pos);
2310         return rc;
2311 }
2312 EXPORT_SYMBOL(neigh_seq_next);
2313
2314 void neigh_seq_stop(struct seq_file *seq, void *v)
2315 {
2316         struct neigh_seq_state *state = seq->private;
2317         struct neigh_table *tbl = state->tbl;
2318
2319         read_unlock_bh(&tbl->lock);
2320 }
2321 EXPORT_SYMBOL(neigh_seq_stop);
2322
2323 /* statistics via seq_file */
2324
2325 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2326 {
2327         struct proc_dir_entry *pde = seq->private;
2328         struct neigh_table *tbl = pde->data;
2329         int cpu;
2330
2331         if (*pos == 0)
2332                 return SEQ_START_TOKEN;
2333
2334         for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2335                 if (!cpu_possible(cpu))
2336                         continue;
2337                 *pos = cpu+1;
2338                 return per_cpu_ptr(tbl->stats, cpu);
2339         }
2340         return NULL;
2341 }
2342
2343 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2344 {
2345         struct proc_dir_entry *pde = seq->private;
2346         struct neigh_table *tbl = pde->data;
2347         int cpu;
2348
2349         for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2350                 if (!cpu_possible(cpu))
2351                         continue;
2352                 *pos = cpu+1;
2353                 return per_cpu_ptr(tbl->stats, cpu);
2354         }
2355         return NULL;
2356 }
2357
2358 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2359 {
2360
2361 }
2362
2363 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2364 {
2365         struct proc_dir_entry *pde = seq->private;
2366         struct neigh_table *tbl = pde->data;
2367         struct neigh_statistics *st = v;
2368
2369         if (v == SEQ_START_TOKEN) {
2370                 seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs\n");
2371                 return 0;
2372         }
2373
2374         seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2375                         "%08lx %08lx  %08lx %08lx\n",
2376                    atomic_read(&tbl->entries),
2377
2378                    st->allocs,
2379                    st->destroys,
2380                    st->hash_grows,
2381
2382                    st->lookups,
2383                    st->hits,
2384
2385                    st->res_failed,
2386
2387                    st->rcv_probes_mcast,
2388                    st->rcv_probes_ucast,
2389
2390                    st->periodic_gc_runs,
2391                    st->forced_gc_runs
2392                    );
2393
2394         return 0;
2395 }
2396
2397 static const struct seq_operations neigh_stat_seq_ops = {
2398         .start  = neigh_stat_seq_start,
2399         .next   = neigh_stat_seq_next,
2400         .stop   = neigh_stat_seq_stop,
2401         .show   = neigh_stat_seq_show,
2402 };
2403
2404 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2405 {
2406         int ret = seq_open(file, &neigh_stat_seq_ops);
2407
2408         if (!ret) {
2409                 struct seq_file *sf = file->private_data;
2410                 sf->private = PDE(inode);
2411         }
2412         return ret;
2413 };
2414
2415 static const struct file_operations neigh_stat_seq_fops = {
2416         .owner   = THIS_MODULE,
2417         .open    = neigh_stat_seq_open,
2418         .read    = seq_read,
2419         .llseek  = seq_lseek,
2420         .release = seq_release,
2421 };
2422
2423 #endif /* CONFIG_PROC_FS */
2424
2425 static inline size_t neigh_nlmsg_size(void)
2426 {
2427         return NLMSG_ALIGN(sizeof(struct ndmsg))
2428                + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2429                + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2430                + nla_total_size(sizeof(struct nda_cacheinfo))
2431                + nla_total_size(4); /* NDA_PROBES */
2432 }
2433
2434 static void __neigh_notify(struct neighbour *n, int type, int flags)
2435 {
2436         struct sk_buff *skb;
2437         int err = -ENOBUFS;
2438
2439         skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2440         if (skb == NULL)
2441                 goto errout;
2442
2443         err = neigh_fill_info(skb, n, 0, 0, type, flags);
2444         if (err < 0) {
2445                 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2446                 WARN_ON(err == -EMSGSIZE);
2447                 kfree_skb(skb);
2448                 goto errout;
2449         }
2450         err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2451 errout:
2452         if (err < 0)
2453                 rtnl_set_sk_err(RTNLGRP_NEIGH, err);
2454 }
2455
2456 #ifdef CONFIG_ARPD
2457 void neigh_app_ns(struct neighbour *n)
2458 {
2459         __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2460 }
2461 #endif /* CONFIG_ARPD */
2462
2463 #ifdef CONFIG_SYSCTL
2464
2465 static struct neigh_sysctl_table {
2466         struct ctl_table_header *sysctl_header;
2467         ctl_table               neigh_vars[__NET_NEIGH_MAX];
2468         ctl_table               neigh_dev[2];
2469         ctl_table               neigh_neigh_dir[2];
2470         ctl_table               neigh_proto_dir[2];
2471         ctl_table               neigh_root_dir[2];
2472 } neigh_sysctl_template __read_mostly = {
2473         .neigh_vars = {
2474                 {
2475                         .ctl_name       = NET_NEIGH_MCAST_SOLICIT,
2476                         .procname       = "mcast_solicit",
2477                         .maxlen         = sizeof(int),
2478                         .mode           = 0644,
2479                         .proc_handler   = &proc_dointvec,
2480                 },
2481                 {
2482                         .ctl_name       = NET_NEIGH_UCAST_SOLICIT,
2483                         .procname       = "ucast_solicit",
2484                         .maxlen         = sizeof(int),
2485                         .mode           = 0644,
2486                         .proc_handler   = &proc_dointvec,
2487                 },
2488                 {
2489                         .ctl_name       = NET_NEIGH_APP_SOLICIT,
2490                         .procname       = "app_solicit",
2491                         .maxlen         = sizeof(int),
2492                         .mode           = 0644,
2493                         .proc_handler   = &proc_dointvec,
2494                 },
2495                 {
2496                         .ctl_name       = NET_NEIGH_RETRANS_TIME,
2497                         .procname       = "retrans_time",
2498                         .maxlen         = sizeof(int),
2499                         .mode           = 0644,
2500                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2501                 },
2502                 {
2503                         .ctl_name       = NET_NEIGH_REACHABLE_TIME,
2504                         .procname       = "base_reachable_time",
2505                         .maxlen         = sizeof(int),
2506                         .mode           = 0644,
2507                         .proc_handler   = &proc_dointvec_jiffies,
2508                         .strategy       = &sysctl_jiffies,
2509                 },
2510                 {
2511                         .ctl_name       = NET_NEIGH_DELAY_PROBE_TIME,
2512                         .procname       = "delay_first_probe_time",
2513                         .maxlen         = sizeof(int),
2514                         .mode           = 0644,
2515                         .proc_handler   = &proc_dointvec_jiffies,
2516                         .strategy       = &sysctl_jiffies,
2517                 },
2518                 {
2519                         .ctl_name       = NET_NEIGH_GC_STALE_TIME,
2520                         .procname       = "gc_stale_time",
2521                         .maxlen         = sizeof(int),
2522                         .mode           = 0644,
2523                         .proc_handler   = &proc_dointvec_jiffies,
2524                         .strategy       = &sysctl_jiffies,
2525                 },
2526                 {
2527                         .ctl_name       = NET_NEIGH_UNRES_QLEN,
2528                         .procname       = "unres_qlen",
2529                         .maxlen         = sizeof(int),
2530                         .mode           = 0644,
2531                         .proc_handler   = &proc_dointvec,
2532                 },
2533                 {
2534                         .ctl_name       = NET_NEIGH_PROXY_QLEN,
2535                         .procname       = "proxy_qlen",
2536                         .maxlen         = sizeof(int),
2537                         .mode           = 0644,
2538                         .proc_handler   = &proc_dointvec,
2539                 },
2540                 {
2541                         .ctl_name       = NET_NEIGH_ANYCAST_DELAY,
2542                         .procname       = "anycast_delay",
2543                         .maxlen         = sizeof(int),
2544                         .mode           = 0644,
2545                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2546                 },
2547                 {
2548                         .ctl_name       = NET_NEIGH_PROXY_DELAY,
2549                         .procname       = "proxy_delay",
2550                         .maxlen         = sizeof(int),
2551                         .mode           = 0644,
2552                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2553                 },
2554                 {
2555                         .ctl_name       = NET_NEIGH_LOCKTIME,
2556                         .procname       = "locktime",
2557                         .maxlen         = sizeof(int),
2558                         .mode           = 0644,
2559                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2560                 },
2561                 {
2562                         .ctl_name       = NET_NEIGH_GC_INTERVAL,
2563                         .procname       = "gc_interval",
2564                         .maxlen         = sizeof(int),
2565                         .mode           = 0644,
2566                         .proc_handler   = &proc_dointvec_jiffies,
2567                         .strategy       = &sysctl_jiffies,
2568                 },
2569                 {
2570                         .ctl_name       = NET_NEIGH_GC_THRESH1,
2571                         .procname       = "gc_thresh1",
2572                         .maxlen         = sizeof(int),
2573                         .mode           = 0644,
2574                         .proc_handler   = &proc_dointvec,
2575                 },
2576                 {
2577                         .ctl_name       = NET_NEIGH_GC_THRESH2,
2578                         .procname       = "gc_thresh2",
2579                         .maxlen         = sizeof(int),
2580                         .mode           = 0644,
2581                         .proc_handler   = &proc_dointvec,
2582                 },
2583                 {
2584                         .ctl_name       = NET_NEIGH_GC_THRESH3,
2585                         .procname       = "gc_thresh3",
2586                         .maxlen         = sizeof(int),
2587                         .mode           = 0644,
2588                         .proc_handler   = &proc_dointvec,
2589                 },
2590                 {
2591                         .ctl_name       = NET_NEIGH_RETRANS_TIME_MS,
2592                         .procname       = "retrans_time_ms",
2593                         .maxlen         = sizeof(int),
2594                         .mode           = 0644,
2595                         .proc_handler   = &proc_dointvec_ms_jiffies,
2596                         .strategy       = &sysctl_ms_jiffies,
2597                 },
2598                 {
2599                         .ctl_name       = NET_NEIGH_REACHABLE_TIME_MS,
2600                         .procname       = "base_reachable_time_ms",
2601                         .maxlen         = sizeof(int),
2602                         .mode           = 0644,
2603                         .proc_handler   = &proc_dointvec_ms_jiffies,
2604                         .strategy       = &sysctl_ms_jiffies,
2605                 },
2606         },
2607         .neigh_dev = {
2608                 {
2609                         .ctl_name       = NET_PROTO_CONF_DEFAULT,
2610                         .procname       = "default",
2611                         .mode           = 0555,
2612                 },
2613         },
2614         .neigh_neigh_dir = {
2615                 {
2616                         .procname       = "neigh",
2617                         .mode           = 0555,
2618                 },
2619         },
2620         .neigh_proto_dir = {
2621                 {
2622                         .mode           = 0555,
2623                 },
2624         },
2625         .neigh_root_dir = {
2626                 {
2627                         .ctl_name       = CTL_NET,
2628                         .procname       = "net",
2629                         .mode           = 0555,
2630                 },
2631         },
2632 };
2633
2634 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2635                           int p_id, int pdev_id, char *p_name,
2636                           proc_handler *handler, ctl_handler *strategy)
2637 {
2638         struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template,
2639                                                sizeof(*t), GFP_KERNEL);
2640         const char *dev_name_source = NULL;
2641         char *dev_name = NULL;
2642         int err = 0;
2643
2644         if (!t)
2645                 return -ENOBUFS;
2646         t->neigh_vars[0].data  = &p->mcast_probes;
2647         t->neigh_vars[1].data  = &p->ucast_probes;
2648         t->neigh_vars[2].data  = &p->app_probes;
2649         t->neigh_vars[3].data  = &p->retrans_time;
2650         t->neigh_vars[4].data  = &p->base_reachable_time;
2651         t->neigh_vars[5].data  = &p->delay_probe_time;
2652         t->neigh_vars[6].data  = &p->gc_staletime;
2653         t->neigh_vars[7].data  = &p->queue_len;
2654         t->neigh_vars[8].data  = &p->proxy_qlen;
2655         t->neigh_vars[9].data  = &p->anycast_delay;
2656         t->neigh_vars[10].data = &p->proxy_delay;
2657         t->neigh_vars[11].data = &p->locktime;
2658
2659         if (dev) {
2660                 dev_name_source = dev->name;
2661                 t->neigh_dev[0].ctl_name = dev->ifindex;
2662                 t->neigh_vars[12].procname = NULL;
2663                 t->neigh_vars[13].procname = NULL;
2664                 t->neigh_vars[14].procname = NULL;
2665                 t->neigh_vars[15].procname = NULL;
2666         } else {
2667                 dev_name_source = t->neigh_dev[0].procname;
2668                 t->neigh_vars[12].data = (int *)(p + 1);
2669                 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2670                 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2671                 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2672         }
2673
2674         t->neigh_vars[16].data  = &p->retrans_time;
2675         t->neigh_vars[17].data  = &p->base_reachable_time;
2676
2677         if (handler || strategy) {
2678                 /* RetransTime */
2679                 t->neigh_vars[3].proc_handler = handler;
2680                 t->neigh_vars[3].strategy = strategy;
2681                 t->neigh_vars[3].extra1 = dev;
2682                 /* ReachableTime */
2683                 t->neigh_vars[4].proc_handler = handler;
2684                 t->neigh_vars[4].strategy = strategy;
2685                 t->neigh_vars[4].extra1 = dev;
2686                 /* RetransTime (in milliseconds)*/
2687                 t->neigh_vars[16].proc_handler = handler;
2688                 t->neigh_vars[16].strategy = strategy;
2689                 t->neigh_vars[16].extra1 = dev;
2690                 /* ReachableTime (in milliseconds) */
2691                 t->neigh_vars[17].proc_handler = handler;
2692                 t->neigh_vars[17].strategy = strategy;
2693                 t->neigh_vars[17].extra1 = dev;
2694         }
2695
2696         dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2697         if (!dev_name) {
2698                 err = -ENOBUFS;
2699                 goto free;
2700         }
2701
2702         t->neigh_dev[0].procname = dev_name;
2703
2704         t->neigh_neigh_dir[0].ctl_name = pdev_id;
2705
2706         t->neigh_proto_dir[0].procname = p_name;
2707         t->neigh_proto_dir[0].ctl_name = p_id;
2708
2709         t->neigh_dev[0].child          = t->neigh_vars;
2710         t->neigh_neigh_dir[0].child    = t->neigh_dev;
2711         t->neigh_proto_dir[0].child    = t->neigh_neigh_dir;
2712         t->neigh_root_dir[0].child     = t->neigh_proto_dir;
2713
2714         t->sysctl_header = register_sysctl_table(t->neigh_root_dir);
2715         if (!t->sysctl_header) {
2716                 err = -ENOBUFS;
2717                 goto free_procname;
2718         }
2719         p->sysctl_table = t;
2720         return 0;
2721
2722         /* error path */
2723  free_procname:
2724         kfree(dev_name);
2725  free:
2726         kfree(t);
2727
2728         return err;
2729 }
2730
2731 void neigh_sysctl_unregister(struct neigh_parms *p)
2732 {
2733         if (p->sysctl_table) {
2734                 struct neigh_sysctl_table *t = p->sysctl_table;
2735                 p->sysctl_table = NULL;
2736                 unregister_sysctl_table(t->sysctl_header);
2737                 kfree(t->neigh_dev[0].procname);
2738                 kfree(t);
2739         }
2740 }
2741
2742 #endif  /* CONFIG_SYSCTL */
2743
2744 static int __init neigh_init(void)
2745 {
2746         rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2747         rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2748         rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2749
2750         rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2751         rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2752
2753         return 0;
2754 }
2755
2756 subsys_initcall(neigh_init);
2757
2758 EXPORT_SYMBOL(__neigh_event_send);
2759 EXPORT_SYMBOL(neigh_changeaddr);
2760 EXPORT_SYMBOL(neigh_compat_output);
2761 EXPORT_SYMBOL(neigh_connected_output);
2762 EXPORT_SYMBOL(neigh_create);
2763 EXPORT_SYMBOL(neigh_destroy);
2764 EXPORT_SYMBOL(neigh_event_ns);
2765 EXPORT_SYMBOL(neigh_ifdown);
2766 EXPORT_SYMBOL(neigh_lookup);
2767 EXPORT_SYMBOL(neigh_lookup_nodev);
2768 EXPORT_SYMBOL(neigh_parms_alloc);
2769 EXPORT_SYMBOL(neigh_parms_release);
2770 EXPORT_SYMBOL(neigh_rand_reach_time);
2771 EXPORT_SYMBOL(neigh_resolve_output);
2772 EXPORT_SYMBOL(neigh_table_clear);
2773 EXPORT_SYMBOL(neigh_table_init);
2774 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2775 EXPORT_SYMBOL(neigh_update);
2776 EXPORT_SYMBOL(pneigh_enqueue);
2777 EXPORT_SYMBOL(pneigh_lookup);
2778
2779 #ifdef CONFIG_ARPD
2780 EXPORT_SYMBOL(neigh_app_ns);
2781 #endif
2782 #ifdef CONFIG_SYSCTL
2783 EXPORT_SYMBOL(neigh_sysctl_register);
2784 EXPORT_SYMBOL(neigh_sysctl_unregister);
2785 #endif