[PATCH] vmscan: use unsigned longs
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Incremented by the number of inactive pages that were scanned */
56         unsigned long nr_scanned;
57
58         /* Incremented by the number of pages reclaimed */
59         unsigned long nr_reclaimed;
60
61         unsigned long nr_mapped;        /* From page_state */
62
63         /* This context's GFP mask */
64         gfp_t gfp_mask;
65
66         int may_writepage;
67
68         /* Can pages be swapped as part of reclaim? */
69         int may_swap;
70
71         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
72          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
73          * In this context, it doesn't matter that we scan the
74          * whole list at once. */
75         int swap_cluster_max;
76 };
77
78 /*
79  * The list of shrinker callbacks used by to apply pressure to
80  * ageable caches.
81  */
82 struct shrinker {
83         shrinker_t              shrinker;
84         struct list_head        list;
85         int                     seeks;  /* seeks to recreate an obj */
86         long                    nr;     /* objs pending delete */
87 };
88
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field)                    \
93         do {                                                            \
94                 if ((_page)->lru.prev != _base) {                       \
95                         struct page *prev;                              \
96                                                                         \
97                         prev = lru_to_page(&(_page->lru));              \
98                         prefetch(&prev->_field);                        \
99                 }                                                       \
100         } while (0)
101 #else
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
103 #endif
104
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
107         do {                                                            \
108                 if ((_page)->lru.prev != _base) {                       \
109                         struct page *prev;                              \
110                                                                         \
111                         prev = lru_to_page(&(_page->lru));              \
112                         prefetchw(&prev->_field);                       \
113                 }                                                       \
114         } while (0)
115 #else
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118
119 /*
120  * From 0 .. 100.  Higher means more swappy.
121  */
122 int vm_swappiness = 60;
123 static long total_memory;
124
125 static LIST_HEAD(shrinker_list);
126 static DECLARE_RWSEM(shrinker_rwsem);
127
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
132 {
133         struct shrinker *shrinker;
134
135         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
136         if (shrinker) {
137                 shrinker->shrinker = theshrinker;
138                 shrinker->seeks = seeks;
139                 shrinker->nr = 0;
140                 down_write(&shrinker_rwsem);
141                 list_add_tail(&shrinker->list, &shrinker_list);
142                 up_write(&shrinker_rwsem);
143         }
144         return shrinker;
145 }
146 EXPORT_SYMBOL(set_shrinker);
147
148 /*
149  * Remove one
150  */
151 void remove_shrinker(struct shrinker *shrinker)
152 {
153         down_write(&shrinker_rwsem);
154         list_del(&shrinker->list);
155         up_write(&shrinker_rwsem);
156         kfree(shrinker);
157 }
158 EXPORT_SYMBOL(remove_shrinker);
159
160 #define SHRINK_BATCH 128
161 /*
162  * Call the shrink functions to age shrinkable caches
163  *
164  * Here we assume it costs one seek to replace a lru page and that it also
165  * takes a seek to recreate a cache object.  With this in mind we age equal
166  * percentages of the lru and ageable caches.  This should balance the seeks
167  * generated by these structures.
168  *
169  * If the vm encounted mapped pages on the LRU it increase the pressure on
170  * slab to avoid swapping.
171  *
172  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
173  *
174  * `lru_pages' represents the number of on-LRU pages in all the zones which
175  * are eligible for the caller's allocation attempt.  It is used for balancing
176  * slab reclaim versus page reclaim.
177  *
178  * Returns the number of slab objects which we shrunk.
179  */
180 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
181                         unsigned long lru_pages)
182 {
183         struct shrinker *shrinker;
184         unsigned long ret = 0;
185
186         if (scanned == 0)
187                 scanned = SWAP_CLUSTER_MAX;
188
189         if (!down_read_trylock(&shrinker_rwsem))
190                 return 1;       /* Assume we'll be able to shrink next time */
191
192         list_for_each_entry(shrinker, &shrinker_list, list) {
193                 unsigned long long delta;
194                 unsigned long total_scan;
195                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
196
197                 delta = (4 * scanned) / shrinker->seeks;
198                 delta *= max_pass;
199                 do_div(delta, lru_pages + 1);
200                 shrinker->nr += delta;
201                 if (shrinker->nr < 0) {
202                         printk(KERN_ERR "%s: nr=%ld\n",
203                                         __FUNCTION__, shrinker->nr);
204                         shrinker->nr = max_pass;
205                 }
206
207                 /*
208                  * Avoid risking looping forever due to too large nr value:
209                  * never try to free more than twice the estimate number of
210                  * freeable entries.
211                  */
212                 if (shrinker->nr > max_pass * 2)
213                         shrinker->nr = max_pass * 2;
214
215                 total_scan = shrinker->nr;
216                 shrinker->nr = 0;
217
218                 while (total_scan >= SHRINK_BATCH) {
219                         long this_scan = SHRINK_BATCH;
220                         int shrink_ret;
221                         int nr_before;
222
223                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
224                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
225                         if (shrink_ret == -1)
226                                 break;
227                         if (shrink_ret < nr_before)
228                                 ret += nr_before - shrink_ret;
229                         mod_page_state(slabs_scanned, this_scan);
230                         total_scan -= this_scan;
231
232                         cond_resched();
233                 }
234
235                 shrinker->nr += total_scan;
236         }
237         up_read(&shrinker_rwsem);
238         return ret;
239 }
240
241 /* Called without lock on whether page is mapped, so answer is unstable */
242 static inline int page_mapping_inuse(struct page *page)
243 {
244         struct address_space *mapping;
245
246         /* Page is in somebody's page tables. */
247         if (page_mapped(page))
248                 return 1;
249
250         /* Be more reluctant to reclaim swapcache than pagecache */
251         if (PageSwapCache(page))
252                 return 1;
253
254         mapping = page_mapping(page);
255         if (!mapping)
256                 return 0;
257
258         /* File is mmap'd by somebody? */
259         return mapping_mapped(mapping);
260 }
261
262 static inline int is_page_cache_freeable(struct page *page)
263 {
264         return page_count(page) - !!PagePrivate(page) == 2;
265 }
266
267 static int may_write_to_queue(struct backing_dev_info *bdi)
268 {
269         if (current->flags & PF_SWAPWRITE)
270                 return 1;
271         if (!bdi_write_congested(bdi))
272                 return 1;
273         if (bdi == current->backing_dev_info)
274                 return 1;
275         return 0;
276 }
277
278 /*
279  * We detected a synchronous write error writing a page out.  Probably
280  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
281  * fsync(), msync() or close().
282  *
283  * The tricky part is that after writepage we cannot touch the mapping: nothing
284  * prevents it from being freed up.  But we have a ref on the page and once
285  * that page is locked, the mapping is pinned.
286  *
287  * We're allowed to run sleeping lock_page() here because we know the caller has
288  * __GFP_FS.
289  */
290 static void handle_write_error(struct address_space *mapping,
291                                 struct page *page, int error)
292 {
293         lock_page(page);
294         if (page_mapping(page) == mapping) {
295                 if (error == -ENOSPC)
296                         set_bit(AS_ENOSPC, &mapping->flags);
297                 else
298                         set_bit(AS_EIO, &mapping->flags);
299         }
300         unlock_page(page);
301 }
302
303 /*
304  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
305  */
306 static pageout_t pageout(struct page *page, struct address_space *mapping)
307 {
308         /*
309          * If the page is dirty, only perform writeback if that write
310          * will be non-blocking.  To prevent this allocation from being
311          * stalled by pagecache activity.  But note that there may be
312          * stalls if we need to run get_block().  We could test
313          * PagePrivate for that.
314          *
315          * If this process is currently in generic_file_write() against
316          * this page's queue, we can perform writeback even if that
317          * will block.
318          *
319          * If the page is swapcache, write it back even if that would
320          * block, for some throttling. This happens by accident, because
321          * swap_backing_dev_info is bust: it doesn't reflect the
322          * congestion state of the swapdevs.  Easy to fix, if needed.
323          * See swapfile.c:page_queue_congested().
324          */
325         if (!is_page_cache_freeable(page))
326                 return PAGE_KEEP;
327         if (!mapping) {
328                 /*
329                  * Some data journaling orphaned pages can have
330                  * page->mapping == NULL while being dirty with clean buffers.
331                  */
332                 if (PagePrivate(page)) {
333                         if (try_to_free_buffers(page)) {
334                                 ClearPageDirty(page);
335                                 printk("%s: orphaned page\n", __FUNCTION__);
336                                 return PAGE_CLEAN;
337                         }
338                 }
339                 return PAGE_KEEP;
340         }
341         if (mapping->a_ops->writepage == NULL)
342                 return PAGE_ACTIVATE;
343         if (!may_write_to_queue(mapping->backing_dev_info))
344                 return PAGE_KEEP;
345
346         if (clear_page_dirty_for_io(page)) {
347                 int res;
348                 struct writeback_control wbc = {
349                         .sync_mode = WB_SYNC_NONE,
350                         .nr_to_write = SWAP_CLUSTER_MAX,
351                         .nonblocking = 1,
352                         .for_reclaim = 1,
353                 };
354
355                 SetPageReclaim(page);
356                 res = mapping->a_ops->writepage(page, &wbc);
357                 if (res < 0)
358                         handle_write_error(mapping, page, res);
359                 if (res == AOP_WRITEPAGE_ACTIVATE) {
360                         ClearPageReclaim(page);
361                         return PAGE_ACTIVATE;
362                 }
363                 if (!PageWriteback(page)) {
364                         /* synchronous write or broken a_ops? */
365                         ClearPageReclaim(page);
366                 }
367
368                 return PAGE_SUCCESS;
369         }
370
371         return PAGE_CLEAN;
372 }
373
374 static int remove_mapping(struct address_space *mapping, struct page *page)
375 {
376         if (!mapping)
377                 return 0;               /* truncate got there first */
378
379         write_lock_irq(&mapping->tree_lock);
380
381         /*
382          * The non-racy check for busy page.  It is critical to check
383          * PageDirty _after_ making sure that the page is freeable and
384          * not in use by anybody.       (pagecache + us == 2)
385          */
386         if (unlikely(page_count(page) != 2))
387                 goto cannot_free;
388         smp_rmb();
389         if (unlikely(PageDirty(page)))
390                 goto cannot_free;
391
392         if (PageSwapCache(page)) {
393                 swp_entry_t swap = { .val = page_private(page) };
394                 __delete_from_swap_cache(page);
395                 write_unlock_irq(&mapping->tree_lock);
396                 swap_free(swap);
397                 __put_page(page);       /* The pagecache ref */
398                 return 1;
399         }
400
401         __remove_from_page_cache(page);
402         write_unlock_irq(&mapping->tree_lock);
403         __put_page(page);
404         return 1;
405
406 cannot_free:
407         write_unlock_irq(&mapping->tree_lock);
408         return 0;
409 }
410
411 /*
412  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
413  */
414 static unsigned long shrink_list(struct list_head *page_list,
415                                 struct scan_control *sc)
416 {
417         LIST_HEAD(ret_pages);
418         struct pagevec freed_pvec;
419         int pgactivate = 0;
420         unsigned long reclaimed = 0;
421
422         cond_resched();
423
424         pagevec_init(&freed_pvec, 1);
425         while (!list_empty(page_list)) {
426                 struct address_space *mapping;
427                 struct page *page;
428                 int may_enter_fs;
429                 int referenced;
430
431                 cond_resched();
432
433                 page = lru_to_page(page_list);
434                 list_del(&page->lru);
435
436                 if (TestSetPageLocked(page))
437                         goto keep;
438
439                 BUG_ON(PageActive(page));
440
441                 sc->nr_scanned++;
442
443                 if (!sc->may_swap && page_mapped(page))
444                         goto keep_locked;
445
446                 /* Double the slab pressure for mapped and swapcache pages */
447                 if (page_mapped(page) || PageSwapCache(page))
448                         sc->nr_scanned++;
449
450                 if (PageWriteback(page))
451                         goto keep_locked;
452
453                 referenced = page_referenced(page, 1);
454                 /* In active use or really unfreeable?  Activate it. */
455                 if (referenced && page_mapping_inuse(page))
456                         goto activate_locked;
457
458 #ifdef CONFIG_SWAP
459                 /*
460                  * Anonymous process memory has backing store?
461                  * Try to allocate it some swap space here.
462                  */
463                 if (PageAnon(page) && !PageSwapCache(page)) {
464                         if (!sc->may_swap)
465                                 goto keep_locked;
466                         if (!add_to_swap(page, GFP_ATOMIC))
467                                 goto activate_locked;
468                 }
469 #endif /* CONFIG_SWAP */
470
471                 mapping = page_mapping(page);
472                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
473                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
474
475                 /*
476                  * The page is mapped into the page tables of one or more
477                  * processes. Try to unmap it here.
478                  */
479                 if (page_mapped(page) && mapping) {
480                         /*
481                          * No unmapping if we do not swap
482                          */
483                         if (!sc->may_swap)
484                                 goto keep_locked;
485
486                         switch (try_to_unmap(page, 0)) {
487                         case SWAP_FAIL:
488                                 goto activate_locked;
489                         case SWAP_AGAIN:
490                                 goto keep_locked;
491                         case SWAP_SUCCESS:
492                                 ; /* try to free the page below */
493                         }
494                 }
495
496                 if (PageDirty(page)) {
497                         if (referenced)
498                                 goto keep_locked;
499                         if (!may_enter_fs)
500                                 goto keep_locked;
501                         if (!sc->may_writepage)
502                                 goto keep_locked;
503
504                         /* Page is dirty, try to write it out here */
505                         switch(pageout(page, mapping)) {
506                         case PAGE_KEEP:
507                                 goto keep_locked;
508                         case PAGE_ACTIVATE:
509                                 goto activate_locked;
510                         case PAGE_SUCCESS:
511                                 if (PageWriteback(page) || PageDirty(page))
512                                         goto keep;
513                                 /*
514                                  * A synchronous write - probably a ramdisk.  Go
515                                  * ahead and try to reclaim the page.
516                                  */
517                                 if (TestSetPageLocked(page))
518                                         goto keep;
519                                 if (PageDirty(page) || PageWriteback(page))
520                                         goto keep_locked;
521                                 mapping = page_mapping(page);
522                         case PAGE_CLEAN:
523                                 ; /* try to free the page below */
524                         }
525                 }
526
527                 /*
528                  * If the page has buffers, try to free the buffer mappings
529                  * associated with this page. If we succeed we try to free
530                  * the page as well.
531                  *
532                  * We do this even if the page is PageDirty().
533                  * try_to_release_page() does not perform I/O, but it is
534                  * possible for a page to have PageDirty set, but it is actually
535                  * clean (all its buffers are clean).  This happens if the
536                  * buffers were written out directly, with submit_bh(). ext3
537                  * will do this, as well as the blockdev mapping. 
538                  * try_to_release_page() will discover that cleanness and will
539                  * drop the buffers and mark the page clean - it can be freed.
540                  *
541                  * Rarely, pages can have buffers and no ->mapping.  These are
542                  * the pages which were not successfully invalidated in
543                  * truncate_complete_page().  We try to drop those buffers here
544                  * and if that worked, and the page is no longer mapped into
545                  * process address space (page_count == 1) it can be freed.
546                  * Otherwise, leave the page on the LRU so it is swappable.
547                  */
548                 if (PagePrivate(page)) {
549                         if (!try_to_release_page(page, sc->gfp_mask))
550                                 goto activate_locked;
551                         if (!mapping && page_count(page) == 1)
552                                 goto free_it;
553                 }
554
555                 if (!remove_mapping(mapping, page))
556                         goto keep_locked;
557
558 free_it:
559                 unlock_page(page);
560                 reclaimed++;
561                 if (!pagevec_add(&freed_pvec, page))
562                         __pagevec_release_nonlru(&freed_pvec);
563                 continue;
564
565 activate_locked:
566                 SetPageActive(page);
567                 pgactivate++;
568 keep_locked:
569                 unlock_page(page);
570 keep:
571                 list_add(&page->lru, &ret_pages);
572                 BUG_ON(PageLRU(page));
573         }
574         list_splice(&ret_pages, page_list);
575         if (pagevec_count(&freed_pvec))
576                 __pagevec_release_nonlru(&freed_pvec);
577         mod_page_state(pgactivate, pgactivate);
578         sc->nr_reclaimed += reclaimed;
579         return reclaimed;
580 }
581
582 #ifdef CONFIG_MIGRATION
583 static inline void move_to_lru(struct page *page)
584 {
585         list_del(&page->lru);
586         if (PageActive(page)) {
587                 /*
588                  * lru_cache_add_active checks that
589                  * the PG_active bit is off.
590                  */
591                 ClearPageActive(page);
592                 lru_cache_add_active(page);
593         } else {
594                 lru_cache_add(page);
595         }
596         put_page(page);
597 }
598
599 /*
600  * Add isolated pages on the list back to the LRU.
601  *
602  * returns the number of pages put back.
603  */
604 unsigned long putback_lru_pages(struct list_head *l)
605 {
606         struct page *page;
607         struct page *page2;
608         unsigned long count = 0;
609
610         list_for_each_entry_safe(page, page2, l, lru) {
611                 move_to_lru(page);
612                 count++;
613         }
614         return count;
615 }
616
617 /*
618  * Non migratable page
619  */
620 int fail_migrate_page(struct page *newpage, struct page *page)
621 {
622         return -EIO;
623 }
624 EXPORT_SYMBOL(fail_migrate_page);
625
626 /*
627  * swapout a single page
628  * page is locked upon entry, unlocked on exit
629  */
630 static int swap_page(struct page *page)
631 {
632         struct address_space *mapping = page_mapping(page);
633
634         if (page_mapped(page) && mapping)
635                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
636                         goto unlock_retry;
637
638         if (PageDirty(page)) {
639                 /* Page is dirty, try to write it out here */
640                 switch(pageout(page, mapping)) {
641                 case PAGE_KEEP:
642                 case PAGE_ACTIVATE:
643                         goto unlock_retry;
644
645                 case PAGE_SUCCESS:
646                         goto retry;
647
648                 case PAGE_CLEAN:
649                         ; /* try to free the page below */
650                 }
651         }
652
653         if (PagePrivate(page)) {
654                 if (!try_to_release_page(page, GFP_KERNEL) ||
655                     (!mapping && page_count(page) == 1))
656                         goto unlock_retry;
657         }
658
659         if (remove_mapping(mapping, page)) {
660                 /* Success */
661                 unlock_page(page);
662                 return 0;
663         }
664
665 unlock_retry:
666         unlock_page(page);
667
668 retry:
669         return -EAGAIN;
670 }
671 EXPORT_SYMBOL(swap_page);
672
673 /*
674  * Page migration was first developed in the context of the memory hotplug
675  * project. The main authors of the migration code are:
676  *
677  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
678  * Hirokazu Takahashi <taka@valinux.co.jp>
679  * Dave Hansen <haveblue@us.ibm.com>
680  * Christoph Lameter <clameter@sgi.com>
681  */
682
683 /*
684  * Remove references for a page and establish the new page with the correct
685  * basic settings to be able to stop accesses to the page.
686  */
687 int migrate_page_remove_references(struct page *newpage,
688                                 struct page *page, int nr_refs)
689 {
690         struct address_space *mapping = page_mapping(page);
691         struct page **radix_pointer;
692
693         /*
694          * Avoid doing any of the following work if the page count
695          * indicates that the page is in use or truncate has removed
696          * the page.
697          */
698         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
699                 return -EAGAIN;
700
701         /*
702          * Establish swap ptes for anonymous pages or destroy pte
703          * maps for files.
704          *
705          * In order to reestablish file backed mappings the fault handlers
706          * will take the radix tree_lock which may then be used to stop
707          * processses from accessing this page until the new page is ready.
708          *
709          * A process accessing via a swap pte (an anonymous page) will take a
710          * page_lock on the old page which will block the process until the
711          * migration attempt is complete. At that time the PageSwapCache bit
712          * will be examined. If the page was migrated then the PageSwapCache
713          * bit will be clear and the operation to retrieve the page will be
714          * retried which will find the new page in the radix tree. Then a new
715          * direct mapping may be generated based on the radix tree contents.
716          *
717          * If the page was not migrated then the PageSwapCache bit
718          * is still set and the operation may continue.
719          */
720         if (try_to_unmap(page, 1) == SWAP_FAIL)
721                 /* A vma has VM_LOCKED set -> Permanent failure */
722                 return -EPERM;
723
724         /*
725          * Give up if we were unable to remove all mappings.
726          */
727         if (page_mapcount(page))
728                 return -EAGAIN;
729
730         write_lock_irq(&mapping->tree_lock);
731
732         radix_pointer = (struct page **)radix_tree_lookup_slot(
733                                                 &mapping->page_tree,
734                                                 page_index(page));
735
736         if (!page_mapping(page) || page_count(page) != nr_refs ||
737                         *radix_pointer != page) {
738                 write_unlock_irq(&mapping->tree_lock);
739                 return -EAGAIN;
740         }
741
742         /*
743          * Now we know that no one else is looking at the page.
744          *
745          * Certain minimal information about a page must be available
746          * in order for other subsystems to properly handle the page if they
747          * find it through the radix tree update before we are finished
748          * copying the page.
749          */
750         get_page(newpage);
751         newpage->index = page->index;
752         newpage->mapping = page->mapping;
753         if (PageSwapCache(page)) {
754                 SetPageSwapCache(newpage);
755                 set_page_private(newpage, page_private(page));
756         }
757
758         *radix_pointer = newpage;
759         __put_page(page);
760         write_unlock_irq(&mapping->tree_lock);
761
762         return 0;
763 }
764 EXPORT_SYMBOL(migrate_page_remove_references);
765
766 /*
767  * Copy the page to its new location
768  */
769 void migrate_page_copy(struct page *newpage, struct page *page)
770 {
771         copy_highpage(newpage, page);
772
773         if (PageError(page))
774                 SetPageError(newpage);
775         if (PageReferenced(page))
776                 SetPageReferenced(newpage);
777         if (PageUptodate(page))
778                 SetPageUptodate(newpage);
779         if (PageActive(page))
780                 SetPageActive(newpage);
781         if (PageChecked(page))
782                 SetPageChecked(newpage);
783         if (PageMappedToDisk(page))
784                 SetPageMappedToDisk(newpage);
785
786         if (PageDirty(page)) {
787                 clear_page_dirty_for_io(page);
788                 set_page_dirty(newpage);
789         }
790
791         ClearPageSwapCache(page);
792         ClearPageActive(page);
793         ClearPagePrivate(page);
794         set_page_private(page, 0);
795         page->mapping = NULL;
796
797         /*
798          * If any waiters have accumulated on the new page then
799          * wake them up.
800          */
801         if (PageWriteback(newpage))
802                 end_page_writeback(newpage);
803 }
804 EXPORT_SYMBOL(migrate_page_copy);
805
806 /*
807  * Common logic to directly migrate a single page suitable for
808  * pages that do not use PagePrivate.
809  *
810  * Pages are locked upon entry and exit.
811  */
812 int migrate_page(struct page *newpage, struct page *page)
813 {
814         int rc;
815
816         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
817
818         rc = migrate_page_remove_references(newpage, page, 2);
819
820         if (rc)
821                 return rc;
822
823         migrate_page_copy(newpage, page);
824
825         /*
826          * Remove auxiliary swap entries and replace
827          * them with real ptes.
828          *
829          * Note that a real pte entry will allow processes that are not
830          * waiting on the page lock to use the new page via the page tables
831          * before the new page is unlocked.
832          */
833         remove_from_swap(newpage);
834         return 0;
835 }
836 EXPORT_SYMBOL(migrate_page);
837
838 /*
839  * migrate_pages
840  *
841  * Two lists are passed to this function. The first list
842  * contains the pages isolated from the LRU to be migrated.
843  * The second list contains new pages that the pages isolated
844  * can be moved to. If the second list is NULL then all
845  * pages are swapped out.
846  *
847  * The function returns after 10 attempts or if no pages
848  * are movable anymore because to has become empty
849  * or no retryable pages exist anymore.
850  *
851  * Return: Number of pages not migrated when "to" ran empty.
852  */
853 unsigned long migrate_pages(struct list_head *from, struct list_head *to,
854                   struct list_head *moved, struct list_head *failed)
855 {
856         unsigned long retry;
857         unsigned long nr_failed = 0;
858         int pass = 0;
859         struct page *page;
860         struct page *page2;
861         int swapwrite = current->flags & PF_SWAPWRITE;
862         int rc;
863
864         if (!swapwrite)
865                 current->flags |= PF_SWAPWRITE;
866
867 redo:
868         retry = 0;
869
870         list_for_each_entry_safe(page, page2, from, lru) {
871                 struct page *newpage = NULL;
872                 struct address_space *mapping;
873
874                 cond_resched();
875
876                 rc = 0;
877                 if (page_count(page) == 1)
878                         /* page was freed from under us. So we are done. */
879                         goto next;
880
881                 if (to && list_empty(to))
882                         break;
883
884                 /*
885                  * Skip locked pages during the first two passes to give the
886                  * functions holding the lock time to release the page. Later we
887                  * use lock_page() to have a higher chance of acquiring the
888                  * lock.
889                  */
890                 rc = -EAGAIN;
891                 if (pass > 2)
892                         lock_page(page);
893                 else
894                         if (TestSetPageLocked(page))
895                                 goto next;
896
897                 /*
898                  * Only wait on writeback if we have already done a pass where
899                  * we we may have triggered writeouts for lots of pages.
900                  */
901                 if (pass > 0) {
902                         wait_on_page_writeback(page);
903                 } else {
904                         if (PageWriteback(page))
905                                 goto unlock_page;
906                 }
907
908                 /*
909                  * Anonymous pages must have swap cache references otherwise
910                  * the information contained in the page maps cannot be
911                  * preserved.
912                  */
913                 if (PageAnon(page) && !PageSwapCache(page)) {
914                         if (!add_to_swap(page, GFP_KERNEL)) {
915                                 rc = -ENOMEM;
916                                 goto unlock_page;
917                         }
918                 }
919
920                 if (!to) {
921                         rc = swap_page(page);
922                         goto next;
923                 }
924
925                 newpage = lru_to_page(to);
926                 lock_page(newpage);
927
928                 /*
929                  * Pages are properly locked and writeback is complete.
930                  * Try to migrate the page.
931                  */
932                 mapping = page_mapping(page);
933                 if (!mapping)
934                         goto unlock_both;
935
936                 if (mapping->a_ops->migratepage) {
937                         /*
938                          * Most pages have a mapping and most filesystems
939                          * should provide a migration function. Anonymous
940                          * pages are part of swap space which also has its
941                          * own migration function. This is the most common
942                          * path for page migration.
943                          */
944                         rc = mapping->a_ops->migratepage(newpage, page);
945                         goto unlock_both;
946                 }
947
948                 /*
949                  * Default handling if a filesystem does not provide
950                  * a migration function. We can only migrate clean
951                  * pages so try to write out any dirty pages first.
952                  */
953                 if (PageDirty(page)) {
954                         switch (pageout(page, mapping)) {
955                         case PAGE_KEEP:
956                         case PAGE_ACTIVATE:
957                                 goto unlock_both;
958
959                         case PAGE_SUCCESS:
960                                 unlock_page(newpage);
961                                 goto next;
962
963                         case PAGE_CLEAN:
964                                 ; /* try to migrate the page below */
965                         }
966                 }
967
968                 /*
969                  * Buffers are managed in a filesystem specific way.
970                  * We must have no buffers or drop them.
971                  */
972                 if (!page_has_buffers(page) ||
973                     try_to_release_page(page, GFP_KERNEL)) {
974                         rc = migrate_page(newpage, page);
975                         goto unlock_both;
976                 }
977
978                 /*
979                  * On early passes with mapped pages simply
980                  * retry. There may be a lock held for some
981                  * buffers that may go away. Later
982                  * swap them out.
983                  */
984                 if (pass > 4) {
985                         /*
986                          * Persistently unable to drop buffers..... As a
987                          * measure of last resort we fall back to
988                          * swap_page().
989                          */
990                         unlock_page(newpage);
991                         newpage = NULL;
992                         rc = swap_page(page);
993                         goto next;
994                 }
995
996 unlock_both:
997                 unlock_page(newpage);
998
999 unlock_page:
1000                 unlock_page(page);
1001
1002 next:
1003                 if (rc == -EAGAIN) {
1004                         retry++;
1005                 } else if (rc) {
1006                         /* Permanent failure */
1007                         list_move(&page->lru, failed);
1008                         nr_failed++;
1009                 } else {
1010                         if (newpage) {
1011                                 /* Successful migration. Return page to LRU */
1012                                 move_to_lru(newpage);
1013                         }
1014                         list_move(&page->lru, moved);
1015                 }
1016         }
1017         if (retry && pass++ < 10)
1018                 goto redo;
1019
1020         if (!swapwrite)
1021                 current->flags &= ~PF_SWAPWRITE;
1022
1023         return nr_failed + retry;
1024 }
1025
1026 /*
1027  * Isolate one page from the LRU lists and put it on the
1028  * indicated list with elevated refcount.
1029  *
1030  * Result:
1031  *  0 = page not on LRU list
1032  *  1 = page removed from LRU list and added to the specified list.
1033  */
1034 int isolate_lru_page(struct page *page)
1035 {
1036         int ret = 0;
1037
1038         if (PageLRU(page)) {
1039                 struct zone *zone = page_zone(page);
1040                 spin_lock_irq(&zone->lru_lock);
1041                 if (PageLRU(page)) {
1042                         ret = 1;
1043                         get_page(page);
1044                         ClearPageLRU(page);
1045                         if (PageActive(page))
1046                                 del_page_from_active_list(zone, page);
1047                         else
1048                                 del_page_from_inactive_list(zone, page);
1049                 }
1050                 spin_unlock_irq(&zone->lru_lock);
1051         }
1052
1053         return ret;
1054 }
1055 #endif
1056
1057 /*
1058  * zone->lru_lock is heavily contended.  Some of the functions that
1059  * shrink the lists perform better by taking out a batch of pages
1060  * and working on them outside the LRU lock.
1061  *
1062  * For pagecache intensive workloads, this function is the hottest
1063  * spot in the kernel (apart from copy_*_user functions).
1064  *
1065  * Appropriate locks must be held before calling this function.
1066  *
1067  * @nr_to_scan: The number of pages to look through on the list.
1068  * @src:        The LRU list to pull pages off.
1069  * @dst:        The temp list to put pages on to.
1070  * @scanned:    The number of pages that were scanned.
1071  *
1072  * returns how many pages were moved onto *@dst.
1073  */
1074 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1075                 struct list_head *src, struct list_head *dst,
1076                 unsigned long *scanned)
1077 {
1078         unsigned long nr_taken = 0;
1079         struct page *page;
1080         unsigned long scan = 0;
1081
1082         while (scan++ < nr_to_scan && !list_empty(src)) {
1083                 struct list_head *target;
1084                 page = lru_to_page(src);
1085                 prefetchw_prev_lru_page(page, src, flags);
1086
1087                 BUG_ON(!PageLRU(page));
1088
1089                 list_del(&page->lru);
1090                 target = src;
1091                 if (likely(get_page_unless_zero(page))) {
1092                         /*
1093                          * Be careful not to clear PageLRU until after we're
1094                          * sure the page is not being freed elsewhere -- the
1095                          * page release code relies on it.
1096                          */
1097                         ClearPageLRU(page);
1098                         target = dst;
1099                         nr_taken++;
1100                 } /* else it is being freed elsewhere */
1101
1102                 list_add(&page->lru, target);
1103         }
1104
1105         *scanned = scan;
1106         return nr_taken;
1107 }
1108
1109 /*
1110  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1111  */
1112 static void shrink_cache(unsigned long max_scan, struct zone *zone,
1113                         struct scan_control *sc)
1114 {
1115         LIST_HEAD(page_list);
1116         struct pagevec pvec;
1117         unsigned long nr_scanned = 0;
1118
1119         pagevec_init(&pvec, 1);
1120
1121         lru_add_drain();
1122         spin_lock_irq(&zone->lru_lock);
1123         do {
1124                 struct page *page;
1125                 unsigned long nr_taken;
1126                 unsigned long nr_scan;
1127                 unsigned long nr_freed;
1128
1129                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1130                                              &zone->inactive_list,
1131                                              &page_list, &nr_scan);
1132                 zone->nr_inactive -= nr_taken;
1133                 zone->pages_scanned += nr_scan;
1134                 spin_unlock_irq(&zone->lru_lock);
1135
1136                 if (nr_taken == 0)
1137                         goto done;
1138
1139                 nr_scanned += nr_scan;
1140                 nr_freed = shrink_list(&page_list, sc);
1141
1142                 local_irq_disable();
1143                 if (current_is_kswapd()) {
1144                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1145                         __mod_page_state(kswapd_steal, nr_freed);
1146                 } else
1147                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1148                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1149
1150                 spin_lock(&zone->lru_lock);
1151                 /*
1152                  * Put back any unfreeable pages.
1153                  */
1154                 while (!list_empty(&page_list)) {
1155                         page = lru_to_page(&page_list);
1156                         BUG_ON(PageLRU(page));
1157                         SetPageLRU(page);
1158                         list_del(&page->lru);
1159                         if (PageActive(page))
1160                                 add_page_to_active_list(zone, page);
1161                         else
1162                                 add_page_to_inactive_list(zone, page);
1163                         if (!pagevec_add(&pvec, page)) {
1164                                 spin_unlock_irq(&zone->lru_lock);
1165                                 __pagevec_release(&pvec);
1166                                 spin_lock_irq(&zone->lru_lock);
1167                         }
1168                 }
1169         } while (nr_scanned < max_scan);
1170         spin_unlock_irq(&zone->lru_lock);
1171 done:
1172         pagevec_release(&pvec);
1173 }
1174
1175 /*
1176  * This moves pages from the active list to the inactive list.
1177  *
1178  * We move them the other way if the page is referenced by one or more
1179  * processes, from rmap.
1180  *
1181  * If the pages are mostly unmapped, the processing is fast and it is
1182  * appropriate to hold zone->lru_lock across the whole operation.  But if
1183  * the pages are mapped, the processing is slow (page_referenced()) so we
1184  * should drop zone->lru_lock around each page.  It's impossible to balance
1185  * this, so instead we remove the pages from the LRU while processing them.
1186  * It is safe to rely on PG_active against the non-LRU pages in here because
1187  * nobody will play with that bit on a non-LRU page.
1188  *
1189  * The downside is that we have to touch page->_count against each page.
1190  * But we had to alter page->flags anyway.
1191  */
1192 static void
1193 refill_inactive_zone(unsigned long nr_pages, struct zone *zone,
1194                         struct scan_control *sc)
1195 {
1196         unsigned long pgmoved;
1197         int pgdeactivate = 0;
1198         unsigned long pgscanned;
1199         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1200         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1201         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1202         struct page *page;
1203         struct pagevec pvec;
1204         int reclaim_mapped = 0;
1205
1206         if (unlikely(sc->may_swap)) {
1207                 long mapped_ratio;
1208                 long distress;
1209                 long swap_tendency;
1210
1211                 /*
1212                  * `distress' is a measure of how much trouble we're having
1213                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1214                  */
1215                 distress = 100 >> zone->prev_priority;
1216
1217                 /*
1218                  * The point of this algorithm is to decide when to start
1219                  * reclaiming mapped memory instead of just pagecache.  Work out
1220                  * how much memory
1221                  * is mapped.
1222                  */
1223                 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1224
1225                 /*
1226                  * Now decide how much we really want to unmap some pages.  The
1227                  * mapped ratio is downgraded - just because there's a lot of
1228                  * mapped memory doesn't necessarily mean that page reclaim
1229                  * isn't succeeding.
1230                  *
1231                  * The distress ratio is important - we don't want to start
1232                  * going oom.
1233                  *
1234                  * A 100% value of vm_swappiness overrides this algorithm
1235                  * altogether.
1236                  */
1237                 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1238
1239                 /*
1240                  * Now use this metric to decide whether to start moving mapped
1241                  * memory onto the inactive list.
1242                  */
1243                 if (swap_tendency >= 100)
1244                         reclaim_mapped = 1;
1245         }
1246
1247         lru_add_drain();
1248         spin_lock_irq(&zone->lru_lock);
1249         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1250                                     &l_hold, &pgscanned);
1251         zone->pages_scanned += pgscanned;
1252         zone->nr_active -= pgmoved;
1253         spin_unlock_irq(&zone->lru_lock);
1254
1255         while (!list_empty(&l_hold)) {
1256                 cond_resched();
1257                 page = lru_to_page(&l_hold);
1258                 list_del(&page->lru);
1259                 if (page_mapped(page)) {
1260                         if (!reclaim_mapped ||
1261                             (total_swap_pages == 0 && PageAnon(page)) ||
1262                             page_referenced(page, 0)) {
1263                                 list_add(&page->lru, &l_active);
1264                                 continue;
1265                         }
1266                 }
1267                 list_add(&page->lru, &l_inactive);
1268         }
1269
1270         pagevec_init(&pvec, 1);
1271         pgmoved = 0;
1272         spin_lock_irq(&zone->lru_lock);
1273         while (!list_empty(&l_inactive)) {
1274                 page = lru_to_page(&l_inactive);
1275                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1276                 BUG_ON(PageLRU(page));
1277                 SetPageLRU(page);
1278                 BUG_ON(!PageActive(page));
1279                 ClearPageActive(page);
1280
1281                 list_move(&page->lru, &zone->inactive_list);
1282                 pgmoved++;
1283                 if (!pagevec_add(&pvec, page)) {
1284                         zone->nr_inactive += pgmoved;
1285                         spin_unlock_irq(&zone->lru_lock);
1286                         pgdeactivate += pgmoved;
1287                         pgmoved = 0;
1288                         if (buffer_heads_over_limit)
1289                                 pagevec_strip(&pvec);
1290                         __pagevec_release(&pvec);
1291                         spin_lock_irq(&zone->lru_lock);
1292                 }
1293         }
1294         zone->nr_inactive += pgmoved;
1295         pgdeactivate += pgmoved;
1296         if (buffer_heads_over_limit) {
1297                 spin_unlock_irq(&zone->lru_lock);
1298                 pagevec_strip(&pvec);
1299                 spin_lock_irq(&zone->lru_lock);
1300         }
1301
1302         pgmoved = 0;
1303         while (!list_empty(&l_active)) {
1304                 page = lru_to_page(&l_active);
1305                 prefetchw_prev_lru_page(page, &l_active, flags);
1306                 BUG_ON(PageLRU(page));
1307                 SetPageLRU(page);
1308                 BUG_ON(!PageActive(page));
1309                 list_move(&page->lru, &zone->active_list);
1310                 pgmoved++;
1311                 if (!pagevec_add(&pvec, page)) {
1312                         zone->nr_active += pgmoved;
1313                         pgmoved = 0;
1314                         spin_unlock_irq(&zone->lru_lock);
1315                         __pagevec_release(&pvec);
1316                         spin_lock_irq(&zone->lru_lock);
1317                 }
1318         }
1319         zone->nr_active += pgmoved;
1320         spin_unlock(&zone->lru_lock);
1321
1322         __mod_page_state_zone(zone, pgrefill, pgscanned);
1323         __mod_page_state(pgdeactivate, pgdeactivate);
1324         local_irq_enable();
1325
1326         pagevec_release(&pvec);
1327 }
1328
1329 /*
1330  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1331  */
1332 static void shrink_zone(int priority, struct zone *zone,
1333                         struct scan_control *sc)
1334 {
1335         unsigned long nr_active;
1336         unsigned long nr_inactive;
1337         unsigned long nr_to_scan;
1338
1339         atomic_inc(&zone->reclaim_in_progress);
1340
1341         /*
1342          * Add one to `nr_to_scan' just to make sure that the kernel will
1343          * slowly sift through the active list.
1344          */
1345         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
1346         nr_active = zone->nr_scan_active;
1347         if (nr_active >= sc->swap_cluster_max)
1348                 zone->nr_scan_active = 0;
1349         else
1350                 nr_active = 0;
1351
1352         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
1353         nr_inactive = zone->nr_scan_inactive;
1354         if (nr_inactive >= sc->swap_cluster_max)
1355                 zone->nr_scan_inactive = 0;
1356         else
1357                 nr_inactive = 0;
1358
1359         while (nr_active || nr_inactive) {
1360                 if (nr_active) {
1361                         nr_to_scan = min(nr_active,
1362                                         (unsigned long)sc->swap_cluster_max);
1363                         nr_active -= nr_to_scan;
1364                         refill_inactive_zone(nr_to_scan, zone, sc);
1365                 }
1366
1367                 if (nr_inactive) {
1368                         nr_to_scan = min(nr_inactive,
1369                                         (unsigned long)sc->swap_cluster_max);
1370                         nr_inactive -= nr_to_scan;
1371                         shrink_cache(nr_to_scan, zone, sc);
1372                 }
1373         }
1374
1375         throttle_vm_writeout();
1376
1377         atomic_dec(&zone->reclaim_in_progress);
1378 }
1379
1380 /*
1381  * This is the direct reclaim path, for page-allocating processes.  We only
1382  * try to reclaim pages from zones which will satisfy the caller's allocation
1383  * request.
1384  *
1385  * We reclaim from a zone even if that zone is over pages_high.  Because:
1386  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1387  *    allocation or
1388  * b) The zones may be over pages_high but they must go *over* pages_high to
1389  *    satisfy the `incremental min' zone defense algorithm.
1390  *
1391  * Returns the number of reclaimed pages.
1392  *
1393  * If a zone is deemed to be full of pinned pages then just give it a light
1394  * scan then give up on it.
1395  */
1396 static void shrink_caches(int priority, struct zone **zones,
1397                                 struct scan_control *sc)
1398 {
1399         int i;
1400
1401         for (i = 0; zones[i] != NULL; i++) {
1402                 struct zone *zone = zones[i];
1403
1404                 if (!populated_zone(zone))
1405                         continue;
1406
1407                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1408                         continue;
1409
1410                 zone->temp_priority = priority;
1411                 if (zone->prev_priority > priority)
1412                         zone->prev_priority = priority;
1413
1414                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1415                         continue;       /* Let kswapd poll it */
1416
1417                 shrink_zone(priority, zone, sc);
1418         }
1419 }
1420  
1421 /*
1422  * This is the main entry point to direct page reclaim.
1423  *
1424  * If a full scan of the inactive list fails to free enough memory then we
1425  * are "out of memory" and something needs to be killed.
1426  *
1427  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1428  * high - the zone may be full of dirty or under-writeback pages, which this
1429  * caller can't do much about.  We kick pdflush and take explicit naps in the
1430  * hope that some of these pages can be written.  But if the allocating task
1431  * holds filesystem locks which prevent writeout this might not work, and the
1432  * allocation attempt will fail.
1433  */
1434 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1435 {
1436         int priority;
1437         int ret = 0;
1438         unsigned long total_scanned = 0;
1439         unsigned long total_reclaimed = 0;
1440         struct reclaim_state *reclaim_state = current->reclaim_state;
1441         unsigned long lru_pages = 0;
1442         int i;
1443         struct scan_control sc = {
1444                 .gfp_mask = gfp_mask,
1445                 .may_writepage = !laptop_mode,
1446                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1447                 .may_swap = 1,
1448         };
1449
1450         inc_page_state(allocstall);
1451
1452         for (i = 0; zones[i] != NULL; i++) {
1453                 struct zone *zone = zones[i];
1454
1455                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1456                         continue;
1457
1458                 zone->temp_priority = DEF_PRIORITY;
1459                 lru_pages += zone->nr_active + zone->nr_inactive;
1460         }
1461
1462         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1463                 sc.nr_mapped = read_page_state(nr_mapped);
1464                 sc.nr_scanned = 0;
1465                 sc.nr_reclaimed = 0;
1466                 if (!priority)
1467                         disable_swap_token();
1468                 shrink_caches(priority, zones, &sc);
1469                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1470                 if (reclaim_state) {
1471                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1472                         reclaim_state->reclaimed_slab = 0;
1473                 }
1474                 total_scanned += sc.nr_scanned;
1475                 total_reclaimed += sc.nr_reclaimed;
1476                 if (total_reclaimed >= sc.swap_cluster_max) {
1477                         ret = 1;
1478                         goto out;
1479                 }
1480
1481                 /*
1482                  * Try to write back as many pages as we just scanned.  This
1483                  * tends to cause slow streaming writers to write data to the
1484                  * disk smoothly, at the dirtying rate, which is nice.   But
1485                  * that's undesirable in laptop mode, where we *want* lumpy
1486                  * writeout.  So in laptop mode, write out the whole world.
1487                  */
1488                 if (total_scanned > sc.swap_cluster_max +
1489                                         sc.swap_cluster_max / 2) {
1490                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1491                         sc.may_writepage = 1;
1492                 }
1493
1494                 /* Take a nap, wait for some writeback to complete */
1495                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1496                         blk_congestion_wait(WRITE, HZ/10);
1497         }
1498 out:
1499         for (i = 0; zones[i] != 0; i++) {
1500                 struct zone *zone = zones[i];
1501
1502                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1503                         continue;
1504
1505                 zone->prev_priority = zone->temp_priority;
1506         }
1507         return ret;
1508 }
1509
1510 /*
1511  * For kswapd, balance_pgdat() will work across all this node's zones until
1512  * they are all at pages_high.
1513  *
1514  * If `nr_pages' is non-zero then it is the number of pages which are to be
1515  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1516  * special.
1517  *
1518  * Returns the number of pages which were actually freed.
1519  *
1520  * There is special handling here for zones which are full of pinned pages.
1521  * This can happen if the pages are all mlocked, or if they are all used by
1522  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1523  * What we do is to detect the case where all pages in the zone have been
1524  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1525  * dead and from now on, only perform a short scan.  Basically we're polling
1526  * the zone for when the problem goes away.
1527  *
1528  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1529  * zones which have free_pages > pages_high, but once a zone is found to have
1530  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1531  * of the number of free pages in the lower zones.  This interoperates with
1532  * the page allocator fallback scheme to ensure that aging of pages is balanced
1533  * across the zones.
1534  */
1535 static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
1536                                 int order)
1537 {
1538         unsigned long to_free = nr_pages;
1539         int all_zones_ok;
1540         int priority;
1541         int i;
1542         unsigned long total_scanned;
1543         unsigned long total_reclaimed;
1544         struct reclaim_state *reclaim_state = current->reclaim_state;
1545         struct scan_control sc = {
1546                 .gfp_mask = GFP_KERNEL,
1547                 .may_swap = 1,
1548                 .swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
1549         };
1550
1551 loop_again:
1552         total_scanned = 0;
1553         total_reclaimed = 0;
1554         sc.may_writepage = !laptop_mode,
1555         sc.nr_mapped = read_page_state(nr_mapped);
1556
1557         inc_page_state(pageoutrun);
1558
1559         for (i = 0; i < pgdat->nr_zones; i++) {
1560                 struct zone *zone = pgdat->node_zones + i;
1561
1562                 zone->temp_priority = DEF_PRIORITY;
1563         }
1564
1565         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1566                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1567                 unsigned long lru_pages = 0;
1568
1569                 /* The swap token gets in the way of swapout... */
1570                 if (!priority)
1571                         disable_swap_token();
1572
1573                 all_zones_ok = 1;
1574
1575                 if (nr_pages == 0) {
1576                         /*
1577                          * Scan in the highmem->dma direction for the highest
1578                          * zone which needs scanning
1579                          */
1580                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1581                                 struct zone *zone = pgdat->node_zones + i;
1582
1583                                 if (!populated_zone(zone))
1584                                         continue;
1585
1586                                 if (zone->all_unreclaimable &&
1587                                                 priority != DEF_PRIORITY)
1588                                         continue;
1589
1590                                 if (!zone_watermark_ok(zone, order,
1591                                                 zone->pages_high, 0, 0)) {
1592                                         end_zone = i;
1593                                         goto scan;
1594                                 }
1595                         }
1596                         goto out;
1597                 } else {
1598                         end_zone = pgdat->nr_zones - 1;
1599                 }
1600 scan:
1601                 for (i = 0; i <= end_zone; i++) {
1602                         struct zone *zone = pgdat->node_zones + i;
1603
1604                         lru_pages += zone->nr_active + zone->nr_inactive;
1605                 }
1606
1607                 /*
1608                  * Now scan the zone in the dma->highmem direction, stopping
1609                  * at the last zone which needs scanning.
1610                  *
1611                  * We do this because the page allocator works in the opposite
1612                  * direction.  This prevents the page allocator from allocating
1613                  * pages behind kswapd's direction of progress, which would
1614                  * cause too much scanning of the lower zones.
1615                  */
1616                 for (i = 0; i <= end_zone; i++) {
1617                         struct zone *zone = pgdat->node_zones + i;
1618                         int nr_slab;
1619
1620                         if (!populated_zone(zone))
1621                                 continue;
1622
1623                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1624                                 continue;
1625
1626                         if (nr_pages == 0) {    /* Not software suspend */
1627                                 if (!zone_watermark_ok(zone, order,
1628                                                 zone->pages_high, end_zone, 0))
1629                                         all_zones_ok = 0;
1630                         }
1631                         zone->temp_priority = priority;
1632                         if (zone->prev_priority > priority)
1633                                 zone->prev_priority = priority;
1634                         sc.nr_scanned = 0;
1635                         sc.nr_reclaimed = 0;
1636                         shrink_zone(priority, zone, &sc);
1637                         reclaim_state->reclaimed_slab = 0;
1638                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1639                                                 lru_pages);
1640                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1641                         total_reclaimed += sc.nr_reclaimed;
1642                         total_scanned += sc.nr_scanned;
1643                         if (zone->all_unreclaimable)
1644                                 continue;
1645                         if (nr_slab == 0 && zone->pages_scanned >=
1646                                     (zone->nr_active + zone->nr_inactive) * 4)
1647                                 zone->all_unreclaimable = 1;
1648                         /*
1649                          * If we've done a decent amount of scanning and
1650                          * the reclaim ratio is low, start doing writepage
1651                          * even in laptop mode
1652                          */
1653                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1654                             total_scanned > total_reclaimed+total_reclaimed/2)
1655                                 sc.may_writepage = 1;
1656                 }
1657                 if (nr_pages && to_free > total_reclaimed)
1658                         continue;       /* swsusp: need to do more work */
1659                 if (all_zones_ok)
1660                         break;          /* kswapd: all done */
1661                 /*
1662                  * OK, kswapd is getting into trouble.  Take a nap, then take
1663                  * another pass across the zones.
1664                  */
1665                 if (total_scanned && priority < DEF_PRIORITY - 2)
1666                         blk_congestion_wait(WRITE, HZ/10);
1667
1668                 /*
1669                  * We do this so kswapd doesn't build up large priorities for
1670                  * example when it is freeing in parallel with allocators. It
1671                  * matches the direct reclaim path behaviour in terms of impact
1672                  * on zone->*_priority.
1673                  */
1674                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1675                         break;
1676         }
1677 out:
1678         for (i = 0; i < pgdat->nr_zones; i++) {
1679                 struct zone *zone = pgdat->node_zones + i;
1680
1681                 zone->prev_priority = zone->temp_priority;
1682         }
1683         if (!all_zones_ok) {
1684                 cond_resched();
1685                 goto loop_again;
1686         }
1687
1688         return total_reclaimed;
1689 }
1690
1691 /*
1692  * The background pageout daemon, started as a kernel thread
1693  * from the init process. 
1694  *
1695  * This basically trickles out pages so that we have _some_
1696  * free memory available even if there is no other activity
1697  * that frees anything up. This is needed for things like routing
1698  * etc, where we otherwise might have all activity going on in
1699  * asynchronous contexts that cannot page things out.
1700  *
1701  * If there are applications that are active memory-allocators
1702  * (most normal use), this basically shouldn't matter.
1703  */
1704 static int kswapd(void *p)
1705 {
1706         unsigned long order;
1707         pg_data_t *pgdat = (pg_data_t*)p;
1708         struct task_struct *tsk = current;
1709         DEFINE_WAIT(wait);
1710         struct reclaim_state reclaim_state = {
1711                 .reclaimed_slab = 0,
1712         };
1713         cpumask_t cpumask;
1714
1715         daemonize("kswapd%d", pgdat->node_id);
1716         cpumask = node_to_cpumask(pgdat->node_id);
1717         if (!cpus_empty(cpumask))
1718                 set_cpus_allowed(tsk, cpumask);
1719         current->reclaim_state = &reclaim_state;
1720
1721         /*
1722          * Tell the memory management that we're a "memory allocator",
1723          * and that if we need more memory we should get access to it
1724          * regardless (see "__alloc_pages()"). "kswapd" should
1725          * never get caught in the normal page freeing logic.
1726          *
1727          * (Kswapd normally doesn't need memory anyway, but sometimes
1728          * you need a small amount of memory in order to be able to
1729          * page out something else, and this flag essentially protects
1730          * us from recursively trying to free more memory as we're
1731          * trying to free the first piece of memory in the first place).
1732          */
1733         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1734
1735         order = 0;
1736         for ( ; ; ) {
1737                 unsigned long new_order;
1738
1739                 try_to_freeze();
1740
1741                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1742                 new_order = pgdat->kswapd_max_order;
1743                 pgdat->kswapd_max_order = 0;
1744                 if (order < new_order) {
1745                         /*
1746                          * Don't sleep if someone wants a larger 'order'
1747                          * allocation
1748                          */
1749                         order = new_order;
1750                 } else {
1751                         schedule();
1752                         order = pgdat->kswapd_max_order;
1753                 }
1754                 finish_wait(&pgdat->kswapd_wait, &wait);
1755
1756                 balance_pgdat(pgdat, 0, order);
1757         }
1758         return 0;
1759 }
1760
1761 /*
1762  * A zone is low on free memory, so wake its kswapd task to service it.
1763  */
1764 void wakeup_kswapd(struct zone *zone, int order)
1765 {
1766         pg_data_t *pgdat;
1767
1768         if (!populated_zone(zone))
1769                 return;
1770
1771         pgdat = zone->zone_pgdat;
1772         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1773                 return;
1774         if (pgdat->kswapd_max_order < order)
1775                 pgdat->kswapd_max_order = order;
1776         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1777                 return;
1778         if (!waitqueue_active(&pgdat->kswapd_wait))
1779                 return;
1780         wake_up_interruptible(&pgdat->kswapd_wait);
1781 }
1782
1783 #ifdef CONFIG_PM
1784 /*
1785  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1786  * pages.
1787  */
1788 unsigned long shrink_all_memory(unsigned long nr_pages)
1789 {
1790         pg_data_t *pgdat;
1791         unsigned long nr_to_free = nr_pages;
1792         unsigned long ret = 0;
1793         struct reclaim_state reclaim_state = {
1794                 .reclaimed_slab = 0,
1795         };
1796
1797         current->reclaim_state = &reclaim_state;
1798         for_each_pgdat(pgdat) {
1799                 unsigned long freed;
1800
1801                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1802                 ret += freed;
1803                 nr_to_free -= freed;
1804                 if ((long)nr_to_free <= 0)
1805                         break;
1806         }
1807         current->reclaim_state = NULL;
1808         return ret;
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_HOTPLUG_CPU
1813 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1814    not required for correctness.  So if the last cpu in a node goes
1815    away, we get changed to run anywhere: as the first one comes back,
1816    restore their cpu bindings. */
1817 static int __devinit cpu_callback(struct notifier_block *nfb,
1818                                   unsigned long action, void *hcpu)
1819 {
1820         pg_data_t *pgdat;
1821         cpumask_t mask;
1822
1823         if (action == CPU_ONLINE) {
1824                 for_each_pgdat(pgdat) {
1825                         mask = node_to_cpumask(pgdat->node_id);
1826                         if (any_online_cpu(mask) != NR_CPUS)
1827                                 /* One of our CPUs online: restore mask */
1828                                 set_cpus_allowed(pgdat->kswapd, mask);
1829                 }
1830         }
1831         return NOTIFY_OK;
1832 }
1833 #endif /* CONFIG_HOTPLUG_CPU */
1834
1835 static int __init kswapd_init(void)
1836 {
1837         pg_data_t *pgdat;
1838
1839         swap_setup();
1840         for_each_pgdat(pgdat) {
1841                 pid_t pid;
1842
1843                 pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1844                 BUG_ON(pid < 0);
1845                 pgdat->kswapd = find_task_by_pid(pid);
1846         }
1847         total_memory = nr_free_pagecache_pages();
1848         hotcpu_notifier(cpu_callback, 0);
1849         return 0;
1850 }
1851
1852 module_init(kswapd_init)
1853
1854 #ifdef CONFIG_NUMA
1855 /*
1856  * Zone reclaim mode
1857  *
1858  * If non-zero call zone_reclaim when the number of free pages falls below
1859  * the watermarks.
1860  *
1861  * In the future we may add flags to the mode. However, the page allocator
1862  * should only have to check that zone_reclaim_mode != 0 before calling
1863  * zone_reclaim().
1864  */
1865 int zone_reclaim_mode __read_mostly;
1866
1867 #define RECLAIM_OFF 0
1868 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1869 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1870 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1871 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1872
1873 /*
1874  * Mininum time between zone reclaim scans
1875  */
1876 int zone_reclaim_interval __read_mostly = 30*HZ;
1877
1878 /*
1879  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1880  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1881  * a zone.
1882  */
1883 #define ZONE_RECLAIM_PRIORITY 4
1884
1885 /*
1886  * Try to free up some pages from this zone through reclaim.
1887  */
1888 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1889 {
1890         const unsigned long nr_pages = 1 << order;
1891         struct task_struct *p = current;
1892         struct reclaim_state reclaim_state;
1893         int priority;
1894         struct scan_control sc = {
1895                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1896                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1897                 .nr_mapped = read_page_state(nr_mapped),
1898                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1899                                         SWAP_CLUSTER_MAX),
1900                 .gfp_mask = gfp_mask,
1901         };
1902
1903         disable_swap_token();
1904         cond_resched();
1905         /*
1906          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1907          * and we also need to be able to write out pages for RECLAIM_WRITE
1908          * and RECLAIM_SWAP.
1909          */
1910         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1911         reclaim_state.reclaimed_slab = 0;
1912         p->reclaim_state = &reclaim_state;
1913
1914         /*
1915          * Free memory by calling shrink zone with increasing priorities
1916          * until we have enough memory freed.
1917          */
1918         priority = ZONE_RECLAIM_PRIORITY;
1919         do {
1920                 shrink_zone(priority, zone, &sc);
1921                 priority--;
1922         } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
1923
1924         if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1925                 /*
1926                  * shrink_slab does not currently allow us to determine
1927                  * how many pages were freed in the zone. So we just
1928                  * shake the slab and then go offnode for a single allocation.
1929                  *
1930                  * shrink_slab will free memory on all zones and may take
1931                  * a long time.
1932                  */
1933                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1934         }
1935
1936         p->reclaim_state = NULL;
1937         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1938
1939         if (sc.nr_reclaimed == 0)
1940                 zone->last_unsuccessful_zone_reclaim = jiffies;
1941
1942         return sc.nr_reclaimed >= nr_pages;
1943 }
1944
1945 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1946 {
1947         cpumask_t mask;
1948         int node_id;
1949
1950         /*
1951          * Do not reclaim if there was a recent unsuccessful attempt at zone
1952          * reclaim.  In that case we let allocations go off node for the
1953          * zone_reclaim_interval.  Otherwise we would scan for each off-node
1954          * page allocation.
1955          */
1956         if (time_before(jiffies,
1957                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1958                         return 0;
1959
1960         /*
1961          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1962          * not have reclaimable pages and if we should not delay the allocation
1963          * then do not scan.
1964          */
1965         if (!(gfp_mask & __GFP_WAIT) ||
1966                 zone->all_unreclaimable ||
1967                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1968                 (current->flags & PF_MEMALLOC))
1969                         return 0;
1970
1971         /*
1972          * Only run zone reclaim on the local zone or on zones that do not
1973          * have associated processors. This will favor the local processor
1974          * over remote processors and spread off node memory allocations
1975          * as wide as possible.
1976          */
1977         node_id = zone->zone_pgdat->node_id;
1978         mask = node_to_cpumask(node_id);
1979         if (!cpus_empty(mask) && node_id != numa_node_id())
1980                 return 0;
1981         return __zone_reclaim(zone, gfp_mask, order);
1982 }
1983 #endif