[PATCH] Fix zone policy determination
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* Ask shrink_caches, or shrink_zone to scan at this priority */
67         unsigned int priority;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76          * In this context, it doesn't matter that we scan the
77          * whole list at once. */
78         int swap_cluster_max;
79 };
80
81 /*
82  * The list of shrinker callbacks used by to apply pressure to
83  * ageable caches.
84  */
85 struct shrinker {
86         shrinker_t              shrinker;
87         struct list_head        list;
88         int                     seeks;  /* seeks to recreate an obj */
89         long                    nr;     /* objs pending delete */
90 };
91
92 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
93
94 #ifdef ARCH_HAS_PREFETCH
95 #define prefetch_prev_lru_page(_page, _base, _field)                    \
96         do {                                                            \
97                 if ((_page)->lru.prev != _base) {                       \
98                         struct page *prev;                              \
99                                                                         \
100                         prev = lru_to_page(&(_page->lru));              \
101                         prefetch(&prev->_field);                        \
102                 }                                                       \
103         } while (0)
104 #else
105 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106 #endif
107
108 #ifdef ARCH_HAS_PREFETCHW
109 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
110         do {                                                            \
111                 if ((_page)->lru.prev != _base) {                       \
112                         struct page *prev;                              \
113                                                                         \
114                         prev = lru_to_page(&(_page->lru));              \
115                         prefetchw(&prev->_field);                       \
116                 }                                                       \
117         } while (0)
118 #else
119 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
121
122 /*
123  * From 0 .. 100.  Higher means more swappy.
124  */
125 int vm_swappiness = 60;
126 static long total_memory;
127
128 static LIST_HEAD(shrinker_list);
129 static DECLARE_RWSEM(shrinker_rwsem);
130
131 /*
132  * Add a shrinker callback to be called from the vm
133  */
134 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
135 {
136         struct shrinker *shrinker;
137
138         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139         if (shrinker) {
140                 shrinker->shrinker = theshrinker;
141                 shrinker->seeks = seeks;
142                 shrinker->nr = 0;
143                 down_write(&shrinker_rwsem);
144                 list_add_tail(&shrinker->list, &shrinker_list);
145                 up_write(&shrinker_rwsem);
146         }
147         return shrinker;
148 }
149 EXPORT_SYMBOL(set_shrinker);
150
151 /*
152  * Remove one
153  */
154 void remove_shrinker(struct shrinker *shrinker)
155 {
156         down_write(&shrinker_rwsem);
157         list_del(&shrinker->list);
158         up_write(&shrinker_rwsem);
159         kfree(shrinker);
160 }
161 EXPORT_SYMBOL(remove_shrinker);
162
163 #define SHRINK_BATCH 128
164 /*
165  * Call the shrink functions to age shrinkable caches
166  *
167  * Here we assume it costs one seek to replace a lru page and that it also
168  * takes a seek to recreate a cache object.  With this in mind we age equal
169  * percentages of the lru and ageable caches.  This should balance the seeks
170  * generated by these structures.
171  *
172  * If the vm encounted mapped pages on the LRU it increase the pressure on
173  * slab to avoid swapping.
174  *
175  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
176  *
177  * `lru_pages' represents the number of on-LRU pages in all the zones which
178  * are eligible for the caller's allocation attempt.  It is used for balancing
179  * slab reclaim versus page reclaim.
180  *
181  * Returns the number of slab objects which we shrunk.
182  */
183 static int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
184                         unsigned long lru_pages)
185 {
186         struct shrinker *shrinker;
187         int ret = 0;
188
189         if (scanned == 0)
190                 scanned = SWAP_CLUSTER_MAX;
191
192         if (!down_read_trylock(&shrinker_rwsem))
193                 return 1;       /* Assume we'll be able to shrink next time */
194
195         list_for_each_entry(shrinker, &shrinker_list, list) {
196                 unsigned long long delta;
197                 unsigned long total_scan;
198                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
199
200                 delta = (4 * scanned) / shrinker->seeks;
201                 delta *= max_pass;
202                 do_div(delta, lru_pages + 1);
203                 shrinker->nr += delta;
204                 if (shrinker->nr < 0) {
205                         printk(KERN_ERR "%s: nr=%ld\n",
206                                         __FUNCTION__, shrinker->nr);
207                         shrinker->nr = max_pass;
208                 }
209
210                 /*
211                  * Avoid risking looping forever due to too large nr value:
212                  * never try to free more than twice the estimate number of
213                  * freeable entries.
214                  */
215                 if (shrinker->nr > max_pass * 2)
216                         shrinker->nr = max_pass * 2;
217
218                 total_scan = shrinker->nr;
219                 shrinker->nr = 0;
220
221                 while (total_scan >= SHRINK_BATCH) {
222                         long this_scan = SHRINK_BATCH;
223                         int shrink_ret;
224                         int nr_before;
225
226                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
227                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
228                         if (shrink_ret == -1)
229                                 break;
230                         if (shrink_ret < nr_before)
231                                 ret += nr_before - shrink_ret;
232                         mod_page_state(slabs_scanned, this_scan);
233                         total_scan -= this_scan;
234
235                         cond_resched();
236                 }
237
238                 shrinker->nr += total_scan;
239         }
240         up_read(&shrinker_rwsem);
241         return ret;
242 }
243
244 /* Called without lock on whether page is mapped, so answer is unstable */
245 static inline int page_mapping_inuse(struct page *page)
246 {
247         struct address_space *mapping;
248
249         /* Page is in somebody's page tables. */
250         if (page_mapped(page))
251                 return 1;
252
253         /* Be more reluctant to reclaim swapcache than pagecache */
254         if (PageSwapCache(page))
255                 return 1;
256
257         mapping = page_mapping(page);
258         if (!mapping)
259                 return 0;
260
261         /* File is mmap'd by somebody? */
262         return mapping_mapped(mapping);
263 }
264
265 static inline int is_page_cache_freeable(struct page *page)
266 {
267         return page_count(page) - !!PagePrivate(page) == 2;
268 }
269
270 static int may_write_to_queue(struct backing_dev_info *bdi)
271 {
272         if (current_is_kswapd())
273                 return 1;
274         if (current_is_pdflush())       /* This is unlikely, but why not... */
275                 return 1;
276         if (!bdi_write_congested(bdi))
277                 return 1;
278         if (bdi == current->backing_dev_info)
279                 return 1;
280         return 0;
281 }
282
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296                                 struct page *page, int error)
297 {
298         lock_page(page);
299         if (page_mapping(page) == mapping) {
300                 if (error == -ENOSPC)
301                         set_bit(AS_ENOSPC, &mapping->flags);
302                 else
303                         set_bit(AS_EIO, &mapping->flags);
304         }
305         unlock_page(page);
306 }
307
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313         /*
314          * If the page is dirty, only perform writeback if that write
315          * will be non-blocking.  To prevent this allocation from being
316          * stalled by pagecache activity.  But note that there may be
317          * stalls if we need to run get_block().  We could test
318          * PagePrivate for that.
319          *
320          * If this process is currently in generic_file_write() against
321          * this page's queue, we can perform writeback even if that
322          * will block.
323          *
324          * If the page is swapcache, write it back even if that would
325          * block, for some throttling. This happens by accident, because
326          * swap_backing_dev_info is bust: it doesn't reflect the
327          * congestion state of the swapdevs.  Easy to fix, if needed.
328          * See swapfile.c:page_queue_congested().
329          */
330         if (!is_page_cache_freeable(page))
331                 return PAGE_KEEP;
332         if (!mapping) {
333                 /*
334                  * Some data journaling orphaned pages can have
335                  * page->mapping == NULL while being dirty with clean buffers.
336                  */
337                 if (PagePrivate(page)) {
338                         if (try_to_free_buffers(page)) {
339                                 ClearPageDirty(page);
340                                 printk("%s: orphaned page\n", __FUNCTION__);
341                                 return PAGE_CLEAN;
342                         }
343                 }
344                 return PAGE_KEEP;
345         }
346         if (mapping->a_ops->writepage == NULL)
347                 return PAGE_ACTIVATE;
348         if (!may_write_to_queue(mapping->backing_dev_info))
349                 return PAGE_KEEP;
350
351         if (clear_page_dirty_for_io(page)) {
352                 int res;
353                 struct writeback_control wbc = {
354                         .sync_mode = WB_SYNC_NONE,
355                         .nr_to_write = SWAP_CLUSTER_MAX,
356                         .nonblocking = 1,
357                         .for_reclaim = 1,
358                 };
359
360                 SetPageReclaim(page);
361                 res = mapping->a_ops->writepage(page, &wbc);
362                 if (res < 0)
363                         handle_write_error(mapping, page, res);
364                 if (res == AOP_WRITEPAGE_ACTIVATE) {
365                         ClearPageReclaim(page);
366                         return PAGE_ACTIVATE;
367                 }
368                 if (!PageWriteback(page)) {
369                         /* synchronous write or broken a_ops? */
370                         ClearPageReclaim(page);
371                 }
372
373                 return PAGE_SUCCESS;
374         }
375
376         return PAGE_CLEAN;
377 }
378
379 /*
380  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
381  */
382 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
383 {
384         LIST_HEAD(ret_pages);
385         struct pagevec freed_pvec;
386         int pgactivate = 0;
387         int reclaimed = 0;
388
389         cond_resched();
390
391         pagevec_init(&freed_pvec, 1);
392         while (!list_empty(page_list)) {
393                 struct address_space *mapping;
394                 struct page *page;
395                 int may_enter_fs;
396                 int referenced;
397
398                 cond_resched();
399
400                 page = lru_to_page(page_list);
401                 list_del(&page->lru);
402
403                 if (TestSetPageLocked(page))
404                         goto keep;
405
406                 BUG_ON(PageActive(page));
407
408                 sc->nr_scanned++;
409                 /* Double the slab pressure for mapped and swapcache pages */
410                 if (page_mapped(page) || PageSwapCache(page))
411                         sc->nr_scanned++;
412
413                 if (PageWriteback(page))
414                         goto keep_locked;
415
416                 referenced = page_referenced(page, 1);
417                 /* In active use or really unfreeable?  Activate it. */
418                 if (referenced && page_mapping_inuse(page))
419                         goto activate_locked;
420
421 #ifdef CONFIG_SWAP
422                 /*
423                  * Anonymous process memory has backing store?
424                  * Try to allocate it some swap space here.
425                  */
426                 if (PageAnon(page) && !PageSwapCache(page)) {
427                         if (!add_to_swap(page))
428                                 goto activate_locked;
429                 }
430 #endif /* CONFIG_SWAP */
431
432                 mapping = page_mapping(page);
433                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
434                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
435
436                 /*
437                  * The page is mapped into the page tables of one or more
438                  * processes. Try to unmap it here.
439                  */
440                 if (page_mapped(page) && mapping) {
441                         switch (try_to_unmap(page)) {
442                         case SWAP_FAIL:
443                                 goto activate_locked;
444                         case SWAP_AGAIN:
445                                 goto keep_locked;
446                         case SWAP_SUCCESS:
447                                 ; /* try to free the page below */
448                         }
449                 }
450
451                 if (PageDirty(page)) {
452                         if (referenced)
453                                 goto keep_locked;
454                         if (!may_enter_fs)
455                                 goto keep_locked;
456                         if (laptop_mode && !sc->may_writepage)
457                                 goto keep_locked;
458
459                         /* Page is dirty, try to write it out here */
460                         switch(pageout(page, mapping)) {
461                         case PAGE_KEEP:
462                                 goto keep_locked;
463                         case PAGE_ACTIVATE:
464                                 goto activate_locked;
465                         case PAGE_SUCCESS:
466                                 if (PageWriteback(page) || PageDirty(page))
467                                         goto keep;
468                                 /*
469                                  * A synchronous write - probably a ramdisk.  Go
470                                  * ahead and try to reclaim the page.
471                                  */
472                                 if (TestSetPageLocked(page))
473                                         goto keep;
474                                 if (PageDirty(page) || PageWriteback(page))
475                                         goto keep_locked;
476                                 mapping = page_mapping(page);
477                         case PAGE_CLEAN:
478                                 ; /* try to free the page below */
479                         }
480                 }
481
482                 /*
483                  * If the page has buffers, try to free the buffer mappings
484                  * associated with this page. If we succeed we try to free
485                  * the page as well.
486                  *
487                  * We do this even if the page is PageDirty().
488                  * try_to_release_page() does not perform I/O, but it is
489                  * possible for a page to have PageDirty set, but it is actually
490                  * clean (all its buffers are clean).  This happens if the
491                  * buffers were written out directly, with submit_bh(). ext3
492                  * will do this, as well as the blockdev mapping. 
493                  * try_to_release_page() will discover that cleanness and will
494                  * drop the buffers and mark the page clean - it can be freed.
495                  *
496                  * Rarely, pages can have buffers and no ->mapping.  These are
497                  * the pages which were not successfully invalidated in
498                  * truncate_complete_page().  We try to drop those buffers here
499                  * and if that worked, and the page is no longer mapped into
500                  * process address space (page_count == 1) it can be freed.
501                  * Otherwise, leave the page on the LRU so it is swappable.
502                  */
503                 if (PagePrivate(page)) {
504                         if (!try_to_release_page(page, sc->gfp_mask))
505                                 goto activate_locked;
506                         if (!mapping && page_count(page) == 1)
507                                 goto free_it;
508                 }
509
510                 if (!mapping)
511                         goto keep_locked;       /* truncate got there first */
512
513                 write_lock_irq(&mapping->tree_lock);
514
515                 /*
516                  * The non-racy check for busy page.  It is critical to check
517                  * PageDirty _after_ making sure that the page is freeable and
518                  * not in use by anybody.       (pagecache + us == 2)
519                  */
520                 if (unlikely(page_count(page) != 2))
521                         goto cannot_free;
522                 smp_rmb();
523                 if (unlikely(PageDirty(page)))
524                         goto cannot_free;
525
526 #ifdef CONFIG_SWAP
527                 if (PageSwapCache(page)) {
528                         swp_entry_t swap = { .val = page_private(page) };
529                         __delete_from_swap_cache(page);
530                         write_unlock_irq(&mapping->tree_lock);
531                         swap_free(swap);
532                         __put_page(page);       /* The pagecache ref */
533                         goto free_it;
534                 }
535 #endif /* CONFIG_SWAP */
536
537                 __remove_from_page_cache(page);
538                 write_unlock_irq(&mapping->tree_lock);
539                 __put_page(page);
540
541 free_it:
542                 unlock_page(page);
543                 reclaimed++;
544                 if (!pagevec_add(&freed_pvec, page))
545                         __pagevec_release_nonlru(&freed_pvec);
546                 continue;
547
548 cannot_free:
549                 write_unlock_irq(&mapping->tree_lock);
550                 goto keep_locked;
551
552 activate_locked:
553                 SetPageActive(page);
554                 pgactivate++;
555 keep_locked:
556                 unlock_page(page);
557 keep:
558                 list_add(&page->lru, &ret_pages);
559                 BUG_ON(PageLRU(page));
560         }
561         list_splice(&ret_pages, page_list);
562         if (pagevec_count(&freed_pvec))
563                 __pagevec_release_nonlru(&freed_pvec);
564         mod_page_state(pgactivate, pgactivate);
565         sc->nr_reclaimed += reclaimed;
566         return reclaimed;
567 }
568
569 /*
570  * zone->lru_lock is heavily contended.  Some of the functions that
571  * shrink the lists perform better by taking out a batch of pages
572  * and working on them outside the LRU lock.
573  *
574  * For pagecache intensive workloads, this function is the hottest
575  * spot in the kernel (apart from copy_*_user functions).
576  *
577  * Appropriate locks must be held before calling this function.
578  *
579  * @nr_to_scan: The number of pages to look through on the list.
580  * @src:        The LRU list to pull pages off.
581  * @dst:        The temp list to put pages on to.
582  * @scanned:    The number of pages that were scanned.
583  *
584  * returns how many pages were moved onto *@dst.
585  */
586 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
587                              struct list_head *dst, int *scanned)
588 {
589         int nr_taken = 0;
590         struct page *page;
591         int scan = 0;
592
593         while (scan++ < nr_to_scan && !list_empty(src)) {
594                 page = lru_to_page(src);
595                 prefetchw_prev_lru_page(page, src, flags);
596
597                 if (!TestClearPageLRU(page))
598                         BUG();
599                 list_del(&page->lru);
600                 if (get_page_testone(page)) {
601                         /*
602                          * It is being freed elsewhere
603                          */
604                         __put_page(page);
605                         SetPageLRU(page);
606                         list_add(&page->lru, src);
607                         continue;
608                 } else {
609                         list_add(&page->lru, dst);
610                         nr_taken++;
611                 }
612         }
613
614         *scanned = scan;
615         return nr_taken;
616 }
617
618 /*
619  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
620  */
621 static void shrink_cache(struct zone *zone, struct scan_control *sc)
622 {
623         LIST_HEAD(page_list);
624         struct pagevec pvec;
625         int max_scan = sc->nr_to_scan;
626
627         pagevec_init(&pvec, 1);
628
629         lru_add_drain();
630         spin_lock_irq(&zone->lru_lock);
631         while (max_scan > 0) {
632                 struct page *page;
633                 int nr_taken;
634                 int nr_scan;
635                 int nr_freed;
636
637                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
638                                              &zone->inactive_list,
639                                              &page_list, &nr_scan);
640                 zone->nr_inactive -= nr_taken;
641                 zone->pages_scanned += nr_scan;
642                 spin_unlock_irq(&zone->lru_lock);
643
644                 if (nr_taken == 0)
645                         goto done;
646
647                 max_scan -= nr_scan;
648                 if (current_is_kswapd())
649                         mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
650                 else
651                         mod_page_state_zone(zone, pgscan_direct, nr_scan);
652                 nr_freed = shrink_list(&page_list, sc);
653                 if (current_is_kswapd())
654                         mod_page_state(kswapd_steal, nr_freed);
655                 mod_page_state_zone(zone, pgsteal, nr_freed);
656
657                 spin_lock_irq(&zone->lru_lock);
658                 /*
659                  * Put back any unfreeable pages.
660                  */
661                 while (!list_empty(&page_list)) {
662                         page = lru_to_page(&page_list);
663                         if (TestSetPageLRU(page))
664                                 BUG();
665                         list_del(&page->lru);
666                         if (PageActive(page))
667                                 add_page_to_active_list(zone, page);
668                         else
669                                 add_page_to_inactive_list(zone, page);
670                         if (!pagevec_add(&pvec, page)) {
671                                 spin_unlock_irq(&zone->lru_lock);
672                                 __pagevec_release(&pvec);
673                                 spin_lock_irq(&zone->lru_lock);
674                         }
675                 }
676         }
677         spin_unlock_irq(&zone->lru_lock);
678 done:
679         pagevec_release(&pvec);
680 }
681
682 /*
683  * This moves pages from the active list to the inactive list.
684  *
685  * We move them the other way if the page is referenced by one or more
686  * processes, from rmap.
687  *
688  * If the pages are mostly unmapped, the processing is fast and it is
689  * appropriate to hold zone->lru_lock across the whole operation.  But if
690  * the pages are mapped, the processing is slow (page_referenced()) so we
691  * should drop zone->lru_lock around each page.  It's impossible to balance
692  * this, so instead we remove the pages from the LRU while processing them.
693  * It is safe to rely on PG_active against the non-LRU pages in here because
694  * nobody will play with that bit on a non-LRU page.
695  *
696  * The downside is that we have to touch page->_count against each page.
697  * But we had to alter page->flags anyway.
698  */
699 static void
700 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
701 {
702         int pgmoved;
703         int pgdeactivate = 0;
704         int pgscanned;
705         int nr_pages = sc->nr_to_scan;
706         LIST_HEAD(l_hold);      /* The pages which were snipped off */
707         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
708         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
709         struct page *page;
710         struct pagevec pvec;
711         int reclaim_mapped = 0;
712         long mapped_ratio;
713         long distress;
714         long swap_tendency;
715
716         lru_add_drain();
717         spin_lock_irq(&zone->lru_lock);
718         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
719                                     &l_hold, &pgscanned);
720         zone->pages_scanned += pgscanned;
721         zone->nr_active -= pgmoved;
722         spin_unlock_irq(&zone->lru_lock);
723
724         /*
725          * `distress' is a measure of how much trouble we're having reclaiming
726          * pages.  0 -> no problems.  100 -> great trouble.
727          */
728         distress = 100 >> zone->prev_priority;
729
730         /*
731          * The point of this algorithm is to decide when to start reclaiming
732          * mapped memory instead of just pagecache.  Work out how much memory
733          * is mapped.
734          */
735         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
736
737         /*
738          * Now decide how much we really want to unmap some pages.  The mapped
739          * ratio is downgraded - just because there's a lot of mapped memory
740          * doesn't necessarily mean that page reclaim isn't succeeding.
741          *
742          * The distress ratio is important - we don't want to start going oom.
743          *
744          * A 100% value of vm_swappiness overrides this algorithm altogether.
745          */
746         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
747
748         /*
749          * Now use this metric to decide whether to start moving mapped memory
750          * onto the inactive list.
751          */
752         if (swap_tendency >= 100)
753                 reclaim_mapped = 1;
754
755         while (!list_empty(&l_hold)) {
756                 cond_resched();
757                 page = lru_to_page(&l_hold);
758                 list_del(&page->lru);
759                 if (page_mapped(page)) {
760                         if (!reclaim_mapped ||
761                             (total_swap_pages == 0 && PageAnon(page)) ||
762                             page_referenced(page, 0)) {
763                                 list_add(&page->lru, &l_active);
764                                 continue;
765                         }
766                 }
767                 list_add(&page->lru, &l_inactive);
768         }
769
770         pagevec_init(&pvec, 1);
771         pgmoved = 0;
772         spin_lock_irq(&zone->lru_lock);
773         while (!list_empty(&l_inactive)) {
774                 page = lru_to_page(&l_inactive);
775                 prefetchw_prev_lru_page(page, &l_inactive, flags);
776                 if (TestSetPageLRU(page))
777                         BUG();
778                 if (!TestClearPageActive(page))
779                         BUG();
780                 list_move(&page->lru, &zone->inactive_list);
781                 pgmoved++;
782                 if (!pagevec_add(&pvec, page)) {
783                         zone->nr_inactive += pgmoved;
784                         spin_unlock_irq(&zone->lru_lock);
785                         pgdeactivate += pgmoved;
786                         pgmoved = 0;
787                         if (buffer_heads_over_limit)
788                                 pagevec_strip(&pvec);
789                         __pagevec_release(&pvec);
790                         spin_lock_irq(&zone->lru_lock);
791                 }
792         }
793         zone->nr_inactive += pgmoved;
794         pgdeactivate += pgmoved;
795         if (buffer_heads_over_limit) {
796                 spin_unlock_irq(&zone->lru_lock);
797                 pagevec_strip(&pvec);
798                 spin_lock_irq(&zone->lru_lock);
799         }
800
801         pgmoved = 0;
802         while (!list_empty(&l_active)) {
803                 page = lru_to_page(&l_active);
804                 prefetchw_prev_lru_page(page, &l_active, flags);
805                 if (TestSetPageLRU(page))
806                         BUG();
807                 BUG_ON(!PageActive(page));
808                 list_move(&page->lru, &zone->active_list);
809                 pgmoved++;
810                 if (!pagevec_add(&pvec, page)) {
811                         zone->nr_active += pgmoved;
812                         pgmoved = 0;
813                         spin_unlock_irq(&zone->lru_lock);
814                         __pagevec_release(&pvec);
815                         spin_lock_irq(&zone->lru_lock);
816                 }
817         }
818         zone->nr_active += pgmoved;
819         spin_unlock_irq(&zone->lru_lock);
820         pagevec_release(&pvec);
821
822         mod_page_state_zone(zone, pgrefill, pgscanned);
823         mod_page_state(pgdeactivate, pgdeactivate);
824 }
825
826 /*
827  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
828  */
829 static void
830 shrink_zone(struct zone *zone, struct scan_control *sc)
831 {
832         unsigned long nr_active;
833         unsigned long nr_inactive;
834
835         atomic_inc(&zone->reclaim_in_progress);
836
837         /*
838          * Add one to `nr_to_scan' just to make sure that the kernel will
839          * slowly sift through the active list.
840          */
841         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
842         nr_active = zone->nr_scan_active;
843         if (nr_active >= sc->swap_cluster_max)
844                 zone->nr_scan_active = 0;
845         else
846                 nr_active = 0;
847
848         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
849         nr_inactive = zone->nr_scan_inactive;
850         if (nr_inactive >= sc->swap_cluster_max)
851                 zone->nr_scan_inactive = 0;
852         else
853                 nr_inactive = 0;
854
855         while (nr_active || nr_inactive) {
856                 if (nr_active) {
857                         sc->nr_to_scan = min(nr_active,
858                                         (unsigned long)sc->swap_cluster_max);
859                         nr_active -= sc->nr_to_scan;
860                         refill_inactive_zone(zone, sc);
861                 }
862
863                 if (nr_inactive) {
864                         sc->nr_to_scan = min(nr_inactive,
865                                         (unsigned long)sc->swap_cluster_max);
866                         nr_inactive -= sc->nr_to_scan;
867                         shrink_cache(zone, sc);
868                 }
869         }
870
871         throttle_vm_writeout();
872
873         atomic_dec(&zone->reclaim_in_progress);
874 }
875
876 /*
877  * This is the direct reclaim path, for page-allocating processes.  We only
878  * try to reclaim pages from zones which will satisfy the caller's allocation
879  * request.
880  *
881  * We reclaim from a zone even if that zone is over pages_high.  Because:
882  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
883  *    allocation or
884  * b) The zones may be over pages_high but they must go *over* pages_high to
885  *    satisfy the `incremental min' zone defense algorithm.
886  *
887  * Returns the number of reclaimed pages.
888  *
889  * If a zone is deemed to be full of pinned pages then just give it a light
890  * scan then give up on it.
891  */
892 static void
893 shrink_caches(struct zone **zones, struct scan_control *sc)
894 {
895         int i;
896
897         for (i = 0; zones[i] != NULL; i++) {
898                 struct zone *zone = zones[i];
899
900                 if (!populated_zone(zone))
901                         continue;
902
903                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
904                         continue;
905
906                 zone->temp_priority = sc->priority;
907                 if (zone->prev_priority > sc->priority)
908                         zone->prev_priority = sc->priority;
909
910                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
911                         continue;       /* Let kswapd poll it */
912
913                 shrink_zone(zone, sc);
914         }
915 }
916  
917 /*
918  * This is the main entry point to direct page reclaim.
919  *
920  * If a full scan of the inactive list fails to free enough memory then we
921  * are "out of memory" and something needs to be killed.
922  *
923  * If the caller is !__GFP_FS then the probability of a failure is reasonably
924  * high - the zone may be full of dirty or under-writeback pages, which this
925  * caller can't do much about.  We kick pdflush and take explicit naps in the
926  * hope that some of these pages can be written.  But if the allocating task
927  * holds filesystem locks which prevent writeout this might not work, and the
928  * allocation attempt will fail.
929  */
930 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
931 {
932         int priority;
933         int ret = 0;
934         int total_scanned = 0, total_reclaimed = 0;
935         struct reclaim_state *reclaim_state = current->reclaim_state;
936         struct scan_control sc;
937         unsigned long lru_pages = 0;
938         int i;
939
940         sc.gfp_mask = gfp_mask;
941         sc.may_writepage = 0;
942
943         inc_page_state(allocstall);
944
945         for (i = 0; zones[i] != NULL; i++) {
946                 struct zone *zone = zones[i];
947
948                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
949                         continue;
950
951                 zone->temp_priority = DEF_PRIORITY;
952                 lru_pages += zone->nr_active + zone->nr_inactive;
953         }
954
955         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
956                 sc.nr_mapped = read_page_state(nr_mapped);
957                 sc.nr_scanned = 0;
958                 sc.nr_reclaimed = 0;
959                 sc.priority = priority;
960                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
961                 if (!priority)
962                         disable_swap_token();
963                 shrink_caches(zones, &sc);
964                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
965                 if (reclaim_state) {
966                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
967                         reclaim_state->reclaimed_slab = 0;
968                 }
969                 total_scanned += sc.nr_scanned;
970                 total_reclaimed += sc.nr_reclaimed;
971                 if (total_reclaimed >= sc.swap_cluster_max) {
972                         ret = 1;
973                         goto out;
974                 }
975
976                 /*
977                  * Try to write back as many pages as we just scanned.  This
978                  * tends to cause slow streaming writers to write data to the
979                  * disk smoothly, at the dirtying rate, which is nice.   But
980                  * that's undesirable in laptop mode, where we *want* lumpy
981                  * writeout.  So in laptop mode, write out the whole world.
982                  */
983                 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
984                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
985                         sc.may_writepage = 1;
986                 }
987
988                 /* Take a nap, wait for some writeback to complete */
989                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
990                         blk_congestion_wait(WRITE, HZ/10);
991         }
992 out:
993         for (i = 0; zones[i] != 0; i++) {
994                 struct zone *zone = zones[i];
995
996                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
997                         continue;
998
999                 zone->prev_priority = zone->temp_priority;
1000         }
1001         return ret;
1002 }
1003
1004 /*
1005  * For kswapd, balance_pgdat() will work across all this node's zones until
1006  * they are all at pages_high.
1007  *
1008  * If `nr_pages' is non-zero then it is the number of pages which are to be
1009  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1010  * special.
1011  *
1012  * Returns the number of pages which were actually freed.
1013  *
1014  * There is special handling here for zones which are full of pinned pages.
1015  * This can happen if the pages are all mlocked, or if they are all used by
1016  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1017  * What we do is to detect the case where all pages in the zone have been
1018  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1019  * dead and from now on, only perform a short scan.  Basically we're polling
1020  * the zone for when the problem goes away.
1021  *
1022  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1023  * zones which have free_pages > pages_high, but once a zone is found to have
1024  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1025  * of the number of free pages in the lower zones.  This interoperates with
1026  * the page allocator fallback scheme to ensure that aging of pages is balanced
1027  * across the zones.
1028  */
1029 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1030 {
1031         int to_free = nr_pages;
1032         int all_zones_ok;
1033         int priority;
1034         int i;
1035         int total_scanned, total_reclaimed;
1036         struct reclaim_state *reclaim_state = current->reclaim_state;
1037         struct scan_control sc;
1038
1039 loop_again:
1040         total_scanned = 0;
1041         total_reclaimed = 0;
1042         sc.gfp_mask = GFP_KERNEL;
1043         sc.may_writepage = 0;
1044         sc.nr_mapped = read_page_state(nr_mapped);
1045
1046         inc_page_state(pageoutrun);
1047
1048         for (i = 0; i < pgdat->nr_zones; i++) {
1049                 struct zone *zone = pgdat->node_zones + i;
1050
1051                 zone->temp_priority = DEF_PRIORITY;
1052         }
1053
1054         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1055                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1056                 unsigned long lru_pages = 0;
1057
1058                 /* The swap token gets in the way of swapout... */
1059                 if (!priority)
1060                         disable_swap_token();
1061
1062                 all_zones_ok = 1;
1063
1064                 if (nr_pages == 0) {
1065                         /*
1066                          * Scan in the highmem->dma direction for the highest
1067                          * zone which needs scanning
1068                          */
1069                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1070                                 struct zone *zone = pgdat->node_zones + i;
1071
1072                                 if (!populated_zone(zone))
1073                                         continue;
1074
1075                                 if (zone->all_unreclaimable &&
1076                                                 priority != DEF_PRIORITY)
1077                                         continue;
1078
1079                                 if (!zone_watermark_ok(zone, order,
1080                                                 zone->pages_high, 0, 0)) {
1081                                         end_zone = i;
1082                                         goto scan;
1083                                 }
1084                         }
1085                         goto out;
1086                 } else {
1087                         end_zone = pgdat->nr_zones - 1;
1088                 }
1089 scan:
1090                 for (i = 0; i <= end_zone; i++) {
1091                         struct zone *zone = pgdat->node_zones + i;
1092
1093                         lru_pages += zone->nr_active + zone->nr_inactive;
1094                 }
1095
1096                 /*
1097                  * Now scan the zone in the dma->highmem direction, stopping
1098                  * at the last zone which needs scanning.
1099                  *
1100                  * We do this because the page allocator works in the opposite
1101                  * direction.  This prevents the page allocator from allocating
1102                  * pages behind kswapd's direction of progress, which would
1103                  * cause too much scanning of the lower zones.
1104                  */
1105                 for (i = 0; i <= end_zone; i++) {
1106                         struct zone *zone = pgdat->node_zones + i;
1107                         int nr_slab;
1108
1109                         if (!populated_zone(zone))
1110                                 continue;
1111
1112                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1113                                 continue;
1114
1115                         if (nr_pages == 0) {    /* Not software suspend */
1116                                 if (!zone_watermark_ok(zone, order,
1117                                                 zone->pages_high, end_zone, 0))
1118                                         all_zones_ok = 0;
1119                         }
1120                         zone->temp_priority = priority;
1121                         if (zone->prev_priority > priority)
1122                                 zone->prev_priority = priority;
1123                         sc.nr_scanned = 0;
1124                         sc.nr_reclaimed = 0;
1125                         sc.priority = priority;
1126                         sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1127                         atomic_inc(&zone->reclaim_in_progress);
1128                         shrink_zone(zone, &sc);
1129                         atomic_dec(&zone->reclaim_in_progress);
1130                         reclaim_state->reclaimed_slab = 0;
1131                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1132                                                 lru_pages);
1133                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1134                         total_reclaimed += sc.nr_reclaimed;
1135                         total_scanned += sc.nr_scanned;
1136                         if (zone->all_unreclaimable)
1137                                 continue;
1138                         if (nr_slab == 0 && zone->pages_scanned >=
1139                                     (zone->nr_active + zone->nr_inactive) * 4)
1140                                 zone->all_unreclaimable = 1;
1141                         /*
1142                          * If we've done a decent amount of scanning and
1143                          * the reclaim ratio is low, start doing writepage
1144                          * even in laptop mode
1145                          */
1146                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1147                             total_scanned > total_reclaimed+total_reclaimed/2)
1148                                 sc.may_writepage = 1;
1149                 }
1150                 if (nr_pages && to_free > total_reclaimed)
1151                         continue;       /* swsusp: need to do more work */
1152                 if (all_zones_ok)
1153                         break;          /* kswapd: all done */
1154                 /*
1155                  * OK, kswapd is getting into trouble.  Take a nap, then take
1156                  * another pass across the zones.
1157                  */
1158                 if (total_scanned && priority < DEF_PRIORITY - 2)
1159                         blk_congestion_wait(WRITE, HZ/10);
1160
1161                 /*
1162                  * We do this so kswapd doesn't build up large priorities for
1163                  * example when it is freeing in parallel with allocators. It
1164                  * matches the direct reclaim path behaviour in terms of impact
1165                  * on zone->*_priority.
1166                  */
1167                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1168                         break;
1169         }
1170 out:
1171         for (i = 0; i < pgdat->nr_zones; i++) {
1172                 struct zone *zone = pgdat->node_zones + i;
1173
1174                 zone->prev_priority = zone->temp_priority;
1175         }
1176         if (!all_zones_ok) {
1177                 cond_resched();
1178                 goto loop_again;
1179         }
1180
1181         return total_reclaimed;
1182 }
1183
1184 /*
1185  * The background pageout daemon, started as a kernel thread
1186  * from the init process. 
1187  *
1188  * This basically trickles out pages so that we have _some_
1189  * free memory available even if there is no other activity
1190  * that frees anything up. This is needed for things like routing
1191  * etc, where we otherwise might have all activity going on in
1192  * asynchronous contexts that cannot page things out.
1193  *
1194  * If there are applications that are active memory-allocators
1195  * (most normal use), this basically shouldn't matter.
1196  */
1197 static int kswapd(void *p)
1198 {
1199         unsigned long order;
1200         pg_data_t *pgdat = (pg_data_t*)p;
1201         struct task_struct *tsk = current;
1202         DEFINE_WAIT(wait);
1203         struct reclaim_state reclaim_state = {
1204                 .reclaimed_slab = 0,
1205         };
1206         cpumask_t cpumask;
1207
1208         daemonize("kswapd%d", pgdat->node_id);
1209         cpumask = node_to_cpumask(pgdat->node_id);
1210         if (!cpus_empty(cpumask))
1211                 set_cpus_allowed(tsk, cpumask);
1212         current->reclaim_state = &reclaim_state;
1213
1214         /*
1215          * Tell the memory management that we're a "memory allocator",
1216          * and that if we need more memory we should get access to it
1217          * regardless (see "__alloc_pages()"). "kswapd" should
1218          * never get caught in the normal page freeing logic.
1219          *
1220          * (Kswapd normally doesn't need memory anyway, but sometimes
1221          * you need a small amount of memory in order to be able to
1222          * page out something else, and this flag essentially protects
1223          * us from recursively trying to free more memory as we're
1224          * trying to free the first piece of memory in the first place).
1225          */
1226         tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1227
1228         order = 0;
1229         for ( ; ; ) {
1230                 unsigned long new_order;
1231
1232                 try_to_freeze();
1233
1234                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1235                 new_order = pgdat->kswapd_max_order;
1236                 pgdat->kswapd_max_order = 0;
1237                 if (order < new_order) {
1238                         /*
1239                          * Don't sleep if someone wants a larger 'order'
1240                          * allocation
1241                          */
1242                         order = new_order;
1243                 } else {
1244                         schedule();
1245                         order = pgdat->kswapd_max_order;
1246                 }
1247                 finish_wait(&pgdat->kswapd_wait, &wait);
1248
1249                 balance_pgdat(pgdat, 0, order);
1250         }
1251         return 0;
1252 }
1253
1254 /*
1255  * A zone is low on free memory, so wake its kswapd task to service it.
1256  */
1257 void wakeup_kswapd(struct zone *zone, int order)
1258 {
1259         pg_data_t *pgdat;
1260
1261         if (!populated_zone(zone))
1262                 return;
1263
1264         pgdat = zone->zone_pgdat;
1265         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1266                 return;
1267         if (pgdat->kswapd_max_order < order)
1268                 pgdat->kswapd_max_order = order;
1269         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1270                 return;
1271         if (!waitqueue_active(&pgdat->kswapd_wait))
1272                 return;
1273         wake_up_interruptible(&pgdat->kswapd_wait);
1274 }
1275
1276 #ifdef CONFIG_PM
1277 /*
1278  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1279  * pages.
1280  */
1281 int shrink_all_memory(int nr_pages)
1282 {
1283         pg_data_t *pgdat;
1284         int nr_to_free = nr_pages;
1285         int ret = 0;
1286         struct reclaim_state reclaim_state = {
1287                 .reclaimed_slab = 0,
1288         };
1289
1290         current->reclaim_state = &reclaim_state;
1291         for_each_pgdat(pgdat) {
1292                 int freed;
1293                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1294                 ret += freed;
1295                 nr_to_free -= freed;
1296                 if (nr_to_free <= 0)
1297                         break;
1298         }
1299         current->reclaim_state = NULL;
1300         return ret;
1301 }
1302 #endif
1303
1304 #ifdef CONFIG_HOTPLUG_CPU
1305 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1306    not required for correctness.  So if the last cpu in a node goes
1307    away, we get changed to run anywhere: as the first one comes back,
1308    restore their cpu bindings. */
1309 static int __devinit cpu_callback(struct notifier_block *nfb,
1310                                   unsigned long action,
1311                                   void *hcpu)
1312 {
1313         pg_data_t *pgdat;
1314         cpumask_t mask;
1315
1316         if (action == CPU_ONLINE) {
1317                 for_each_pgdat(pgdat) {
1318                         mask = node_to_cpumask(pgdat->node_id);
1319                         if (any_online_cpu(mask) != NR_CPUS)
1320                                 /* One of our CPUs online: restore mask */
1321                                 set_cpus_allowed(pgdat->kswapd, mask);
1322                 }
1323         }
1324         return NOTIFY_OK;
1325 }
1326 #endif /* CONFIG_HOTPLUG_CPU */
1327
1328 static int __init kswapd_init(void)
1329 {
1330         pg_data_t *pgdat;
1331         swap_setup();
1332         for_each_pgdat(pgdat)
1333                 pgdat->kswapd
1334                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1335         total_memory = nr_free_pagecache_pages();
1336         hotcpu_notifier(cpu_callback, 0);
1337         return 0;
1338 }
1339
1340 module_init(kswapd_init)