HWPOISON: Refactor truncate to allow direct truncating of page v2
[safe/jmp/linux-2.6] / mm / truncate.c
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002    Andrew Morton
7  *              Initial version.
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h>  /* grr. try_to_release_page,
20                                    do_invalidatepage */
21 #include "internal.h"
22
23
24 /**
25  * do_invalidatepage - invalidate part or all of a page
26  * @page: the page which is affected
27  * @offset: the index of the truncation point
28  *
29  * do_invalidatepage() is called when all or part of the page has become
30  * invalidated by a truncate operation.
31  *
32  * do_invalidatepage() does not have to release all buffers, but it must
33  * ensure that no dirty buffer is left outside @offset and that no I/O
34  * is underway against any of the blocks which are outside the truncation
35  * point.  Because the caller is about to free (and possibly reuse) those
36  * blocks on-disk.
37  */
38 void do_invalidatepage(struct page *page, unsigned long offset)
39 {
40         void (*invalidatepage)(struct page *, unsigned long);
41         invalidatepage = page->mapping->a_ops->invalidatepage;
42 #ifdef CONFIG_BLOCK
43         if (!invalidatepage)
44                 invalidatepage = block_invalidatepage;
45 #endif
46         if (invalidatepage)
47                 (*invalidatepage)(page, offset);
48 }
49
50 static inline void truncate_partial_page(struct page *page, unsigned partial)
51 {
52         zero_user_segment(page, partial, PAGE_CACHE_SIZE);
53         if (page_has_private(page))
54                 do_invalidatepage(page, partial);
55 }
56
57 /*
58  * This cancels just the dirty bit on the kernel page itself, it
59  * does NOT actually remove dirty bits on any mmap's that may be
60  * around. It also leaves the page tagged dirty, so any sync
61  * activity will still find it on the dirty lists, and in particular,
62  * clear_page_dirty_for_io() will still look at the dirty bits in
63  * the VM.
64  *
65  * Doing this should *normally* only ever be done when a page
66  * is truncated, and is not actually mapped anywhere at all. However,
67  * fs/buffer.c does this when it notices that somebody has cleaned
68  * out all the buffers on a page without actually doing it through
69  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
70  */
71 void cancel_dirty_page(struct page *page, unsigned int account_size)
72 {
73         if (TestClearPageDirty(page)) {
74                 struct address_space *mapping = page->mapping;
75                 if (mapping && mapping_cap_account_dirty(mapping)) {
76                         dec_zone_page_state(page, NR_FILE_DIRTY);
77                         dec_bdi_stat(mapping->backing_dev_info,
78                                         BDI_RECLAIMABLE);
79                         if (account_size)
80                                 task_io_account_cancelled_write(account_size);
81                 }
82         }
83 }
84 EXPORT_SYMBOL(cancel_dirty_page);
85
86 /*
87  * If truncate cannot remove the fs-private metadata from the page, the page
88  * becomes orphaned.  It will be left on the LRU and may even be mapped into
89  * user pagetables if we're racing with filemap_fault().
90  *
91  * We need to bale out if page->mapping is no longer equal to the original
92  * mapping.  This happens a) when the VM reclaimed the page while we waited on
93  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95  */
96 static int
97 truncate_complete_page(struct address_space *mapping, struct page *page)
98 {
99         if (page->mapping != mapping)
100                 return -EIO;
101
102         if (page_has_private(page))
103                 do_invalidatepage(page, 0);
104
105         cancel_dirty_page(page, PAGE_CACHE_SIZE);
106
107         clear_page_mlock(page);
108         remove_from_page_cache(page);
109         ClearPageMappedToDisk(page);
110         page_cache_release(page);       /* pagecache ref */
111         return 0;
112 }
113
114 /*
115  * This is for invalidate_mapping_pages().  That function can be called at
116  * any time, and is not supposed to throw away dirty pages.  But pages can
117  * be marked dirty at any time too, so use remove_mapping which safely
118  * discards clean, unused pages.
119  *
120  * Returns non-zero if the page was successfully invalidated.
121  */
122 static int
123 invalidate_complete_page(struct address_space *mapping, struct page *page)
124 {
125         int ret;
126
127         if (page->mapping != mapping)
128                 return 0;
129
130         if (page_has_private(page) && !try_to_release_page(page, 0))
131                 return 0;
132
133         clear_page_mlock(page);
134         ret = remove_mapping(mapping, page);
135
136         return ret;
137 }
138
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
140 {
141         if (page_mapped(page)) {
142                 unmap_mapping_range(mapping,
143                                    (loff_t)page->index << PAGE_CACHE_SHIFT,
144                                    PAGE_CACHE_SIZE, 0);
145         }
146         return truncate_complete_page(mapping, page);
147 }
148
149 /**
150  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
151  * @mapping: mapping to truncate
152  * @lstart: offset from which to truncate
153  * @lend: offset to which to truncate
154  *
155  * Truncate the page cache, removing the pages that are between
156  * specified offsets (and zeroing out partial page
157  * (if lstart is not page aligned)).
158  *
159  * Truncate takes two passes - the first pass is nonblocking.  It will not
160  * block on page locks and it will not block on writeback.  The second pass
161  * will wait.  This is to prevent as much IO as possible in the affected region.
162  * The first pass will remove most pages, so the search cost of the second pass
163  * is low.
164  *
165  * When looking at page->index outside the page lock we need to be careful to
166  * copy it into a local to avoid races (it could change at any time).
167  *
168  * We pass down the cache-hot hint to the page freeing code.  Even if the
169  * mapping is large, it is probably the case that the final pages are the most
170  * recently touched, and freeing happens in ascending file offset order.
171  */
172 void truncate_inode_pages_range(struct address_space *mapping,
173                                 loff_t lstart, loff_t lend)
174 {
175         const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
176         pgoff_t end;
177         const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
178         struct pagevec pvec;
179         pgoff_t next;
180         int i;
181
182         if (mapping->nrpages == 0)
183                 return;
184
185         BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
186         end = (lend >> PAGE_CACHE_SHIFT);
187
188         pagevec_init(&pvec, 0);
189         next = start;
190         while (next <= end &&
191                pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
192                 for (i = 0; i < pagevec_count(&pvec); i++) {
193                         struct page *page = pvec.pages[i];
194                         pgoff_t page_index = page->index;
195
196                         if (page_index > end) {
197                                 next = page_index;
198                                 break;
199                         }
200
201                         if (page_index > next)
202                                 next = page_index;
203                         next++;
204                         if (!trylock_page(page))
205                                 continue;
206                         if (PageWriteback(page)) {
207                                 unlock_page(page);
208                                 continue;
209                         }
210                         truncate_inode_page(mapping, page);
211                         unlock_page(page);
212                 }
213                 pagevec_release(&pvec);
214                 cond_resched();
215         }
216
217         if (partial) {
218                 struct page *page = find_lock_page(mapping, start - 1);
219                 if (page) {
220                         wait_on_page_writeback(page);
221                         truncate_partial_page(page, partial);
222                         unlock_page(page);
223                         page_cache_release(page);
224                 }
225         }
226
227         next = start;
228         for ( ; ; ) {
229                 cond_resched();
230                 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
231                         if (next == start)
232                                 break;
233                         next = start;
234                         continue;
235                 }
236                 if (pvec.pages[0]->index > end) {
237                         pagevec_release(&pvec);
238                         break;
239                 }
240                 for (i = 0; i < pagevec_count(&pvec); i++) {
241                         struct page *page = pvec.pages[i];
242
243                         if (page->index > end)
244                                 break;
245                         lock_page(page);
246                         wait_on_page_writeback(page);
247                         truncate_inode_page(mapping, page);
248                         if (page->index > next)
249                                 next = page->index;
250                         next++;
251                         unlock_page(page);
252                 }
253                 pagevec_release(&pvec);
254         }
255 }
256 EXPORT_SYMBOL(truncate_inode_pages_range);
257
258 /**
259  * truncate_inode_pages - truncate *all* the pages from an offset
260  * @mapping: mapping to truncate
261  * @lstart: offset from which to truncate
262  *
263  * Called under (and serialised by) inode->i_mutex.
264  */
265 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
266 {
267         truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
268 }
269 EXPORT_SYMBOL(truncate_inode_pages);
270
271 /**
272  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
273  * @mapping: the address_space which holds the pages to invalidate
274  * @start: the offset 'from' which to invalidate
275  * @end: the offset 'to' which to invalidate (inclusive)
276  *
277  * This function only removes the unlocked pages, if you want to
278  * remove all the pages of one inode, you must call truncate_inode_pages.
279  *
280  * invalidate_mapping_pages() will not block on IO activity. It will not
281  * invalidate pages which are dirty, locked, under writeback or mapped into
282  * pagetables.
283  */
284 unsigned long invalidate_mapping_pages(struct address_space *mapping,
285                                        pgoff_t start, pgoff_t end)
286 {
287         struct pagevec pvec;
288         pgoff_t next = start;
289         unsigned long ret = 0;
290         int i;
291
292         pagevec_init(&pvec, 0);
293         while (next <= end &&
294                         pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
295                 for (i = 0; i < pagevec_count(&pvec); i++) {
296                         struct page *page = pvec.pages[i];
297                         pgoff_t index;
298                         int lock_failed;
299
300                         lock_failed = !trylock_page(page);
301
302                         /*
303                          * We really shouldn't be looking at the ->index of an
304                          * unlocked page.  But we're not allowed to lock these
305                          * pages.  So we rely upon nobody altering the ->index
306                          * of this (pinned-by-us) page.
307                          */
308                         index = page->index;
309                         if (index > next)
310                                 next = index;
311                         next++;
312                         if (lock_failed)
313                                 continue;
314
315                         if (PageDirty(page) || PageWriteback(page))
316                                 goto unlock;
317                         if (page_mapped(page))
318                                 goto unlock;
319                         ret += invalidate_complete_page(mapping, page);
320 unlock:
321                         unlock_page(page);
322                         if (next > end)
323                                 break;
324                 }
325                 pagevec_release(&pvec);
326                 cond_resched();
327         }
328         return ret;
329 }
330 EXPORT_SYMBOL(invalidate_mapping_pages);
331
332 /*
333  * This is like invalidate_complete_page(), except it ignores the page's
334  * refcount.  We do this because invalidate_inode_pages2() needs stronger
335  * invalidation guarantees, and cannot afford to leave pages behind because
336  * shrink_page_list() has a temp ref on them, or because they're transiently
337  * sitting in the lru_cache_add() pagevecs.
338  */
339 static int
340 invalidate_complete_page2(struct address_space *mapping, struct page *page)
341 {
342         if (page->mapping != mapping)
343                 return 0;
344
345         if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
346                 return 0;
347
348         spin_lock_irq(&mapping->tree_lock);
349         if (PageDirty(page))
350                 goto failed;
351
352         clear_page_mlock(page);
353         BUG_ON(page_has_private(page));
354         __remove_from_page_cache(page);
355         spin_unlock_irq(&mapping->tree_lock);
356         mem_cgroup_uncharge_cache_page(page);
357         page_cache_release(page);       /* pagecache ref */
358         return 1;
359 failed:
360         spin_unlock_irq(&mapping->tree_lock);
361         return 0;
362 }
363
364 static int do_launder_page(struct address_space *mapping, struct page *page)
365 {
366         if (!PageDirty(page))
367                 return 0;
368         if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
369                 return 0;
370         return mapping->a_ops->launder_page(page);
371 }
372
373 /**
374  * invalidate_inode_pages2_range - remove range of pages from an address_space
375  * @mapping: the address_space
376  * @start: the page offset 'from' which to invalidate
377  * @end: the page offset 'to' which to invalidate (inclusive)
378  *
379  * Any pages which are found to be mapped into pagetables are unmapped prior to
380  * invalidation.
381  *
382  * Returns -EBUSY if any pages could not be invalidated.
383  */
384 int invalidate_inode_pages2_range(struct address_space *mapping,
385                                   pgoff_t start, pgoff_t end)
386 {
387         struct pagevec pvec;
388         pgoff_t next;
389         int i;
390         int ret = 0;
391         int ret2 = 0;
392         int did_range_unmap = 0;
393         int wrapped = 0;
394
395         pagevec_init(&pvec, 0);
396         next = start;
397         while (next <= end && !wrapped &&
398                 pagevec_lookup(&pvec, mapping, next,
399                         min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
400                 for (i = 0; i < pagevec_count(&pvec); i++) {
401                         struct page *page = pvec.pages[i];
402                         pgoff_t page_index;
403
404                         lock_page(page);
405                         if (page->mapping != mapping) {
406                                 unlock_page(page);
407                                 continue;
408                         }
409                         page_index = page->index;
410                         next = page_index + 1;
411                         if (next == 0)
412                                 wrapped = 1;
413                         if (page_index > end) {
414                                 unlock_page(page);
415                                 break;
416                         }
417                         wait_on_page_writeback(page);
418                         if (page_mapped(page)) {
419                                 if (!did_range_unmap) {
420                                         /*
421                                          * Zap the rest of the file in one hit.
422                                          */
423                                         unmap_mapping_range(mapping,
424                                            (loff_t)page_index<<PAGE_CACHE_SHIFT,
425                                            (loff_t)(end - page_index + 1)
426                                                         << PAGE_CACHE_SHIFT,
427                                             0);
428                                         did_range_unmap = 1;
429                                 } else {
430                                         /*
431                                          * Just zap this page
432                                          */
433                                         unmap_mapping_range(mapping,
434                                           (loff_t)page_index<<PAGE_CACHE_SHIFT,
435                                           PAGE_CACHE_SIZE, 0);
436                                 }
437                         }
438                         BUG_ON(page_mapped(page));
439                         ret2 = do_launder_page(mapping, page);
440                         if (ret2 == 0) {
441                                 if (!invalidate_complete_page2(mapping, page))
442                                         ret2 = -EBUSY;
443                         }
444                         if (ret2 < 0)
445                                 ret = ret2;
446                         unlock_page(page);
447                 }
448                 pagevec_release(&pvec);
449                 cond_resched();
450         }
451         return ret;
452 }
453 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
454
455 /**
456  * invalidate_inode_pages2 - remove all pages from an address_space
457  * @mapping: the address_space
458  *
459  * Any pages which are found to be mapped into pagetables are unmapped prior to
460  * invalidation.
461  *
462  * Returns -EIO if any pages could not be invalidated.
463  */
464 int invalidate_inode_pages2(struct address_space *mapping)
465 {
466         return invalidate_inode_pages2_range(mapping, 0, -1);
467 }
468 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);