swap_info: swap count continuations
[safe/jmp/linux-2.6] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37
38 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
39                                  unsigned char);
40 static void free_swap_count_continuations(struct swap_info_struct *);
41
42 static DEFINE_SPINLOCK(swap_lock);
43 static unsigned int nr_swapfiles;
44 long nr_swap_pages;
45 long total_swap_pages;
46 static int least_priority;
47
48 static const char Bad_file[] = "Bad swap file entry ";
49 static const char Unused_file[] = "Unused swap file entry ";
50 static const char Bad_offset[] = "Bad swap offset entry ";
51 static const char Unused_offset[] = "Unused swap offset entry ";
52
53 static struct swap_list_t swap_list = {-1, -1};
54
55 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
56
57 static DEFINE_MUTEX(swapon_mutex);
58
59 static inline unsigned char swap_count(unsigned char ent)
60 {
61         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
62 }
63
64 /* returns 1 if swap entry is freed */
65 static int
66 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
67 {
68         swp_entry_t entry = swp_entry(si->type, offset);
69         struct page *page;
70         int ret = 0;
71
72         page = find_get_page(&swapper_space, entry.val);
73         if (!page)
74                 return 0;
75         /*
76          * This function is called from scan_swap_map() and it's called
77          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
78          * We have to use trylock for avoiding deadlock. This is a special
79          * case and you should use try_to_free_swap() with explicit lock_page()
80          * in usual operations.
81          */
82         if (trylock_page(page)) {
83                 ret = try_to_free_swap(page);
84                 unlock_page(page);
85         }
86         page_cache_release(page);
87         return ret;
88 }
89
90 /*
91  * We need this because the bdev->unplug_fn can sleep and we cannot
92  * hold swap_lock while calling the unplug_fn. And swap_lock
93  * cannot be turned into a mutex.
94  */
95 static DECLARE_RWSEM(swap_unplug_sem);
96
97 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
98 {
99         swp_entry_t entry;
100
101         down_read(&swap_unplug_sem);
102         entry.val = page_private(page);
103         if (PageSwapCache(page)) {
104                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
105                 struct backing_dev_info *bdi;
106
107                 /*
108                  * If the page is removed from swapcache from under us (with a
109                  * racy try_to_unuse/swapoff) we need an additional reference
110                  * count to avoid reading garbage from page_private(page) above.
111                  * If the WARN_ON triggers during a swapoff it maybe the race
112                  * condition and it's harmless. However if it triggers without
113                  * swapoff it signals a problem.
114                  */
115                 WARN_ON(page_count(page) <= 1);
116
117                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
118                 blk_run_backing_dev(bdi, page);
119         }
120         up_read(&swap_unplug_sem);
121 }
122
123 /*
124  * swapon tell device that all the old swap contents can be discarded,
125  * to allow the swap device to optimize its wear-levelling.
126  */
127 static int discard_swap(struct swap_info_struct *si)
128 {
129         struct swap_extent *se;
130         sector_t start_block;
131         sector_t nr_blocks;
132         int err = 0;
133
134         /* Do not discard the swap header page! */
135         se = &si->first_swap_extent;
136         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
137         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
138         if (nr_blocks) {
139                 err = blkdev_issue_discard(si->bdev, start_block,
140                                 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
141                 if (err)
142                         return err;
143                 cond_resched();
144         }
145
146         list_for_each_entry(se, &si->first_swap_extent.list, list) {
147                 start_block = se->start_block << (PAGE_SHIFT - 9);
148                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
149
150                 err = blkdev_issue_discard(si->bdev, start_block,
151                                 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
152                 if (err)
153                         break;
154
155                 cond_resched();
156         }
157         return err;             /* That will often be -EOPNOTSUPP */
158 }
159
160 /*
161  * swap allocation tell device that a cluster of swap can now be discarded,
162  * to allow the swap device to optimize its wear-levelling.
163  */
164 static void discard_swap_cluster(struct swap_info_struct *si,
165                                  pgoff_t start_page, pgoff_t nr_pages)
166 {
167         struct swap_extent *se = si->curr_swap_extent;
168         int found_extent = 0;
169
170         while (nr_pages) {
171                 struct list_head *lh;
172
173                 if (se->start_page <= start_page &&
174                     start_page < se->start_page + se->nr_pages) {
175                         pgoff_t offset = start_page - se->start_page;
176                         sector_t start_block = se->start_block + offset;
177                         sector_t nr_blocks = se->nr_pages - offset;
178
179                         if (nr_blocks > nr_pages)
180                                 nr_blocks = nr_pages;
181                         start_page += nr_blocks;
182                         nr_pages -= nr_blocks;
183
184                         if (!found_extent++)
185                                 si->curr_swap_extent = se;
186
187                         start_block <<= PAGE_SHIFT - 9;
188                         nr_blocks <<= PAGE_SHIFT - 9;
189                         if (blkdev_issue_discard(si->bdev, start_block,
190                                     nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
191                                 break;
192                 }
193
194                 lh = se->list.next;
195                 se = list_entry(lh, struct swap_extent, list);
196         }
197 }
198
199 static int wait_for_discard(void *word)
200 {
201         schedule();
202         return 0;
203 }
204
205 #define SWAPFILE_CLUSTER        256
206 #define LATENCY_LIMIT           256
207
208 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
209                                           unsigned char usage)
210 {
211         unsigned long offset;
212         unsigned long scan_base;
213         unsigned long last_in_cluster = 0;
214         int latency_ration = LATENCY_LIMIT;
215         int found_free_cluster = 0;
216
217         /*
218          * We try to cluster swap pages by allocating them sequentially
219          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
220          * way, however, we resort to first-free allocation, starting
221          * a new cluster.  This prevents us from scattering swap pages
222          * all over the entire swap partition, so that we reduce
223          * overall disk seek times between swap pages.  -- sct
224          * But we do now try to find an empty cluster.  -Andrea
225          * And we let swap pages go all over an SSD partition.  Hugh
226          */
227
228         si->flags += SWP_SCANNING;
229         scan_base = offset = si->cluster_next;
230
231         if (unlikely(!si->cluster_nr--)) {
232                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
233                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
234                         goto checks;
235                 }
236                 if (si->flags & SWP_DISCARDABLE) {
237                         /*
238                          * Start range check on racing allocations, in case
239                          * they overlap the cluster we eventually decide on
240                          * (we scan without swap_lock to allow preemption).
241                          * It's hardly conceivable that cluster_nr could be
242                          * wrapped during our scan, but don't depend on it.
243                          */
244                         if (si->lowest_alloc)
245                                 goto checks;
246                         si->lowest_alloc = si->max;
247                         si->highest_alloc = 0;
248                 }
249                 spin_unlock(&swap_lock);
250
251                 /*
252                  * If seek is expensive, start searching for new cluster from
253                  * start of partition, to minimize the span of allocated swap.
254                  * But if seek is cheap, search from our current position, so
255                  * that swap is allocated from all over the partition: if the
256                  * Flash Translation Layer only remaps within limited zones,
257                  * we don't want to wear out the first zone too quickly.
258                  */
259                 if (!(si->flags & SWP_SOLIDSTATE))
260                         scan_base = offset = si->lowest_bit;
261                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263                 /* Locate the first empty (unaligned) cluster */
264                 for (; last_in_cluster <= si->highest_bit; offset++) {
265                         if (si->swap_map[offset])
266                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
267                         else if (offset == last_in_cluster) {
268                                 spin_lock(&swap_lock);
269                                 offset -= SWAPFILE_CLUSTER - 1;
270                                 si->cluster_next = offset;
271                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272                                 found_free_cluster = 1;
273                                 goto checks;
274                         }
275                         if (unlikely(--latency_ration < 0)) {
276                                 cond_resched();
277                                 latency_ration = LATENCY_LIMIT;
278                         }
279                 }
280
281                 offset = si->lowest_bit;
282                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
283
284                 /* Locate the first empty (unaligned) cluster */
285                 for (; last_in_cluster < scan_base; offset++) {
286                         if (si->swap_map[offset])
287                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
288                         else if (offset == last_in_cluster) {
289                                 spin_lock(&swap_lock);
290                                 offset -= SWAPFILE_CLUSTER - 1;
291                                 si->cluster_next = offset;
292                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
293                                 found_free_cluster = 1;
294                                 goto checks;
295                         }
296                         if (unlikely(--latency_ration < 0)) {
297                                 cond_resched();
298                                 latency_ration = LATENCY_LIMIT;
299                         }
300                 }
301
302                 offset = scan_base;
303                 spin_lock(&swap_lock);
304                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
305                 si->lowest_alloc = 0;
306         }
307
308 checks:
309         if (!(si->flags & SWP_WRITEOK))
310                 goto no_page;
311         if (!si->highest_bit)
312                 goto no_page;
313         if (offset > si->highest_bit)
314                 scan_base = offset = si->lowest_bit;
315
316         /* reuse swap entry of cache-only swap if not busy. */
317         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
318                 int swap_was_freed;
319                 spin_unlock(&swap_lock);
320                 swap_was_freed = __try_to_reclaim_swap(si, offset);
321                 spin_lock(&swap_lock);
322                 /* entry was freed successfully, try to use this again */
323                 if (swap_was_freed)
324                         goto checks;
325                 goto scan; /* check next one */
326         }
327
328         if (si->swap_map[offset])
329                 goto scan;
330
331         if (offset == si->lowest_bit)
332                 si->lowest_bit++;
333         if (offset == si->highest_bit)
334                 si->highest_bit--;
335         si->inuse_pages++;
336         if (si->inuse_pages == si->pages) {
337                 si->lowest_bit = si->max;
338                 si->highest_bit = 0;
339         }
340         si->swap_map[offset] = usage;
341         si->cluster_next = offset + 1;
342         si->flags -= SWP_SCANNING;
343
344         if (si->lowest_alloc) {
345                 /*
346                  * Only set when SWP_DISCARDABLE, and there's a scan
347                  * for a free cluster in progress or just completed.
348                  */
349                 if (found_free_cluster) {
350                         /*
351                          * To optimize wear-levelling, discard the
352                          * old data of the cluster, taking care not to
353                          * discard any of its pages that have already
354                          * been allocated by racing tasks (offset has
355                          * already stepped over any at the beginning).
356                          */
357                         if (offset < si->highest_alloc &&
358                             si->lowest_alloc <= last_in_cluster)
359                                 last_in_cluster = si->lowest_alloc - 1;
360                         si->flags |= SWP_DISCARDING;
361                         spin_unlock(&swap_lock);
362
363                         if (offset < last_in_cluster)
364                                 discard_swap_cluster(si, offset,
365                                         last_in_cluster - offset + 1);
366
367                         spin_lock(&swap_lock);
368                         si->lowest_alloc = 0;
369                         si->flags &= ~SWP_DISCARDING;
370
371                         smp_mb();       /* wake_up_bit advises this */
372                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
373
374                 } else if (si->flags & SWP_DISCARDING) {
375                         /*
376                          * Delay using pages allocated by racing tasks
377                          * until the whole discard has been issued. We
378                          * could defer that delay until swap_writepage,
379                          * but it's easier to keep this self-contained.
380                          */
381                         spin_unlock(&swap_lock);
382                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
383                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
384                         spin_lock(&swap_lock);
385                 } else {
386                         /*
387                          * Note pages allocated by racing tasks while
388                          * scan for a free cluster is in progress, so
389                          * that its final discard can exclude them.
390                          */
391                         if (offset < si->lowest_alloc)
392                                 si->lowest_alloc = offset;
393                         if (offset > si->highest_alloc)
394                                 si->highest_alloc = offset;
395                 }
396         }
397         return offset;
398
399 scan:
400         spin_unlock(&swap_lock);
401         while (++offset <= si->highest_bit) {
402                 if (!si->swap_map[offset]) {
403                         spin_lock(&swap_lock);
404                         goto checks;
405                 }
406                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
407                         spin_lock(&swap_lock);
408                         goto checks;
409                 }
410                 if (unlikely(--latency_ration < 0)) {
411                         cond_resched();
412                         latency_ration = LATENCY_LIMIT;
413                 }
414         }
415         offset = si->lowest_bit;
416         while (++offset < scan_base) {
417                 if (!si->swap_map[offset]) {
418                         spin_lock(&swap_lock);
419                         goto checks;
420                 }
421                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
422                         spin_lock(&swap_lock);
423                         goto checks;
424                 }
425                 if (unlikely(--latency_ration < 0)) {
426                         cond_resched();
427                         latency_ration = LATENCY_LIMIT;
428                 }
429         }
430         spin_lock(&swap_lock);
431
432 no_page:
433         si->flags -= SWP_SCANNING;
434         return 0;
435 }
436
437 swp_entry_t get_swap_page(void)
438 {
439         struct swap_info_struct *si;
440         pgoff_t offset;
441         int type, next;
442         int wrapped = 0;
443
444         spin_lock(&swap_lock);
445         if (nr_swap_pages <= 0)
446                 goto noswap;
447         nr_swap_pages--;
448
449         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
450                 si = swap_info[type];
451                 next = si->next;
452                 if (next < 0 ||
453                     (!wrapped && si->prio != swap_info[next]->prio)) {
454                         next = swap_list.head;
455                         wrapped++;
456                 }
457
458                 if (!si->highest_bit)
459                         continue;
460                 if (!(si->flags & SWP_WRITEOK))
461                         continue;
462
463                 swap_list.next = next;
464                 /* This is called for allocating swap entry for cache */
465                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
466                 if (offset) {
467                         spin_unlock(&swap_lock);
468                         return swp_entry(type, offset);
469                 }
470                 next = swap_list.next;
471         }
472
473         nr_swap_pages++;
474 noswap:
475         spin_unlock(&swap_lock);
476         return (swp_entry_t) {0};
477 }
478
479 /* The only caller of this function is now susupend routine */
480 swp_entry_t get_swap_page_of_type(int type)
481 {
482         struct swap_info_struct *si;
483         pgoff_t offset;
484
485         spin_lock(&swap_lock);
486         si = swap_info[type];
487         if (si && (si->flags & SWP_WRITEOK)) {
488                 nr_swap_pages--;
489                 /* This is called for allocating swap entry, not cache */
490                 offset = scan_swap_map(si, 1);
491                 if (offset) {
492                         spin_unlock(&swap_lock);
493                         return swp_entry(type, offset);
494                 }
495                 nr_swap_pages++;
496         }
497         spin_unlock(&swap_lock);
498         return (swp_entry_t) {0};
499 }
500
501 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
502 {
503         struct swap_info_struct *p;
504         unsigned long offset, type;
505
506         if (!entry.val)
507                 goto out;
508         type = swp_type(entry);
509         if (type >= nr_swapfiles)
510                 goto bad_nofile;
511         p = swap_info[type];
512         if (!(p->flags & SWP_USED))
513                 goto bad_device;
514         offset = swp_offset(entry);
515         if (offset >= p->max)
516                 goto bad_offset;
517         if (!p->swap_map[offset])
518                 goto bad_free;
519         spin_lock(&swap_lock);
520         return p;
521
522 bad_free:
523         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
524         goto out;
525 bad_offset:
526         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
527         goto out;
528 bad_device:
529         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
530         goto out;
531 bad_nofile:
532         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
533 out:
534         return NULL;
535 }
536
537 static unsigned char swap_entry_free(struct swap_info_struct *p,
538                                      swp_entry_t entry, unsigned char usage)
539 {
540         unsigned long offset = swp_offset(entry);
541         unsigned char count;
542         unsigned char has_cache;
543
544         count = p->swap_map[offset];
545         has_cache = count & SWAP_HAS_CACHE;
546         count &= ~SWAP_HAS_CACHE;
547
548         if (usage == SWAP_HAS_CACHE) {
549                 VM_BUG_ON(!has_cache);
550                 has_cache = 0;
551         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
552                 if (count == COUNT_CONTINUED) {
553                         if (swap_count_continued(p, offset, count))
554                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
555                         else
556                                 count = SWAP_MAP_MAX;
557                 } else
558                         count--;
559         }
560
561         if (!count)
562                 mem_cgroup_uncharge_swap(entry);
563
564         usage = count | has_cache;
565         p->swap_map[offset] = usage;
566
567         /* free if no reference */
568         if (!usage) {
569                 if (offset < p->lowest_bit)
570                         p->lowest_bit = offset;
571                 if (offset > p->highest_bit)
572                         p->highest_bit = offset;
573                 if (swap_list.next >= 0 &&
574                     p->prio > swap_info[swap_list.next]->prio)
575                         swap_list.next = p->type;
576                 nr_swap_pages++;
577                 p->inuse_pages--;
578         }
579
580         return usage;
581 }
582
583 /*
584  * Caller has made sure that the swapdevice corresponding to entry
585  * is still around or has not been recycled.
586  */
587 void swap_free(swp_entry_t entry)
588 {
589         struct swap_info_struct *p;
590
591         p = swap_info_get(entry);
592         if (p) {
593                 swap_entry_free(p, entry, 1);
594                 spin_unlock(&swap_lock);
595         }
596 }
597
598 /*
599  * Called after dropping swapcache to decrease refcnt to swap entries.
600  */
601 void swapcache_free(swp_entry_t entry, struct page *page)
602 {
603         struct swap_info_struct *p;
604         unsigned char count;
605
606         p = swap_info_get(entry);
607         if (p) {
608                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
609                 if (page)
610                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
611                 spin_unlock(&swap_lock);
612         }
613 }
614
615 /*
616  * How many references to page are currently swapped out?
617  * This does not give an exact answer when swap count is continued,
618  * but does include the high COUNT_CONTINUED flag to allow for that.
619  */
620 static inline int page_swapcount(struct page *page)
621 {
622         int count = 0;
623         struct swap_info_struct *p;
624         swp_entry_t entry;
625
626         entry.val = page_private(page);
627         p = swap_info_get(entry);
628         if (p) {
629                 count = swap_count(p->swap_map[swp_offset(entry)]);
630                 spin_unlock(&swap_lock);
631         }
632         return count;
633 }
634
635 /*
636  * We can write to an anon page without COW if there are no other references
637  * to it.  And as a side-effect, free up its swap: because the old content
638  * on disk will never be read, and seeking back there to write new content
639  * later would only waste time away from clustering.
640  */
641 int reuse_swap_page(struct page *page)
642 {
643         int count;
644
645         VM_BUG_ON(!PageLocked(page));
646         count = page_mapcount(page);
647         if (count <= 1 && PageSwapCache(page)) {
648                 count += page_swapcount(page);
649                 if (count == 1 && !PageWriteback(page)) {
650                         delete_from_swap_cache(page);
651                         SetPageDirty(page);
652                 }
653         }
654         return count == 1;
655 }
656
657 /*
658  * If swap is getting full, or if there are no more mappings of this page,
659  * then try_to_free_swap is called to free its swap space.
660  */
661 int try_to_free_swap(struct page *page)
662 {
663         VM_BUG_ON(!PageLocked(page));
664
665         if (!PageSwapCache(page))
666                 return 0;
667         if (PageWriteback(page))
668                 return 0;
669         if (page_swapcount(page))
670                 return 0;
671
672         delete_from_swap_cache(page);
673         SetPageDirty(page);
674         return 1;
675 }
676
677 /*
678  * Free the swap entry like above, but also try to
679  * free the page cache entry if it is the last user.
680  */
681 int free_swap_and_cache(swp_entry_t entry)
682 {
683         struct swap_info_struct *p;
684         struct page *page = NULL;
685
686         if (non_swap_entry(entry))
687                 return 1;
688
689         p = swap_info_get(entry);
690         if (p) {
691                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
692                         page = find_get_page(&swapper_space, entry.val);
693                         if (page && !trylock_page(page)) {
694                                 page_cache_release(page);
695                                 page = NULL;
696                         }
697                 }
698                 spin_unlock(&swap_lock);
699         }
700         if (page) {
701                 /*
702                  * Not mapped elsewhere, or swap space full? Free it!
703                  * Also recheck PageSwapCache now page is locked (above).
704                  */
705                 if (PageSwapCache(page) && !PageWriteback(page) &&
706                                 (!page_mapped(page) || vm_swap_full())) {
707                         delete_from_swap_cache(page);
708                         SetPageDirty(page);
709                 }
710                 unlock_page(page);
711                 page_cache_release(page);
712         }
713         return p != NULL;
714 }
715
716 #ifdef CONFIG_HIBERNATION
717 /*
718  * Find the swap type that corresponds to given device (if any).
719  *
720  * @offset - number of the PAGE_SIZE-sized block of the device, starting
721  * from 0, in which the swap header is expected to be located.
722  *
723  * This is needed for the suspend to disk (aka swsusp).
724  */
725 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
726 {
727         struct block_device *bdev = NULL;
728         int type;
729
730         if (device)
731                 bdev = bdget(device);
732
733         spin_lock(&swap_lock);
734         for (type = 0; type < nr_swapfiles; type++) {
735                 struct swap_info_struct *sis = swap_info[type];
736
737                 if (!(sis->flags & SWP_WRITEOK))
738                         continue;
739
740                 if (!bdev) {
741                         if (bdev_p)
742                                 *bdev_p = bdgrab(sis->bdev);
743
744                         spin_unlock(&swap_lock);
745                         return type;
746                 }
747                 if (bdev == sis->bdev) {
748                         struct swap_extent *se = &sis->first_swap_extent;
749
750                         if (se->start_block == offset) {
751                                 if (bdev_p)
752                                         *bdev_p = bdgrab(sis->bdev);
753
754                                 spin_unlock(&swap_lock);
755                                 bdput(bdev);
756                                 return type;
757                         }
758                 }
759         }
760         spin_unlock(&swap_lock);
761         if (bdev)
762                 bdput(bdev);
763
764         return -ENODEV;
765 }
766
767 /*
768  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
769  * corresponding to given index in swap_info (swap type).
770  */
771 sector_t swapdev_block(int type, pgoff_t offset)
772 {
773         struct block_device *bdev;
774
775         if ((unsigned int)type >= nr_swapfiles)
776                 return 0;
777         if (!(swap_info[type]->flags & SWP_WRITEOK))
778                 return 0;
779         return map_swap_page(swp_entry(type, offset), &bdev);
780 }
781
782 /*
783  * Return either the total number of swap pages of given type, or the number
784  * of free pages of that type (depending on @free)
785  *
786  * This is needed for software suspend
787  */
788 unsigned int count_swap_pages(int type, int free)
789 {
790         unsigned int n = 0;
791
792         spin_lock(&swap_lock);
793         if ((unsigned int)type < nr_swapfiles) {
794                 struct swap_info_struct *sis = swap_info[type];
795
796                 if (sis->flags & SWP_WRITEOK) {
797                         n = sis->pages;
798                         if (free)
799                                 n -= sis->inuse_pages;
800                 }
801         }
802         spin_unlock(&swap_lock);
803         return n;
804 }
805 #endif /* CONFIG_HIBERNATION */
806
807 /*
808  * No need to decide whether this PTE shares the swap entry with others,
809  * just let do_wp_page work it out if a write is requested later - to
810  * force COW, vm_page_prot omits write permission from any private vma.
811  */
812 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
813                 unsigned long addr, swp_entry_t entry, struct page *page)
814 {
815         struct mem_cgroup *ptr = NULL;
816         spinlock_t *ptl;
817         pte_t *pte;
818         int ret = 1;
819
820         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
821                 ret = -ENOMEM;
822                 goto out_nolock;
823         }
824
825         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
826         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
827                 if (ret > 0)
828                         mem_cgroup_cancel_charge_swapin(ptr);
829                 ret = 0;
830                 goto out;
831         }
832
833         inc_mm_counter(vma->vm_mm, anon_rss);
834         get_page(page);
835         set_pte_at(vma->vm_mm, addr, pte,
836                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
837         page_add_anon_rmap(page, vma, addr);
838         mem_cgroup_commit_charge_swapin(page, ptr);
839         swap_free(entry);
840         /*
841          * Move the page to the active list so it is not
842          * immediately swapped out again after swapon.
843          */
844         activate_page(page);
845 out:
846         pte_unmap_unlock(pte, ptl);
847 out_nolock:
848         return ret;
849 }
850
851 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
852                                 unsigned long addr, unsigned long end,
853                                 swp_entry_t entry, struct page *page)
854 {
855         pte_t swp_pte = swp_entry_to_pte(entry);
856         pte_t *pte;
857         int ret = 0;
858
859         /*
860          * We don't actually need pte lock while scanning for swp_pte: since
861          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
862          * page table while we're scanning; though it could get zapped, and on
863          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
864          * of unmatched parts which look like swp_pte, so unuse_pte must
865          * recheck under pte lock.  Scanning without pte lock lets it be
866          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
867          */
868         pte = pte_offset_map(pmd, addr);
869         do {
870                 /*
871                  * swapoff spends a _lot_ of time in this loop!
872                  * Test inline before going to call unuse_pte.
873                  */
874                 if (unlikely(pte_same(*pte, swp_pte))) {
875                         pte_unmap(pte);
876                         ret = unuse_pte(vma, pmd, addr, entry, page);
877                         if (ret)
878                                 goto out;
879                         pte = pte_offset_map(pmd, addr);
880                 }
881         } while (pte++, addr += PAGE_SIZE, addr != end);
882         pte_unmap(pte - 1);
883 out:
884         return ret;
885 }
886
887 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
888                                 unsigned long addr, unsigned long end,
889                                 swp_entry_t entry, struct page *page)
890 {
891         pmd_t *pmd;
892         unsigned long next;
893         int ret;
894
895         pmd = pmd_offset(pud, addr);
896         do {
897                 next = pmd_addr_end(addr, end);
898                 if (pmd_none_or_clear_bad(pmd))
899                         continue;
900                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
901                 if (ret)
902                         return ret;
903         } while (pmd++, addr = next, addr != end);
904         return 0;
905 }
906
907 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
908                                 unsigned long addr, unsigned long end,
909                                 swp_entry_t entry, struct page *page)
910 {
911         pud_t *pud;
912         unsigned long next;
913         int ret;
914
915         pud = pud_offset(pgd, addr);
916         do {
917                 next = pud_addr_end(addr, end);
918                 if (pud_none_or_clear_bad(pud))
919                         continue;
920                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
921                 if (ret)
922                         return ret;
923         } while (pud++, addr = next, addr != end);
924         return 0;
925 }
926
927 static int unuse_vma(struct vm_area_struct *vma,
928                                 swp_entry_t entry, struct page *page)
929 {
930         pgd_t *pgd;
931         unsigned long addr, end, next;
932         int ret;
933
934         if (page->mapping) {
935                 addr = page_address_in_vma(page, vma);
936                 if (addr == -EFAULT)
937                         return 0;
938                 else
939                         end = addr + PAGE_SIZE;
940         } else {
941                 addr = vma->vm_start;
942                 end = vma->vm_end;
943         }
944
945         pgd = pgd_offset(vma->vm_mm, addr);
946         do {
947                 next = pgd_addr_end(addr, end);
948                 if (pgd_none_or_clear_bad(pgd))
949                         continue;
950                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
951                 if (ret)
952                         return ret;
953         } while (pgd++, addr = next, addr != end);
954         return 0;
955 }
956
957 static int unuse_mm(struct mm_struct *mm,
958                                 swp_entry_t entry, struct page *page)
959 {
960         struct vm_area_struct *vma;
961         int ret = 0;
962
963         if (!down_read_trylock(&mm->mmap_sem)) {
964                 /*
965                  * Activate page so shrink_inactive_list is unlikely to unmap
966                  * its ptes while lock is dropped, so swapoff can make progress.
967                  */
968                 activate_page(page);
969                 unlock_page(page);
970                 down_read(&mm->mmap_sem);
971                 lock_page(page);
972         }
973         for (vma = mm->mmap; vma; vma = vma->vm_next) {
974                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
975                         break;
976         }
977         up_read(&mm->mmap_sem);
978         return (ret < 0)? ret: 0;
979 }
980
981 /*
982  * Scan swap_map from current position to next entry still in use.
983  * Recycle to start on reaching the end, returning 0 when empty.
984  */
985 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
986                                         unsigned int prev)
987 {
988         unsigned int max = si->max;
989         unsigned int i = prev;
990         unsigned char count;
991
992         /*
993          * No need for swap_lock here: we're just looking
994          * for whether an entry is in use, not modifying it; false
995          * hits are okay, and sys_swapoff() has already prevented new
996          * allocations from this area (while holding swap_lock).
997          */
998         for (;;) {
999                 if (++i >= max) {
1000                         if (!prev) {
1001                                 i = 0;
1002                                 break;
1003                         }
1004                         /*
1005                          * No entries in use at top of swap_map,
1006                          * loop back to start and recheck there.
1007                          */
1008                         max = prev + 1;
1009                         prev = 0;
1010                         i = 1;
1011                 }
1012                 count = si->swap_map[i];
1013                 if (count && swap_count(count) != SWAP_MAP_BAD)
1014                         break;
1015         }
1016         return i;
1017 }
1018
1019 /*
1020  * We completely avoid races by reading each swap page in advance,
1021  * and then search for the process using it.  All the necessary
1022  * page table adjustments can then be made atomically.
1023  */
1024 static int try_to_unuse(unsigned int type)
1025 {
1026         struct swap_info_struct *si = swap_info[type];
1027         struct mm_struct *start_mm;
1028         unsigned char *swap_map;
1029         unsigned char swcount;
1030         struct page *page;
1031         swp_entry_t entry;
1032         unsigned int i = 0;
1033         int retval = 0;
1034         int shmem;
1035
1036         /*
1037          * When searching mms for an entry, a good strategy is to
1038          * start at the first mm we freed the previous entry from
1039          * (though actually we don't notice whether we or coincidence
1040          * freed the entry).  Initialize this start_mm with a hold.
1041          *
1042          * A simpler strategy would be to start at the last mm we
1043          * freed the previous entry from; but that would take less
1044          * advantage of mmlist ordering, which clusters forked mms
1045          * together, child after parent.  If we race with dup_mmap(), we
1046          * prefer to resolve parent before child, lest we miss entries
1047          * duplicated after we scanned child: using last mm would invert
1048          * that.
1049          */
1050         start_mm = &init_mm;
1051         atomic_inc(&init_mm.mm_users);
1052
1053         /*
1054          * Keep on scanning until all entries have gone.  Usually,
1055          * one pass through swap_map is enough, but not necessarily:
1056          * there are races when an instance of an entry might be missed.
1057          */
1058         while ((i = find_next_to_unuse(si, i)) != 0) {
1059                 if (signal_pending(current)) {
1060                         retval = -EINTR;
1061                         break;
1062                 }
1063
1064                 /*
1065                  * Get a page for the entry, using the existing swap
1066                  * cache page if there is one.  Otherwise, get a clean
1067                  * page and read the swap into it.
1068                  */
1069                 swap_map = &si->swap_map[i];
1070                 entry = swp_entry(type, i);
1071                 page = read_swap_cache_async(entry,
1072                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1073                 if (!page) {
1074                         /*
1075                          * Either swap_duplicate() failed because entry
1076                          * has been freed independently, and will not be
1077                          * reused since sys_swapoff() already disabled
1078                          * allocation from here, or alloc_page() failed.
1079                          */
1080                         if (!*swap_map)
1081                                 continue;
1082                         retval = -ENOMEM;
1083                         break;
1084                 }
1085
1086                 /*
1087                  * Don't hold on to start_mm if it looks like exiting.
1088                  */
1089                 if (atomic_read(&start_mm->mm_users) == 1) {
1090                         mmput(start_mm);
1091                         start_mm = &init_mm;
1092                         atomic_inc(&init_mm.mm_users);
1093                 }
1094
1095                 /*
1096                  * Wait for and lock page.  When do_swap_page races with
1097                  * try_to_unuse, do_swap_page can handle the fault much
1098                  * faster than try_to_unuse can locate the entry.  This
1099                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1100                  * defer to do_swap_page in such a case - in some tests,
1101                  * do_swap_page and try_to_unuse repeatedly compete.
1102                  */
1103                 wait_on_page_locked(page);
1104                 wait_on_page_writeback(page);
1105                 lock_page(page);
1106                 wait_on_page_writeback(page);
1107
1108                 /*
1109                  * Remove all references to entry.
1110                  * Whenever we reach init_mm, there's no address space
1111                  * to search, but use it as a reminder to search shmem.
1112                  */
1113                 shmem = 0;
1114                 swcount = *swap_map;
1115                 if (swap_count(swcount)) {
1116                         if (start_mm == &init_mm)
1117                                 shmem = shmem_unuse(entry, page);
1118                         else
1119                                 retval = unuse_mm(start_mm, entry, page);
1120                 }
1121                 if (swap_count(*swap_map)) {
1122                         int set_start_mm = (*swap_map >= swcount);
1123                         struct list_head *p = &start_mm->mmlist;
1124                         struct mm_struct *new_start_mm = start_mm;
1125                         struct mm_struct *prev_mm = start_mm;
1126                         struct mm_struct *mm;
1127
1128                         atomic_inc(&new_start_mm->mm_users);
1129                         atomic_inc(&prev_mm->mm_users);
1130                         spin_lock(&mmlist_lock);
1131                         while (swap_count(*swap_map) && !retval && !shmem &&
1132                                         (p = p->next) != &start_mm->mmlist) {
1133                                 mm = list_entry(p, struct mm_struct, mmlist);
1134                                 if (!atomic_inc_not_zero(&mm->mm_users))
1135                                         continue;
1136                                 spin_unlock(&mmlist_lock);
1137                                 mmput(prev_mm);
1138                                 prev_mm = mm;
1139
1140                                 cond_resched();
1141
1142                                 swcount = *swap_map;
1143                                 if (!swap_count(swcount)) /* any usage ? */
1144                                         ;
1145                                 else if (mm == &init_mm) {
1146                                         set_start_mm = 1;
1147                                         shmem = shmem_unuse(entry, page);
1148                                 } else
1149                                         retval = unuse_mm(mm, entry, page);
1150
1151                                 if (set_start_mm && *swap_map < swcount) {
1152                                         mmput(new_start_mm);
1153                                         atomic_inc(&mm->mm_users);
1154                                         new_start_mm = mm;
1155                                         set_start_mm = 0;
1156                                 }
1157                                 spin_lock(&mmlist_lock);
1158                         }
1159                         spin_unlock(&mmlist_lock);
1160                         mmput(prev_mm);
1161                         mmput(start_mm);
1162                         start_mm = new_start_mm;
1163                 }
1164                 if (shmem) {
1165                         /* page has already been unlocked and released */
1166                         if (shmem > 0)
1167                                 continue;
1168                         retval = shmem;
1169                         break;
1170                 }
1171                 if (retval) {
1172                         unlock_page(page);
1173                         page_cache_release(page);
1174                         break;
1175                 }
1176
1177                 /*
1178                  * If a reference remains (rare), we would like to leave
1179                  * the page in the swap cache; but try_to_unmap could
1180                  * then re-duplicate the entry once we drop page lock,
1181                  * so we might loop indefinitely; also, that page could
1182                  * not be swapped out to other storage meanwhile.  So:
1183                  * delete from cache even if there's another reference,
1184                  * after ensuring that the data has been saved to disk -
1185                  * since if the reference remains (rarer), it will be
1186                  * read from disk into another page.  Splitting into two
1187                  * pages would be incorrect if swap supported "shared
1188                  * private" pages, but they are handled by tmpfs files.
1189                  */
1190                 if (swap_count(*swap_map) &&
1191                      PageDirty(page) && PageSwapCache(page)) {
1192                         struct writeback_control wbc = {
1193                                 .sync_mode = WB_SYNC_NONE,
1194                         };
1195
1196                         swap_writepage(page, &wbc);
1197                         lock_page(page);
1198                         wait_on_page_writeback(page);
1199                 }
1200
1201                 /*
1202                  * It is conceivable that a racing task removed this page from
1203                  * swap cache just before we acquired the page lock at the top,
1204                  * or while we dropped it in unuse_mm().  The page might even
1205                  * be back in swap cache on another swap area: that we must not
1206                  * delete, since it may not have been written out to swap yet.
1207                  */
1208                 if (PageSwapCache(page) &&
1209                     likely(page_private(page) == entry.val))
1210                         delete_from_swap_cache(page);
1211
1212                 /*
1213                  * So we could skip searching mms once swap count went
1214                  * to 1, we did not mark any present ptes as dirty: must
1215                  * mark page dirty so shrink_page_list will preserve it.
1216                  */
1217                 SetPageDirty(page);
1218                 unlock_page(page);
1219                 page_cache_release(page);
1220
1221                 /*
1222                  * Make sure that we aren't completely killing
1223                  * interactive performance.
1224                  */
1225                 cond_resched();
1226         }
1227
1228         mmput(start_mm);
1229         return retval;
1230 }
1231
1232 /*
1233  * After a successful try_to_unuse, if no swap is now in use, we know
1234  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1235  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1236  * added to the mmlist just after page_duplicate - before would be racy.
1237  */
1238 static void drain_mmlist(void)
1239 {
1240         struct list_head *p, *next;
1241         unsigned int type;
1242
1243         for (type = 0; type < nr_swapfiles; type++)
1244                 if (swap_info[type]->inuse_pages)
1245                         return;
1246         spin_lock(&mmlist_lock);
1247         list_for_each_safe(p, next, &init_mm.mmlist)
1248                 list_del_init(p);
1249         spin_unlock(&mmlist_lock);
1250 }
1251
1252 /*
1253  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1254  * corresponds to page offset `offset'.  Note that the type of this function
1255  * is sector_t, but it returns page offset into the bdev, not sector offset.
1256  */
1257 sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1258 {
1259         struct swap_info_struct *sis;
1260         struct swap_extent *start_se;
1261         struct swap_extent *se;
1262         pgoff_t offset;
1263
1264         sis = swap_info[swp_type(entry)];
1265         *bdev = sis->bdev;
1266
1267         offset = swp_offset(entry);
1268         start_se = sis->curr_swap_extent;
1269         se = start_se;
1270
1271         for ( ; ; ) {
1272                 struct list_head *lh;
1273
1274                 if (se->start_page <= offset &&
1275                                 offset < (se->start_page + se->nr_pages)) {
1276                         return se->start_block + (offset - se->start_page);
1277                 }
1278                 lh = se->list.next;
1279                 se = list_entry(lh, struct swap_extent, list);
1280                 sis->curr_swap_extent = se;
1281                 BUG_ON(se == start_se);         /* It *must* be present */
1282         }
1283 }
1284
1285 /*
1286  * Free all of a swapdev's extent information
1287  */
1288 static void destroy_swap_extents(struct swap_info_struct *sis)
1289 {
1290         while (!list_empty(&sis->first_swap_extent.list)) {
1291                 struct swap_extent *se;
1292
1293                 se = list_entry(sis->first_swap_extent.list.next,
1294                                 struct swap_extent, list);
1295                 list_del(&se->list);
1296                 kfree(se);
1297         }
1298 }
1299
1300 /*
1301  * Add a block range (and the corresponding page range) into this swapdev's
1302  * extent list.  The extent list is kept sorted in page order.
1303  *
1304  * This function rather assumes that it is called in ascending page order.
1305  */
1306 static int
1307 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1308                 unsigned long nr_pages, sector_t start_block)
1309 {
1310         struct swap_extent *se;
1311         struct swap_extent *new_se;
1312         struct list_head *lh;
1313
1314         if (start_page == 0) {
1315                 se = &sis->first_swap_extent;
1316                 sis->curr_swap_extent = se;
1317                 se->start_page = 0;
1318                 se->nr_pages = nr_pages;
1319                 se->start_block = start_block;
1320                 return 1;
1321         } else {
1322                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1323                 se = list_entry(lh, struct swap_extent, list);
1324                 BUG_ON(se->start_page + se->nr_pages != start_page);
1325                 if (se->start_block + se->nr_pages == start_block) {
1326                         /* Merge it */
1327                         se->nr_pages += nr_pages;
1328                         return 0;
1329                 }
1330         }
1331
1332         /*
1333          * No merge.  Insert a new extent, preserving ordering.
1334          */
1335         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1336         if (new_se == NULL)
1337                 return -ENOMEM;
1338         new_se->start_page = start_page;
1339         new_se->nr_pages = nr_pages;
1340         new_se->start_block = start_block;
1341
1342         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1343         return 1;
1344 }
1345
1346 /*
1347  * A `swap extent' is a simple thing which maps a contiguous range of pages
1348  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1349  * is built at swapon time and is then used at swap_writepage/swap_readpage
1350  * time for locating where on disk a page belongs.
1351  *
1352  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1353  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1354  * swap files identically.
1355  *
1356  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1357  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1358  * swapfiles are handled *identically* after swapon time.
1359  *
1360  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1361  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1362  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1363  * requirements, they are simply tossed out - we will never use those blocks
1364  * for swapping.
1365  *
1366  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1367  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1368  * which will scribble on the fs.
1369  *
1370  * The amount of disk space which a single swap extent represents varies.
1371  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1372  * extents in the list.  To avoid much list walking, we cache the previous
1373  * search location in `curr_swap_extent', and start new searches from there.
1374  * This is extremely effective.  The average number of iterations in
1375  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1376  */
1377 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1378 {
1379         struct inode *inode;
1380         unsigned blocks_per_page;
1381         unsigned long page_no;
1382         unsigned blkbits;
1383         sector_t probe_block;
1384         sector_t last_block;
1385         sector_t lowest_block = -1;
1386         sector_t highest_block = 0;
1387         int nr_extents = 0;
1388         int ret;
1389
1390         inode = sis->swap_file->f_mapping->host;
1391         if (S_ISBLK(inode->i_mode)) {
1392                 ret = add_swap_extent(sis, 0, sis->max, 0);
1393                 *span = sis->pages;
1394                 goto out;
1395         }
1396
1397         blkbits = inode->i_blkbits;
1398         blocks_per_page = PAGE_SIZE >> blkbits;
1399
1400         /*
1401          * Map all the blocks into the extent list.  This code doesn't try
1402          * to be very smart.
1403          */
1404         probe_block = 0;
1405         page_no = 0;
1406         last_block = i_size_read(inode) >> blkbits;
1407         while ((probe_block + blocks_per_page) <= last_block &&
1408                         page_no < sis->max) {
1409                 unsigned block_in_page;
1410                 sector_t first_block;
1411
1412                 first_block = bmap(inode, probe_block);
1413                 if (first_block == 0)
1414                         goto bad_bmap;
1415
1416                 /*
1417                  * It must be PAGE_SIZE aligned on-disk
1418                  */
1419                 if (first_block & (blocks_per_page - 1)) {
1420                         probe_block++;
1421                         goto reprobe;
1422                 }
1423
1424                 for (block_in_page = 1; block_in_page < blocks_per_page;
1425                                         block_in_page++) {
1426                         sector_t block;
1427
1428                         block = bmap(inode, probe_block + block_in_page);
1429                         if (block == 0)
1430                                 goto bad_bmap;
1431                         if (block != first_block + block_in_page) {
1432                                 /* Discontiguity */
1433                                 probe_block++;
1434                                 goto reprobe;
1435                         }
1436                 }
1437
1438                 first_block >>= (PAGE_SHIFT - blkbits);
1439                 if (page_no) {  /* exclude the header page */
1440                         if (first_block < lowest_block)
1441                                 lowest_block = first_block;
1442                         if (first_block > highest_block)
1443                                 highest_block = first_block;
1444                 }
1445
1446                 /*
1447                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1448                  */
1449                 ret = add_swap_extent(sis, page_no, 1, first_block);
1450                 if (ret < 0)
1451                         goto out;
1452                 nr_extents += ret;
1453                 page_no++;
1454                 probe_block += blocks_per_page;
1455 reprobe:
1456                 continue;
1457         }
1458         ret = nr_extents;
1459         *span = 1 + highest_block - lowest_block;
1460         if (page_no == 0)
1461                 page_no = 1;    /* force Empty message */
1462         sis->max = page_no;
1463         sis->pages = page_no - 1;
1464         sis->highest_bit = page_no - 1;
1465 out:
1466         return ret;
1467 bad_bmap:
1468         printk(KERN_ERR "swapon: swapfile has holes\n");
1469         ret = -EINVAL;
1470         goto out;
1471 }
1472
1473 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1474 {
1475         struct swap_info_struct *p = NULL;
1476         unsigned char *swap_map;
1477         struct file *swap_file, *victim;
1478         struct address_space *mapping;
1479         struct inode *inode;
1480         char *pathname;
1481         int i, type, prev;
1482         int err;
1483
1484         if (!capable(CAP_SYS_ADMIN))
1485                 return -EPERM;
1486
1487         pathname = getname(specialfile);
1488         err = PTR_ERR(pathname);
1489         if (IS_ERR(pathname))
1490                 goto out;
1491
1492         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1493         putname(pathname);
1494         err = PTR_ERR(victim);
1495         if (IS_ERR(victim))
1496                 goto out;
1497
1498         mapping = victim->f_mapping;
1499         prev = -1;
1500         spin_lock(&swap_lock);
1501         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1502                 p = swap_info[type];
1503                 if (p->flags & SWP_WRITEOK) {
1504                         if (p->swap_file->f_mapping == mapping)
1505                                 break;
1506                 }
1507                 prev = type;
1508         }
1509         if (type < 0) {
1510                 err = -EINVAL;
1511                 spin_unlock(&swap_lock);
1512                 goto out_dput;
1513         }
1514         if (!security_vm_enough_memory(p->pages))
1515                 vm_unacct_memory(p->pages);
1516         else {
1517                 err = -ENOMEM;
1518                 spin_unlock(&swap_lock);
1519                 goto out_dput;
1520         }
1521         if (prev < 0)
1522                 swap_list.head = p->next;
1523         else
1524                 swap_info[prev]->next = p->next;
1525         if (type == swap_list.next) {
1526                 /* just pick something that's safe... */
1527                 swap_list.next = swap_list.head;
1528         }
1529         if (p->prio < 0) {
1530                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1531                         swap_info[i]->prio = p->prio--;
1532                 least_priority++;
1533         }
1534         nr_swap_pages -= p->pages;
1535         total_swap_pages -= p->pages;
1536         p->flags &= ~SWP_WRITEOK;
1537         spin_unlock(&swap_lock);
1538
1539         current->flags |= PF_OOM_ORIGIN;
1540         err = try_to_unuse(type);
1541         current->flags &= ~PF_OOM_ORIGIN;
1542
1543         if (err) {
1544                 /* re-insert swap space back into swap_list */
1545                 spin_lock(&swap_lock);
1546                 if (p->prio < 0)
1547                         p->prio = --least_priority;
1548                 prev = -1;
1549                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1550                         if (p->prio >= swap_info[i]->prio)
1551                                 break;
1552                         prev = i;
1553                 }
1554                 p->next = i;
1555                 if (prev < 0)
1556                         swap_list.head = swap_list.next = type;
1557                 else
1558                         swap_info[prev]->next = type;
1559                 nr_swap_pages += p->pages;
1560                 total_swap_pages += p->pages;
1561                 p->flags |= SWP_WRITEOK;
1562                 spin_unlock(&swap_lock);
1563                 goto out_dput;
1564         }
1565
1566         /* wait for any unplug function to finish */
1567         down_write(&swap_unplug_sem);
1568         up_write(&swap_unplug_sem);
1569
1570         destroy_swap_extents(p);
1571         if (p->flags & SWP_CONTINUED)
1572                 free_swap_count_continuations(p);
1573
1574         mutex_lock(&swapon_mutex);
1575         spin_lock(&swap_lock);
1576         drain_mmlist();
1577
1578         /* wait for anyone still in scan_swap_map */
1579         p->highest_bit = 0;             /* cuts scans short */
1580         while (p->flags >= SWP_SCANNING) {
1581                 spin_unlock(&swap_lock);
1582                 schedule_timeout_uninterruptible(1);
1583                 spin_lock(&swap_lock);
1584         }
1585
1586         swap_file = p->swap_file;
1587         p->swap_file = NULL;
1588         p->max = 0;
1589         swap_map = p->swap_map;
1590         p->swap_map = NULL;
1591         p->flags = 0;
1592         spin_unlock(&swap_lock);
1593         mutex_unlock(&swapon_mutex);
1594         vfree(swap_map);
1595         /* Destroy swap account informatin */
1596         swap_cgroup_swapoff(type);
1597
1598         inode = mapping->host;
1599         if (S_ISBLK(inode->i_mode)) {
1600                 struct block_device *bdev = I_BDEV(inode);
1601                 set_blocksize(bdev, p->old_block_size);
1602                 bd_release(bdev);
1603         } else {
1604                 mutex_lock(&inode->i_mutex);
1605                 inode->i_flags &= ~S_SWAPFILE;
1606                 mutex_unlock(&inode->i_mutex);
1607         }
1608         filp_close(swap_file, NULL);
1609         err = 0;
1610
1611 out_dput:
1612         filp_close(victim, NULL);
1613 out:
1614         return err;
1615 }
1616
1617 #ifdef CONFIG_PROC_FS
1618 /* iterator */
1619 static void *swap_start(struct seq_file *swap, loff_t *pos)
1620 {
1621         struct swap_info_struct *si;
1622         int type;
1623         loff_t l = *pos;
1624
1625         mutex_lock(&swapon_mutex);
1626
1627         if (!l)
1628                 return SEQ_START_TOKEN;
1629
1630         for (type = 0; type < nr_swapfiles; type++) {
1631                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1632                 si = swap_info[type];
1633                 if (!(si->flags & SWP_USED) || !si->swap_map)
1634                         continue;
1635                 if (!--l)
1636                         return si;
1637         }
1638
1639         return NULL;
1640 }
1641
1642 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1643 {
1644         struct swap_info_struct *si = v;
1645         int type;
1646
1647         if (v == SEQ_START_TOKEN)
1648                 type = 0;
1649         else
1650                 type = si->type + 1;
1651
1652         for (; type < nr_swapfiles; type++) {
1653                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1654                 si = swap_info[type];
1655                 if (!(si->flags & SWP_USED) || !si->swap_map)
1656                         continue;
1657                 ++*pos;
1658                 return si;
1659         }
1660
1661         return NULL;
1662 }
1663
1664 static void swap_stop(struct seq_file *swap, void *v)
1665 {
1666         mutex_unlock(&swapon_mutex);
1667 }
1668
1669 static int swap_show(struct seq_file *swap, void *v)
1670 {
1671         struct swap_info_struct *si = v;
1672         struct file *file;
1673         int len;
1674
1675         if (si == SEQ_START_TOKEN) {
1676                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1677                 return 0;
1678         }
1679
1680         file = si->swap_file;
1681         len = seq_path(swap, &file->f_path, " \t\n\\");
1682         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1683                         len < 40 ? 40 - len : 1, " ",
1684                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1685                                 "partition" : "file\t",
1686                         si->pages << (PAGE_SHIFT - 10),
1687                         si->inuse_pages << (PAGE_SHIFT - 10),
1688                         si->prio);
1689         return 0;
1690 }
1691
1692 static const struct seq_operations swaps_op = {
1693         .start =        swap_start,
1694         .next =         swap_next,
1695         .stop =         swap_stop,
1696         .show =         swap_show
1697 };
1698
1699 static int swaps_open(struct inode *inode, struct file *file)
1700 {
1701         return seq_open(file, &swaps_op);
1702 }
1703
1704 static const struct file_operations proc_swaps_operations = {
1705         .open           = swaps_open,
1706         .read           = seq_read,
1707         .llseek         = seq_lseek,
1708         .release        = seq_release,
1709 };
1710
1711 static int __init procswaps_init(void)
1712 {
1713         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1714         return 0;
1715 }
1716 __initcall(procswaps_init);
1717 #endif /* CONFIG_PROC_FS */
1718
1719 #ifdef MAX_SWAPFILES_CHECK
1720 static int __init max_swapfiles_check(void)
1721 {
1722         MAX_SWAPFILES_CHECK();
1723         return 0;
1724 }
1725 late_initcall(max_swapfiles_check);
1726 #endif
1727
1728 /*
1729  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1730  *
1731  * The swapon system call
1732  */
1733 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1734 {
1735         struct swap_info_struct *p;
1736         char *name = NULL;
1737         struct block_device *bdev = NULL;
1738         struct file *swap_file = NULL;
1739         struct address_space *mapping;
1740         unsigned int type;
1741         int i, prev;
1742         int error;
1743         union swap_header *swap_header = NULL;
1744         unsigned int nr_good_pages = 0;
1745         int nr_extents = 0;
1746         sector_t span;
1747         unsigned long maxpages = 1;
1748         unsigned long swapfilepages;
1749         unsigned char *swap_map = NULL;
1750         struct page *page = NULL;
1751         struct inode *inode = NULL;
1752         int did_down = 0;
1753
1754         if (!capable(CAP_SYS_ADMIN))
1755                 return -EPERM;
1756
1757         p = kzalloc(sizeof(*p), GFP_KERNEL);
1758         if (!p)
1759                 return -ENOMEM;
1760
1761         spin_lock(&swap_lock);
1762         for (type = 0; type < nr_swapfiles; type++) {
1763                 if (!(swap_info[type]->flags & SWP_USED))
1764                         break;
1765         }
1766         error = -EPERM;
1767         if (type >= MAX_SWAPFILES) {
1768                 spin_unlock(&swap_lock);
1769                 kfree(p);
1770                 goto out;
1771         }
1772         if (type >= nr_swapfiles) {
1773                 p->type = type;
1774                 swap_info[type] = p;
1775                 /*
1776                  * Write swap_info[type] before nr_swapfiles, in case a
1777                  * racing procfs swap_start() or swap_next() is reading them.
1778                  * (We never shrink nr_swapfiles, we never free this entry.)
1779                  */
1780                 smp_wmb();
1781                 nr_swapfiles++;
1782         } else {
1783                 kfree(p);
1784                 p = swap_info[type];
1785                 /*
1786                  * Do not memset this entry: a racing procfs swap_next()
1787                  * would be relying on p->type to remain valid.
1788                  */
1789         }
1790         INIT_LIST_HEAD(&p->first_swap_extent.list);
1791         p->flags = SWP_USED;
1792         p->next = -1;
1793         spin_unlock(&swap_lock);
1794
1795         name = getname(specialfile);
1796         error = PTR_ERR(name);
1797         if (IS_ERR(name)) {
1798                 name = NULL;
1799                 goto bad_swap_2;
1800         }
1801         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1802         error = PTR_ERR(swap_file);
1803         if (IS_ERR(swap_file)) {
1804                 swap_file = NULL;
1805                 goto bad_swap_2;
1806         }
1807
1808         p->swap_file = swap_file;
1809         mapping = swap_file->f_mapping;
1810         inode = mapping->host;
1811
1812         error = -EBUSY;
1813         for (i = 0; i < nr_swapfiles; i++) {
1814                 struct swap_info_struct *q = swap_info[i];
1815
1816                 if (i == type || !q->swap_file)
1817                         continue;
1818                 if (mapping == q->swap_file->f_mapping)
1819                         goto bad_swap;
1820         }
1821
1822         error = -EINVAL;
1823         if (S_ISBLK(inode->i_mode)) {
1824                 bdev = I_BDEV(inode);
1825                 error = bd_claim(bdev, sys_swapon);
1826                 if (error < 0) {
1827                         bdev = NULL;
1828                         error = -EINVAL;
1829                         goto bad_swap;
1830                 }
1831                 p->old_block_size = block_size(bdev);
1832                 error = set_blocksize(bdev, PAGE_SIZE);
1833                 if (error < 0)
1834                         goto bad_swap;
1835                 p->bdev = bdev;
1836         } else if (S_ISREG(inode->i_mode)) {
1837                 p->bdev = inode->i_sb->s_bdev;
1838                 mutex_lock(&inode->i_mutex);
1839                 did_down = 1;
1840                 if (IS_SWAPFILE(inode)) {
1841                         error = -EBUSY;
1842                         goto bad_swap;
1843                 }
1844         } else {
1845                 goto bad_swap;
1846         }
1847
1848         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1849
1850         /*
1851          * Read the swap header.
1852          */
1853         if (!mapping->a_ops->readpage) {
1854                 error = -EINVAL;
1855                 goto bad_swap;
1856         }
1857         page = read_mapping_page(mapping, 0, swap_file);
1858         if (IS_ERR(page)) {
1859                 error = PTR_ERR(page);
1860                 goto bad_swap;
1861         }
1862         swap_header = kmap(page);
1863
1864         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1865                 printk(KERN_ERR "Unable to find swap-space signature\n");
1866                 error = -EINVAL;
1867                 goto bad_swap;
1868         }
1869
1870         /* swap partition endianess hack... */
1871         if (swab32(swap_header->info.version) == 1) {
1872                 swab32s(&swap_header->info.version);
1873                 swab32s(&swap_header->info.last_page);
1874                 swab32s(&swap_header->info.nr_badpages);
1875                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1876                         swab32s(&swap_header->info.badpages[i]);
1877         }
1878         /* Check the swap header's sub-version */
1879         if (swap_header->info.version != 1) {
1880                 printk(KERN_WARNING
1881                        "Unable to handle swap header version %d\n",
1882                        swap_header->info.version);
1883                 error = -EINVAL;
1884                 goto bad_swap;
1885         }
1886
1887         p->lowest_bit  = 1;
1888         p->cluster_next = 1;
1889         p->cluster_nr = 0;
1890
1891         /*
1892          * Find out how many pages are allowed for a single swap
1893          * device. There are two limiting factors: 1) the number of
1894          * bits for the swap offset in the swp_entry_t type and
1895          * 2) the number of bits in the a swap pte as defined by
1896          * the different architectures. In order to find the
1897          * largest possible bit mask a swap entry with swap type 0
1898          * and swap offset ~0UL is created, encoded to a swap pte,
1899          * decoded to a swp_entry_t again and finally the swap
1900          * offset is extracted. This will mask all the bits from
1901          * the initial ~0UL mask that can't be encoded in either
1902          * the swp_entry_t or the architecture definition of a
1903          * swap pte.
1904          */
1905         maxpages = swp_offset(pte_to_swp_entry(
1906                         swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1907         if (maxpages > swap_header->info.last_page)
1908                 maxpages = swap_header->info.last_page;
1909         p->highest_bit = maxpages - 1;
1910
1911         error = -EINVAL;
1912         if (!maxpages)
1913                 goto bad_swap;
1914         if (swapfilepages && maxpages > swapfilepages) {
1915                 printk(KERN_WARNING
1916                        "Swap area shorter than signature indicates\n");
1917                 goto bad_swap;
1918         }
1919         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1920                 goto bad_swap;
1921         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1922                 goto bad_swap;
1923
1924         /* OK, set up the swap map and apply the bad block list */
1925         swap_map = vmalloc(maxpages);
1926         if (!swap_map) {
1927                 error = -ENOMEM;
1928                 goto bad_swap;
1929         }
1930
1931         memset(swap_map, 0, maxpages);
1932         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1933                 int page_nr = swap_header->info.badpages[i];
1934                 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1935                         error = -EINVAL;
1936                         goto bad_swap;
1937                 }
1938                 swap_map[page_nr] = SWAP_MAP_BAD;
1939         }
1940
1941         error = swap_cgroup_swapon(type, maxpages);
1942         if (error)
1943                 goto bad_swap;
1944
1945         nr_good_pages = swap_header->info.last_page -
1946                         swap_header->info.nr_badpages -
1947                         1 /* header page */;
1948
1949         if (nr_good_pages) {
1950                 swap_map[0] = SWAP_MAP_BAD;
1951                 p->max = maxpages;
1952                 p->pages = nr_good_pages;
1953                 nr_extents = setup_swap_extents(p, &span);
1954                 if (nr_extents < 0) {
1955                         error = nr_extents;
1956                         goto bad_swap;
1957                 }
1958                 nr_good_pages = p->pages;
1959         }
1960         if (!nr_good_pages) {
1961                 printk(KERN_WARNING "Empty swap-file\n");
1962                 error = -EINVAL;
1963                 goto bad_swap;
1964         }
1965
1966         if (p->bdev) {
1967                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1968                         p->flags |= SWP_SOLIDSTATE;
1969                         p->cluster_next = 1 + (random32() % p->highest_bit);
1970                 }
1971                 if (discard_swap(p) == 0)
1972                         p->flags |= SWP_DISCARDABLE;
1973         }
1974
1975         mutex_lock(&swapon_mutex);
1976         spin_lock(&swap_lock);
1977         if (swap_flags & SWAP_FLAG_PREFER)
1978                 p->prio =
1979                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1980         else
1981                 p->prio = --least_priority;
1982         p->swap_map = swap_map;
1983         p->flags |= SWP_WRITEOK;
1984         nr_swap_pages += nr_good_pages;
1985         total_swap_pages += nr_good_pages;
1986
1987         printk(KERN_INFO "Adding %uk swap on %s.  "
1988                         "Priority:%d extents:%d across:%lluk %s%s\n",
1989                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1990                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1991                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1992                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1993
1994         /* insert swap space into swap_list: */
1995         prev = -1;
1996         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1997                 if (p->prio >= swap_info[i]->prio)
1998                         break;
1999                 prev = i;
2000         }
2001         p->next = i;
2002         if (prev < 0)
2003                 swap_list.head = swap_list.next = type;
2004         else
2005                 swap_info[prev]->next = type;
2006         spin_unlock(&swap_lock);
2007         mutex_unlock(&swapon_mutex);
2008         error = 0;
2009         goto out;
2010 bad_swap:
2011         if (bdev) {
2012                 set_blocksize(bdev, p->old_block_size);
2013                 bd_release(bdev);
2014         }
2015         destroy_swap_extents(p);
2016         swap_cgroup_swapoff(type);
2017 bad_swap_2:
2018         spin_lock(&swap_lock);
2019         p->swap_file = NULL;
2020         p->flags = 0;
2021         spin_unlock(&swap_lock);
2022         vfree(swap_map);
2023         if (swap_file)
2024                 filp_close(swap_file, NULL);
2025 out:
2026         if (page && !IS_ERR(page)) {
2027                 kunmap(page);
2028                 page_cache_release(page);
2029         }
2030         if (name)
2031                 putname(name);
2032         if (did_down) {
2033                 if (!error)
2034                         inode->i_flags |= S_SWAPFILE;
2035                 mutex_unlock(&inode->i_mutex);
2036         }
2037         return error;
2038 }
2039
2040 void si_swapinfo(struct sysinfo *val)
2041 {
2042         unsigned int type;
2043         unsigned long nr_to_be_unused = 0;
2044
2045         spin_lock(&swap_lock);
2046         for (type = 0; type < nr_swapfiles; type++) {
2047                 struct swap_info_struct *si = swap_info[type];
2048
2049                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2050                         nr_to_be_unused += si->inuse_pages;
2051         }
2052         val->freeswap = nr_swap_pages + nr_to_be_unused;
2053         val->totalswap = total_swap_pages + nr_to_be_unused;
2054         spin_unlock(&swap_lock);
2055 }
2056
2057 /*
2058  * Verify that a swap entry is valid and increment its swap map count.
2059  *
2060  * Returns error code in following case.
2061  * - success -> 0
2062  * - swp_entry is invalid -> EINVAL
2063  * - swp_entry is migration entry -> EINVAL
2064  * - swap-cache reference is requested but there is already one. -> EEXIST
2065  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2066  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2067  */
2068 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2069 {
2070         struct swap_info_struct *p;
2071         unsigned long offset, type;
2072         unsigned char count;
2073         unsigned char has_cache;
2074         int err = -EINVAL;
2075
2076         if (non_swap_entry(entry))
2077                 goto out;
2078
2079         type = swp_type(entry);
2080         if (type >= nr_swapfiles)
2081                 goto bad_file;
2082         p = swap_info[type];
2083         offset = swp_offset(entry);
2084
2085         spin_lock(&swap_lock);
2086         if (unlikely(offset >= p->max))
2087                 goto unlock_out;
2088
2089         count = p->swap_map[offset];
2090         has_cache = count & SWAP_HAS_CACHE;
2091         count &= ~SWAP_HAS_CACHE;
2092         err = 0;
2093
2094         if (usage == SWAP_HAS_CACHE) {
2095
2096                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2097                 if (!has_cache && count)
2098                         has_cache = SWAP_HAS_CACHE;
2099                 else if (has_cache)             /* someone else added cache */
2100                         err = -EEXIST;
2101                 else                            /* no users remaining */
2102                         err = -ENOENT;
2103
2104         } else if (count || has_cache) {
2105
2106                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2107                         count += usage;
2108                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2109                         err = -EINVAL;
2110                 else if (swap_count_continued(p, offset, count))
2111                         count = COUNT_CONTINUED;
2112                 else
2113                         err = -ENOMEM;
2114         } else
2115                 err = -ENOENT;                  /* unused swap entry */
2116
2117         p->swap_map[offset] = count | has_cache;
2118
2119 unlock_out:
2120         spin_unlock(&swap_lock);
2121 out:
2122         return err;
2123
2124 bad_file:
2125         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2126         goto out;
2127 }
2128
2129 /*
2130  * increase reference count of swap entry by 1.
2131  */
2132 int swap_duplicate(swp_entry_t entry)
2133 {
2134         int err = 0;
2135
2136         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2137                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2138         return err;
2139 }
2140
2141 /*
2142  * @entry: swap entry for which we allocate swap cache.
2143  *
2144  * Called when allocating swap cache for existing swap entry,
2145  * This can return error codes. Returns 0 at success.
2146  * -EBUSY means there is a swap cache.
2147  * Note: return code is different from swap_duplicate().
2148  */
2149 int swapcache_prepare(swp_entry_t entry)
2150 {
2151         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2152 }
2153
2154 /*
2155  * swap_lock prevents swap_map being freed. Don't grab an extra
2156  * reference on the swaphandle, it doesn't matter if it becomes unused.
2157  */
2158 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2159 {
2160         struct swap_info_struct *si;
2161         int our_page_cluster = page_cluster;
2162         pgoff_t target, toff;
2163         pgoff_t base, end;
2164         int nr_pages = 0;
2165
2166         if (!our_page_cluster)  /* no readahead */
2167                 return 0;
2168
2169         si = swap_info[swp_type(entry)];
2170         target = swp_offset(entry);
2171         base = (target >> our_page_cluster) << our_page_cluster;
2172         end = base + (1 << our_page_cluster);
2173         if (!base)              /* first page is swap header */
2174                 base++;
2175
2176         spin_lock(&swap_lock);
2177         if (end > si->max)      /* don't go beyond end of map */
2178                 end = si->max;
2179
2180         /* Count contiguous allocated slots above our target */
2181         for (toff = target; ++toff < end; nr_pages++) {
2182                 /* Don't read in free or bad pages */
2183                 if (!si->swap_map[toff])
2184                         break;
2185                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2186                         break;
2187         }
2188         /* Count contiguous allocated slots below our target */
2189         for (toff = target; --toff >= base; nr_pages++) {
2190                 /* Don't read in free or bad pages */
2191                 if (!si->swap_map[toff])
2192                         break;
2193                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2194                         break;
2195         }
2196         spin_unlock(&swap_lock);
2197
2198         /*
2199          * Indicate starting offset, and return number of pages to get:
2200          * if only 1, say 0, since there's then no readahead to be done.
2201          */
2202         *offset = ++toff;
2203         return nr_pages? ++nr_pages: 0;
2204 }
2205
2206 /*
2207  * add_swap_count_continuation - called when a swap count is duplicated
2208  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2209  * page of the original vmalloc'ed swap_map, to hold the continuation count
2210  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2211  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2212  *
2213  * These continuation pages are seldom referenced: the common paths all work
2214  * on the original swap_map, only referring to a continuation page when the
2215  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2216  *
2217  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2218  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2219  * can be called after dropping locks.
2220  */
2221 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2222 {
2223         struct swap_info_struct *si;
2224         struct page *head;
2225         struct page *page;
2226         struct page *list_page;
2227         pgoff_t offset;
2228         unsigned char count;
2229
2230         /*
2231          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2232          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2233          */
2234         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2235
2236         si = swap_info_get(entry);
2237         if (!si) {
2238                 /*
2239                  * An acceptable race has occurred since the failing
2240                  * __swap_duplicate(): the swap entry has been freed,
2241                  * perhaps even the whole swap_map cleared for swapoff.
2242                  */
2243                 goto outer;
2244         }
2245
2246         offset = swp_offset(entry);
2247         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2248
2249         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2250                 /*
2251                  * The higher the swap count, the more likely it is that tasks
2252                  * will race to add swap count continuation: we need to avoid
2253                  * over-provisioning.
2254                  */
2255                 goto out;
2256         }
2257
2258         if (!page) {
2259                 spin_unlock(&swap_lock);
2260                 return -ENOMEM;
2261         }
2262
2263         /*
2264          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2265          * no architecture is using highmem pages for kernel pagetables: so it
2266          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2267          */
2268         head = vmalloc_to_page(si->swap_map + offset);
2269         offset &= ~PAGE_MASK;
2270
2271         /*
2272          * Page allocation does not initialize the page's lru field,
2273          * but it does always reset its private field.
2274          */
2275         if (!page_private(head)) {
2276                 BUG_ON(count & COUNT_CONTINUED);
2277                 INIT_LIST_HEAD(&head->lru);
2278                 set_page_private(head, SWP_CONTINUED);
2279                 si->flags |= SWP_CONTINUED;
2280         }
2281
2282         list_for_each_entry(list_page, &head->lru, lru) {
2283                 unsigned char *map;
2284
2285                 /*
2286                  * If the previous map said no continuation, but we've found
2287                  * a continuation page, free our allocation and use this one.
2288                  */
2289                 if (!(count & COUNT_CONTINUED))
2290                         goto out;
2291
2292                 map = kmap_atomic(list_page, KM_USER0) + offset;
2293                 count = *map;
2294                 kunmap_atomic(map, KM_USER0);
2295
2296                 /*
2297                  * If this continuation count now has some space in it,
2298                  * free our allocation and use this one.
2299                  */
2300                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2301                         goto out;
2302         }
2303
2304         list_add_tail(&page->lru, &head->lru);
2305         page = NULL;                    /* now it's attached, don't free it */
2306 out:
2307         spin_unlock(&swap_lock);
2308 outer:
2309         if (page)
2310                 __free_page(page);
2311         return 0;
2312 }
2313
2314 /*
2315  * swap_count_continued - when the original swap_map count is incremented
2316  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2317  * into, carry if so, or else fail until a new continuation page is allocated;
2318  * when the original swap_map count is decremented from 0 with continuation,
2319  * borrow from the continuation and report whether it still holds more.
2320  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2321  */
2322 static bool swap_count_continued(struct swap_info_struct *si,
2323                                  pgoff_t offset, unsigned char count)
2324 {
2325         struct page *head;
2326         struct page *page;
2327         unsigned char *map;
2328
2329         head = vmalloc_to_page(si->swap_map + offset);
2330         if (page_private(head) != SWP_CONTINUED) {
2331                 BUG_ON(count & COUNT_CONTINUED);
2332                 return false;           /* need to add count continuation */
2333         }
2334
2335         offset &= ~PAGE_MASK;
2336         page = list_entry(head->lru.next, struct page, lru);
2337         map = kmap_atomic(page, KM_USER0) + offset;
2338
2339         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2340                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2341
2342         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2343                 /*
2344                  * Think of how you add 1 to 999
2345                  */
2346                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2347                         kunmap_atomic(map, KM_USER0);
2348                         page = list_entry(page->lru.next, struct page, lru);
2349                         BUG_ON(page == head);
2350                         map = kmap_atomic(page, KM_USER0) + offset;
2351                 }
2352                 if (*map == SWAP_CONT_MAX) {
2353                         kunmap_atomic(map, KM_USER0);
2354                         page = list_entry(page->lru.next, struct page, lru);
2355                         if (page == head)
2356                                 return false;   /* add count continuation */
2357                         map = kmap_atomic(page, KM_USER0) + offset;
2358 init_map:               *map = 0;               /* we didn't zero the page */
2359                 }
2360                 *map += 1;
2361                 kunmap_atomic(map, KM_USER0);
2362                 page = list_entry(page->lru.prev, struct page, lru);
2363                 while (page != head) {
2364                         map = kmap_atomic(page, KM_USER0) + offset;
2365                         *map = COUNT_CONTINUED;
2366                         kunmap_atomic(map, KM_USER0);
2367                         page = list_entry(page->lru.prev, struct page, lru);
2368                 }
2369                 return true;                    /* incremented */
2370
2371         } else {                                /* decrementing */
2372                 /*
2373                  * Think of how you subtract 1 from 1000
2374                  */
2375                 BUG_ON(count != COUNT_CONTINUED);
2376                 while (*map == COUNT_CONTINUED) {
2377                         kunmap_atomic(map, KM_USER0);
2378                         page = list_entry(page->lru.next, struct page, lru);
2379                         BUG_ON(page == head);
2380                         map = kmap_atomic(page, KM_USER0) + offset;
2381                 }
2382                 BUG_ON(*map == 0);
2383                 *map -= 1;
2384                 if (*map == 0)
2385                         count = 0;
2386                 kunmap_atomic(map, KM_USER0);
2387                 page = list_entry(page->lru.prev, struct page, lru);
2388                 while (page != head) {
2389                         map = kmap_atomic(page, KM_USER0) + offset;
2390                         *map = SWAP_CONT_MAX | count;
2391                         count = COUNT_CONTINUED;
2392                         kunmap_atomic(map, KM_USER0);
2393                         page = list_entry(page->lru.prev, struct page, lru);
2394                 }
2395                 return count == COUNT_CONTINUED;
2396         }
2397 }
2398
2399 /*
2400  * free_swap_count_continuations - swapoff free all the continuation pages
2401  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2402  */
2403 static void free_swap_count_continuations(struct swap_info_struct *si)
2404 {
2405         pgoff_t offset;
2406
2407         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2408                 struct page *head;
2409                 head = vmalloc_to_page(si->swap_map + offset);
2410                 if (page_private(head)) {
2411                         struct list_head *this, *next;
2412                         list_for_each_safe(this, next, &head->lru) {
2413                                 struct page *page;
2414                                 page = list_entry(this, struct page, lru);
2415                                 list_del(this);
2416                                 __free_page(page);
2417                         }
2418                 }
2419         }
2420 }