e675ae55f87dac005b7b8801f31a27e43d3e6cf6
[safe/jmp/linux-2.6] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
29
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
33
34 DEFINE_SPINLOCK(swaplock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
38
39 EXPORT_SYMBOL(total_swap_pages);
40
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45
46 struct swap_list_t swap_list = {-1, -1};
47
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50 static DECLARE_MUTEX(swapon_sem);
51
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55  * cannot be turned into a semaphore.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61         swp_entry_t entry;
62
63         down_read(&swap_unplug_sem);
64         entry.val = page->private;
65         if (PageSwapCache(page)) {
66                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67                 struct backing_dev_info *bdi;
68
69                 /*
70                  * If the page is removed from swapcache from under us (with a
71                  * racy try_to_unuse/swapoff) we need an additional reference
72                  * count to avoid reading garbage from page->private above. If
73                  * the WARN_ON triggers during a swapoff it maybe the race
74                  * condition and it's harmless. However if it triggers without
75                  * swapoff it signals a problem.
76                  */
77                 WARN_ON(page_count(page) <= 1);
78
79                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80                 blk_run_backing_dev(bdi, page);
81         }
82         up_read(&swap_unplug_sem);
83 }
84
85 #define SWAPFILE_CLUSTER        256
86 #define LATENCY_LIMIT           256
87
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90         unsigned long offset, last_in_cluster;
91         int latency_ration = LATENCY_LIMIT;
92
93         /* 
94          * We try to cluster swap pages by allocating them sequentially
95          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96          * way, however, we resort to first-free allocation, starting
97          * a new cluster.  This prevents us from scattering swap pages
98          * all over the entire swap partition, so that we reduce
99          * overall disk seek times between swap pages.  -- sct
100          * But we do now try to find an empty cluster.  -Andrea
101          */
102
103         si->flags += SWP_SCANNING;
104         if (unlikely(!si->cluster_nr)) {
105                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107                         goto lowest;
108                 swap_device_unlock(si);
109
110                 offset = si->lowest_bit;
111                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113                 /* Locate the first empty (unaligned) cluster */
114                 for (; last_in_cluster <= si->highest_bit; offset++) {
115                         if (si->swap_map[offset])
116                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
117                         else if (offset == last_in_cluster) {
118                                 swap_device_lock(si);
119                                 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120                                 goto cluster;
121                         }
122                         if (unlikely(--latency_ration < 0)) {
123                                 cond_resched();
124                                 latency_ration = LATENCY_LIMIT;
125                         }
126                 }
127                 swap_device_lock(si);
128                 goto lowest;
129         }
130
131         si->cluster_nr--;
132 cluster:
133         offset = si->cluster_next;
134         if (offset > si->highest_bit)
135 lowest:         offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
137                 goto no_page;
138         if (!si->highest_bit)
139                 goto no_page;
140         if (!si->swap_map[offset]) {
141                 if (offset == si->lowest_bit)
142                         si->lowest_bit++;
143                 if (offset == si->highest_bit)
144                         si->highest_bit--;
145                 si->inuse_pages++;
146                 if (si->inuse_pages == si->pages) {
147                         si->lowest_bit = si->max;
148                         si->highest_bit = 0;
149                 }
150                 si->swap_map[offset] = 1;
151                 si->cluster_next = offset + 1;
152                 si->flags -= SWP_SCANNING;
153                 return offset;
154         }
155
156         swap_device_unlock(si);
157         while (++offset <= si->highest_bit) {
158                 if (!si->swap_map[offset]) {
159                         swap_device_lock(si);
160                         goto checks;
161                 }
162                 if (unlikely(--latency_ration < 0)) {
163                         cond_resched();
164                         latency_ration = LATENCY_LIMIT;
165                 }
166         }
167         swap_device_lock(si);
168         goto lowest;
169
170 no_page:
171         si->flags -= SWP_SCANNING;
172         return 0;
173 }
174
175 swp_entry_t get_swap_page(void)
176 {
177         struct swap_info_struct *si;
178         pgoff_t offset;
179         int type, next;
180         int wrapped = 0;
181
182         swap_list_lock();
183         if (nr_swap_pages <= 0)
184                 goto noswap;
185         nr_swap_pages--;
186
187         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188                 si = swap_info + type;
189                 next = si->next;
190                 if (next < 0 ||
191                     (!wrapped && si->prio != swap_info[next].prio)) {
192                         next = swap_list.head;
193                         wrapped++;
194                 }
195
196                 if (!si->highest_bit)
197                         continue;
198                 if (!(si->flags & SWP_WRITEOK))
199                         continue;
200
201                 swap_list.next = next;
202                 swap_device_lock(si);
203                 swap_list_unlock();
204                 offset = scan_swap_map(si);
205                 swap_device_unlock(si);
206                 if (offset)
207                         return swp_entry(type, offset);
208                 swap_list_lock();
209                 next = swap_list.next;
210         }
211
212         nr_swap_pages++;
213 noswap:
214         swap_list_unlock();
215         return (swp_entry_t) {0};
216 }
217
218 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
219 {
220         struct swap_info_struct * p;
221         unsigned long offset, type;
222
223         if (!entry.val)
224                 goto out;
225         type = swp_type(entry);
226         if (type >= nr_swapfiles)
227                 goto bad_nofile;
228         p = & swap_info[type];
229         if (!(p->flags & SWP_USED))
230                 goto bad_device;
231         offset = swp_offset(entry);
232         if (offset >= p->max)
233                 goto bad_offset;
234         if (!p->swap_map[offset])
235                 goto bad_free;
236         swap_list_lock();
237         swap_device_lock(p);
238         return p;
239
240 bad_free:
241         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
242         goto out;
243 bad_offset:
244         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
245         goto out;
246 bad_device:
247         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
248         goto out;
249 bad_nofile:
250         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
251 out:
252         return NULL;
253 }       
254
255 static void swap_info_put(struct swap_info_struct * p)
256 {
257         swap_device_unlock(p);
258         swap_list_unlock();
259 }
260
261 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
262 {
263         int count = p->swap_map[offset];
264
265         if (count < SWAP_MAP_MAX) {
266                 count--;
267                 p->swap_map[offset] = count;
268                 if (!count) {
269                         if (offset < p->lowest_bit)
270                                 p->lowest_bit = offset;
271                         if (offset > p->highest_bit)
272                                 p->highest_bit = offset;
273                         if (p->prio > swap_info[swap_list.next].prio)
274                                 swap_list.next = p - swap_info;
275                         nr_swap_pages++;
276                         p->inuse_pages--;
277                 }
278         }
279         return count;
280 }
281
282 /*
283  * Caller has made sure that the swapdevice corresponding to entry
284  * is still around or has not been recycled.
285  */
286 void swap_free(swp_entry_t entry)
287 {
288         struct swap_info_struct * p;
289
290         p = swap_info_get(entry);
291         if (p) {
292                 swap_entry_free(p, swp_offset(entry));
293                 swap_info_put(p);
294         }
295 }
296
297 /*
298  * How many references to page are currently swapped out?
299  */
300 static inline int page_swapcount(struct page *page)
301 {
302         int count = 0;
303         struct swap_info_struct *p;
304         swp_entry_t entry;
305
306         entry.val = page->private;
307         p = swap_info_get(entry);
308         if (p) {
309                 /* Subtract the 1 for the swap cache itself */
310                 count = p->swap_map[swp_offset(entry)] - 1;
311                 swap_info_put(p);
312         }
313         return count;
314 }
315
316 /*
317  * We can use this swap cache entry directly
318  * if there are no other references to it.
319  */
320 int can_share_swap_page(struct page *page)
321 {
322         int count;
323
324         BUG_ON(!PageLocked(page));
325         count = page_mapcount(page);
326         if (count <= 1 && PageSwapCache(page))
327                 count += page_swapcount(page);
328         return count == 1;
329 }
330
331 /*
332  * Work out if there are any other processes sharing this
333  * swap cache page. Free it if you can. Return success.
334  */
335 int remove_exclusive_swap_page(struct page *page)
336 {
337         int retval;
338         struct swap_info_struct * p;
339         swp_entry_t entry;
340
341         BUG_ON(PagePrivate(page));
342         BUG_ON(!PageLocked(page));
343
344         if (!PageSwapCache(page))
345                 return 0;
346         if (PageWriteback(page))
347                 return 0;
348         if (page_count(page) != 2) /* 2: us + cache */
349                 return 0;
350
351         entry.val = page->private;
352         p = swap_info_get(entry);
353         if (!p)
354                 return 0;
355
356         /* Is the only swap cache user the cache itself? */
357         retval = 0;
358         if (p->swap_map[swp_offset(entry)] == 1) {
359                 /* Recheck the page count with the swapcache lock held.. */
360                 write_lock_irq(&swapper_space.tree_lock);
361                 if ((page_count(page) == 2) && !PageWriteback(page)) {
362                         __delete_from_swap_cache(page);
363                         SetPageDirty(page);
364                         retval = 1;
365                 }
366                 write_unlock_irq(&swapper_space.tree_lock);
367         }
368         swap_info_put(p);
369
370         if (retval) {
371                 swap_free(entry);
372                 page_cache_release(page);
373         }
374
375         return retval;
376 }
377
378 /*
379  * Free the swap entry like above, but also try to
380  * free the page cache entry if it is the last user.
381  */
382 void free_swap_and_cache(swp_entry_t entry)
383 {
384         struct swap_info_struct * p;
385         struct page *page = NULL;
386
387         p = swap_info_get(entry);
388         if (p) {
389                 if (swap_entry_free(p, swp_offset(entry)) == 1)
390                         page = find_trylock_page(&swapper_space, entry.val);
391                 swap_info_put(p);
392         }
393         if (page) {
394                 int one_user;
395
396                 BUG_ON(PagePrivate(page));
397                 page_cache_get(page);
398                 one_user = (page_count(page) == 2);
399                 /* Only cache user (+us), or swap space full? Free it! */
400                 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
401                         delete_from_swap_cache(page);
402                         SetPageDirty(page);
403                 }
404                 unlock_page(page);
405                 page_cache_release(page);
406         }
407 }
408
409 /*
410  * Always set the resulting pte to be nowrite (the same as COW pages
411  * after one process has exited).  We don't know just how many PTEs will
412  * share this swap entry, so be cautious and let do_wp_page work out
413  * what to do if a write is requested later.
414  *
415  * vma->vm_mm->page_table_lock is held.
416  */
417 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
418                 unsigned long addr, swp_entry_t entry, struct page *page)
419 {
420         inc_mm_counter(vma->vm_mm, rss);
421         get_page(page);
422         set_pte_at(vma->vm_mm, addr, pte,
423                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
424         page_add_anon_rmap(page, vma, addr);
425         swap_free(entry);
426         /*
427          * Move the page to the active list so it is not
428          * immediately swapped out again after swapon.
429          */
430         activate_page(page);
431 }
432
433 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
434                                 unsigned long addr, unsigned long end,
435                                 swp_entry_t entry, struct page *page)
436 {
437         pte_t *pte;
438         pte_t swp_pte = swp_entry_to_pte(entry);
439
440         pte = pte_offset_map(pmd, addr);
441         do {
442                 /*
443                  * swapoff spends a _lot_ of time in this loop!
444                  * Test inline before going to call unuse_pte.
445                  */
446                 if (unlikely(pte_same(*pte, swp_pte))) {
447                         unuse_pte(vma, pte, addr, entry, page);
448                         pte_unmap(pte);
449                         return 1;
450                 }
451         } while (pte++, addr += PAGE_SIZE, addr != end);
452         pte_unmap(pte - 1);
453         return 0;
454 }
455
456 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
457                                 unsigned long addr, unsigned long end,
458                                 swp_entry_t entry, struct page *page)
459 {
460         pmd_t *pmd;
461         unsigned long next;
462
463         pmd = pmd_offset(pud, addr);
464         do {
465                 next = pmd_addr_end(addr, end);
466                 if (pmd_none_or_clear_bad(pmd))
467                         continue;
468                 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
469                         return 1;
470         } while (pmd++, addr = next, addr != end);
471         return 0;
472 }
473
474 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
475                                 unsigned long addr, unsigned long end,
476                                 swp_entry_t entry, struct page *page)
477 {
478         pud_t *pud;
479         unsigned long next;
480
481         pud = pud_offset(pgd, addr);
482         do {
483                 next = pud_addr_end(addr, end);
484                 if (pud_none_or_clear_bad(pud))
485                         continue;
486                 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
487                         return 1;
488         } while (pud++, addr = next, addr != end);
489         return 0;
490 }
491
492 static int unuse_vma(struct vm_area_struct *vma,
493                                 swp_entry_t entry, struct page *page)
494 {
495         pgd_t *pgd;
496         unsigned long addr, end, next;
497
498         if (page->mapping) {
499                 addr = page_address_in_vma(page, vma);
500                 if (addr == -EFAULT)
501                         return 0;
502                 else
503                         end = addr + PAGE_SIZE;
504         } else {
505                 addr = vma->vm_start;
506                 end = vma->vm_end;
507         }
508
509         pgd = pgd_offset(vma->vm_mm, addr);
510         do {
511                 next = pgd_addr_end(addr, end);
512                 if (pgd_none_or_clear_bad(pgd))
513                         continue;
514                 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
515                         return 1;
516         } while (pgd++, addr = next, addr != end);
517         return 0;
518 }
519
520 static int unuse_mm(struct mm_struct *mm,
521                                 swp_entry_t entry, struct page *page)
522 {
523         struct vm_area_struct *vma;
524
525         if (!down_read_trylock(&mm->mmap_sem)) {
526                 /*
527                  * Activate page so shrink_cache is unlikely to unmap its
528                  * ptes while lock is dropped, so swapoff can make progress.
529                  */
530                 activate_page(page);
531                 unlock_page(page);
532                 down_read(&mm->mmap_sem);
533                 lock_page(page);
534         }
535         spin_lock(&mm->page_table_lock);
536         for (vma = mm->mmap; vma; vma = vma->vm_next) {
537                 if (vma->anon_vma && unuse_vma(vma, entry, page))
538                         break;
539         }
540         spin_unlock(&mm->page_table_lock);
541         up_read(&mm->mmap_sem);
542         /*
543          * Currently unuse_mm cannot fail, but leave error handling
544          * at call sites for now, since we change it from time to time.
545          */
546         return 0;
547 }
548
549 /*
550  * Scan swap_map from current position to next entry still in use.
551  * Recycle to start on reaching the end, returning 0 when empty.
552  */
553 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
554                                         unsigned int prev)
555 {
556         unsigned int max = si->max;
557         unsigned int i = prev;
558         int count;
559
560         /*
561          * No need for swap_device_lock(si) here: we're just looking
562          * for whether an entry is in use, not modifying it; false
563          * hits are okay, and sys_swapoff() has already prevented new
564          * allocations from this area (while holding swap_list_lock()).
565          */
566         for (;;) {
567                 if (++i >= max) {
568                         if (!prev) {
569                                 i = 0;
570                                 break;
571                         }
572                         /*
573                          * No entries in use at top of swap_map,
574                          * loop back to start and recheck there.
575                          */
576                         max = prev + 1;
577                         prev = 0;
578                         i = 1;
579                 }
580                 count = si->swap_map[i];
581                 if (count && count != SWAP_MAP_BAD)
582                         break;
583         }
584         return i;
585 }
586
587 /*
588  * We completely avoid races by reading each swap page in advance,
589  * and then search for the process using it.  All the necessary
590  * page table adjustments can then be made atomically.
591  */
592 static int try_to_unuse(unsigned int type)
593 {
594         struct swap_info_struct * si = &swap_info[type];
595         struct mm_struct *start_mm;
596         unsigned short *swap_map;
597         unsigned short swcount;
598         struct page *page;
599         swp_entry_t entry;
600         unsigned int i = 0;
601         int retval = 0;
602         int reset_overflow = 0;
603         int shmem;
604
605         /*
606          * When searching mms for an entry, a good strategy is to
607          * start at the first mm we freed the previous entry from
608          * (though actually we don't notice whether we or coincidence
609          * freed the entry).  Initialize this start_mm with a hold.
610          *
611          * A simpler strategy would be to start at the last mm we
612          * freed the previous entry from; but that would take less
613          * advantage of mmlist ordering, which clusters forked mms
614          * together, child after parent.  If we race with dup_mmap(), we
615          * prefer to resolve parent before child, lest we miss entries
616          * duplicated after we scanned child: using last mm would invert
617          * that.  Though it's only a serious concern when an overflowed
618          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
619          */
620         start_mm = &init_mm;
621         atomic_inc(&init_mm.mm_users);
622
623         /*
624          * Keep on scanning until all entries have gone.  Usually,
625          * one pass through swap_map is enough, but not necessarily:
626          * there are races when an instance of an entry might be missed.
627          */
628         while ((i = find_next_to_unuse(si, i)) != 0) {
629                 if (signal_pending(current)) {
630                         retval = -EINTR;
631                         break;
632                 }
633
634                 /* 
635                  * Get a page for the entry, using the existing swap
636                  * cache page if there is one.  Otherwise, get a clean
637                  * page and read the swap into it. 
638                  */
639                 swap_map = &si->swap_map[i];
640                 entry = swp_entry(type, i);
641                 page = read_swap_cache_async(entry, NULL, 0);
642                 if (!page) {
643                         /*
644                          * Either swap_duplicate() failed because entry
645                          * has been freed independently, and will not be
646                          * reused since sys_swapoff() already disabled
647                          * allocation from here, or alloc_page() failed.
648                          */
649                         if (!*swap_map)
650                                 continue;
651                         retval = -ENOMEM;
652                         break;
653                 }
654
655                 /*
656                  * Don't hold on to start_mm if it looks like exiting.
657                  */
658                 if (atomic_read(&start_mm->mm_users) == 1) {
659                         mmput(start_mm);
660                         start_mm = &init_mm;
661                         atomic_inc(&init_mm.mm_users);
662                 }
663
664                 /*
665                  * Wait for and lock page.  When do_swap_page races with
666                  * try_to_unuse, do_swap_page can handle the fault much
667                  * faster than try_to_unuse can locate the entry.  This
668                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
669                  * defer to do_swap_page in such a case - in some tests,
670                  * do_swap_page and try_to_unuse repeatedly compete.
671                  */
672                 wait_on_page_locked(page);
673                 wait_on_page_writeback(page);
674                 lock_page(page);
675                 wait_on_page_writeback(page);
676
677                 /*
678                  * Remove all references to entry.
679                  * Whenever we reach init_mm, there's no address space
680                  * to search, but use it as a reminder to search shmem.
681                  */
682                 shmem = 0;
683                 swcount = *swap_map;
684                 if (swcount > 1) {
685                         if (start_mm == &init_mm)
686                                 shmem = shmem_unuse(entry, page);
687                         else
688                                 retval = unuse_mm(start_mm, entry, page);
689                 }
690                 if (*swap_map > 1) {
691                         int set_start_mm = (*swap_map >= swcount);
692                         struct list_head *p = &start_mm->mmlist;
693                         struct mm_struct *new_start_mm = start_mm;
694                         struct mm_struct *prev_mm = start_mm;
695                         struct mm_struct *mm;
696
697                         atomic_inc(&new_start_mm->mm_users);
698                         atomic_inc(&prev_mm->mm_users);
699                         spin_lock(&mmlist_lock);
700                         while (*swap_map > 1 && !retval &&
701                                         (p = p->next) != &start_mm->mmlist) {
702                                 mm = list_entry(p, struct mm_struct, mmlist);
703                                 if (atomic_inc_return(&mm->mm_users) == 1) {
704                                         atomic_dec(&mm->mm_users);
705                                         continue;
706                                 }
707                                 spin_unlock(&mmlist_lock);
708                                 mmput(prev_mm);
709                                 prev_mm = mm;
710
711                                 cond_resched();
712
713                                 swcount = *swap_map;
714                                 if (swcount <= 1)
715                                         ;
716                                 else if (mm == &init_mm) {
717                                         set_start_mm = 1;
718                                         shmem = shmem_unuse(entry, page);
719                                 } else
720                                         retval = unuse_mm(mm, entry, page);
721                                 if (set_start_mm && *swap_map < swcount) {
722                                         mmput(new_start_mm);
723                                         atomic_inc(&mm->mm_users);
724                                         new_start_mm = mm;
725                                         set_start_mm = 0;
726                                 }
727                                 spin_lock(&mmlist_lock);
728                         }
729                         spin_unlock(&mmlist_lock);
730                         mmput(prev_mm);
731                         mmput(start_mm);
732                         start_mm = new_start_mm;
733                 }
734                 if (retval) {
735                         unlock_page(page);
736                         page_cache_release(page);
737                         break;
738                 }
739
740                 /*
741                  * How could swap count reach 0x7fff when the maximum
742                  * pid is 0x7fff, and there's no way to repeat a swap
743                  * page within an mm (except in shmem, where it's the
744                  * shared object which takes the reference count)?
745                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
746                  *
747                  * If that's wrong, then we should worry more about
748                  * exit_mmap() and do_munmap() cases described above:
749                  * we might be resetting SWAP_MAP_MAX too early here.
750                  * We know "Undead"s can happen, they're okay, so don't
751                  * report them; but do report if we reset SWAP_MAP_MAX.
752                  */
753                 if (*swap_map == SWAP_MAP_MAX) {
754                         swap_device_lock(si);
755                         *swap_map = 1;
756                         swap_device_unlock(si);
757                         reset_overflow = 1;
758                 }
759
760                 /*
761                  * If a reference remains (rare), we would like to leave
762                  * the page in the swap cache; but try_to_unmap could
763                  * then re-duplicate the entry once we drop page lock,
764                  * so we might loop indefinitely; also, that page could
765                  * not be swapped out to other storage meanwhile.  So:
766                  * delete from cache even if there's another reference,
767                  * after ensuring that the data has been saved to disk -
768                  * since if the reference remains (rarer), it will be
769                  * read from disk into another page.  Splitting into two
770                  * pages would be incorrect if swap supported "shared
771                  * private" pages, but they are handled by tmpfs files.
772                  *
773                  * Note shmem_unuse already deleted a swappage from
774                  * the swap cache, unless the move to filepage failed:
775                  * in which case it left swappage in cache, lowered its
776                  * swap count to pass quickly through the loops above,
777                  * and now we must reincrement count to try again later.
778                  */
779                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
780                         struct writeback_control wbc = {
781                                 .sync_mode = WB_SYNC_NONE,
782                         };
783
784                         swap_writepage(page, &wbc);
785                         lock_page(page);
786                         wait_on_page_writeback(page);
787                 }
788                 if (PageSwapCache(page)) {
789                         if (shmem)
790                                 swap_duplicate(entry);
791                         else
792                                 delete_from_swap_cache(page);
793                 }
794
795                 /*
796                  * So we could skip searching mms once swap count went
797                  * to 1, we did not mark any present ptes as dirty: must
798                  * mark page dirty so shrink_list will preserve it.
799                  */
800                 SetPageDirty(page);
801                 unlock_page(page);
802                 page_cache_release(page);
803
804                 /*
805                  * Make sure that we aren't completely killing
806                  * interactive performance.
807                  */
808                 cond_resched();
809         }
810
811         mmput(start_mm);
812         if (reset_overflow) {
813                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
814                 swap_overflow = 0;
815         }
816         return retval;
817 }
818
819 /*
820  * After a successful try_to_unuse, if no swap is now in use, we know we
821  * can empty the mmlist.  swap_list_lock must be held on entry and exit.
822  * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
823  * added to the mmlist just after page_duplicate - before would be racy.
824  */
825 static void drain_mmlist(void)
826 {
827         struct list_head *p, *next;
828         unsigned int i;
829
830         for (i = 0; i < nr_swapfiles; i++)
831                 if (swap_info[i].inuse_pages)
832                         return;
833         spin_lock(&mmlist_lock);
834         list_for_each_safe(p, next, &init_mm.mmlist)
835                 list_del_init(p);
836         spin_unlock(&mmlist_lock);
837 }
838
839 /*
840  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
841  * corresponds to page offset `offset'.
842  */
843 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
844 {
845         struct swap_extent *se = sis->curr_swap_extent;
846         struct swap_extent *start_se = se;
847
848         for ( ; ; ) {
849                 struct list_head *lh;
850
851                 if (se->start_page <= offset &&
852                                 offset < (se->start_page + se->nr_pages)) {
853                         return se->start_block + (offset - se->start_page);
854                 }
855                 lh = se->list.next;
856                 if (lh == &sis->extent_list)
857                         lh = lh->next;
858                 se = list_entry(lh, struct swap_extent, list);
859                 sis->curr_swap_extent = se;
860                 BUG_ON(se == start_se);         /* It *must* be present */
861         }
862 }
863
864 /*
865  * Free all of a swapdev's extent information
866  */
867 static void destroy_swap_extents(struct swap_info_struct *sis)
868 {
869         while (!list_empty(&sis->extent_list)) {
870                 struct swap_extent *se;
871
872                 se = list_entry(sis->extent_list.next,
873                                 struct swap_extent, list);
874                 list_del(&se->list);
875                 kfree(se);
876         }
877 }
878
879 /*
880  * Add a block range (and the corresponding page range) into this swapdev's
881  * extent list.  The extent list is kept sorted in page order.
882  *
883  * This function rather assumes that it is called in ascending page order.
884  */
885 static int
886 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
887                 unsigned long nr_pages, sector_t start_block)
888 {
889         struct swap_extent *se;
890         struct swap_extent *new_se;
891         struct list_head *lh;
892
893         lh = sis->extent_list.prev;     /* The highest page extent */
894         if (lh != &sis->extent_list) {
895                 se = list_entry(lh, struct swap_extent, list);
896                 BUG_ON(se->start_page + se->nr_pages != start_page);
897                 if (se->start_block + se->nr_pages == start_block) {
898                         /* Merge it */
899                         se->nr_pages += nr_pages;
900                         return 0;
901                 }
902         }
903
904         /*
905          * No merge.  Insert a new extent, preserving ordering.
906          */
907         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
908         if (new_se == NULL)
909                 return -ENOMEM;
910         new_se->start_page = start_page;
911         new_se->nr_pages = nr_pages;
912         new_se->start_block = start_block;
913
914         list_add_tail(&new_se->list, &sis->extent_list);
915         return 1;
916 }
917
918 /*
919  * A `swap extent' is a simple thing which maps a contiguous range of pages
920  * onto a contiguous range of disk blocks.  An ordered list of swap extents
921  * is built at swapon time and is then used at swap_writepage/swap_readpage
922  * time for locating where on disk a page belongs.
923  *
924  * If the swapfile is an S_ISBLK block device, a single extent is installed.
925  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
926  * swap files identically.
927  *
928  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
929  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
930  * swapfiles are handled *identically* after swapon time.
931  *
932  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
933  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
934  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
935  * requirements, they are simply tossed out - we will never use those blocks
936  * for swapping.
937  *
938  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
939  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
940  * which will scribble on the fs.
941  *
942  * The amount of disk space which a single swap extent represents varies.
943  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
944  * extents in the list.  To avoid much list walking, we cache the previous
945  * search location in `curr_swap_extent', and start new searches from there.
946  * This is extremely effective.  The average number of iterations in
947  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
948  */
949 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
950 {
951         struct inode *inode;
952         unsigned blocks_per_page;
953         unsigned long page_no;
954         unsigned blkbits;
955         sector_t probe_block;
956         sector_t last_block;
957         sector_t lowest_block = -1;
958         sector_t highest_block = 0;
959         int nr_extents = 0;
960         int ret;
961
962         inode = sis->swap_file->f_mapping->host;
963         if (S_ISBLK(inode->i_mode)) {
964                 ret = add_swap_extent(sis, 0, sis->max, 0);
965                 *span = sis->pages;
966                 goto done;
967         }
968
969         blkbits = inode->i_blkbits;
970         blocks_per_page = PAGE_SIZE >> blkbits;
971
972         /*
973          * Map all the blocks into the extent list.  This code doesn't try
974          * to be very smart.
975          */
976         probe_block = 0;
977         page_no = 0;
978         last_block = i_size_read(inode) >> blkbits;
979         while ((probe_block + blocks_per_page) <= last_block &&
980                         page_no < sis->max) {
981                 unsigned block_in_page;
982                 sector_t first_block;
983
984                 first_block = bmap(inode, probe_block);
985                 if (first_block == 0)
986                         goto bad_bmap;
987
988                 /*
989                  * It must be PAGE_SIZE aligned on-disk
990                  */
991                 if (first_block & (blocks_per_page - 1)) {
992                         probe_block++;
993                         goto reprobe;
994                 }
995
996                 for (block_in_page = 1; block_in_page < blocks_per_page;
997                                         block_in_page++) {
998                         sector_t block;
999
1000                         block = bmap(inode, probe_block + block_in_page);
1001                         if (block == 0)
1002                                 goto bad_bmap;
1003                         if (block != first_block + block_in_page) {
1004                                 /* Discontiguity */
1005                                 probe_block++;
1006                                 goto reprobe;
1007                         }
1008                 }
1009
1010                 first_block >>= (PAGE_SHIFT - blkbits);
1011                 if (page_no) {  /* exclude the header page */
1012                         if (first_block < lowest_block)
1013                                 lowest_block = first_block;
1014                         if (first_block > highest_block)
1015                                 highest_block = first_block;
1016                 }
1017
1018                 /*
1019                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1020                  */
1021                 ret = add_swap_extent(sis, page_no, 1, first_block);
1022                 if (ret < 0)
1023                         goto out;
1024                 nr_extents += ret;
1025                 page_no++;
1026                 probe_block += blocks_per_page;
1027 reprobe:
1028                 continue;
1029         }
1030         ret = nr_extents;
1031         *span = 1 + highest_block - lowest_block;
1032         if (page_no == 0)
1033                 page_no = 1;    /* force Empty message */
1034         sis->max = page_no;
1035         sis->pages = page_no - 1;
1036         sis->highest_bit = page_no - 1;
1037 done:
1038         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1039                                         struct swap_extent, list);
1040         goto out;
1041 bad_bmap:
1042         printk(KERN_ERR "swapon: swapfile has holes\n");
1043         ret = -EINVAL;
1044 out:
1045         return ret;
1046 }
1047
1048 #if 0   /* We don't need this yet */
1049 #include <linux/backing-dev.h>
1050 int page_queue_congested(struct page *page)
1051 {
1052         struct backing_dev_info *bdi;
1053
1054         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1055
1056         if (PageSwapCache(page)) {
1057                 swp_entry_t entry = { .val = page->private };
1058                 struct swap_info_struct *sis;
1059
1060                 sis = get_swap_info_struct(swp_type(entry));
1061                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1062         } else
1063                 bdi = page->mapping->backing_dev_info;
1064         return bdi_write_congested(bdi);
1065 }
1066 #endif
1067
1068 asmlinkage long sys_swapoff(const char __user * specialfile)
1069 {
1070         struct swap_info_struct * p = NULL;
1071         unsigned short *swap_map;
1072         struct file *swap_file, *victim;
1073         struct address_space *mapping;
1074         struct inode *inode;
1075         char * pathname;
1076         int i, type, prev;
1077         int err;
1078         
1079         if (!capable(CAP_SYS_ADMIN))
1080                 return -EPERM;
1081
1082         pathname = getname(specialfile);
1083         err = PTR_ERR(pathname);
1084         if (IS_ERR(pathname))
1085                 goto out;
1086
1087         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1088         putname(pathname);
1089         err = PTR_ERR(victim);
1090         if (IS_ERR(victim))
1091                 goto out;
1092
1093         mapping = victim->f_mapping;
1094         prev = -1;
1095         swap_list_lock();
1096         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1097                 p = swap_info + type;
1098                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1099                         if (p->swap_file->f_mapping == mapping)
1100                                 break;
1101                 }
1102                 prev = type;
1103         }
1104         if (type < 0) {
1105                 err = -EINVAL;
1106                 swap_list_unlock();
1107                 goto out_dput;
1108         }
1109         if (!security_vm_enough_memory(p->pages))
1110                 vm_unacct_memory(p->pages);
1111         else {
1112                 err = -ENOMEM;
1113                 swap_list_unlock();
1114                 goto out_dput;
1115         }
1116         if (prev < 0) {
1117                 swap_list.head = p->next;
1118         } else {
1119                 swap_info[prev].next = p->next;
1120         }
1121         if (type == swap_list.next) {
1122                 /* just pick something that's safe... */
1123                 swap_list.next = swap_list.head;
1124         }
1125         nr_swap_pages -= p->pages;
1126         total_swap_pages -= p->pages;
1127         swap_device_lock(p);
1128         p->flags &= ~SWP_WRITEOK;
1129         swap_device_unlock(p);
1130         swap_list_unlock();
1131
1132         current->flags |= PF_SWAPOFF;
1133         err = try_to_unuse(type);
1134         current->flags &= ~PF_SWAPOFF;
1135
1136         if (err) {
1137                 /* re-insert swap space back into swap_list */
1138                 swap_list_lock();
1139                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1140                         if (p->prio >= swap_info[i].prio)
1141                                 break;
1142                 p->next = i;
1143                 if (prev < 0)
1144                         swap_list.head = swap_list.next = p - swap_info;
1145                 else
1146                         swap_info[prev].next = p - swap_info;
1147                 nr_swap_pages += p->pages;
1148                 total_swap_pages += p->pages;
1149                 swap_device_lock(p);
1150                 p->flags |= SWP_WRITEOK;
1151                 swap_device_unlock(p);
1152                 swap_list_unlock();
1153                 goto out_dput;
1154         }
1155
1156         /* wait for any unplug function to finish */
1157         down_write(&swap_unplug_sem);
1158         up_write(&swap_unplug_sem);
1159
1160         /* wait for anyone still in scan_swap_map */
1161         swap_device_lock(p);
1162         p->highest_bit = 0;             /* cuts scans short */
1163         while (p->flags >= SWP_SCANNING) {
1164                 swap_device_unlock(p);
1165                 set_current_state(TASK_UNINTERRUPTIBLE);
1166                 schedule_timeout(1);
1167                 swap_device_lock(p);
1168         }
1169         swap_device_unlock(p);
1170
1171         destroy_swap_extents(p);
1172         down(&swapon_sem);
1173         swap_list_lock();
1174         drain_mmlist();
1175         swap_device_lock(p);
1176         swap_file = p->swap_file;
1177         p->swap_file = NULL;
1178         p->max = 0;
1179         swap_map = p->swap_map;
1180         p->swap_map = NULL;
1181         p->flags = 0;
1182         swap_device_unlock(p);
1183         swap_list_unlock();
1184         up(&swapon_sem);
1185         vfree(swap_map);
1186         inode = mapping->host;
1187         if (S_ISBLK(inode->i_mode)) {
1188                 struct block_device *bdev = I_BDEV(inode);
1189                 set_blocksize(bdev, p->old_block_size);
1190                 bd_release(bdev);
1191         } else {
1192                 down(&inode->i_sem);
1193                 inode->i_flags &= ~S_SWAPFILE;
1194                 up(&inode->i_sem);
1195         }
1196         filp_close(swap_file, NULL);
1197         err = 0;
1198
1199 out_dput:
1200         filp_close(victim, NULL);
1201 out:
1202         return err;
1203 }
1204
1205 #ifdef CONFIG_PROC_FS
1206 /* iterator */
1207 static void *swap_start(struct seq_file *swap, loff_t *pos)
1208 {
1209         struct swap_info_struct *ptr = swap_info;
1210         int i;
1211         loff_t l = *pos;
1212
1213         down(&swapon_sem);
1214
1215         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1216                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1217                         continue;
1218                 if (!l--)
1219                         return ptr;
1220         }
1221
1222         return NULL;
1223 }
1224
1225 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1226 {
1227         struct swap_info_struct *ptr = v;
1228         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1229
1230         for (++ptr; ptr < endptr; ptr++) {
1231                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1232                         continue;
1233                 ++*pos;
1234                 return ptr;
1235         }
1236
1237         return NULL;
1238 }
1239
1240 static void swap_stop(struct seq_file *swap, void *v)
1241 {
1242         up(&swapon_sem);
1243 }
1244
1245 static int swap_show(struct seq_file *swap, void *v)
1246 {
1247         struct swap_info_struct *ptr = v;
1248         struct file *file;
1249         int len;
1250
1251         if (v == swap_info)
1252                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1253
1254         file = ptr->swap_file;
1255         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1256         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1257                        len < 40 ? 40 - len : 1, " ",
1258                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1259                                 "partition" : "file\t",
1260                        ptr->pages << (PAGE_SHIFT - 10),
1261                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1262                        ptr->prio);
1263         return 0;
1264 }
1265
1266 static struct seq_operations swaps_op = {
1267         .start =        swap_start,
1268         .next =         swap_next,
1269         .stop =         swap_stop,
1270         .show =         swap_show
1271 };
1272
1273 static int swaps_open(struct inode *inode, struct file *file)
1274 {
1275         return seq_open(file, &swaps_op);
1276 }
1277
1278 static struct file_operations proc_swaps_operations = {
1279         .open           = swaps_open,
1280         .read           = seq_read,
1281         .llseek         = seq_lseek,
1282         .release        = seq_release,
1283 };
1284
1285 static int __init procswaps_init(void)
1286 {
1287         struct proc_dir_entry *entry;
1288
1289         entry = create_proc_entry("swaps", 0, NULL);
1290         if (entry)
1291                 entry->proc_fops = &proc_swaps_operations;
1292         return 0;
1293 }
1294 __initcall(procswaps_init);
1295 #endif /* CONFIG_PROC_FS */
1296
1297 /*
1298  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1299  *
1300  * The swapon system call
1301  */
1302 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1303 {
1304         struct swap_info_struct * p;
1305         char *name = NULL;
1306         struct block_device *bdev = NULL;
1307         struct file *swap_file = NULL;
1308         struct address_space *mapping;
1309         unsigned int type;
1310         int i, prev;
1311         int error;
1312         static int least_priority;
1313         union swap_header *swap_header = NULL;
1314         int swap_header_version;
1315         unsigned int nr_good_pages = 0;
1316         int nr_extents = 0;
1317         sector_t span;
1318         unsigned long maxpages = 1;
1319         int swapfilesize;
1320         unsigned short *swap_map;
1321         struct page *page = NULL;
1322         struct inode *inode = NULL;
1323         int did_down = 0;
1324
1325         if (!capable(CAP_SYS_ADMIN))
1326                 return -EPERM;
1327         swap_list_lock();
1328         p = swap_info;
1329         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1330                 if (!(p->flags & SWP_USED))
1331                         break;
1332         error = -EPERM;
1333         /*
1334          * Test if adding another swap device is possible. There are
1335          * two limiting factors: 1) the number of bits for the swap
1336          * type swp_entry_t definition and 2) the number of bits for
1337          * the swap type in the swap ptes as defined by the different
1338          * architectures. To honor both limitations a swap entry
1339          * with swap offset 0 and swap type ~0UL is created, encoded
1340          * to a swap pte, decoded to a swp_entry_t again and finally
1341          * the swap type part is extracted. This will mask all bits
1342          * from the initial ~0UL that can't be encoded in either the
1343          * swp_entry_t or the architecture definition of a swap pte.
1344          */
1345         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1346                 swap_list_unlock();
1347                 goto out;
1348         }
1349         if (type >= nr_swapfiles)
1350                 nr_swapfiles = type+1;
1351         INIT_LIST_HEAD(&p->extent_list);
1352         p->flags = SWP_USED;
1353         p->swap_file = NULL;
1354         p->old_block_size = 0;
1355         p->swap_map = NULL;
1356         p->lowest_bit = 0;
1357         p->highest_bit = 0;
1358         p->cluster_nr = 0;
1359         p->inuse_pages = 0;
1360         spin_lock_init(&p->sdev_lock);
1361         p->next = -1;
1362         if (swap_flags & SWAP_FLAG_PREFER) {
1363                 p->prio =
1364                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1365         } else {
1366                 p->prio = --least_priority;
1367         }
1368         swap_list_unlock();
1369         name = getname(specialfile);
1370         error = PTR_ERR(name);
1371         if (IS_ERR(name)) {
1372                 name = NULL;
1373                 goto bad_swap_2;
1374         }
1375         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1376         error = PTR_ERR(swap_file);
1377         if (IS_ERR(swap_file)) {
1378                 swap_file = NULL;
1379                 goto bad_swap_2;
1380         }
1381
1382         p->swap_file = swap_file;
1383         mapping = swap_file->f_mapping;
1384         inode = mapping->host;
1385
1386         error = -EBUSY;
1387         for (i = 0; i < nr_swapfiles; i++) {
1388                 struct swap_info_struct *q = &swap_info[i];
1389
1390                 if (i == type || !q->swap_file)
1391                         continue;
1392                 if (mapping == q->swap_file->f_mapping)
1393                         goto bad_swap;
1394         }
1395
1396         error = -EINVAL;
1397         if (S_ISBLK(inode->i_mode)) {
1398                 bdev = I_BDEV(inode);
1399                 error = bd_claim(bdev, sys_swapon);
1400                 if (error < 0) {
1401                         bdev = NULL;
1402                         goto bad_swap;
1403                 }
1404                 p->old_block_size = block_size(bdev);
1405                 error = set_blocksize(bdev, PAGE_SIZE);
1406                 if (error < 0)
1407                         goto bad_swap;
1408                 p->bdev = bdev;
1409         } else if (S_ISREG(inode->i_mode)) {
1410                 p->bdev = inode->i_sb->s_bdev;
1411                 down(&inode->i_sem);
1412                 did_down = 1;
1413                 if (IS_SWAPFILE(inode)) {
1414                         error = -EBUSY;
1415                         goto bad_swap;
1416                 }
1417         } else {
1418                 goto bad_swap;
1419         }
1420
1421         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1422
1423         /*
1424          * Read the swap header.
1425          */
1426         if (!mapping->a_ops->readpage) {
1427                 error = -EINVAL;
1428                 goto bad_swap;
1429         }
1430         page = read_cache_page(mapping, 0,
1431                         (filler_t *)mapping->a_ops->readpage, swap_file);
1432         if (IS_ERR(page)) {
1433                 error = PTR_ERR(page);
1434                 goto bad_swap;
1435         }
1436         wait_on_page_locked(page);
1437         if (!PageUptodate(page))
1438                 goto bad_swap;
1439         kmap(page);
1440         swap_header = page_address(page);
1441
1442         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1443                 swap_header_version = 1;
1444         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1445                 swap_header_version = 2;
1446         else {
1447                 printk("Unable to find swap-space signature\n");
1448                 error = -EINVAL;
1449                 goto bad_swap;
1450         }
1451         
1452         switch (swap_header_version) {
1453         case 1:
1454                 printk(KERN_ERR "version 0 swap is no longer supported. "
1455                         "Use mkswap -v1 %s\n", name);
1456                 error = -EINVAL;
1457                 goto bad_swap;
1458         case 2:
1459                 /* Check the swap header's sub-version and the size of
1460                    the swap file and bad block lists */
1461                 if (swap_header->info.version != 1) {
1462                         printk(KERN_WARNING
1463                                "Unable to handle swap header version %d\n",
1464                                swap_header->info.version);
1465                         error = -EINVAL;
1466                         goto bad_swap;
1467                 }
1468
1469                 p->lowest_bit  = 1;
1470                 p->cluster_next = 1;
1471
1472                 /*
1473                  * Find out how many pages are allowed for a single swap
1474                  * device. There are two limiting factors: 1) the number of
1475                  * bits for the swap offset in the swp_entry_t type and
1476                  * 2) the number of bits in the a swap pte as defined by
1477                  * the different architectures. In order to find the
1478                  * largest possible bit mask a swap entry with swap type 0
1479                  * and swap offset ~0UL is created, encoded to a swap pte,
1480                  * decoded to a swp_entry_t again and finally the swap
1481                  * offset is extracted. This will mask all the bits from
1482                  * the initial ~0UL mask that can't be encoded in either
1483                  * the swp_entry_t or the architecture definition of a
1484                  * swap pte.
1485                  */
1486                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1487                 if (maxpages > swap_header->info.last_page)
1488                         maxpages = swap_header->info.last_page;
1489                 p->highest_bit = maxpages - 1;
1490
1491                 error = -EINVAL;
1492                 if (!maxpages)
1493                         goto bad_swap;
1494                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1495                         goto bad_swap;
1496                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1497                         goto bad_swap;
1498                 
1499                 /* OK, set up the swap map and apply the bad block list */
1500                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1501                         error = -ENOMEM;
1502                         goto bad_swap;
1503                 }
1504
1505                 error = 0;
1506                 memset(p->swap_map, 0, maxpages * sizeof(short));
1507                 for (i=0; i<swap_header->info.nr_badpages; i++) {
1508                         int page = swap_header->info.badpages[i];
1509                         if (page <= 0 || page >= swap_header->info.last_page)
1510                                 error = -EINVAL;
1511                         else
1512                                 p->swap_map[page] = SWAP_MAP_BAD;
1513                 }
1514                 nr_good_pages = swap_header->info.last_page -
1515                                 swap_header->info.nr_badpages -
1516                                 1 /* header page */;
1517                 if (error) 
1518                         goto bad_swap;
1519         }
1520
1521         if (swapfilesize && maxpages > swapfilesize) {
1522                 printk(KERN_WARNING
1523                        "Swap area shorter than signature indicates\n");
1524                 error = -EINVAL;
1525                 goto bad_swap;
1526         }
1527         if (nr_good_pages) {
1528                 p->swap_map[0] = SWAP_MAP_BAD;
1529                 p->max = maxpages;
1530                 p->pages = nr_good_pages;
1531                 nr_extents = setup_swap_extents(p, &span);
1532                 if (nr_extents < 0) {
1533                         error = nr_extents;
1534                         goto bad_swap;
1535                 }
1536                 nr_good_pages = p->pages;
1537         }
1538         if (!nr_good_pages) {
1539                 printk(KERN_WARNING "Empty swap-file\n");
1540                 error = -EINVAL;
1541                 goto bad_swap;
1542         }
1543
1544         down(&swapon_sem);
1545         swap_list_lock();
1546         swap_device_lock(p);
1547         p->flags = SWP_ACTIVE;
1548         nr_swap_pages += nr_good_pages;
1549         total_swap_pages += nr_good_pages;
1550
1551         printk(KERN_INFO "Adding %uk swap on %s.  "
1552                         "Priority:%d extents:%d across:%lluk\n",
1553                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1554                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1555
1556         /* insert swap space into swap_list: */
1557         prev = -1;
1558         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1559                 if (p->prio >= swap_info[i].prio) {
1560                         break;
1561                 }
1562                 prev = i;
1563         }
1564         p->next = i;
1565         if (prev < 0) {
1566                 swap_list.head = swap_list.next = p - swap_info;
1567         } else {
1568                 swap_info[prev].next = p - swap_info;
1569         }
1570         swap_device_unlock(p);
1571         swap_list_unlock();
1572         up(&swapon_sem);
1573         error = 0;
1574         goto out;
1575 bad_swap:
1576         if (bdev) {
1577                 set_blocksize(bdev, p->old_block_size);
1578                 bd_release(bdev);
1579         }
1580         destroy_swap_extents(p);
1581 bad_swap_2:
1582         swap_list_lock();
1583         swap_map = p->swap_map;
1584         p->swap_file = NULL;
1585         p->swap_map = NULL;
1586         p->flags = 0;
1587         if (!(swap_flags & SWAP_FLAG_PREFER))
1588                 ++least_priority;
1589         swap_list_unlock();
1590         vfree(swap_map);
1591         if (swap_file)
1592                 filp_close(swap_file, NULL);
1593 out:
1594         if (page && !IS_ERR(page)) {
1595                 kunmap(page);
1596                 page_cache_release(page);
1597         }
1598         if (name)
1599                 putname(name);
1600         if (did_down) {
1601                 if (!error)
1602                         inode->i_flags |= S_SWAPFILE;
1603                 up(&inode->i_sem);
1604         }
1605         return error;
1606 }
1607
1608 void si_swapinfo(struct sysinfo *val)
1609 {
1610         unsigned int i;
1611         unsigned long nr_to_be_unused = 0;
1612
1613         swap_list_lock();
1614         for (i = 0; i < nr_swapfiles; i++) {
1615                 if (!(swap_info[i].flags & SWP_USED) ||
1616                      (swap_info[i].flags & SWP_WRITEOK))
1617                         continue;
1618                 nr_to_be_unused += swap_info[i].inuse_pages;
1619         }
1620         val->freeswap = nr_swap_pages + nr_to_be_unused;
1621         val->totalswap = total_swap_pages + nr_to_be_unused;
1622         swap_list_unlock();
1623 }
1624
1625 /*
1626  * Verify that a swap entry is valid and increment its swap map count.
1627  *
1628  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1629  * "permanent", but will be reclaimed by the next swapoff.
1630  */
1631 int swap_duplicate(swp_entry_t entry)
1632 {
1633         struct swap_info_struct * p;
1634         unsigned long offset, type;
1635         int result = 0;
1636
1637         type = swp_type(entry);
1638         if (type >= nr_swapfiles)
1639                 goto bad_file;
1640         p = type + swap_info;
1641         offset = swp_offset(entry);
1642
1643         swap_device_lock(p);
1644         if (offset < p->max && p->swap_map[offset]) {
1645                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1646                         p->swap_map[offset]++;
1647                         result = 1;
1648                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1649                         if (swap_overflow++ < 5)
1650                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1651                         p->swap_map[offset] = SWAP_MAP_MAX;
1652                         result = 1;
1653                 }
1654         }
1655         swap_device_unlock(p);
1656 out:
1657         return result;
1658
1659 bad_file:
1660         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1661         goto out;
1662 }
1663
1664 struct swap_info_struct *
1665 get_swap_info_struct(unsigned type)
1666 {
1667         return &swap_info[type];
1668 }
1669
1670 /*
1671  * swap_device_lock prevents swap_map being freed. Don't grab an extra
1672  * reference on the swaphandle, it doesn't matter if it becomes unused.
1673  */
1674 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1675 {
1676         int ret = 0, i = 1 << page_cluster;
1677         unsigned long toff;
1678         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1679
1680         if (!page_cluster)      /* no readahead */
1681                 return 0;
1682         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1683         if (!toff)              /* first page is swap header */
1684                 toff++, i--;
1685         *offset = toff;
1686
1687         swap_device_lock(swapdev);
1688         do {
1689                 /* Don't read-ahead past the end of the swap area */
1690                 if (toff >= swapdev->max)
1691                         break;
1692                 /* Don't read in free or bad pages */
1693                 if (!swapdev->swap_map[toff])
1694                         break;
1695                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1696                         break;
1697                 toff++;
1698                 ret++;
1699         } while (--i);
1700         swap_device_unlock(swapdev);
1701         return ret;
1702 }