bfd4ee59cb88d7ce10162bfcf3209701bdbc3bce
[safe/jmp/linux-2.6] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
31
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35
36 static DEFINE_SPINLOCK(swap_lock);
37 static unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 static int least_priority;
41
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
46
47 static struct swap_list_t swap_list = {-1, -1};
48
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50
51 static DEFINE_MUTEX(swapon_mutex);
52
53 /*
54  * We need this because the bdev->unplug_fn can sleep and we cannot
55  * hold swap_lock while calling the unplug_fn. And swap_lock
56  * cannot be turned into a mutex.
57  */
58 static DECLARE_RWSEM(swap_unplug_sem);
59
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 {
62         swp_entry_t entry;
63
64         down_read(&swap_unplug_sem);
65         entry.val = page_private(page);
66         if (PageSwapCache(page)) {
67                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68                 struct backing_dev_info *bdi;
69
70                 /*
71                  * If the page is removed from swapcache from under us (with a
72                  * racy try_to_unuse/swapoff) we need an additional reference
73                  * count to avoid reading garbage from page_private(page) above.
74                  * If the WARN_ON triggers during a swapoff it maybe the race
75                  * condition and it's harmless. However if it triggers without
76                  * swapoff it signals a problem.
77                  */
78                 WARN_ON(page_count(page) <= 1);
79
80                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81                 blk_run_backing_dev(bdi, page);
82         }
83         up_read(&swap_unplug_sem);
84 }
85
86 #define SWAPFILE_CLUSTER        256
87 #define LATENCY_LIMIT           256
88
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 {
91         unsigned long offset, last_in_cluster;
92         int latency_ration = LATENCY_LIMIT;
93
94         /* 
95          * We try to cluster swap pages by allocating them sequentially
96          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97          * way, however, we resort to first-free allocation, starting
98          * a new cluster.  This prevents us from scattering swap pages
99          * all over the entire swap partition, so that we reduce
100          * overall disk seek times between swap pages.  -- sct
101          * But we do now try to find an empty cluster.  -Andrea
102          */
103
104         si->flags += SWP_SCANNING;
105         if (unlikely(!si->cluster_nr)) {
106                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108                         goto lowest;
109                 spin_unlock(&swap_lock);
110
111                 offset = si->lowest_bit;
112                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114                 /* Locate the first empty (unaligned) cluster */
115                 for (; last_in_cluster <= si->highest_bit; offset++) {
116                         if (si->swap_map[offset])
117                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
118                         else if (offset == last_in_cluster) {
119                                 spin_lock(&swap_lock);
120                                 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121                                 goto cluster;
122                         }
123                         if (unlikely(--latency_ration < 0)) {
124                                 cond_resched();
125                                 latency_ration = LATENCY_LIMIT;
126                         }
127                 }
128                 spin_lock(&swap_lock);
129                 goto lowest;
130         }
131
132         si->cluster_nr--;
133 cluster:
134         offset = si->cluster_next;
135         if (offset > si->highest_bit)
136 lowest:         offset = si->lowest_bit;
137 checks: if (!(si->flags & SWP_WRITEOK))
138                 goto no_page;
139         if (!si->highest_bit)
140                 goto no_page;
141         if (!si->swap_map[offset]) {
142                 if (offset == si->lowest_bit)
143                         si->lowest_bit++;
144                 if (offset == si->highest_bit)
145                         si->highest_bit--;
146                 si->inuse_pages++;
147                 if (si->inuse_pages == si->pages) {
148                         si->lowest_bit = si->max;
149                         si->highest_bit = 0;
150                 }
151                 si->swap_map[offset] = 1;
152                 si->cluster_next = offset + 1;
153                 si->flags -= SWP_SCANNING;
154                 return offset;
155         }
156
157         spin_unlock(&swap_lock);
158         while (++offset <= si->highest_bit) {
159                 if (!si->swap_map[offset]) {
160                         spin_lock(&swap_lock);
161                         goto checks;
162                 }
163                 if (unlikely(--latency_ration < 0)) {
164                         cond_resched();
165                         latency_ration = LATENCY_LIMIT;
166                 }
167         }
168         spin_lock(&swap_lock);
169         goto lowest;
170
171 no_page:
172         si->flags -= SWP_SCANNING;
173         return 0;
174 }
175
176 swp_entry_t get_swap_page(void)
177 {
178         struct swap_info_struct *si;
179         pgoff_t offset;
180         int type, next;
181         int wrapped = 0;
182
183         spin_lock(&swap_lock);
184         if (nr_swap_pages <= 0)
185                 goto noswap;
186         nr_swap_pages--;
187
188         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189                 si = swap_info + type;
190                 next = si->next;
191                 if (next < 0 ||
192                     (!wrapped && si->prio != swap_info[next].prio)) {
193                         next = swap_list.head;
194                         wrapped++;
195                 }
196
197                 if (!si->highest_bit)
198                         continue;
199                 if (!(si->flags & SWP_WRITEOK))
200                         continue;
201
202                 swap_list.next = next;
203                 offset = scan_swap_map(si);
204                 if (offset) {
205                         spin_unlock(&swap_lock);
206                         return swp_entry(type, offset);
207                 }
208                 next = swap_list.next;
209         }
210
211         nr_swap_pages++;
212 noswap:
213         spin_unlock(&swap_lock);
214         return (swp_entry_t) {0};
215 }
216
217 swp_entry_t get_swap_page_of_type(int type)
218 {
219         struct swap_info_struct *si;
220         pgoff_t offset;
221
222         spin_lock(&swap_lock);
223         si = swap_info + type;
224         if (si->flags & SWP_WRITEOK) {
225                 nr_swap_pages--;
226                 offset = scan_swap_map(si);
227                 if (offset) {
228                         spin_unlock(&swap_lock);
229                         return swp_entry(type, offset);
230                 }
231                 nr_swap_pages++;
232         }
233         spin_unlock(&swap_lock);
234         return (swp_entry_t) {0};
235 }
236
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 {
239         struct swap_info_struct * p;
240         unsigned long offset, type;
241
242         if (!entry.val)
243                 goto out;
244         type = swp_type(entry);
245         if (type >= nr_swapfiles)
246                 goto bad_nofile;
247         p = & swap_info[type];
248         if (!(p->flags & SWP_USED))
249                 goto bad_device;
250         offset = swp_offset(entry);
251         if (offset >= p->max)
252                 goto bad_offset;
253         if (!p->swap_map[offset])
254                 goto bad_free;
255         spin_lock(&swap_lock);
256         return p;
257
258 bad_free:
259         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260         goto out;
261 bad_offset:
262         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263         goto out;
264 bad_device:
265         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266         goto out;
267 bad_nofile:
268         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270         return NULL;
271 }       
272
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 {
275         int count = p->swap_map[offset];
276
277         if (count < SWAP_MAP_MAX) {
278                 count--;
279                 p->swap_map[offset] = count;
280                 if (!count) {
281                         if (offset < p->lowest_bit)
282                                 p->lowest_bit = offset;
283                         if (offset > p->highest_bit)
284                                 p->highest_bit = offset;
285                         if (p->prio > swap_info[swap_list.next].prio)
286                                 swap_list.next = p - swap_info;
287                         nr_swap_pages++;
288                         p->inuse_pages--;
289                 }
290         }
291         return count;
292 }
293
294 /*
295  * Caller has made sure that the swapdevice corresponding to entry
296  * is still around or has not been recycled.
297  */
298 void swap_free(swp_entry_t entry)
299 {
300         struct swap_info_struct * p;
301
302         p = swap_info_get(entry);
303         if (p) {
304                 swap_entry_free(p, swp_offset(entry));
305                 spin_unlock(&swap_lock);
306         }
307 }
308
309 /*
310  * How many references to page are currently swapped out?
311  */
312 static inline int page_swapcount(struct page *page)
313 {
314         int count = 0;
315         struct swap_info_struct *p;
316         swp_entry_t entry;
317
318         entry.val = page_private(page);
319         p = swap_info_get(entry);
320         if (p) {
321                 /* Subtract the 1 for the swap cache itself */
322                 count = p->swap_map[swp_offset(entry)] - 1;
323                 spin_unlock(&swap_lock);
324         }
325         return count;
326 }
327
328 /*
329  * We can write to an anon page without COW if there are no other references
330  * to it.  And as a side-effect, free up its swap: because the old content
331  * on disk will never be read, and seeking back there to write new content
332  * later would only waste time away from clustering.
333  */
334 int reuse_swap_page(struct page *page)
335 {
336         int count;
337
338         VM_BUG_ON(!PageLocked(page));
339         count = page_mapcount(page);
340         if (count <= 1 && PageSwapCache(page)) {
341                 count += page_swapcount(page);
342                 if (count == 1 && !PageWriteback(page)) {
343                         delete_from_swap_cache(page);
344                         SetPageDirty(page);
345                 }
346         }
347         return count == 1;
348 }
349
350 /*
351  * Work out if there are any other processes sharing this
352  * swap cache page. Free it if you can. Return success.
353  */
354 static int remove_exclusive_swap_page_count(struct page *page, int count)
355 {
356         int retval;
357         struct swap_info_struct * p;
358         swp_entry_t entry;
359
360         VM_BUG_ON(!PageLocked(page));
361
362         if (!PageSwapCache(page))
363                 return 0;
364         if (PageWriteback(page))
365                 return 0;
366         if (page_count(page) != count) /* us + cache + ptes */
367                 return 0;
368
369         entry.val = page_private(page);
370         p = swap_info_get(entry);
371         if (!p)
372                 return 0;
373
374         /* Is the only swap cache user the cache itself? */
375         retval = 0;
376         if (p->swap_map[swp_offset(entry)] == 1) {
377                 /* Recheck the page count with the swapcache lock held.. */
378                 spin_lock_irq(&swapper_space.tree_lock);
379                 if ((page_count(page) == count) && !PageWriteback(page)) {
380                         __delete_from_swap_cache(page);
381                         SetPageDirty(page);
382                         retval = 1;
383                 }
384                 spin_unlock_irq(&swapper_space.tree_lock);
385         }
386         spin_unlock(&swap_lock);
387
388         if (retval) {
389                 swap_free(entry);
390                 page_cache_release(page);
391         }
392
393         return retval;
394 }
395
396 /*
397  * Most of the time the page should have two references: one for the
398  * process and one for the swap cache.
399  */
400 int remove_exclusive_swap_page(struct page *page)
401 {
402         return remove_exclusive_swap_page_count(page, 2);
403 }
404
405 /*
406  * The pageout code holds an extra reference to the page.  That raises
407  * the reference count to test for to 2 for a page that is only in the
408  * swap cache plus 1 for each process that maps the page.
409  */
410 int remove_exclusive_swap_page_ref(struct page *page)
411 {
412         return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page));
413 }
414
415 /*
416  * Free the swap entry like above, but also try to
417  * free the page cache entry if it is the last user.
418  */
419 void free_swap_and_cache(swp_entry_t entry)
420 {
421         struct swap_info_struct * p;
422         struct page *page = NULL;
423
424         if (is_migration_entry(entry))
425                 return;
426
427         p = swap_info_get(entry);
428         if (p) {
429                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
430                         page = find_get_page(&swapper_space, entry.val);
431                         if (page && !trylock_page(page)) {
432                                 page_cache_release(page);
433                                 page = NULL;
434                         }
435                 }
436                 spin_unlock(&swap_lock);
437         }
438         if (page) {
439                 int one_user;
440
441                 one_user = (page_count(page) == 2);
442                 /* Only cache user (+us), or swap space full? Free it! */
443                 /* Also recheck PageSwapCache after page is locked (above) */
444                 if (PageSwapCache(page) && !PageWriteback(page) &&
445                                         (one_user || vm_swap_full())) {
446                         delete_from_swap_cache(page);
447                         SetPageDirty(page);
448                 }
449                 unlock_page(page);
450                 page_cache_release(page);
451         }
452 }
453
454 #ifdef CONFIG_HIBERNATION
455 /*
456  * Find the swap type that corresponds to given device (if any).
457  *
458  * @offset - number of the PAGE_SIZE-sized block of the device, starting
459  * from 0, in which the swap header is expected to be located.
460  *
461  * This is needed for the suspend to disk (aka swsusp).
462  */
463 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
464 {
465         struct block_device *bdev = NULL;
466         int i;
467
468         if (device)
469                 bdev = bdget(device);
470
471         spin_lock(&swap_lock);
472         for (i = 0; i < nr_swapfiles; i++) {
473                 struct swap_info_struct *sis = swap_info + i;
474
475                 if (!(sis->flags & SWP_WRITEOK))
476                         continue;
477
478                 if (!bdev) {
479                         if (bdev_p)
480                                 *bdev_p = sis->bdev;
481
482                         spin_unlock(&swap_lock);
483                         return i;
484                 }
485                 if (bdev == sis->bdev) {
486                         struct swap_extent *se;
487
488                         se = list_entry(sis->extent_list.next,
489                                         struct swap_extent, list);
490                         if (se->start_block == offset) {
491                                 if (bdev_p)
492                                         *bdev_p = sis->bdev;
493
494                                 spin_unlock(&swap_lock);
495                                 bdput(bdev);
496                                 return i;
497                         }
498                 }
499         }
500         spin_unlock(&swap_lock);
501         if (bdev)
502                 bdput(bdev);
503
504         return -ENODEV;
505 }
506
507 /*
508  * Return either the total number of swap pages of given type, or the number
509  * of free pages of that type (depending on @free)
510  *
511  * This is needed for software suspend
512  */
513 unsigned int count_swap_pages(int type, int free)
514 {
515         unsigned int n = 0;
516
517         if (type < nr_swapfiles) {
518                 spin_lock(&swap_lock);
519                 if (swap_info[type].flags & SWP_WRITEOK) {
520                         n = swap_info[type].pages;
521                         if (free)
522                                 n -= swap_info[type].inuse_pages;
523                 }
524                 spin_unlock(&swap_lock);
525         }
526         return n;
527 }
528 #endif
529
530 /*
531  * No need to decide whether this PTE shares the swap entry with others,
532  * just let do_wp_page work it out if a write is requested later - to
533  * force COW, vm_page_prot omits write permission from any private vma.
534  */
535 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
536                 unsigned long addr, swp_entry_t entry, struct page *page)
537 {
538         spinlock_t *ptl;
539         pte_t *pte;
540         int ret = 1;
541
542         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
543                 ret = -ENOMEM;
544
545         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
546         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
547                 if (ret > 0)
548                         mem_cgroup_uncharge_page(page);
549                 ret = 0;
550                 goto out;
551         }
552
553         inc_mm_counter(vma->vm_mm, anon_rss);
554         get_page(page);
555         set_pte_at(vma->vm_mm, addr, pte,
556                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
557         page_add_anon_rmap(page, vma, addr);
558         swap_free(entry);
559         /*
560          * Move the page to the active list so it is not
561          * immediately swapped out again after swapon.
562          */
563         activate_page(page);
564 out:
565         pte_unmap_unlock(pte, ptl);
566         return ret;
567 }
568
569 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
570                                 unsigned long addr, unsigned long end,
571                                 swp_entry_t entry, struct page *page)
572 {
573         pte_t swp_pte = swp_entry_to_pte(entry);
574         pte_t *pte;
575         int ret = 0;
576
577         /*
578          * We don't actually need pte lock while scanning for swp_pte: since
579          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
580          * page table while we're scanning; though it could get zapped, and on
581          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
582          * of unmatched parts which look like swp_pte, so unuse_pte must
583          * recheck under pte lock.  Scanning without pte lock lets it be
584          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
585          */
586         pte = pte_offset_map(pmd, addr);
587         do {
588                 /*
589                  * swapoff spends a _lot_ of time in this loop!
590                  * Test inline before going to call unuse_pte.
591                  */
592                 if (unlikely(pte_same(*pte, swp_pte))) {
593                         pte_unmap(pte);
594                         ret = unuse_pte(vma, pmd, addr, entry, page);
595                         if (ret)
596                                 goto out;
597                         pte = pte_offset_map(pmd, addr);
598                 }
599         } while (pte++, addr += PAGE_SIZE, addr != end);
600         pte_unmap(pte - 1);
601 out:
602         return ret;
603 }
604
605 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
606                                 unsigned long addr, unsigned long end,
607                                 swp_entry_t entry, struct page *page)
608 {
609         pmd_t *pmd;
610         unsigned long next;
611         int ret;
612
613         pmd = pmd_offset(pud, addr);
614         do {
615                 next = pmd_addr_end(addr, end);
616                 if (pmd_none_or_clear_bad(pmd))
617                         continue;
618                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
619                 if (ret)
620                         return ret;
621         } while (pmd++, addr = next, addr != end);
622         return 0;
623 }
624
625 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
626                                 unsigned long addr, unsigned long end,
627                                 swp_entry_t entry, struct page *page)
628 {
629         pud_t *pud;
630         unsigned long next;
631         int ret;
632
633         pud = pud_offset(pgd, addr);
634         do {
635                 next = pud_addr_end(addr, end);
636                 if (pud_none_or_clear_bad(pud))
637                         continue;
638                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
639                 if (ret)
640                         return ret;
641         } while (pud++, addr = next, addr != end);
642         return 0;
643 }
644
645 static int unuse_vma(struct vm_area_struct *vma,
646                                 swp_entry_t entry, struct page *page)
647 {
648         pgd_t *pgd;
649         unsigned long addr, end, next;
650         int ret;
651
652         if (page->mapping) {
653                 addr = page_address_in_vma(page, vma);
654                 if (addr == -EFAULT)
655                         return 0;
656                 else
657                         end = addr + PAGE_SIZE;
658         } else {
659                 addr = vma->vm_start;
660                 end = vma->vm_end;
661         }
662
663         pgd = pgd_offset(vma->vm_mm, addr);
664         do {
665                 next = pgd_addr_end(addr, end);
666                 if (pgd_none_or_clear_bad(pgd))
667                         continue;
668                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
669                 if (ret)
670                         return ret;
671         } while (pgd++, addr = next, addr != end);
672         return 0;
673 }
674
675 static int unuse_mm(struct mm_struct *mm,
676                                 swp_entry_t entry, struct page *page)
677 {
678         struct vm_area_struct *vma;
679         int ret = 0;
680
681         if (!down_read_trylock(&mm->mmap_sem)) {
682                 /*
683                  * Activate page so shrink_inactive_list is unlikely to unmap
684                  * its ptes while lock is dropped, so swapoff can make progress.
685                  */
686                 activate_page(page);
687                 unlock_page(page);
688                 down_read(&mm->mmap_sem);
689                 lock_page(page);
690         }
691         for (vma = mm->mmap; vma; vma = vma->vm_next) {
692                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
693                         break;
694         }
695         up_read(&mm->mmap_sem);
696         return (ret < 0)? ret: 0;
697 }
698
699 /*
700  * Scan swap_map from current position to next entry still in use.
701  * Recycle to start on reaching the end, returning 0 when empty.
702  */
703 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
704                                         unsigned int prev)
705 {
706         unsigned int max = si->max;
707         unsigned int i = prev;
708         int count;
709
710         /*
711          * No need for swap_lock here: we're just looking
712          * for whether an entry is in use, not modifying it; false
713          * hits are okay, and sys_swapoff() has already prevented new
714          * allocations from this area (while holding swap_lock).
715          */
716         for (;;) {
717                 if (++i >= max) {
718                         if (!prev) {
719                                 i = 0;
720                                 break;
721                         }
722                         /*
723                          * No entries in use at top of swap_map,
724                          * loop back to start and recheck there.
725                          */
726                         max = prev + 1;
727                         prev = 0;
728                         i = 1;
729                 }
730                 count = si->swap_map[i];
731                 if (count && count != SWAP_MAP_BAD)
732                         break;
733         }
734         return i;
735 }
736
737 /*
738  * We completely avoid races by reading each swap page in advance,
739  * and then search for the process using it.  All the necessary
740  * page table adjustments can then be made atomically.
741  */
742 static int try_to_unuse(unsigned int type)
743 {
744         struct swap_info_struct * si = &swap_info[type];
745         struct mm_struct *start_mm;
746         unsigned short *swap_map;
747         unsigned short swcount;
748         struct page *page;
749         swp_entry_t entry;
750         unsigned int i = 0;
751         int retval = 0;
752         int reset_overflow = 0;
753         int shmem;
754
755         /*
756          * When searching mms for an entry, a good strategy is to
757          * start at the first mm we freed the previous entry from
758          * (though actually we don't notice whether we or coincidence
759          * freed the entry).  Initialize this start_mm with a hold.
760          *
761          * A simpler strategy would be to start at the last mm we
762          * freed the previous entry from; but that would take less
763          * advantage of mmlist ordering, which clusters forked mms
764          * together, child after parent.  If we race with dup_mmap(), we
765          * prefer to resolve parent before child, lest we miss entries
766          * duplicated after we scanned child: using last mm would invert
767          * that.  Though it's only a serious concern when an overflowed
768          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
769          */
770         start_mm = &init_mm;
771         atomic_inc(&init_mm.mm_users);
772
773         /*
774          * Keep on scanning until all entries have gone.  Usually,
775          * one pass through swap_map is enough, but not necessarily:
776          * there are races when an instance of an entry might be missed.
777          */
778         while ((i = find_next_to_unuse(si, i)) != 0) {
779                 if (signal_pending(current)) {
780                         retval = -EINTR;
781                         break;
782                 }
783
784                 /* 
785                  * Get a page for the entry, using the existing swap
786                  * cache page if there is one.  Otherwise, get a clean
787                  * page and read the swap into it. 
788                  */
789                 swap_map = &si->swap_map[i];
790                 entry = swp_entry(type, i);
791                 page = read_swap_cache_async(entry,
792                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
793                 if (!page) {
794                         /*
795                          * Either swap_duplicate() failed because entry
796                          * has been freed independently, and will not be
797                          * reused since sys_swapoff() already disabled
798                          * allocation from here, or alloc_page() failed.
799                          */
800                         if (!*swap_map)
801                                 continue;
802                         retval = -ENOMEM;
803                         break;
804                 }
805
806                 /*
807                  * Don't hold on to start_mm if it looks like exiting.
808                  */
809                 if (atomic_read(&start_mm->mm_users) == 1) {
810                         mmput(start_mm);
811                         start_mm = &init_mm;
812                         atomic_inc(&init_mm.mm_users);
813                 }
814
815                 /*
816                  * Wait for and lock page.  When do_swap_page races with
817                  * try_to_unuse, do_swap_page can handle the fault much
818                  * faster than try_to_unuse can locate the entry.  This
819                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
820                  * defer to do_swap_page in such a case - in some tests,
821                  * do_swap_page and try_to_unuse repeatedly compete.
822                  */
823                 wait_on_page_locked(page);
824                 wait_on_page_writeback(page);
825                 lock_page(page);
826                 wait_on_page_writeback(page);
827
828                 /*
829                  * Remove all references to entry.
830                  * Whenever we reach init_mm, there's no address space
831                  * to search, but use it as a reminder to search shmem.
832                  */
833                 shmem = 0;
834                 swcount = *swap_map;
835                 if (swcount > 1) {
836                         if (start_mm == &init_mm)
837                                 shmem = shmem_unuse(entry, page);
838                         else
839                                 retval = unuse_mm(start_mm, entry, page);
840                 }
841                 if (*swap_map > 1) {
842                         int set_start_mm = (*swap_map >= swcount);
843                         struct list_head *p = &start_mm->mmlist;
844                         struct mm_struct *new_start_mm = start_mm;
845                         struct mm_struct *prev_mm = start_mm;
846                         struct mm_struct *mm;
847
848                         atomic_inc(&new_start_mm->mm_users);
849                         atomic_inc(&prev_mm->mm_users);
850                         spin_lock(&mmlist_lock);
851                         while (*swap_map > 1 && !retval && !shmem &&
852                                         (p = p->next) != &start_mm->mmlist) {
853                                 mm = list_entry(p, struct mm_struct, mmlist);
854                                 if (!atomic_inc_not_zero(&mm->mm_users))
855                                         continue;
856                                 spin_unlock(&mmlist_lock);
857                                 mmput(prev_mm);
858                                 prev_mm = mm;
859
860                                 cond_resched();
861
862                                 swcount = *swap_map;
863                                 if (swcount <= 1)
864                                         ;
865                                 else if (mm == &init_mm) {
866                                         set_start_mm = 1;
867                                         shmem = shmem_unuse(entry, page);
868                                 } else
869                                         retval = unuse_mm(mm, entry, page);
870                                 if (set_start_mm && *swap_map < swcount) {
871                                         mmput(new_start_mm);
872                                         atomic_inc(&mm->mm_users);
873                                         new_start_mm = mm;
874                                         set_start_mm = 0;
875                                 }
876                                 spin_lock(&mmlist_lock);
877                         }
878                         spin_unlock(&mmlist_lock);
879                         mmput(prev_mm);
880                         mmput(start_mm);
881                         start_mm = new_start_mm;
882                 }
883                 if (shmem) {
884                         /* page has already been unlocked and released */
885                         if (shmem > 0)
886                                 continue;
887                         retval = shmem;
888                         break;
889                 }
890                 if (retval) {
891                         unlock_page(page);
892                         page_cache_release(page);
893                         break;
894                 }
895
896                 /*
897                  * How could swap count reach 0x7fff when the maximum
898                  * pid is 0x7fff, and there's no way to repeat a swap
899                  * page within an mm (except in shmem, where it's the
900                  * shared object which takes the reference count)?
901                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
902                  *
903                  * If that's wrong, then we should worry more about
904                  * exit_mmap() and do_munmap() cases described above:
905                  * we might be resetting SWAP_MAP_MAX too early here.
906                  * We know "Undead"s can happen, they're okay, so don't
907                  * report them; but do report if we reset SWAP_MAP_MAX.
908                  */
909                 if (*swap_map == SWAP_MAP_MAX) {
910                         spin_lock(&swap_lock);
911                         *swap_map = 1;
912                         spin_unlock(&swap_lock);
913                         reset_overflow = 1;
914                 }
915
916                 /*
917                  * If a reference remains (rare), we would like to leave
918                  * the page in the swap cache; but try_to_unmap could
919                  * then re-duplicate the entry once we drop page lock,
920                  * so we might loop indefinitely; also, that page could
921                  * not be swapped out to other storage meanwhile.  So:
922                  * delete from cache even if there's another reference,
923                  * after ensuring that the data has been saved to disk -
924                  * since if the reference remains (rarer), it will be
925                  * read from disk into another page.  Splitting into two
926                  * pages would be incorrect if swap supported "shared
927                  * private" pages, but they are handled by tmpfs files.
928                  */
929                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
930                         struct writeback_control wbc = {
931                                 .sync_mode = WB_SYNC_NONE,
932                         };
933
934                         swap_writepage(page, &wbc);
935                         lock_page(page);
936                         wait_on_page_writeback(page);
937                 }
938                 if (PageSwapCache(page))
939                         delete_from_swap_cache(page);
940
941                 /*
942                  * So we could skip searching mms once swap count went
943                  * to 1, we did not mark any present ptes as dirty: must
944                  * mark page dirty so shrink_page_list will preserve it.
945                  */
946                 SetPageDirty(page);
947                 unlock_page(page);
948                 page_cache_release(page);
949
950                 /*
951                  * Make sure that we aren't completely killing
952                  * interactive performance.
953                  */
954                 cond_resched();
955         }
956
957         mmput(start_mm);
958         if (reset_overflow) {
959                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
960                 swap_overflow = 0;
961         }
962         return retval;
963 }
964
965 /*
966  * After a successful try_to_unuse, if no swap is now in use, we know
967  * we can empty the mmlist.  swap_lock must be held on entry and exit.
968  * Note that mmlist_lock nests inside swap_lock, and an mm must be
969  * added to the mmlist just after page_duplicate - before would be racy.
970  */
971 static void drain_mmlist(void)
972 {
973         struct list_head *p, *next;
974         unsigned int i;
975
976         for (i = 0; i < nr_swapfiles; i++)
977                 if (swap_info[i].inuse_pages)
978                         return;
979         spin_lock(&mmlist_lock);
980         list_for_each_safe(p, next, &init_mm.mmlist)
981                 list_del_init(p);
982         spin_unlock(&mmlist_lock);
983 }
984
985 /*
986  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
987  * corresponds to page offset `offset'.
988  */
989 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
990 {
991         struct swap_extent *se = sis->curr_swap_extent;
992         struct swap_extent *start_se = se;
993
994         for ( ; ; ) {
995                 struct list_head *lh;
996
997                 if (se->start_page <= offset &&
998                                 offset < (se->start_page + se->nr_pages)) {
999                         return se->start_block + (offset - se->start_page);
1000                 }
1001                 lh = se->list.next;
1002                 if (lh == &sis->extent_list)
1003                         lh = lh->next;
1004                 se = list_entry(lh, struct swap_extent, list);
1005                 sis->curr_swap_extent = se;
1006                 BUG_ON(se == start_se);         /* It *must* be present */
1007         }
1008 }
1009
1010 #ifdef CONFIG_HIBERNATION
1011 /*
1012  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1013  * corresponding to given index in swap_info (swap type).
1014  */
1015 sector_t swapdev_block(int swap_type, pgoff_t offset)
1016 {
1017         struct swap_info_struct *sis;
1018
1019         if (swap_type >= nr_swapfiles)
1020                 return 0;
1021
1022         sis = swap_info + swap_type;
1023         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1024 }
1025 #endif /* CONFIG_HIBERNATION */
1026
1027 /*
1028  * Free all of a swapdev's extent information
1029  */
1030 static void destroy_swap_extents(struct swap_info_struct *sis)
1031 {
1032         while (!list_empty(&sis->extent_list)) {
1033                 struct swap_extent *se;
1034
1035                 se = list_entry(sis->extent_list.next,
1036                                 struct swap_extent, list);
1037                 list_del(&se->list);
1038                 kfree(se);
1039         }
1040 }
1041
1042 /*
1043  * Add a block range (and the corresponding page range) into this swapdev's
1044  * extent list.  The extent list is kept sorted in page order.
1045  *
1046  * This function rather assumes that it is called in ascending page order.
1047  */
1048 static int
1049 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1050                 unsigned long nr_pages, sector_t start_block)
1051 {
1052         struct swap_extent *se;
1053         struct swap_extent *new_se;
1054         struct list_head *lh;
1055
1056         lh = sis->extent_list.prev;     /* The highest page extent */
1057         if (lh != &sis->extent_list) {
1058                 se = list_entry(lh, struct swap_extent, list);
1059                 BUG_ON(se->start_page + se->nr_pages != start_page);
1060                 if (se->start_block + se->nr_pages == start_block) {
1061                         /* Merge it */
1062                         se->nr_pages += nr_pages;
1063                         return 0;
1064                 }
1065         }
1066
1067         /*
1068          * No merge.  Insert a new extent, preserving ordering.
1069          */
1070         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1071         if (new_se == NULL)
1072                 return -ENOMEM;
1073         new_se->start_page = start_page;
1074         new_se->nr_pages = nr_pages;
1075         new_se->start_block = start_block;
1076
1077         list_add_tail(&new_se->list, &sis->extent_list);
1078         return 1;
1079 }
1080
1081 /*
1082  * A `swap extent' is a simple thing which maps a contiguous range of pages
1083  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1084  * is built at swapon time and is then used at swap_writepage/swap_readpage
1085  * time for locating where on disk a page belongs.
1086  *
1087  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1088  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1089  * swap files identically.
1090  *
1091  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1092  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1093  * swapfiles are handled *identically* after swapon time.
1094  *
1095  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1096  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1097  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1098  * requirements, they are simply tossed out - we will never use those blocks
1099  * for swapping.
1100  *
1101  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1102  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1103  * which will scribble on the fs.
1104  *
1105  * The amount of disk space which a single swap extent represents varies.
1106  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1107  * extents in the list.  To avoid much list walking, we cache the previous
1108  * search location in `curr_swap_extent', and start new searches from there.
1109  * This is extremely effective.  The average number of iterations in
1110  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1111  */
1112 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1113 {
1114         struct inode *inode;
1115         unsigned blocks_per_page;
1116         unsigned long page_no;
1117         unsigned blkbits;
1118         sector_t probe_block;
1119         sector_t last_block;
1120         sector_t lowest_block = -1;
1121         sector_t highest_block = 0;
1122         int nr_extents = 0;
1123         int ret;
1124
1125         inode = sis->swap_file->f_mapping->host;
1126         if (S_ISBLK(inode->i_mode)) {
1127                 ret = add_swap_extent(sis, 0, sis->max, 0);
1128                 *span = sis->pages;
1129                 goto done;
1130         }
1131
1132         blkbits = inode->i_blkbits;
1133         blocks_per_page = PAGE_SIZE >> blkbits;
1134
1135         /*
1136          * Map all the blocks into the extent list.  This code doesn't try
1137          * to be very smart.
1138          */
1139         probe_block = 0;
1140         page_no = 0;
1141         last_block = i_size_read(inode) >> blkbits;
1142         while ((probe_block + blocks_per_page) <= last_block &&
1143                         page_no < sis->max) {
1144                 unsigned block_in_page;
1145                 sector_t first_block;
1146
1147                 first_block = bmap(inode, probe_block);
1148                 if (first_block == 0)
1149                         goto bad_bmap;
1150
1151                 /*
1152                  * It must be PAGE_SIZE aligned on-disk
1153                  */
1154                 if (first_block & (blocks_per_page - 1)) {
1155                         probe_block++;
1156                         goto reprobe;
1157                 }
1158
1159                 for (block_in_page = 1; block_in_page < blocks_per_page;
1160                                         block_in_page++) {
1161                         sector_t block;
1162
1163                         block = bmap(inode, probe_block + block_in_page);
1164                         if (block == 0)
1165                                 goto bad_bmap;
1166                         if (block != first_block + block_in_page) {
1167                                 /* Discontiguity */
1168                                 probe_block++;
1169                                 goto reprobe;
1170                         }
1171                 }
1172
1173                 first_block >>= (PAGE_SHIFT - blkbits);
1174                 if (page_no) {  /* exclude the header page */
1175                         if (first_block < lowest_block)
1176                                 lowest_block = first_block;
1177                         if (first_block > highest_block)
1178                                 highest_block = first_block;
1179                 }
1180
1181                 /*
1182                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1183                  */
1184                 ret = add_swap_extent(sis, page_no, 1, first_block);
1185                 if (ret < 0)
1186                         goto out;
1187                 nr_extents += ret;
1188                 page_no++;
1189                 probe_block += blocks_per_page;
1190 reprobe:
1191                 continue;
1192         }
1193         ret = nr_extents;
1194         *span = 1 + highest_block - lowest_block;
1195         if (page_no == 0)
1196                 page_no = 1;    /* force Empty message */
1197         sis->max = page_no;
1198         sis->pages = page_no - 1;
1199         sis->highest_bit = page_no - 1;
1200 done:
1201         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1202                                         struct swap_extent, list);
1203         goto out;
1204 bad_bmap:
1205         printk(KERN_ERR "swapon: swapfile has holes\n");
1206         ret = -EINVAL;
1207 out:
1208         return ret;
1209 }
1210
1211 #if 0   /* We don't need this yet */
1212 #include <linux/backing-dev.h>
1213 int page_queue_congested(struct page *page)
1214 {
1215         struct backing_dev_info *bdi;
1216
1217         VM_BUG_ON(!PageLocked(page));   /* It pins the swap_info_struct */
1218
1219         if (PageSwapCache(page)) {
1220                 swp_entry_t entry = { .val = page_private(page) };
1221                 struct swap_info_struct *sis;
1222
1223                 sis = get_swap_info_struct(swp_type(entry));
1224                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1225         } else
1226                 bdi = page->mapping->backing_dev_info;
1227         return bdi_write_congested(bdi);
1228 }
1229 #endif
1230
1231 asmlinkage long sys_swapoff(const char __user * specialfile)
1232 {
1233         struct swap_info_struct * p = NULL;
1234         unsigned short *swap_map;
1235         struct file *swap_file, *victim;
1236         struct address_space *mapping;
1237         struct inode *inode;
1238         char * pathname;
1239         int i, type, prev;
1240         int err;
1241         
1242         if (!capable(CAP_SYS_ADMIN))
1243                 return -EPERM;
1244
1245         pathname = getname(specialfile);
1246         err = PTR_ERR(pathname);
1247         if (IS_ERR(pathname))
1248                 goto out;
1249
1250         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1251         putname(pathname);
1252         err = PTR_ERR(victim);
1253         if (IS_ERR(victim))
1254                 goto out;
1255
1256         mapping = victim->f_mapping;
1257         prev = -1;
1258         spin_lock(&swap_lock);
1259         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1260                 p = swap_info + type;
1261                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1262                         if (p->swap_file->f_mapping == mapping)
1263                                 break;
1264                 }
1265                 prev = type;
1266         }
1267         if (type < 0) {
1268                 err = -EINVAL;
1269                 spin_unlock(&swap_lock);
1270                 goto out_dput;
1271         }
1272         if (!security_vm_enough_memory(p->pages))
1273                 vm_unacct_memory(p->pages);
1274         else {
1275                 err = -ENOMEM;
1276                 spin_unlock(&swap_lock);
1277                 goto out_dput;
1278         }
1279         if (prev < 0) {
1280                 swap_list.head = p->next;
1281         } else {
1282                 swap_info[prev].next = p->next;
1283         }
1284         if (type == swap_list.next) {
1285                 /* just pick something that's safe... */
1286                 swap_list.next = swap_list.head;
1287         }
1288         if (p->prio < 0) {
1289                 for (i = p->next; i >= 0; i = swap_info[i].next)
1290                         swap_info[i].prio = p->prio--;
1291                 least_priority++;
1292         }
1293         nr_swap_pages -= p->pages;
1294         total_swap_pages -= p->pages;
1295         p->flags &= ~SWP_WRITEOK;
1296         spin_unlock(&swap_lock);
1297
1298         current->flags |= PF_SWAPOFF;
1299         err = try_to_unuse(type);
1300         current->flags &= ~PF_SWAPOFF;
1301
1302         if (err) {
1303                 /* re-insert swap space back into swap_list */
1304                 spin_lock(&swap_lock);
1305                 if (p->prio < 0)
1306                         p->prio = --least_priority;
1307                 prev = -1;
1308                 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1309                         if (p->prio >= swap_info[i].prio)
1310                                 break;
1311                         prev = i;
1312                 }
1313                 p->next = i;
1314                 if (prev < 0)
1315                         swap_list.head = swap_list.next = p - swap_info;
1316                 else
1317                         swap_info[prev].next = p - swap_info;
1318                 nr_swap_pages += p->pages;
1319                 total_swap_pages += p->pages;
1320                 p->flags |= SWP_WRITEOK;
1321                 spin_unlock(&swap_lock);
1322                 goto out_dput;
1323         }
1324
1325         /* wait for any unplug function to finish */
1326         down_write(&swap_unplug_sem);
1327         up_write(&swap_unplug_sem);
1328
1329         destroy_swap_extents(p);
1330         mutex_lock(&swapon_mutex);
1331         spin_lock(&swap_lock);
1332         drain_mmlist();
1333
1334         /* wait for anyone still in scan_swap_map */
1335         p->highest_bit = 0;             /* cuts scans short */
1336         while (p->flags >= SWP_SCANNING) {
1337                 spin_unlock(&swap_lock);
1338                 schedule_timeout_uninterruptible(1);
1339                 spin_lock(&swap_lock);
1340         }
1341
1342         swap_file = p->swap_file;
1343         p->swap_file = NULL;
1344         p->max = 0;
1345         swap_map = p->swap_map;
1346         p->swap_map = NULL;
1347         p->flags = 0;
1348         spin_unlock(&swap_lock);
1349         mutex_unlock(&swapon_mutex);
1350         vfree(swap_map);
1351         inode = mapping->host;
1352         if (S_ISBLK(inode->i_mode)) {
1353                 struct block_device *bdev = I_BDEV(inode);
1354                 set_blocksize(bdev, p->old_block_size);
1355                 bd_release(bdev);
1356         } else {
1357                 mutex_lock(&inode->i_mutex);
1358                 inode->i_flags &= ~S_SWAPFILE;
1359                 mutex_unlock(&inode->i_mutex);
1360         }
1361         filp_close(swap_file, NULL);
1362         err = 0;
1363
1364 out_dput:
1365         filp_close(victim, NULL);
1366 out:
1367         return err;
1368 }
1369
1370 #ifdef CONFIG_PROC_FS
1371 /* iterator */
1372 static void *swap_start(struct seq_file *swap, loff_t *pos)
1373 {
1374         struct swap_info_struct *ptr = swap_info;
1375         int i;
1376         loff_t l = *pos;
1377
1378         mutex_lock(&swapon_mutex);
1379
1380         if (!l)
1381                 return SEQ_START_TOKEN;
1382
1383         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1384                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1385                         continue;
1386                 if (!--l)
1387                         return ptr;
1388         }
1389
1390         return NULL;
1391 }
1392
1393 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1394 {
1395         struct swap_info_struct *ptr;
1396         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1397
1398         if (v == SEQ_START_TOKEN)
1399                 ptr = swap_info;
1400         else {
1401                 ptr = v;
1402                 ptr++;
1403         }
1404
1405         for (; ptr < endptr; ptr++) {
1406                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1407                         continue;
1408                 ++*pos;
1409                 return ptr;
1410         }
1411
1412         return NULL;
1413 }
1414
1415 static void swap_stop(struct seq_file *swap, void *v)
1416 {
1417         mutex_unlock(&swapon_mutex);
1418 }
1419
1420 static int swap_show(struct seq_file *swap, void *v)
1421 {
1422         struct swap_info_struct *ptr = v;
1423         struct file *file;
1424         int len;
1425
1426         if (ptr == SEQ_START_TOKEN) {
1427                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1428                 return 0;
1429         }
1430
1431         file = ptr->swap_file;
1432         len = seq_path(swap, &file->f_path, " \t\n\\");
1433         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1434                        len < 40 ? 40 - len : 1, " ",
1435                        S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1436                                 "partition" : "file\t",
1437                        ptr->pages << (PAGE_SHIFT - 10),
1438                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1439                        ptr->prio);
1440         return 0;
1441 }
1442
1443 static const struct seq_operations swaps_op = {
1444         .start =        swap_start,
1445         .next =         swap_next,
1446         .stop =         swap_stop,
1447         .show =         swap_show
1448 };
1449
1450 static int swaps_open(struct inode *inode, struct file *file)
1451 {
1452         return seq_open(file, &swaps_op);
1453 }
1454
1455 static const struct file_operations proc_swaps_operations = {
1456         .open           = swaps_open,
1457         .read           = seq_read,
1458         .llseek         = seq_lseek,
1459         .release        = seq_release,
1460 };
1461
1462 static int __init procswaps_init(void)
1463 {
1464         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1465         return 0;
1466 }
1467 __initcall(procswaps_init);
1468 #endif /* CONFIG_PROC_FS */
1469
1470 #ifdef MAX_SWAPFILES_CHECK
1471 static int __init max_swapfiles_check(void)
1472 {
1473         MAX_SWAPFILES_CHECK();
1474         return 0;
1475 }
1476 late_initcall(max_swapfiles_check);
1477 #endif
1478
1479 /*
1480  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1481  *
1482  * The swapon system call
1483  */
1484 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1485 {
1486         struct swap_info_struct * p;
1487         char *name = NULL;
1488         struct block_device *bdev = NULL;
1489         struct file *swap_file = NULL;
1490         struct address_space *mapping;
1491         unsigned int type;
1492         int i, prev;
1493         int error;
1494         union swap_header *swap_header = NULL;
1495         int swap_header_version;
1496         unsigned int nr_good_pages = 0;
1497         int nr_extents = 0;
1498         sector_t span;
1499         unsigned long maxpages = 1;
1500         int swapfilesize;
1501         unsigned short *swap_map = NULL;
1502         struct page *page = NULL;
1503         struct inode *inode = NULL;
1504         int did_down = 0;
1505
1506         if (!capable(CAP_SYS_ADMIN))
1507                 return -EPERM;
1508         spin_lock(&swap_lock);
1509         p = swap_info;
1510         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1511                 if (!(p->flags & SWP_USED))
1512                         break;
1513         error = -EPERM;
1514         if (type >= MAX_SWAPFILES) {
1515                 spin_unlock(&swap_lock);
1516                 goto out;
1517         }
1518         if (type >= nr_swapfiles)
1519                 nr_swapfiles = type+1;
1520         memset(p, 0, sizeof(*p));
1521         INIT_LIST_HEAD(&p->extent_list);
1522         p->flags = SWP_USED;
1523         p->next = -1;
1524         spin_unlock(&swap_lock);
1525         name = getname(specialfile);
1526         error = PTR_ERR(name);
1527         if (IS_ERR(name)) {
1528                 name = NULL;
1529                 goto bad_swap_2;
1530         }
1531         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1532         error = PTR_ERR(swap_file);
1533         if (IS_ERR(swap_file)) {
1534                 swap_file = NULL;
1535                 goto bad_swap_2;
1536         }
1537
1538         p->swap_file = swap_file;
1539         mapping = swap_file->f_mapping;
1540         inode = mapping->host;
1541
1542         error = -EBUSY;
1543         for (i = 0; i < nr_swapfiles; i++) {
1544                 struct swap_info_struct *q = &swap_info[i];
1545
1546                 if (i == type || !q->swap_file)
1547                         continue;
1548                 if (mapping == q->swap_file->f_mapping)
1549                         goto bad_swap;
1550         }
1551
1552         error = -EINVAL;
1553         if (S_ISBLK(inode->i_mode)) {
1554                 bdev = I_BDEV(inode);
1555                 error = bd_claim(bdev, sys_swapon);
1556                 if (error < 0) {
1557                         bdev = NULL;
1558                         error = -EINVAL;
1559                         goto bad_swap;
1560                 }
1561                 p->old_block_size = block_size(bdev);
1562                 error = set_blocksize(bdev, PAGE_SIZE);
1563                 if (error < 0)
1564                         goto bad_swap;
1565                 p->bdev = bdev;
1566         } else if (S_ISREG(inode->i_mode)) {
1567                 p->bdev = inode->i_sb->s_bdev;
1568                 mutex_lock(&inode->i_mutex);
1569                 did_down = 1;
1570                 if (IS_SWAPFILE(inode)) {
1571                         error = -EBUSY;
1572                         goto bad_swap;
1573                 }
1574         } else {
1575                 goto bad_swap;
1576         }
1577
1578         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1579
1580         /*
1581          * Read the swap header.
1582          */
1583         if (!mapping->a_ops->readpage) {
1584                 error = -EINVAL;
1585                 goto bad_swap;
1586         }
1587         page = read_mapping_page(mapping, 0, swap_file);
1588         if (IS_ERR(page)) {
1589                 error = PTR_ERR(page);
1590                 goto bad_swap;
1591         }
1592         kmap(page);
1593         swap_header = page_address(page);
1594
1595         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1596                 swap_header_version = 1;
1597         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1598                 swap_header_version = 2;
1599         else {
1600                 printk(KERN_ERR "Unable to find swap-space signature\n");
1601                 error = -EINVAL;
1602                 goto bad_swap;
1603         }
1604         
1605         switch (swap_header_version) {
1606         case 1:
1607                 printk(KERN_ERR "version 0 swap is no longer supported. "
1608                         "Use mkswap -v1 %s\n", name);
1609                 error = -EINVAL;
1610                 goto bad_swap;
1611         case 2:
1612                 /* swap partition endianess hack... */
1613                 if (swab32(swap_header->info.version) == 1) {
1614                         swab32s(&swap_header->info.version);
1615                         swab32s(&swap_header->info.last_page);
1616                         swab32s(&swap_header->info.nr_badpages);
1617                         for (i = 0; i < swap_header->info.nr_badpages; i++)
1618                                 swab32s(&swap_header->info.badpages[i]);
1619                 }
1620                 /* Check the swap header's sub-version and the size of
1621                    the swap file and bad block lists */
1622                 if (swap_header->info.version != 1) {
1623                         printk(KERN_WARNING
1624                                "Unable to handle swap header version %d\n",
1625                                swap_header->info.version);
1626                         error = -EINVAL;
1627                         goto bad_swap;
1628                 }
1629
1630                 p->lowest_bit  = 1;
1631                 p->cluster_next = 1;
1632
1633                 /*
1634                  * Find out how many pages are allowed for a single swap
1635                  * device. There are two limiting factors: 1) the number of
1636                  * bits for the swap offset in the swp_entry_t type and
1637                  * 2) the number of bits in the a swap pte as defined by
1638                  * the different architectures. In order to find the
1639                  * largest possible bit mask a swap entry with swap type 0
1640                  * and swap offset ~0UL is created, encoded to a swap pte,
1641                  * decoded to a swp_entry_t again and finally the swap
1642                  * offset is extracted. This will mask all the bits from
1643                  * the initial ~0UL mask that can't be encoded in either
1644                  * the swp_entry_t or the architecture definition of a
1645                  * swap pte.
1646                  */
1647                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1648                 if (maxpages > swap_header->info.last_page)
1649                         maxpages = swap_header->info.last_page;
1650                 p->highest_bit = maxpages - 1;
1651
1652                 error = -EINVAL;
1653                 if (!maxpages)
1654                         goto bad_swap;
1655                 if (swapfilesize && maxpages > swapfilesize) {
1656                         printk(KERN_WARNING
1657                                "Swap area shorter than signature indicates\n");
1658                         goto bad_swap;
1659                 }
1660                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1661                         goto bad_swap;
1662                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1663                         goto bad_swap;
1664
1665                 /* OK, set up the swap map and apply the bad block list */
1666                 swap_map = vmalloc(maxpages * sizeof(short));
1667                 if (!swap_map) {
1668                         error = -ENOMEM;
1669                         goto bad_swap;
1670                 }
1671
1672                 error = 0;
1673                 memset(swap_map, 0, maxpages * sizeof(short));
1674                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1675                         int page_nr = swap_header->info.badpages[i];
1676                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1677                                 error = -EINVAL;
1678                         else
1679                                 swap_map[page_nr] = SWAP_MAP_BAD;
1680                 }
1681                 nr_good_pages = swap_header->info.last_page -
1682                                 swap_header->info.nr_badpages -
1683                                 1 /* header page */;
1684                 if (error)
1685                         goto bad_swap;
1686         }
1687
1688         if (nr_good_pages) {
1689                 swap_map[0] = SWAP_MAP_BAD;
1690                 p->max = maxpages;
1691                 p->pages = nr_good_pages;
1692                 nr_extents = setup_swap_extents(p, &span);
1693                 if (nr_extents < 0) {
1694                         error = nr_extents;
1695                         goto bad_swap;
1696                 }
1697                 nr_good_pages = p->pages;
1698         }
1699         if (!nr_good_pages) {
1700                 printk(KERN_WARNING "Empty swap-file\n");
1701                 error = -EINVAL;
1702                 goto bad_swap;
1703         }
1704
1705         mutex_lock(&swapon_mutex);
1706         spin_lock(&swap_lock);
1707         if (swap_flags & SWAP_FLAG_PREFER)
1708                 p->prio =
1709                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1710         else
1711                 p->prio = --least_priority;
1712         p->swap_map = swap_map;
1713         p->flags = SWP_ACTIVE;
1714         nr_swap_pages += nr_good_pages;
1715         total_swap_pages += nr_good_pages;
1716
1717         printk(KERN_INFO "Adding %uk swap on %s.  "
1718                         "Priority:%d extents:%d across:%lluk\n",
1719                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1720                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1721
1722         /* insert swap space into swap_list: */
1723         prev = -1;
1724         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1725                 if (p->prio >= swap_info[i].prio) {
1726                         break;
1727                 }
1728                 prev = i;
1729         }
1730         p->next = i;
1731         if (prev < 0) {
1732                 swap_list.head = swap_list.next = p - swap_info;
1733         } else {
1734                 swap_info[prev].next = p - swap_info;
1735         }
1736         spin_unlock(&swap_lock);
1737         mutex_unlock(&swapon_mutex);
1738         error = 0;
1739         goto out;
1740 bad_swap:
1741         if (bdev) {
1742                 set_blocksize(bdev, p->old_block_size);
1743                 bd_release(bdev);
1744         }
1745         destroy_swap_extents(p);
1746 bad_swap_2:
1747         spin_lock(&swap_lock);
1748         p->swap_file = NULL;
1749         p->flags = 0;
1750         spin_unlock(&swap_lock);
1751         vfree(swap_map);
1752         if (swap_file)
1753                 filp_close(swap_file, NULL);
1754 out:
1755         if (page && !IS_ERR(page)) {
1756                 kunmap(page);
1757                 page_cache_release(page);
1758         }
1759         if (name)
1760                 putname(name);
1761         if (did_down) {
1762                 if (!error)
1763                         inode->i_flags |= S_SWAPFILE;
1764                 mutex_unlock(&inode->i_mutex);
1765         }
1766         return error;
1767 }
1768
1769 void si_swapinfo(struct sysinfo *val)
1770 {
1771         unsigned int i;
1772         unsigned long nr_to_be_unused = 0;
1773
1774         spin_lock(&swap_lock);
1775         for (i = 0; i < nr_swapfiles; i++) {
1776                 if (!(swap_info[i].flags & SWP_USED) ||
1777                      (swap_info[i].flags & SWP_WRITEOK))
1778                         continue;
1779                 nr_to_be_unused += swap_info[i].inuse_pages;
1780         }
1781         val->freeswap = nr_swap_pages + nr_to_be_unused;
1782         val->totalswap = total_swap_pages + nr_to_be_unused;
1783         spin_unlock(&swap_lock);
1784 }
1785
1786 /*
1787  * Verify that a swap entry is valid and increment its swap map count.
1788  *
1789  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1790  * "permanent", but will be reclaimed by the next swapoff.
1791  */
1792 int swap_duplicate(swp_entry_t entry)
1793 {
1794         struct swap_info_struct * p;
1795         unsigned long offset, type;
1796         int result = 0;
1797
1798         if (is_migration_entry(entry))
1799                 return 1;
1800
1801         type = swp_type(entry);
1802         if (type >= nr_swapfiles)
1803                 goto bad_file;
1804         p = type + swap_info;
1805         offset = swp_offset(entry);
1806
1807         spin_lock(&swap_lock);
1808         if (offset < p->max && p->swap_map[offset]) {
1809                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1810                         p->swap_map[offset]++;
1811                         result = 1;
1812                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1813                         if (swap_overflow++ < 5)
1814                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1815                         p->swap_map[offset] = SWAP_MAP_MAX;
1816                         result = 1;
1817                 }
1818         }
1819         spin_unlock(&swap_lock);
1820 out:
1821         return result;
1822
1823 bad_file:
1824         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1825         goto out;
1826 }
1827
1828 struct swap_info_struct *
1829 get_swap_info_struct(unsigned type)
1830 {
1831         return &swap_info[type];
1832 }
1833
1834 /*
1835  * swap_lock prevents swap_map being freed. Don't grab an extra
1836  * reference on the swaphandle, it doesn't matter if it becomes unused.
1837  */
1838 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1839 {
1840         struct swap_info_struct *si;
1841         int our_page_cluster = page_cluster;
1842         pgoff_t target, toff;
1843         pgoff_t base, end;
1844         int nr_pages = 0;
1845
1846         if (!our_page_cluster)  /* no readahead */
1847                 return 0;
1848
1849         si = &swap_info[swp_type(entry)];
1850         target = swp_offset(entry);
1851         base = (target >> our_page_cluster) << our_page_cluster;
1852         end = base + (1 << our_page_cluster);
1853         if (!base)              /* first page is swap header */
1854                 base++;
1855
1856         spin_lock(&swap_lock);
1857         if (end > si->max)      /* don't go beyond end of map */
1858                 end = si->max;
1859
1860         /* Count contiguous allocated slots above our target */
1861         for (toff = target; ++toff < end; nr_pages++) {
1862                 /* Don't read in free or bad pages */
1863                 if (!si->swap_map[toff])
1864                         break;
1865                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1866                         break;
1867         }
1868         /* Count contiguous allocated slots below our target */
1869         for (toff = target; --toff >= base; nr_pages++) {
1870                 /* Don't read in free or bad pages */
1871                 if (!si->swap_map[toff])
1872                         break;
1873                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1874                         break;
1875         }
1876         spin_unlock(&swap_lock);
1877
1878         /*
1879          * Indicate starting offset, and return number of pages to get:
1880          * if only 1, say 0, since there's then no readahead to be done.
1881          */
1882         *offset = ++toff;
1883         return nr_pages? ++nr_pages: 0;
1884 }