[PATCH] mm: kill check_user_page_readable
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 /*
264                  * Hide vma from rmap and vmtruncate before freeing pgtables
265                  */
266                 anon_vma_unlink(vma);
267                 unlink_file_vma(vma);
268
269                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
270                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
271                                 floor, next? next->vm_start: ceiling);
272                 } else {
273                         /*
274                          * Optimization: gather nearby vmas into one call down
275                          */
276                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
277                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
278                                                         HPAGE_SIZE)) {
279                                 vma = next;
280                                 next = vma->vm_next;
281                                 anon_vma_unlink(vma);
282                                 unlink_file_vma(vma);
283                         }
284                         free_pgd_range(tlb, addr, vma->vm_end,
285                                 floor, next? next->vm_start: ceiling);
286                 }
287                 vma = next;
288         }
289 }
290
291 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
292 {
293         struct page *new = pte_alloc_one(mm, address);
294         if (!new)
295                 return -ENOMEM;
296
297         spin_lock(&mm->page_table_lock);
298         if (pmd_present(*pmd))          /* Another has populated it */
299                 pte_free(new);
300         else {
301                 mm->nr_ptes++;
302                 inc_page_state(nr_page_table_pages);
303                 pmd_populate(mm, pmd, new);
304         }
305         spin_unlock(&mm->page_table_lock);
306         return 0;
307 }
308
309 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
310 {
311         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
312         if (!new)
313                 return -ENOMEM;
314
315         spin_lock(&init_mm.page_table_lock);
316         if (pmd_present(*pmd))          /* Another has populated it */
317                 pte_free_kernel(new);
318         else
319                 pmd_populate_kernel(&init_mm, pmd, new);
320         spin_unlock(&init_mm.page_table_lock);
321         return 0;
322 }
323
324 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
325 {
326         if (file_rss)
327                 add_mm_counter(mm, file_rss, file_rss);
328         if (anon_rss)
329                 add_mm_counter(mm, anon_rss, anon_rss);
330 }
331
332 /*
333  * This function is called to print an error when a pte in a
334  * !VM_RESERVED region is found pointing to an invalid pfn (which
335  * is an error.
336  *
337  * The calling function must still handle the error.
338  */
339 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
340 {
341         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
342                         "vm_flags = %lx, vaddr = %lx\n",
343                 (long long)pte_val(pte),
344                 (vma->vm_mm == current->mm ? current->comm : "???"),
345                 vma->vm_flags, vaddr);
346         dump_stack();
347 }
348
349 /*
350  * copy one vm_area from one task to the other. Assumes the page tables
351  * already present in the new task to be cleared in the whole range
352  * covered by this vma.
353  */
354
355 static inline void
356 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
357                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
358                 unsigned long addr, int *rss)
359 {
360         unsigned long vm_flags = vma->vm_flags;
361         pte_t pte = *src_pte;
362         struct page *page;
363         unsigned long pfn;
364
365         /* pte contains position in swap or file, so copy. */
366         if (unlikely(!pte_present(pte))) {
367                 if (!pte_file(pte)) {
368                         swap_duplicate(pte_to_swp_entry(pte));
369                         /* make sure dst_mm is on swapoff's mmlist. */
370                         if (unlikely(list_empty(&dst_mm->mmlist))) {
371                                 spin_lock(&mmlist_lock);
372                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
373                                 spin_unlock(&mmlist_lock);
374                         }
375                 }
376                 goto out_set_pte;
377         }
378
379         /* If the region is VM_RESERVED, the mapping is not
380          * mapped via rmap - duplicate the pte as is.
381          */
382         if (vm_flags & VM_RESERVED)
383                 goto out_set_pte;
384
385         pfn = pte_pfn(pte);
386         /* If the pte points outside of valid memory but
387          * the region is not VM_RESERVED, we have a problem.
388          */
389         if (unlikely(!pfn_valid(pfn))) {
390                 print_bad_pte(vma, pte, addr);
391                 goto out_set_pte; /* try to do something sane */
392         }
393
394         page = pfn_to_page(pfn);
395
396         /*
397          * If it's a COW mapping, write protect it both
398          * in the parent and the child
399          */
400         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
401                 ptep_set_wrprotect(src_mm, addr, src_pte);
402                 pte = *src_pte;
403         }
404
405         /*
406          * If it's a shared mapping, mark it clean in
407          * the child
408          */
409         if (vm_flags & VM_SHARED)
410                 pte = pte_mkclean(pte);
411         pte = pte_mkold(pte);
412         get_page(page);
413         page_dup_rmap(page);
414         rss[!!PageAnon(page)]++;
415
416 out_set_pte:
417         set_pte_at(dst_mm, addr, dst_pte, pte);
418 }
419
420 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
421                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
422                 unsigned long addr, unsigned long end)
423 {
424         pte_t *src_pte, *dst_pte;
425         spinlock_t *src_ptl, *dst_ptl;
426         int progress = 0;
427         int rss[2];
428
429 again:
430         rss[1] = rss[0] = 0;
431         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
432         if (!dst_pte)
433                 return -ENOMEM;
434         src_pte = pte_offset_map_nested(src_pmd, addr);
435         src_ptl = &src_mm->page_table_lock;
436         spin_lock(src_ptl);
437
438         do {
439                 /*
440                  * We are holding two locks at this point - either of them
441                  * could generate latencies in another task on another CPU.
442                  */
443                 if (progress >= 32) {
444                         progress = 0;
445                         if (need_resched() ||
446                             need_lockbreak(src_ptl) ||
447                             need_lockbreak(dst_ptl))
448                                 break;
449                 }
450                 if (pte_none(*src_pte)) {
451                         progress++;
452                         continue;
453                 }
454                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
455                 progress += 8;
456         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
457
458         spin_unlock(src_ptl);
459         pte_unmap_nested(src_pte - 1);
460         add_mm_rss(dst_mm, rss[0], rss[1]);
461         pte_unmap_unlock(dst_pte - 1, dst_ptl);
462         cond_resched();
463         if (addr != end)
464                 goto again;
465         return 0;
466 }
467
468 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
469                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
470                 unsigned long addr, unsigned long end)
471 {
472         pmd_t *src_pmd, *dst_pmd;
473         unsigned long next;
474
475         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
476         if (!dst_pmd)
477                 return -ENOMEM;
478         src_pmd = pmd_offset(src_pud, addr);
479         do {
480                 next = pmd_addr_end(addr, end);
481                 if (pmd_none_or_clear_bad(src_pmd))
482                         continue;
483                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
484                                                 vma, addr, next))
485                         return -ENOMEM;
486         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
487         return 0;
488 }
489
490 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
492                 unsigned long addr, unsigned long end)
493 {
494         pud_t *src_pud, *dst_pud;
495         unsigned long next;
496
497         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
498         if (!dst_pud)
499                 return -ENOMEM;
500         src_pud = pud_offset(src_pgd, addr);
501         do {
502                 next = pud_addr_end(addr, end);
503                 if (pud_none_or_clear_bad(src_pud))
504                         continue;
505                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
506                                                 vma, addr, next))
507                         return -ENOMEM;
508         } while (dst_pud++, src_pud++, addr = next, addr != end);
509         return 0;
510 }
511
512 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
513                 struct vm_area_struct *vma)
514 {
515         pgd_t *src_pgd, *dst_pgd;
516         unsigned long next;
517         unsigned long addr = vma->vm_start;
518         unsigned long end = vma->vm_end;
519
520         /*
521          * Don't copy ptes where a page fault will fill them correctly.
522          * Fork becomes much lighter when there are big shared or private
523          * readonly mappings. The tradeoff is that copy_page_range is more
524          * efficient than faulting.
525          */
526         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
527                 if (!vma->anon_vma)
528                         return 0;
529         }
530
531         if (is_vm_hugetlb_page(vma))
532                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
533
534         dst_pgd = pgd_offset(dst_mm, addr);
535         src_pgd = pgd_offset(src_mm, addr);
536         do {
537                 next = pgd_addr_end(addr, end);
538                 if (pgd_none_or_clear_bad(src_pgd))
539                         continue;
540                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
541                                                 vma, addr, next))
542                         return -ENOMEM;
543         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
544         return 0;
545 }
546
547 static void zap_pte_range(struct mmu_gather *tlb,
548                                 struct vm_area_struct *vma, pmd_t *pmd,
549                                 unsigned long addr, unsigned long end,
550                                 struct zap_details *details)
551 {
552         struct mm_struct *mm = tlb->mm;
553         pte_t *pte;
554         spinlock_t *ptl;
555         int file_rss = 0;
556         int anon_rss = 0;
557
558         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
559         do {
560                 pte_t ptent = *pte;
561                 if (pte_none(ptent))
562                         continue;
563                 if (pte_present(ptent)) {
564                         struct page *page = NULL;
565                         if (!(vma->vm_flags & VM_RESERVED)) {
566                                 unsigned long pfn = pte_pfn(ptent);
567                                 if (unlikely(!pfn_valid(pfn)))
568                                         print_bad_pte(vma, ptent, addr);
569                                 else
570                                         page = pfn_to_page(pfn);
571                         }
572                         if (unlikely(details) && page) {
573                                 /*
574                                  * unmap_shared_mapping_pages() wants to
575                                  * invalidate cache without truncating:
576                                  * unmap shared but keep private pages.
577                                  */
578                                 if (details->check_mapping &&
579                                     details->check_mapping != page->mapping)
580                                         continue;
581                                 /*
582                                  * Each page->index must be checked when
583                                  * invalidating or truncating nonlinear.
584                                  */
585                                 if (details->nonlinear_vma &&
586                                     (page->index < details->first_index ||
587                                      page->index > details->last_index))
588                                         continue;
589                         }
590                         ptent = ptep_get_and_clear_full(mm, addr, pte,
591                                                         tlb->fullmm);
592                         tlb_remove_tlb_entry(tlb, pte, addr);
593                         if (unlikely(!page))
594                                 continue;
595                         if (unlikely(details) && details->nonlinear_vma
596                             && linear_page_index(details->nonlinear_vma,
597                                                 addr) != page->index)
598                                 set_pte_at(mm, addr, pte,
599                                            pgoff_to_pte(page->index));
600                         if (PageAnon(page))
601                                 anon_rss--;
602                         else {
603                                 if (pte_dirty(ptent))
604                                         set_page_dirty(page);
605                                 if (pte_young(ptent))
606                                         mark_page_accessed(page);
607                                 file_rss--;
608                         }
609                         page_remove_rmap(page);
610                         tlb_remove_page(tlb, page);
611                         continue;
612                 }
613                 /*
614                  * If details->check_mapping, we leave swap entries;
615                  * if details->nonlinear_vma, we leave file entries.
616                  */
617                 if (unlikely(details))
618                         continue;
619                 if (!pte_file(ptent))
620                         free_swap_and_cache(pte_to_swp_entry(ptent));
621                 pte_clear_full(mm, addr, pte, tlb->fullmm);
622         } while (pte++, addr += PAGE_SIZE, addr != end);
623
624         add_mm_rss(mm, file_rss, anon_rss);
625         pte_unmap_unlock(pte - 1, ptl);
626 }
627
628 static inline void zap_pmd_range(struct mmu_gather *tlb,
629                                 struct vm_area_struct *vma, pud_t *pud,
630                                 unsigned long addr, unsigned long end,
631                                 struct zap_details *details)
632 {
633         pmd_t *pmd;
634         unsigned long next;
635
636         pmd = pmd_offset(pud, addr);
637         do {
638                 next = pmd_addr_end(addr, end);
639                 if (pmd_none_or_clear_bad(pmd))
640                         continue;
641                 zap_pte_range(tlb, vma, pmd, addr, next, details);
642         } while (pmd++, addr = next, addr != end);
643 }
644
645 static inline void zap_pud_range(struct mmu_gather *tlb,
646                                 struct vm_area_struct *vma, pgd_t *pgd,
647                                 unsigned long addr, unsigned long end,
648                                 struct zap_details *details)
649 {
650         pud_t *pud;
651         unsigned long next;
652
653         pud = pud_offset(pgd, addr);
654         do {
655                 next = pud_addr_end(addr, end);
656                 if (pud_none_or_clear_bad(pud))
657                         continue;
658                 zap_pmd_range(tlb, vma, pud, addr, next, details);
659         } while (pud++, addr = next, addr != end);
660 }
661
662 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
663                                 unsigned long addr, unsigned long end,
664                                 struct zap_details *details)
665 {
666         pgd_t *pgd;
667         unsigned long next;
668
669         if (details && !details->check_mapping && !details->nonlinear_vma)
670                 details = NULL;
671
672         BUG_ON(addr >= end);
673         tlb_start_vma(tlb, vma);
674         pgd = pgd_offset(vma->vm_mm, addr);
675         do {
676                 next = pgd_addr_end(addr, end);
677                 if (pgd_none_or_clear_bad(pgd))
678                         continue;
679                 zap_pud_range(tlb, vma, pgd, addr, next, details);
680         } while (pgd++, addr = next, addr != end);
681         tlb_end_vma(tlb, vma);
682 }
683
684 #ifdef CONFIG_PREEMPT
685 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
686 #else
687 /* No preempt: go for improved straight-line efficiency */
688 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
689 #endif
690
691 /**
692  * unmap_vmas - unmap a range of memory covered by a list of vma's
693  * @tlbp: address of the caller's struct mmu_gather
694  * @vma: the starting vma
695  * @start_addr: virtual address at which to start unmapping
696  * @end_addr: virtual address at which to end unmapping
697  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
698  * @details: details of nonlinear truncation or shared cache invalidation
699  *
700  * Returns the end address of the unmapping (restart addr if interrupted).
701  *
702  * Unmap all pages in the vma list.
703  *
704  * We aim to not hold locks for too long (for scheduling latency reasons).
705  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
706  * return the ending mmu_gather to the caller.
707  *
708  * Only addresses between `start' and `end' will be unmapped.
709  *
710  * The VMA list must be sorted in ascending virtual address order.
711  *
712  * unmap_vmas() assumes that the caller will flush the whole unmapped address
713  * range after unmap_vmas() returns.  So the only responsibility here is to
714  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
715  * drops the lock and schedules.
716  */
717 unsigned long unmap_vmas(struct mmu_gather **tlbp,
718                 struct vm_area_struct *vma, unsigned long start_addr,
719                 unsigned long end_addr, unsigned long *nr_accounted,
720                 struct zap_details *details)
721 {
722         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
723         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
724         int tlb_start_valid = 0;
725         unsigned long start = start_addr;
726         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
727         int fullmm = (*tlbp)->fullmm;
728
729         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
730                 unsigned long end;
731
732                 start = max(vma->vm_start, start_addr);
733                 if (start >= vma->vm_end)
734                         continue;
735                 end = min(vma->vm_end, end_addr);
736                 if (end <= vma->vm_start)
737                         continue;
738
739                 if (vma->vm_flags & VM_ACCOUNT)
740                         *nr_accounted += (end - start) >> PAGE_SHIFT;
741
742                 while (start != end) {
743                         unsigned long block;
744
745                         if (!tlb_start_valid) {
746                                 tlb_start = start;
747                                 tlb_start_valid = 1;
748                         }
749
750                         if (is_vm_hugetlb_page(vma)) {
751                                 block = end - start;
752                                 unmap_hugepage_range(vma, start, end);
753                         } else {
754                                 block = min(zap_bytes, end - start);
755                                 unmap_page_range(*tlbp, vma, start,
756                                                 start + block, details);
757                         }
758
759                         start += block;
760                         zap_bytes -= block;
761                         if ((long)zap_bytes > 0)
762                                 continue;
763
764                         tlb_finish_mmu(*tlbp, tlb_start, start);
765
766                         if (need_resched() ||
767                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
768                                 if (i_mmap_lock) {
769                                         *tlbp = NULL;
770                                         goto out;
771                                 }
772                                 cond_resched();
773                         }
774
775                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
776                         tlb_start_valid = 0;
777                         zap_bytes = ZAP_BLOCK_SIZE;
778                 }
779         }
780 out:
781         return start;   /* which is now the end (or restart) address */
782 }
783
784 /**
785  * zap_page_range - remove user pages in a given range
786  * @vma: vm_area_struct holding the applicable pages
787  * @address: starting address of pages to zap
788  * @size: number of bytes to zap
789  * @details: details of nonlinear truncation or shared cache invalidation
790  */
791 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
792                 unsigned long size, struct zap_details *details)
793 {
794         struct mm_struct *mm = vma->vm_mm;
795         struct mmu_gather *tlb;
796         unsigned long end = address + size;
797         unsigned long nr_accounted = 0;
798
799         lru_add_drain();
800         tlb = tlb_gather_mmu(mm, 0);
801         update_hiwater_rss(mm);
802         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
803         if (tlb)
804                 tlb_finish_mmu(tlb, address, end);
805         return end;
806 }
807
808 /*
809  * Do a quick page-table lookup for a single page.
810  * mm->page_table_lock must be held.
811  */
812 struct page *follow_page(struct mm_struct *mm, unsigned long address, int write)
813 {
814         pgd_t *pgd;
815         pud_t *pud;
816         pmd_t *pmd;
817         pte_t *ptep, pte;
818         unsigned long pfn;
819         struct page *page;
820
821         page = follow_huge_addr(mm, address, write);
822         if (! IS_ERR(page))
823                 return page;
824
825         pgd = pgd_offset(mm, address);
826         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827                 goto out;
828
829         pud = pud_offset(pgd, address);
830         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
831                 goto out;
832         
833         pmd = pmd_offset(pud, address);
834         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
835                 goto out;
836         if (pmd_huge(*pmd))
837                 return follow_huge_pmd(mm, address, pmd, write);
838
839         ptep = pte_offset_map(pmd, address);
840         if (!ptep)
841                 goto out;
842
843         pte = *ptep;
844         pte_unmap(ptep);
845         if (pte_present(pte)) {
846                 if (write && !pte_write(pte))
847                         goto out;
848                 pfn = pte_pfn(pte);
849                 if (pfn_valid(pfn)) {
850                         page = pfn_to_page(pfn);
851                         if (write && !pte_dirty(pte) &&!PageDirty(page))
852                                 set_page_dirty(page);
853                         mark_page_accessed(page);
854                         return page;
855                 }
856         }
857
858 out:
859         return NULL;
860 }
861
862 static inline int
863 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
864                          unsigned long address)
865 {
866         pgd_t *pgd;
867         pud_t *pud;
868         pmd_t *pmd;
869
870         /* Check if the vma is for an anonymous mapping. */
871         if (vma->vm_ops && vma->vm_ops->nopage)
872                 return 0;
873
874         /* Check if page directory entry exists. */
875         pgd = pgd_offset(mm, address);
876         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
877                 return 1;
878
879         pud = pud_offset(pgd, address);
880         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
881                 return 1;
882
883         /* Check if page middle directory entry exists. */
884         pmd = pmd_offset(pud, address);
885         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
886                 return 1;
887
888         /* There is a pte slot for 'address' in 'mm'. */
889         return 0;
890 }
891
892 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
893                 unsigned long start, int len, int write, int force,
894                 struct page **pages, struct vm_area_struct **vmas)
895 {
896         int i;
897         unsigned int flags;
898
899         /* 
900          * Require read or write permissions.
901          * If 'force' is set, we only require the "MAY" flags.
902          */
903         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
904         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
905         i = 0;
906
907         do {
908                 struct vm_area_struct * vma;
909
910                 vma = find_extend_vma(mm, start);
911                 if (!vma && in_gate_area(tsk, start)) {
912                         unsigned long pg = start & PAGE_MASK;
913                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
914                         pgd_t *pgd;
915                         pud_t *pud;
916                         pmd_t *pmd;
917                         pte_t *pte;
918                         if (write) /* user gate pages are read-only */
919                                 return i ? : -EFAULT;
920                         if (pg > TASK_SIZE)
921                                 pgd = pgd_offset_k(pg);
922                         else
923                                 pgd = pgd_offset_gate(mm, pg);
924                         BUG_ON(pgd_none(*pgd));
925                         pud = pud_offset(pgd, pg);
926                         BUG_ON(pud_none(*pud));
927                         pmd = pmd_offset(pud, pg);
928                         if (pmd_none(*pmd))
929                                 return i ? : -EFAULT;
930                         pte = pte_offset_map(pmd, pg);
931                         if (pte_none(*pte)) {
932                                 pte_unmap(pte);
933                                 return i ? : -EFAULT;
934                         }
935                         if (pages) {
936                                 pages[i] = pte_page(*pte);
937                                 get_page(pages[i]);
938                         }
939                         pte_unmap(pte);
940                         if (vmas)
941                                 vmas[i] = gate_vma;
942                         i++;
943                         start += PAGE_SIZE;
944                         len--;
945                         continue;
946                 }
947
948                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
949                                 || !(flags & vma->vm_flags))
950                         return i ? : -EFAULT;
951
952                 if (is_vm_hugetlb_page(vma)) {
953                         i = follow_hugetlb_page(mm, vma, pages, vmas,
954                                                 &start, &len, i);
955                         continue;
956                 }
957                 spin_lock(&mm->page_table_lock);
958                 do {
959                         int write_access = write;
960                         struct page *page;
961
962                         cond_resched_lock(&mm->page_table_lock);
963                         while (!(page = follow_page(mm, start, write_access))) {
964                                 int ret;
965
966                                 /*
967                                  * Shortcut for anonymous pages. We don't want
968                                  * to force the creation of pages tables for
969                                  * insanely big anonymously mapped areas that
970                                  * nobody touched so far. This is important
971                                  * for doing a core dump for these mappings.
972                                  */
973                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
974                                         page = ZERO_PAGE(start);
975                                         break;
976                                 }
977                                 spin_unlock(&mm->page_table_lock);
978                                 ret = __handle_mm_fault(mm, vma, start, write_access);
979
980                                 /*
981                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
982                                  * broken COW when necessary, even if maybe_mkwrite
983                                  * decided not to set pte_write. We can thus safely do
984                                  * subsequent page lookups as if they were reads.
985                                  */
986                                 if (ret & VM_FAULT_WRITE)
987                                         write_access = 0;
988                                 
989                                 switch (ret & ~VM_FAULT_WRITE) {
990                                 case VM_FAULT_MINOR:
991                                         tsk->min_flt++;
992                                         break;
993                                 case VM_FAULT_MAJOR:
994                                         tsk->maj_flt++;
995                                         break;
996                                 case VM_FAULT_SIGBUS:
997                                         return i ? i : -EFAULT;
998                                 case VM_FAULT_OOM:
999                                         return i ? i : -ENOMEM;
1000                                 default:
1001                                         BUG();
1002                                 }
1003                                 spin_lock(&mm->page_table_lock);
1004                         }
1005                         if (pages) {
1006                                 pages[i] = page;
1007                                 flush_dcache_page(page);
1008                                 page_cache_get(page);
1009                         }
1010                         if (vmas)
1011                                 vmas[i] = vma;
1012                         i++;
1013                         start += PAGE_SIZE;
1014                         len--;
1015                 } while (len && start < vma->vm_end);
1016                 spin_unlock(&mm->page_table_lock);
1017         } while (len);
1018         return i;
1019 }
1020 EXPORT_SYMBOL(get_user_pages);
1021
1022 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1023                         unsigned long addr, unsigned long end, pgprot_t prot)
1024 {
1025         pte_t *pte;
1026         spinlock_t *ptl;
1027
1028         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1029         if (!pte)
1030                 return -ENOMEM;
1031         do {
1032                 struct page *page = ZERO_PAGE(addr);
1033                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1034                 page_cache_get(page);
1035                 page_add_file_rmap(page);
1036                 inc_mm_counter(mm, file_rss);
1037                 BUG_ON(!pte_none(*pte));
1038                 set_pte_at(mm, addr, pte, zero_pte);
1039         } while (pte++, addr += PAGE_SIZE, addr != end);
1040         pte_unmap_unlock(pte - 1, ptl);
1041         return 0;
1042 }
1043
1044 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1045                         unsigned long addr, unsigned long end, pgprot_t prot)
1046 {
1047         pmd_t *pmd;
1048         unsigned long next;
1049
1050         pmd = pmd_alloc(mm, pud, addr);
1051         if (!pmd)
1052                 return -ENOMEM;
1053         do {
1054                 next = pmd_addr_end(addr, end);
1055                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1056                         return -ENOMEM;
1057         } while (pmd++, addr = next, addr != end);
1058         return 0;
1059 }
1060
1061 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1062                         unsigned long addr, unsigned long end, pgprot_t prot)
1063 {
1064         pud_t *pud;
1065         unsigned long next;
1066
1067         pud = pud_alloc(mm, pgd, addr);
1068         if (!pud)
1069                 return -ENOMEM;
1070         do {
1071                 next = pud_addr_end(addr, end);
1072                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1073                         return -ENOMEM;
1074         } while (pud++, addr = next, addr != end);
1075         return 0;
1076 }
1077
1078 int zeromap_page_range(struct vm_area_struct *vma,
1079                         unsigned long addr, unsigned long size, pgprot_t prot)
1080 {
1081         pgd_t *pgd;
1082         unsigned long next;
1083         unsigned long end = addr + size;
1084         struct mm_struct *mm = vma->vm_mm;
1085         int err;
1086
1087         BUG_ON(addr >= end);
1088         pgd = pgd_offset(mm, addr);
1089         flush_cache_range(vma, addr, end);
1090         do {
1091                 next = pgd_addr_end(addr, end);
1092                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1093                 if (err)
1094                         break;
1095         } while (pgd++, addr = next, addr != end);
1096         return err;
1097 }
1098
1099 /*
1100  * maps a range of physical memory into the requested pages. the old
1101  * mappings are removed. any references to nonexistent pages results
1102  * in null mappings (currently treated as "copy-on-access")
1103  */
1104 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1105                         unsigned long addr, unsigned long end,
1106                         unsigned long pfn, pgprot_t prot)
1107 {
1108         pte_t *pte;
1109         spinlock_t *ptl;
1110
1111         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1112         if (!pte)
1113                 return -ENOMEM;
1114         do {
1115                 BUG_ON(!pte_none(*pte));
1116                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1117                 pfn++;
1118         } while (pte++, addr += PAGE_SIZE, addr != end);
1119         pte_unmap_unlock(pte - 1, ptl);
1120         return 0;
1121 }
1122
1123 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1124                         unsigned long addr, unsigned long end,
1125                         unsigned long pfn, pgprot_t prot)
1126 {
1127         pmd_t *pmd;
1128         unsigned long next;
1129
1130         pfn -= addr >> PAGE_SHIFT;
1131         pmd = pmd_alloc(mm, pud, addr);
1132         if (!pmd)
1133                 return -ENOMEM;
1134         do {
1135                 next = pmd_addr_end(addr, end);
1136                 if (remap_pte_range(mm, pmd, addr, next,
1137                                 pfn + (addr >> PAGE_SHIFT), prot))
1138                         return -ENOMEM;
1139         } while (pmd++, addr = next, addr != end);
1140         return 0;
1141 }
1142
1143 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1144                         unsigned long addr, unsigned long end,
1145                         unsigned long pfn, pgprot_t prot)
1146 {
1147         pud_t *pud;
1148         unsigned long next;
1149
1150         pfn -= addr >> PAGE_SHIFT;
1151         pud = pud_alloc(mm, pgd, addr);
1152         if (!pud)
1153                 return -ENOMEM;
1154         do {
1155                 next = pud_addr_end(addr, end);
1156                 if (remap_pmd_range(mm, pud, addr, next,
1157                                 pfn + (addr >> PAGE_SHIFT), prot))
1158                         return -ENOMEM;
1159         } while (pud++, addr = next, addr != end);
1160         return 0;
1161 }
1162
1163 /*  Note: this is only safe if the mm semaphore is held when called. */
1164 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1165                     unsigned long pfn, unsigned long size, pgprot_t prot)
1166 {
1167         pgd_t *pgd;
1168         unsigned long next;
1169         unsigned long end = addr + PAGE_ALIGN(size);
1170         struct mm_struct *mm = vma->vm_mm;
1171         int err;
1172
1173         /*
1174          * Physically remapped pages are special. Tell the
1175          * rest of the world about it:
1176          *   VM_IO tells people not to look at these pages
1177          *      (accesses can have side effects).
1178          *   VM_RESERVED tells the core MM not to "manage" these pages
1179          *      (e.g. refcount, mapcount, try to swap them out).
1180          */
1181         vma->vm_flags |= VM_IO | VM_RESERVED;
1182
1183         BUG_ON(addr >= end);
1184         pfn -= addr >> PAGE_SHIFT;
1185         pgd = pgd_offset(mm, addr);
1186         flush_cache_range(vma, addr, end);
1187         do {
1188                 next = pgd_addr_end(addr, end);
1189                 err = remap_pud_range(mm, pgd, addr, next,
1190                                 pfn + (addr >> PAGE_SHIFT), prot);
1191                 if (err)
1192                         break;
1193         } while (pgd++, addr = next, addr != end);
1194         return err;
1195 }
1196 EXPORT_SYMBOL(remap_pfn_range);
1197
1198 /*
1199  * handle_pte_fault chooses page fault handler according to an entry
1200  * which was read non-atomically.  Before making any commitment, on
1201  * those architectures or configurations (e.g. i386 with PAE) which
1202  * might give a mix of unmatched parts, do_swap_page and do_file_page
1203  * must check under lock before unmapping the pte and proceeding
1204  * (but do_wp_page is only called after already making such a check;
1205  * and do_anonymous_page and do_no_page can safely check later on).
1206  */
1207 static inline int pte_unmap_same(struct mm_struct *mm,
1208                                 pte_t *page_table, pte_t orig_pte)
1209 {
1210         int same = 1;
1211 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1212         if (sizeof(pte_t) > sizeof(unsigned long)) {
1213                 spin_lock(&mm->page_table_lock);
1214                 same = pte_same(*page_table, orig_pte);
1215                 spin_unlock(&mm->page_table_lock);
1216         }
1217 #endif
1218         pte_unmap(page_table);
1219         return same;
1220 }
1221
1222 /*
1223  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1224  * servicing faults for write access.  In the normal case, do always want
1225  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1226  * that do not have writing enabled, when used by access_process_vm.
1227  */
1228 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1229 {
1230         if (likely(vma->vm_flags & VM_WRITE))
1231                 pte = pte_mkwrite(pte);
1232         return pte;
1233 }
1234
1235 /*
1236  * This routine handles present pages, when users try to write
1237  * to a shared page. It is done by copying the page to a new address
1238  * and decrementing the shared-page counter for the old page.
1239  *
1240  * Note that this routine assumes that the protection checks have been
1241  * done by the caller (the low-level page fault routine in most cases).
1242  * Thus we can safely just mark it writable once we've done any necessary
1243  * COW.
1244  *
1245  * We also mark the page dirty at this point even though the page will
1246  * change only once the write actually happens. This avoids a few races,
1247  * and potentially makes it more efficient.
1248  *
1249  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1250  * but allow concurrent faults), with pte both mapped and locked.
1251  * We return with mmap_sem still held, but pte unmapped and unlocked.
1252  */
1253 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1254                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1255                 spinlock_t *ptl, pte_t orig_pte)
1256 {
1257         struct page *old_page, *new_page;
1258         unsigned long pfn = pte_pfn(orig_pte);
1259         pte_t entry;
1260         int ret = VM_FAULT_MINOR;
1261
1262         BUG_ON(vma->vm_flags & VM_RESERVED);
1263
1264         if (unlikely(!pfn_valid(pfn))) {
1265                 /*
1266                  * Page table corrupted: show pte and kill process.
1267                  */
1268                 print_bad_pte(vma, orig_pte, address);
1269                 ret = VM_FAULT_OOM;
1270                 goto unlock;
1271         }
1272         old_page = pfn_to_page(pfn);
1273
1274         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1275                 int reuse = can_share_swap_page(old_page);
1276                 unlock_page(old_page);
1277                 if (reuse) {
1278                         flush_cache_page(vma, address, pfn);
1279                         entry = pte_mkyoung(orig_pte);
1280                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1281                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1282                         update_mmu_cache(vma, address, entry);
1283                         lazy_mmu_prot_update(entry);
1284                         ret |= VM_FAULT_WRITE;
1285                         goto unlock;
1286                 }
1287         }
1288
1289         /*
1290          * Ok, we need to copy. Oh, well..
1291          */
1292         page_cache_get(old_page);
1293         pte_unmap_unlock(page_table, ptl);
1294
1295         if (unlikely(anon_vma_prepare(vma)))
1296                 goto oom;
1297         if (old_page == ZERO_PAGE(address)) {
1298                 new_page = alloc_zeroed_user_highpage(vma, address);
1299                 if (!new_page)
1300                         goto oom;
1301         } else {
1302                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1303                 if (!new_page)
1304                         goto oom;
1305                 copy_user_highpage(new_page, old_page, address);
1306         }
1307
1308         /*
1309          * Re-check the pte - we dropped the lock
1310          */
1311         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1312         if (likely(pte_same(*page_table, orig_pte))) {
1313                 page_remove_rmap(old_page);
1314                 if (!PageAnon(old_page)) {
1315                         inc_mm_counter(mm, anon_rss);
1316                         dec_mm_counter(mm, file_rss);
1317                 }
1318                 flush_cache_page(vma, address, pfn);
1319                 entry = mk_pte(new_page, vma->vm_page_prot);
1320                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1321                 ptep_establish(vma, address, page_table, entry);
1322                 update_mmu_cache(vma, address, entry);
1323                 lazy_mmu_prot_update(entry);
1324                 lru_cache_add_active(new_page);
1325                 page_add_anon_rmap(new_page, vma, address);
1326
1327                 /* Free the old page.. */
1328                 new_page = old_page;
1329                 ret |= VM_FAULT_WRITE;
1330         }
1331         page_cache_release(new_page);
1332         page_cache_release(old_page);
1333 unlock:
1334         pte_unmap_unlock(page_table, ptl);
1335         return ret;
1336 oom:
1337         page_cache_release(old_page);
1338         return VM_FAULT_OOM;
1339 }
1340
1341 /*
1342  * Helper functions for unmap_mapping_range().
1343  *
1344  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1345  *
1346  * We have to restart searching the prio_tree whenever we drop the lock,
1347  * since the iterator is only valid while the lock is held, and anyway
1348  * a later vma might be split and reinserted earlier while lock dropped.
1349  *
1350  * The list of nonlinear vmas could be handled more efficiently, using
1351  * a placeholder, but handle it in the same way until a need is shown.
1352  * It is important to search the prio_tree before nonlinear list: a vma
1353  * may become nonlinear and be shifted from prio_tree to nonlinear list
1354  * while the lock is dropped; but never shifted from list to prio_tree.
1355  *
1356  * In order to make forward progress despite restarting the search,
1357  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1358  * quickly skip it next time around.  Since the prio_tree search only
1359  * shows us those vmas affected by unmapping the range in question, we
1360  * can't efficiently keep all vmas in step with mapping->truncate_count:
1361  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1362  * mapping->truncate_count and vma->vm_truncate_count are protected by
1363  * i_mmap_lock.
1364  *
1365  * In order to make forward progress despite repeatedly restarting some
1366  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1367  * and restart from that address when we reach that vma again.  It might
1368  * have been split or merged, shrunk or extended, but never shifted: so
1369  * restart_addr remains valid so long as it remains in the vma's range.
1370  * unmap_mapping_range forces truncate_count to leap over page-aligned
1371  * values so we can save vma's restart_addr in its truncate_count field.
1372  */
1373 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1374
1375 static void reset_vma_truncate_counts(struct address_space *mapping)
1376 {
1377         struct vm_area_struct *vma;
1378         struct prio_tree_iter iter;
1379
1380         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1381                 vma->vm_truncate_count = 0;
1382         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1383                 vma->vm_truncate_count = 0;
1384 }
1385
1386 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1387                 unsigned long start_addr, unsigned long end_addr,
1388                 struct zap_details *details)
1389 {
1390         unsigned long restart_addr;
1391         int need_break;
1392
1393 again:
1394         restart_addr = vma->vm_truncate_count;
1395         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1396                 start_addr = restart_addr;
1397                 if (start_addr >= end_addr) {
1398                         /* Top of vma has been split off since last time */
1399                         vma->vm_truncate_count = details->truncate_count;
1400                         return 0;
1401                 }
1402         }
1403
1404         restart_addr = zap_page_range(vma, start_addr,
1405                                         end_addr - start_addr, details);
1406         need_break = need_resched() ||
1407                         need_lockbreak(details->i_mmap_lock);
1408
1409         if (restart_addr >= end_addr) {
1410                 /* We have now completed this vma: mark it so */
1411                 vma->vm_truncate_count = details->truncate_count;
1412                 if (!need_break)
1413                         return 0;
1414         } else {
1415                 /* Note restart_addr in vma's truncate_count field */
1416                 vma->vm_truncate_count = restart_addr;
1417                 if (!need_break)
1418                         goto again;
1419         }
1420
1421         spin_unlock(details->i_mmap_lock);
1422         cond_resched();
1423         spin_lock(details->i_mmap_lock);
1424         return -EINTR;
1425 }
1426
1427 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1428                                             struct zap_details *details)
1429 {
1430         struct vm_area_struct *vma;
1431         struct prio_tree_iter iter;
1432         pgoff_t vba, vea, zba, zea;
1433
1434 restart:
1435         vma_prio_tree_foreach(vma, &iter, root,
1436                         details->first_index, details->last_index) {
1437                 /* Skip quickly over those we have already dealt with */
1438                 if (vma->vm_truncate_count == details->truncate_count)
1439                         continue;
1440
1441                 vba = vma->vm_pgoff;
1442                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1443                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1444                 zba = details->first_index;
1445                 if (zba < vba)
1446                         zba = vba;
1447                 zea = details->last_index;
1448                 if (zea > vea)
1449                         zea = vea;
1450
1451                 if (unmap_mapping_range_vma(vma,
1452                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1453                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1454                                 details) < 0)
1455                         goto restart;
1456         }
1457 }
1458
1459 static inline void unmap_mapping_range_list(struct list_head *head,
1460                                             struct zap_details *details)
1461 {
1462         struct vm_area_struct *vma;
1463
1464         /*
1465          * In nonlinear VMAs there is no correspondence between virtual address
1466          * offset and file offset.  So we must perform an exhaustive search
1467          * across *all* the pages in each nonlinear VMA, not just the pages
1468          * whose virtual address lies outside the file truncation point.
1469          */
1470 restart:
1471         list_for_each_entry(vma, head, shared.vm_set.list) {
1472                 /* Skip quickly over those we have already dealt with */
1473                 if (vma->vm_truncate_count == details->truncate_count)
1474                         continue;
1475                 details->nonlinear_vma = vma;
1476                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1477                                         vma->vm_end, details) < 0)
1478                         goto restart;
1479         }
1480 }
1481
1482 /**
1483  * unmap_mapping_range - unmap the portion of all mmaps
1484  * in the specified address_space corresponding to the specified
1485  * page range in the underlying file.
1486  * @mapping: the address space containing mmaps to be unmapped.
1487  * @holebegin: byte in first page to unmap, relative to the start of
1488  * the underlying file.  This will be rounded down to a PAGE_SIZE
1489  * boundary.  Note that this is different from vmtruncate(), which
1490  * must keep the partial page.  In contrast, we must get rid of
1491  * partial pages.
1492  * @holelen: size of prospective hole in bytes.  This will be rounded
1493  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1494  * end of the file.
1495  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1496  * but 0 when invalidating pagecache, don't throw away private data.
1497  */
1498 void unmap_mapping_range(struct address_space *mapping,
1499                 loff_t const holebegin, loff_t const holelen, int even_cows)
1500 {
1501         struct zap_details details;
1502         pgoff_t hba = holebegin >> PAGE_SHIFT;
1503         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1504
1505         /* Check for overflow. */
1506         if (sizeof(holelen) > sizeof(hlen)) {
1507                 long long holeend =
1508                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1509                 if (holeend & ~(long long)ULONG_MAX)
1510                         hlen = ULONG_MAX - hba + 1;
1511         }
1512
1513         details.check_mapping = even_cows? NULL: mapping;
1514         details.nonlinear_vma = NULL;
1515         details.first_index = hba;
1516         details.last_index = hba + hlen - 1;
1517         if (details.last_index < details.first_index)
1518                 details.last_index = ULONG_MAX;
1519         details.i_mmap_lock = &mapping->i_mmap_lock;
1520
1521         spin_lock(&mapping->i_mmap_lock);
1522
1523         /* serialize i_size write against truncate_count write */
1524         smp_wmb();
1525         /* Protect against page faults, and endless unmapping loops */
1526         mapping->truncate_count++;
1527         /*
1528          * For archs where spin_lock has inclusive semantics like ia64
1529          * this smp_mb() will prevent to read pagetable contents
1530          * before the truncate_count increment is visible to
1531          * other cpus.
1532          */
1533         smp_mb();
1534         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1535                 if (mapping->truncate_count == 0)
1536                         reset_vma_truncate_counts(mapping);
1537                 mapping->truncate_count++;
1538         }
1539         details.truncate_count = mapping->truncate_count;
1540
1541         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1542                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1543         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1544                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1545         spin_unlock(&mapping->i_mmap_lock);
1546 }
1547 EXPORT_SYMBOL(unmap_mapping_range);
1548
1549 /*
1550  * Handle all mappings that got truncated by a "truncate()"
1551  * system call.
1552  *
1553  * NOTE! We have to be ready to update the memory sharing
1554  * between the file and the memory map for a potential last
1555  * incomplete page.  Ugly, but necessary.
1556  */
1557 int vmtruncate(struct inode * inode, loff_t offset)
1558 {
1559         struct address_space *mapping = inode->i_mapping;
1560         unsigned long limit;
1561
1562         if (inode->i_size < offset)
1563                 goto do_expand;
1564         /*
1565          * truncation of in-use swapfiles is disallowed - it would cause
1566          * subsequent swapout to scribble on the now-freed blocks.
1567          */
1568         if (IS_SWAPFILE(inode))
1569                 goto out_busy;
1570         i_size_write(inode, offset);
1571         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1572         truncate_inode_pages(mapping, offset);
1573         goto out_truncate;
1574
1575 do_expand:
1576         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1577         if (limit != RLIM_INFINITY && offset > limit)
1578                 goto out_sig;
1579         if (offset > inode->i_sb->s_maxbytes)
1580                 goto out_big;
1581         i_size_write(inode, offset);
1582
1583 out_truncate:
1584         if (inode->i_op && inode->i_op->truncate)
1585                 inode->i_op->truncate(inode);
1586         return 0;
1587 out_sig:
1588         send_sig(SIGXFSZ, current, 0);
1589 out_big:
1590         return -EFBIG;
1591 out_busy:
1592         return -ETXTBSY;
1593 }
1594
1595 EXPORT_SYMBOL(vmtruncate);
1596
1597 /* 
1598  * Primitive swap readahead code. We simply read an aligned block of
1599  * (1 << page_cluster) entries in the swap area. This method is chosen
1600  * because it doesn't cost us any seek time.  We also make sure to queue
1601  * the 'original' request together with the readahead ones...  
1602  *
1603  * This has been extended to use the NUMA policies from the mm triggering
1604  * the readahead.
1605  *
1606  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1607  */
1608 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1609 {
1610 #ifdef CONFIG_NUMA
1611         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1612 #endif
1613         int i, num;
1614         struct page *new_page;
1615         unsigned long offset;
1616
1617         /*
1618          * Get the number of handles we should do readahead io to.
1619          */
1620         num = valid_swaphandles(entry, &offset);
1621         for (i = 0; i < num; offset++, i++) {
1622                 /* Ok, do the async read-ahead now */
1623                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1624                                                            offset), vma, addr);
1625                 if (!new_page)
1626                         break;
1627                 page_cache_release(new_page);
1628 #ifdef CONFIG_NUMA
1629                 /*
1630                  * Find the next applicable VMA for the NUMA policy.
1631                  */
1632                 addr += PAGE_SIZE;
1633                 if (addr == 0)
1634                         vma = NULL;
1635                 if (vma) {
1636                         if (addr >= vma->vm_end) {
1637                                 vma = next_vma;
1638                                 next_vma = vma ? vma->vm_next : NULL;
1639                         }
1640                         if (vma && addr < vma->vm_start)
1641                                 vma = NULL;
1642                 } else {
1643                         if (next_vma && addr >= next_vma->vm_start) {
1644                                 vma = next_vma;
1645                                 next_vma = vma->vm_next;
1646                         }
1647                 }
1648 #endif
1649         }
1650         lru_add_drain();        /* Push any new pages onto the LRU now */
1651 }
1652
1653 /*
1654  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1655  * but allow concurrent faults), and pte mapped but not yet locked.
1656  * We return with mmap_sem still held, but pte unmapped and unlocked.
1657  */
1658 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1659                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1660                 int write_access, pte_t orig_pte)
1661 {
1662         spinlock_t *ptl;
1663         struct page *page;
1664         swp_entry_t entry;
1665         pte_t pte;
1666         int ret = VM_FAULT_MINOR;
1667
1668         if (!pte_unmap_same(mm, page_table, orig_pte))
1669                 goto out;
1670
1671         entry = pte_to_swp_entry(orig_pte);
1672         page = lookup_swap_cache(entry);
1673         if (!page) {
1674                 swapin_readahead(entry, address, vma);
1675                 page = read_swap_cache_async(entry, vma, address);
1676                 if (!page) {
1677                         /*
1678                          * Back out if somebody else faulted in this pte
1679                          * while we released the pte lock.
1680                          */
1681                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1682                         if (likely(pte_same(*page_table, orig_pte)))
1683                                 ret = VM_FAULT_OOM;
1684                         goto unlock;
1685                 }
1686
1687                 /* Had to read the page from swap area: Major fault */
1688                 ret = VM_FAULT_MAJOR;
1689                 inc_page_state(pgmajfault);
1690                 grab_swap_token();
1691         }
1692
1693         mark_page_accessed(page);
1694         lock_page(page);
1695
1696         /*
1697          * Back out if somebody else already faulted in this pte.
1698          */
1699         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1700         if (unlikely(!pte_same(*page_table, orig_pte)))
1701                 goto out_nomap;
1702
1703         if (unlikely(!PageUptodate(page))) {
1704                 ret = VM_FAULT_SIGBUS;
1705                 goto out_nomap;
1706         }
1707
1708         /* The page isn't present yet, go ahead with the fault. */
1709
1710         inc_mm_counter(mm, anon_rss);
1711         pte = mk_pte(page, vma->vm_page_prot);
1712         if (write_access && can_share_swap_page(page)) {
1713                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1714                 write_access = 0;
1715         }
1716
1717         flush_icache_page(vma, page);
1718         set_pte_at(mm, address, page_table, pte);
1719         page_add_anon_rmap(page, vma, address);
1720
1721         swap_free(entry);
1722         if (vm_swap_full())
1723                 remove_exclusive_swap_page(page);
1724         unlock_page(page);
1725
1726         if (write_access) {
1727                 if (do_wp_page(mm, vma, address,
1728                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1729                         ret = VM_FAULT_OOM;
1730                 goto out;
1731         }
1732
1733         /* No need to invalidate - it was non-present before */
1734         update_mmu_cache(vma, address, pte);
1735         lazy_mmu_prot_update(pte);
1736 unlock:
1737         pte_unmap_unlock(page_table, ptl);
1738 out:
1739         return ret;
1740 out_nomap:
1741         pte_unmap_unlock(page_table, ptl);
1742         unlock_page(page);
1743         page_cache_release(page);
1744         return ret;
1745 }
1746
1747 /*
1748  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1749  * but allow concurrent faults), and pte mapped but not yet locked.
1750  * We return with mmap_sem still held, but pte unmapped and unlocked.
1751  */
1752 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1753                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1754                 int write_access)
1755 {
1756         struct page *page;
1757         spinlock_t *ptl;
1758         pte_t entry;
1759
1760         if (write_access) {
1761                 /* Allocate our own private page. */
1762                 pte_unmap(page_table);
1763
1764                 if (unlikely(anon_vma_prepare(vma)))
1765                         goto oom;
1766                 page = alloc_zeroed_user_highpage(vma, address);
1767                 if (!page)
1768                         goto oom;
1769
1770                 entry = mk_pte(page, vma->vm_page_prot);
1771                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1772
1773                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1774                 if (!pte_none(*page_table))
1775                         goto release;
1776                 inc_mm_counter(mm, anon_rss);
1777                 lru_cache_add_active(page);
1778                 SetPageReferenced(page);
1779                 page_add_anon_rmap(page, vma, address);
1780         } else {
1781                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1782                 page = ZERO_PAGE(address);
1783                 page_cache_get(page);
1784                 entry = mk_pte(page, vma->vm_page_prot);
1785
1786                 ptl = &mm->page_table_lock;
1787                 spin_lock(ptl);
1788                 if (!pte_none(*page_table))
1789                         goto release;
1790                 inc_mm_counter(mm, file_rss);
1791                 page_add_file_rmap(page);
1792         }
1793
1794         set_pte_at(mm, address, page_table, entry);
1795
1796         /* No need to invalidate - it was non-present before */
1797         update_mmu_cache(vma, address, entry);
1798         lazy_mmu_prot_update(entry);
1799 unlock:
1800         pte_unmap_unlock(page_table, ptl);
1801         return VM_FAULT_MINOR;
1802 release:
1803         page_cache_release(page);
1804         goto unlock;
1805 oom:
1806         return VM_FAULT_OOM;
1807 }
1808
1809 /*
1810  * do_no_page() tries to create a new page mapping. It aggressively
1811  * tries to share with existing pages, but makes a separate copy if
1812  * the "write_access" parameter is true in order to avoid the next
1813  * page fault.
1814  *
1815  * As this is called only for pages that do not currently exist, we
1816  * do not need to flush old virtual caches or the TLB.
1817  *
1818  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1819  * but allow concurrent faults), and pte mapped but not yet locked.
1820  * We return with mmap_sem still held, but pte unmapped and unlocked.
1821  */
1822 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1823                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1824                 int write_access)
1825 {
1826         spinlock_t *ptl;
1827         struct page *new_page;
1828         struct address_space *mapping = NULL;
1829         pte_t entry;
1830         unsigned int sequence = 0;
1831         int ret = VM_FAULT_MINOR;
1832         int anon = 0;
1833
1834         pte_unmap(page_table);
1835
1836         if (vma->vm_file) {
1837                 mapping = vma->vm_file->f_mapping;
1838                 sequence = mapping->truncate_count;
1839                 smp_rmb(); /* serializes i_size against truncate_count */
1840         }
1841 retry:
1842         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1843         /*
1844          * No smp_rmb is needed here as long as there's a full
1845          * spin_lock/unlock sequence inside the ->nopage callback
1846          * (for the pagecache lookup) that acts as an implicit
1847          * smp_mb() and prevents the i_size read to happen
1848          * after the next truncate_count read.
1849          */
1850
1851         /* no page was available -- either SIGBUS or OOM */
1852         if (new_page == NOPAGE_SIGBUS)
1853                 return VM_FAULT_SIGBUS;
1854         if (new_page == NOPAGE_OOM)
1855                 return VM_FAULT_OOM;
1856
1857         /*
1858          * Should we do an early C-O-W break?
1859          */
1860         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1861                 struct page *page;
1862
1863                 if (unlikely(anon_vma_prepare(vma)))
1864                         goto oom;
1865                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1866                 if (!page)
1867                         goto oom;
1868                 copy_user_highpage(page, new_page, address);
1869                 page_cache_release(new_page);
1870                 new_page = page;
1871                 anon = 1;
1872         }
1873
1874         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1875         /*
1876          * For a file-backed vma, someone could have truncated or otherwise
1877          * invalidated this page.  If unmap_mapping_range got called,
1878          * retry getting the page.
1879          */
1880         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1881                 pte_unmap_unlock(page_table, ptl);
1882                 page_cache_release(new_page);
1883                 cond_resched();
1884                 sequence = mapping->truncate_count;
1885                 smp_rmb();
1886                 goto retry;
1887         }
1888
1889         /*
1890          * This silly early PAGE_DIRTY setting removes a race
1891          * due to the bad i386 page protection. But it's valid
1892          * for other architectures too.
1893          *
1894          * Note that if write_access is true, we either now have
1895          * an exclusive copy of the page, or this is a shared mapping,
1896          * so we can make it writable and dirty to avoid having to
1897          * handle that later.
1898          */
1899         /* Only go through if we didn't race with anybody else... */
1900         if (pte_none(*page_table)) {
1901                 flush_icache_page(vma, new_page);
1902                 entry = mk_pte(new_page, vma->vm_page_prot);
1903                 if (write_access)
1904                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1905                 set_pte_at(mm, address, page_table, entry);
1906                 if (anon) {
1907                         inc_mm_counter(mm, anon_rss);
1908                         lru_cache_add_active(new_page);
1909                         page_add_anon_rmap(new_page, vma, address);
1910                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1911                         inc_mm_counter(mm, file_rss);
1912                         page_add_file_rmap(new_page);
1913                 }
1914         } else {
1915                 /* One of our sibling threads was faster, back out. */
1916                 page_cache_release(new_page);
1917                 goto unlock;
1918         }
1919
1920         /* no need to invalidate: a not-present page shouldn't be cached */
1921         update_mmu_cache(vma, address, entry);
1922         lazy_mmu_prot_update(entry);
1923 unlock:
1924         pte_unmap_unlock(page_table, ptl);
1925         return ret;
1926 oom:
1927         page_cache_release(new_page);
1928         return VM_FAULT_OOM;
1929 }
1930
1931 /*
1932  * Fault of a previously existing named mapping. Repopulate the pte
1933  * from the encoded file_pte if possible. This enables swappable
1934  * nonlinear vmas.
1935  *
1936  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1937  * but allow concurrent faults), and pte mapped but not yet locked.
1938  * We return with mmap_sem still held, but pte unmapped and unlocked.
1939  */
1940 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1941                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1942                 int write_access, pte_t orig_pte)
1943 {
1944         pgoff_t pgoff;
1945         int err;
1946
1947         if (!pte_unmap_same(mm, page_table, orig_pte))
1948                 return VM_FAULT_MINOR;
1949
1950         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1951                 /*
1952                  * Page table corrupted: show pte and kill process.
1953                  */
1954                 print_bad_pte(vma, orig_pte, address);
1955                 return VM_FAULT_OOM;
1956         }
1957         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1958
1959         pgoff = pte_to_pgoff(orig_pte);
1960         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1961                                         vma->vm_page_prot, pgoff, 0);
1962         if (err == -ENOMEM)
1963                 return VM_FAULT_OOM;
1964         if (err)
1965                 return VM_FAULT_SIGBUS;
1966         return VM_FAULT_MAJOR;
1967 }
1968
1969 /*
1970  * These routines also need to handle stuff like marking pages dirty
1971  * and/or accessed for architectures that don't do it in hardware (most
1972  * RISC architectures).  The early dirtying is also good on the i386.
1973  *
1974  * There is also a hook called "update_mmu_cache()" that architectures
1975  * with external mmu caches can use to update those (ie the Sparc or
1976  * PowerPC hashed page tables that act as extended TLBs).
1977  *
1978  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1979  * but allow concurrent faults), and pte mapped but not yet locked.
1980  * We return with mmap_sem still held, but pte unmapped and unlocked.
1981  */
1982 static inline int handle_pte_fault(struct mm_struct *mm,
1983                 struct vm_area_struct *vma, unsigned long address,
1984                 pte_t *pte, pmd_t *pmd, int write_access)
1985 {
1986         pte_t entry;
1987         spinlock_t *ptl;
1988
1989         entry = *pte;
1990         if (!pte_present(entry)) {
1991                 if (pte_none(entry)) {
1992                         if (!vma->vm_ops || !vma->vm_ops->nopage)
1993                                 return do_anonymous_page(mm, vma, address,
1994                                         pte, pmd, write_access);
1995                         return do_no_page(mm, vma, address,
1996                                         pte, pmd, write_access);
1997                 }
1998                 if (pte_file(entry))
1999                         return do_file_page(mm, vma, address,
2000                                         pte, pmd, write_access, entry);
2001                 return do_swap_page(mm, vma, address,
2002                                         pte, pmd, write_access, entry);
2003         }
2004
2005         ptl = &mm->page_table_lock;
2006         spin_lock(ptl);
2007         if (unlikely(!pte_same(*pte, entry)))
2008                 goto unlock;
2009         if (write_access) {
2010                 if (!pte_write(entry))
2011                         return do_wp_page(mm, vma, address,
2012                                         pte, pmd, ptl, entry);
2013                 entry = pte_mkdirty(entry);
2014         }
2015         entry = pte_mkyoung(entry);
2016         ptep_set_access_flags(vma, address, pte, entry, write_access);
2017         update_mmu_cache(vma, address, entry);
2018         lazy_mmu_prot_update(entry);
2019 unlock:
2020         pte_unmap_unlock(pte, ptl);
2021         return VM_FAULT_MINOR;
2022 }
2023
2024 /*
2025  * By the time we get here, we already hold the mm semaphore
2026  */
2027 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2028                 unsigned long address, int write_access)
2029 {
2030         pgd_t *pgd;
2031         pud_t *pud;
2032         pmd_t *pmd;
2033         pte_t *pte;
2034
2035         __set_current_state(TASK_RUNNING);
2036
2037         inc_page_state(pgfault);
2038
2039         if (unlikely(is_vm_hugetlb_page(vma)))
2040                 return hugetlb_fault(mm, vma, address, write_access);
2041
2042         pgd = pgd_offset(mm, address);
2043         pud = pud_alloc(mm, pgd, address);
2044         if (!pud)
2045                 return VM_FAULT_OOM;
2046         pmd = pmd_alloc(mm, pud, address);
2047         if (!pmd)
2048                 return VM_FAULT_OOM;
2049         pte = pte_alloc_map(mm, pmd, address);
2050         if (!pte)
2051                 return VM_FAULT_OOM;
2052
2053         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2054 }
2055
2056 #ifndef __PAGETABLE_PUD_FOLDED
2057 /*
2058  * Allocate page upper directory.
2059  * We've already handled the fast-path in-line.
2060  */
2061 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2062 {
2063         pud_t *new = pud_alloc_one(mm, address);
2064         if (!new)
2065                 return -ENOMEM;
2066
2067         spin_lock(&mm->page_table_lock);
2068         if (pgd_present(*pgd))          /* Another has populated it */
2069                 pud_free(new);
2070         else
2071                 pgd_populate(mm, pgd, new);
2072         spin_unlock(&mm->page_table_lock);
2073         return 0;
2074 }
2075 #endif /* __PAGETABLE_PUD_FOLDED */
2076
2077 #ifndef __PAGETABLE_PMD_FOLDED
2078 /*
2079  * Allocate page middle directory.
2080  * We've already handled the fast-path in-line.
2081  */
2082 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2083 {
2084         pmd_t *new = pmd_alloc_one(mm, address);
2085         if (!new)
2086                 return -ENOMEM;
2087
2088         spin_lock(&mm->page_table_lock);
2089 #ifndef __ARCH_HAS_4LEVEL_HACK
2090         if (pud_present(*pud))          /* Another has populated it */
2091                 pmd_free(new);
2092         else
2093                 pud_populate(mm, pud, new);
2094 #else
2095         if (pgd_present(*pud))          /* Another has populated it */
2096                 pmd_free(new);
2097         else
2098                 pgd_populate(mm, pud, new);
2099 #endif /* __ARCH_HAS_4LEVEL_HACK */
2100         spin_unlock(&mm->page_table_lock);
2101         return 0;
2102 }
2103 #endif /* __PAGETABLE_PMD_FOLDED */
2104
2105 int make_pages_present(unsigned long addr, unsigned long end)
2106 {
2107         int ret, len, write;
2108         struct vm_area_struct * vma;
2109
2110         vma = find_vma(current->mm, addr);
2111         if (!vma)
2112                 return -1;
2113         write = (vma->vm_flags & VM_WRITE) != 0;
2114         if (addr >= end)
2115                 BUG();
2116         if (end > vma->vm_end)
2117                 BUG();
2118         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2119         ret = get_user_pages(current, current->mm, addr,
2120                         len, write, 0, NULL, NULL);
2121         if (ret < 0)
2122                 return ret;
2123         return ret == len ? 0 : -1;
2124 }
2125
2126 /* 
2127  * Map a vmalloc()-space virtual address to the physical page.
2128  */
2129 struct page * vmalloc_to_page(void * vmalloc_addr)
2130 {
2131         unsigned long addr = (unsigned long) vmalloc_addr;
2132         struct page *page = NULL;
2133         pgd_t *pgd = pgd_offset_k(addr);
2134         pud_t *pud;
2135         pmd_t *pmd;
2136         pte_t *ptep, pte;
2137   
2138         if (!pgd_none(*pgd)) {
2139                 pud = pud_offset(pgd, addr);
2140                 if (!pud_none(*pud)) {
2141                         pmd = pmd_offset(pud, addr);
2142                         if (!pmd_none(*pmd)) {
2143                                 ptep = pte_offset_map(pmd, addr);
2144                                 pte = *ptep;
2145                                 if (pte_present(pte))
2146                                         page = pte_page(pte);
2147                                 pte_unmap(ptep);
2148                         }
2149                 }
2150         }
2151         return page;
2152 }
2153
2154 EXPORT_SYMBOL(vmalloc_to_page);
2155
2156 /*
2157  * Map a vmalloc()-space virtual address to the physical page frame number.
2158  */
2159 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2160 {
2161         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2162 }
2163
2164 EXPORT_SYMBOL(vmalloc_to_pfn);
2165
2166 #if !defined(__HAVE_ARCH_GATE_AREA)
2167
2168 #if defined(AT_SYSINFO_EHDR)
2169 static struct vm_area_struct gate_vma;
2170
2171 static int __init gate_vma_init(void)
2172 {
2173         gate_vma.vm_mm = NULL;
2174         gate_vma.vm_start = FIXADDR_USER_START;
2175         gate_vma.vm_end = FIXADDR_USER_END;
2176         gate_vma.vm_page_prot = PAGE_READONLY;
2177         gate_vma.vm_flags = VM_RESERVED;
2178         return 0;
2179 }
2180 __initcall(gate_vma_init);
2181 #endif
2182
2183 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2184 {
2185 #ifdef AT_SYSINFO_EHDR
2186         return &gate_vma;
2187 #else
2188         return NULL;
2189 #endif
2190 }
2191
2192 int in_gate_area_no_task(unsigned long addr)
2193 {
2194 #ifdef AT_SYSINFO_EHDR
2195         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2196                 return 1;
2197 #endif
2198         return 0;
2199 }
2200
2201 #endif  /* __HAVE_ARCH_GATE_AREA */