tracing, Text Edit Lock - Architecture Independent Code
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/kprobes.h>
52 #include <linux/mutex.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99                                         1;
100 #else
101                                         2;
102 #endif
103
104 /*
105  * mutex protecting text section modification (dynamic code patching).
106  * some users need to sleep (allocating memory...) while they hold this lock.
107  *
108  * NOT exported to modules - patching kernel text is a really delicate matter.
109  */
110 DEFINE_MUTEX(text_mutex);
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119
120 /*
121  * If a p?d_bad entry is found while walking page tables, report
122  * the error, before resetting entry to p?d_none.  Usually (but
123  * very seldom) called out from the p?d_none_or_clear_bad macros.
124  */
125
126 void pgd_clear_bad(pgd_t *pgd)
127 {
128         pgd_ERROR(*pgd);
129         pgd_clear(pgd);
130 }
131
132 void pud_clear_bad(pud_t *pud)
133 {
134         pud_ERROR(*pud);
135         pud_clear(pud);
136 }
137
138 void pmd_clear_bad(pmd_t *pmd)
139 {
140         pmd_ERROR(*pmd);
141         pmd_clear(pmd);
142 }
143
144 /*
145  * Note: this doesn't free the actual pages themselves. That
146  * has been handled earlier when unmapping all the memory regions.
147  */
148 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
149 {
150         pgtable_t token = pmd_pgtable(*pmd);
151         pmd_clear(pmd);
152         pte_free_tlb(tlb, token);
153         tlb->mm->nr_ptes--;
154 }
155
156 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
157                                 unsigned long addr, unsigned long end,
158                                 unsigned long floor, unsigned long ceiling)
159 {
160         pmd_t *pmd;
161         unsigned long next;
162         unsigned long start;
163
164         start = addr;
165         pmd = pmd_offset(pud, addr);
166         do {
167                 next = pmd_addr_end(addr, end);
168                 if (pmd_none_or_clear_bad(pmd))
169                         continue;
170                 free_pte_range(tlb, pmd);
171         } while (pmd++, addr = next, addr != end);
172
173         start &= PUD_MASK;
174         if (start < floor)
175                 return;
176         if (ceiling) {
177                 ceiling &= PUD_MASK;
178                 if (!ceiling)
179                         return;
180         }
181         if (end - 1 > ceiling - 1)
182                 return;
183
184         pmd = pmd_offset(pud, start);
185         pud_clear(pud);
186         pmd_free_tlb(tlb, pmd);
187 }
188
189 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
190                                 unsigned long addr, unsigned long end,
191                                 unsigned long floor, unsigned long ceiling)
192 {
193         pud_t *pud;
194         unsigned long next;
195         unsigned long start;
196
197         start = addr;
198         pud = pud_offset(pgd, addr);
199         do {
200                 next = pud_addr_end(addr, end);
201                 if (pud_none_or_clear_bad(pud))
202                         continue;
203                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
204         } while (pud++, addr = next, addr != end);
205
206         start &= PGDIR_MASK;
207         if (start < floor)
208                 return;
209         if (ceiling) {
210                 ceiling &= PGDIR_MASK;
211                 if (!ceiling)
212                         return;
213         }
214         if (end - 1 > ceiling - 1)
215                 return;
216
217         pud = pud_offset(pgd, start);
218         pgd_clear(pgd);
219         pud_free_tlb(tlb, pud);
220 }
221
222 /*
223  * This function frees user-level page tables of a process.
224  *
225  * Must be called with pagetable lock held.
226  */
227 void free_pgd_range(struct mmu_gather *tlb,
228                         unsigned long addr, unsigned long end,
229                         unsigned long floor, unsigned long ceiling)
230 {
231         pgd_t *pgd;
232         unsigned long next;
233         unsigned long start;
234
235         /*
236          * The next few lines have given us lots of grief...
237          *
238          * Why are we testing PMD* at this top level?  Because often
239          * there will be no work to do at all, and we'd prefer not to
240          * go all the way down to the bottom just to discover that.
241          *
242          * Why all these "- 1"s?  Because 0 represents both the bottom
243          * of the address space and the top of it (using -1 for the
244          * top wouldn't help much: the masks would do the wrong thing).
245          * The rule is that addr 0 and floor 0 refer to the bottom of
246          * the address space, but end 0 and ceiling 0 refer to the top
247          * Comparisons need to use "end - 1" and "ceiling - 1" (though
248          * that end 0 case should be mythical).
249          *
250          * Wherever addr is brought up or ceiling brought down, we must
251          * be careful to reject "the opposite 0" before it confuses the
252          * subsequent tests.  But what about where end is brought down
253          * by PMD_SIZE below? no, end can't go down to 0 there.
254          *
255          * Whereas we round start (addr) and ceiling down, by different
256          * masks at different levels, in order to test whether a table
257          * now has no other vmas using it, so can be freed, we don't
258          * bother to round floor or end up - the tests don't need that.
259          */
260
261         addr &= PMD_MASK;
262         if (addr < floor) {
263                 addr += PMD_SIZE;
264                 if (!addr)
265                         return;
266         }
267         if (ceiling) {
268                 ceiling &= PMD_MASK;
269                 if (!ceiling)
270                         return;
271         }
272         if (end - 1 > ceiling - 1)
273                 end -= PMD_SIZE;
274         if (addr > end - 1)
275                 return;
276
277         start = addr;
278         pgd = pgd_offset(tlb->mm, addr);
279         do {
280                 next = pgd_addr_end(addr, end);
281                 if (pgd_none_or_clear_bad(pgd))
282                         continue;
283                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
284         } while (pgd++, addr = next, addr != end);
285 }
286
287 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
288                 unsigned long floor, unsigned long ceiling)
289 {
290         while (vma) {
291                 struct vm_area_struct *next = vma->vm_next;
292                 unsigned long addr = vma->vm_start;
293
294                 /*
295                  * Hide vma from rmap and vmtruncate before freeing pgtables
296                  */
297                 anon_vma_unlink(vma);
298                 unlink_file_vma(vma);
299
300                 if (is_vm_hugetlb_page(vma)) {
301                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
302                                 floor, next? next->vm_start: ceiling);
303                 } else {
304                         /*
305                          * Optimization: gather nearby vmas into one call down
306                          */
307                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
308                                && !is_vm_hugetlb_page(next)) {
309                                 vma = next;
310                                 next = vma->vm_next;
311                                 anon_vma_unlink(vma);
312                                 unlink_file_vma(vma);
313                         }
314                         free_pgd_range(tlb, addr, vma->vm_end,
315                                 floor, next? next->vm_start: ceiling);
316                 }
317                 vma = next;
318         }
319 }
320
321 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
322 {
323         pgtable_t new = pte_alloc_one(mm, address);
324         if (!new)
325                 return -ENOMEM;
326
327         /*
328          * Ensure all pte setup (eg. pte page lock and page clearing) are
329          * visible before the pte is made visible to other CPUs by being
330          * put into page tables.
331          *
332          * The other side of the story is the pointer chasing in the page
333          * table walking code (when walking the page table without locking;
334          * ie. most of the time). Fortunately, these data accesses consist
335          * of a chain of data-dependent loads, meaning most CPUs (alpha
336          * being the notable exception) will already guarantee loads are
337          * seen in-order. See the alpha page table accessors for the
338          * smp_read_barrier_depends() barriers in page table walking code.
339          */
340         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
341
342         spin_lock(&mm->page_table_lock);
343         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
344                 mm->nr_ptes++;
345                 pmd_populate(mm, pmd, new);
346                 new = NULL;
347         }
348         spin_unlock(&mm->page_table_lock);
349         if (new)
350                 pte_free(mm, new);
351         return 0;
352 }
353
354 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
355 {
356         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
357         if (!new)
358                 return -ENOMEM;
359
360         smp_wmb(); /* See comment in __pte_alloc */
361
362         spin_lock(&init_mm.page_table_lock);
363         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
364                 pmd_populate_kernel(&init_mm, pmd, new);
365                 new = NULL;
366         }
367         spin_unlock(&init_mm.page_table_lock);
368         if (new)
369                 pte_free_kernel(&init_mm, new);
370         return 0;
371 }
372
373 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
374 {
375         if (file_rss)
376                 add_mm_counter(mm, file_rss, file_rss);
377         if (anon_rss)
378                 add_mm_counter(mm, anon_rss, anon_rss);
379 }
380
381 /*
382  * This function is called to print an error when a bad pte
383  * is found. For example, we might have a PFN-mapped pte in
384  * a region that doesn't allow it.
385  *
386  * The calling function must still handle the error.
387  */
388 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
389                           pte_t pte, struct page *page)
390 {
391         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
392         pud_t *pud = pud_offset(pgd, addr);
393         pmd_t *pmd = pmd_offset(pud, addr);
394         struct address_space *mapping;
395         pgoff_t index;
396         static unsigned long resume;
397         static unsigned long nr_shown;
398         static unsigned long nr_unshown;
399
400         /*
401          * Allow a burst of 60 reports, then keep quiet for that minute;
402          * or allow a steady drip of one report per second.
403          */
404         if (nr_shown == 60) {
405                 if (time_before(jiffies, resume)) {
406                         nr_unshown++;
407                         return;
408                 }
409                 if (nr_unshown) {
410                         printk(KERN_ALERT
411                                 "BUG: Bad page map: %lu messages suppressed\n",
412                                 nr_unshown);
413                         nr_unshown = 0;
414                 }
415                 nr_shown = 0;
416         }
417         if (nr_shown++ == 0)
418                 resume = jiffies + 60 * HZ;
419
420         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
421         index = linear_page_index(vma, addr);
422
423         printk(KERN_ALERT
424                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
425                 current->comm,
426                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
427         if (page) {
428                 printk(KERN_ALERT
429                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
430                 page, (void *)page->flags, page_count(page),
431                 page_mapcount(page), page->mapping, page->index);
432         }
433         printk(KERN_ALERT
434                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
435                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
436         /*
437          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
438          */
439         if (vma->vm_ops)
440                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
441                                 (unsigned long)vma->vm_ops->fault);
442         if (vma->vm_file && vma->vm_file->f_op)
443                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
444                                 (unsigned long)vma->vm_file->f_op->mmap);
445         dump_stack();
446         add_taint(TAINT_BAD_PAGE);
447 }
448
449 static inline int is_cow_mapping(unsigned int flags)
450 {
451         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
452 }
453
454 /*
455  * vm_normal_page -- This function gets the "struct page" associated with a pte.
456  *
457  * "Special" mappings do not wish to be associated with a "struct page" (either
458  * it doesn't exist, or it exists but they don't want to touch it). In this
459  * case, NULL is returned here. "Normal" mappings do have a struct page.
460  *
461  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
462  * pte bit, in which case this function is trivial. Secondly, an architecture
463  * may not have a spare pte bit, which requires a more complicated scheme,
464  * described below.
465  *
466  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
467  * special mapping (even if there are underlying and valid "struct pages").
468  * COWed pages of a VM_PFNMAP are always normal.
469  *
470  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
471  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
472  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
473  * mapping will always honor the rule
474  *
475  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
476  *
477  * And for normal mappings this is false.
478  *
479  * This restricts such mappings to be a linear translation from virtual address
480  * to pfn. To get around this restriction, we allow arbitrary mappings so long
481  * as the vma is not a COW mapping; in that case, we know that all ptes are
482  * special (because none can have been COWed).
483  *
484  *
485  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
486  *
487  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
488  * page" backing, however the difference is that _all_ pages with a struct
489  * page (that is, those where pfn_valid is true) are refcounted and considered
490  * normal pages by the VM. The disadvantage is that pages are refcounted
491  * (which can be slower and simply not an option for some PFNMAP users). The
492  * advantage is that we don't have to follow the strict linearity rule of
493  * PFNMAP mappings in order to support COWable mappings.
494  *
495  */
496 #ifdef __HAVE_ARCH_PTE_SPECIAL
497 # define HAVE_PTE_SPECIAL 1
498 #else
499 # define HAVE_PTE_SPECIAL 0
500 #endif
501 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
502                                 pte_t pte)
503 {
504         unsigned long pfn = pte_pfn(pte);
505
506         if (HAVE_PTE_SPECIAL) {
507                 if (likely(!pte_special(pte)))
508                         goto check_pfn;
509                 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
510                         print_bad_pte(vma, addr, pte, NULL);
511                 return NULL;
512         }
513
514         /* !HAVE_PTE_SPECIAL case follows: */
515
516         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
517                 if (vma->vm_flags & VM_MIXEDMAP) {
518                         if (!pfn_valid(pfn))
519                                 return NULL;
520                         goto out;
521                 } else {
522                         unsigned long off;
523                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
524                         if (pfn == vma->vm_pgoff + off)
525                                 return NULL;
526                         if (!is_cow_mapping(vma->vm_flags))
527                                 return NULL;
528                 }
529         }
530
531 check_pfn:
532         if (unlikely(pfn > highest_memmap_pfn)) {
533                 print_bad_pte(vma, addr, pte, NULL);
534                 return NULL;
535         }
536
537         /*
538          * NOTE! We still have PageReserved() pages in the page tables.
539          * eg. VDSO mappings can cause them to exist.
540          */
541 out:
542         return pfn_to_page(pfn);
543 }
544
545 /*
546  * copy one vm_area from one task to the other. Assumes the page tables
547  * already present in the new task to be cleared in the whole range
548  * covered by this vma.
549  */
550
551 static inline void
552 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
554                 unsigned long addr, int *rss)
555 {
556         unsigned long vm_flags = vma->vm_flags;
557         pte_t pte = *src_pte;
558         struct page *page;
559
560         /* pte contains position in swap or file, so copy. */
561         if (unlikely(!pte_present(pte))) {
562                 if (!pte_file(pte)) {
563                         swp_entry_t entry = pte_to_swp_entry(pte);
564
565                         swap_duplicate(entry);
566                         /* make sure dst_mm is on swapoff's mmlist. */
567                         if (unlikely(list_empty(&dst_mm->mmlist))) {
568                                 spin_lock(&mmlist_lock);
569                                 if (list_empty(&dst_mm->mmlist))
570                                         list_add(&dst_mm->mmlist,
571                                                  &src_mm->mmlist);
572                                 spin_unlock(&mmlist_lock);
573                         }
574                         if (is_write_migration_entry(entry) &&
575                                         is_cow_mapping(vm_flags)) {
576                                 /*
577                                  * COW mappings require pages in both parent
578                                  * and child to be set to read.
579                                  */
580                                 make_migration_entry_read(&entry);
581                                 pte = swp_entry_to_pte(entry);
582                                 set_pte_at(src_mm, addr, src_pte, pte);
583                         }
584                 }
585                 goto out_set_pte;
586         }
587
588         /*
589          * If it's a COW mapping, write protect it both
590          * in the parent and the child
591          */
592         if (is_cow_mapping(vm_flags)) {
593                 ptep_set_wrprotect(src_mm, addr, src_pte);
594                 pte = pte_wrprotect(pte);
595         }
596
597         /*
598          * If it's a shared mapping, mark it clean in
599          * the child
600          */
601         if (vm_flags & VM_SHARED)
602                 pte = pte_mkclean(pte);
603         pte = pte_mkold(pte);
604
605         page = vm_normal_page(vma, addr, pte);
606         if (page) {
607                 get_page(page);
608                 page_dup_rmap(page, vma, addr);
609                 rss[!!PageAnon(page)]++;
610         }
611
612 out_set_pte:
613         set_pte_at(dst_mm, addr, dst_pte, pte);
614 }
615
616 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
617                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
618                 unsigned long addr, unsigned long end)
619 {
620         pte_t *src_pte, *dst_pte;
621         spinlock_t *src_ptl, *dst_ptl;
622         int progress = 0;
623         int rss[2];
624
625 again:
626         rss[1] = rss[0] = 0;
627         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
628         if (!dst_pte)
629                 return -ENOMEM;
630         src_pte = pte_offset_map_nested(src_pmd, addr);
631         src_ptl = pte_lockptr(src_mm, src_pmd);
632         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
633         arch_enter_lazy_mmu_mode();
634
635         do {
636                 /*
637                  * We are holding two locks at this point - either of them
638                  * could generate latencies in another task on another CPU.
639                  */
640                 if (progress >= 32) {
641                         progress = 0;
642                         if (need_resched() ||
643                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
644                                 break;
645                 }
646                 if (pte_none(*src_pte)) {
647                         progress++;
648                         continue;
649                 }
650                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
651                 progress += 8;
652         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
653
654         arch_leave_lazy_mmu_mode();
655         spin_unlock(src_ptl);
656         pte_unmap_nested(src_pte - 1);
657         add_mm_rss(dst_mm, rss[0], rss[1]);
658         pte_unmap_unlock(dst_pte - 1, dst_ptl);
659         cond_resched();
660         if (addr != end)
661                 goto again;
662         return 0;
663 }
664
665 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
666                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
667                 unsigned long addr, unsigned long end)
668 {
669         pmd_t *src_pmd, *dst_pmd;
670         unsigned long next;
671
672         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
673         if (!dst_pmd)
674                 return -ENOMEM;
675         src_pmd = pmd_offset(src_pud, addr);
676         do {
677                 next = pmd_addr_end(addr, end);
678                 if (pmd_none_or_clear_bad(src_pmd))
679                         continue;
680                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
681                                                 vma, addr, next))
682                         return -ENOMEM;
683         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
684         return 0;
685 }
686
687 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
688                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
689                 unsigned long addr, unsigned long end)
690 {
691         pud_t *src_pud, *dst_pud;
692         unsigned long next;
693
694         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
695         if (!dst_pud)
696                 return -ENOMEM;
697         src_pud = pud_offset(src_pgd, addr);
698         do {
699                 next = pud_addr_end(addr, end);
700                 if (pud_none_or_clear_bad(src_pud))
701                         continue;
702                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
703                                                 vma, addr, next))
704                         return -ENOMEM;
705         } while (dst_pud++, src_pud++, addr = next, addr != end);
706         return 0;
707 }
708
709 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710                 struct vm_area_struct *vma)
711 {
712         pgd_t *src_pgd, *dst_pgd;
713         unsigned long next;
714         unsigned long addr = vma->vm_start;
715         unsigned long end = vma->vm_end;
716         int ret;
717
718         /*
719          * Don't copy ptes where a page fault will fill them correctly.
720          * Fork becomes much lighter when there are big shared or private
721          * readonly mappings. The tradeoff is that copy_page_range is more
722          * efficient than faulting.
723          */
724         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
725                 if (!vma->anon_vma)
726                         return 0;
727         }
728
729         if (is_vm_hugetlb_page(vma))
730                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
731
732         if (unlikely(is_pfn_mapping(vma))) {
733                 /*
734                  * We do not free on error cases below as remove_vma
735                  * gets called on error from higher level routine
736                  */
737                 ret = track_pfn_vma_copy(vma);
738                 if (ret)
739                         return ret;
740         }
741
742         /*
743          * We need to invalidate the secondary MMU mappings only when
744          * there could be a permission downgrade on the ptes of the
745          * parent mm. And a permission downgrade will only happen if
746          * is_cow_mapping() returns true.
747          */
748         if (is_cow_mapping(vma->vm_flags))
749                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
750
751         ret = 0;
752         dst_pgd = pgd_offset(dst_mm, addr);
753         src_pgd = pgd_offset(src_mm, addr);
754         do {
755                 next = pgd_addr_end(addr, end);
756                 if (pgd_none_or_clear_bad(src_pgd))
757                         continue;
758                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
759                                             vma, addr, next))) {
760                         ret = -ENOMEM;
761                         break;
762                 }
763         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
764
765         if (is_cow_mapping(vma->vm_flags))
766                 mmu_notifier_invalidate_range_end(src_mm,
767                                                   vma->vm_start, end);
768         return ret;
769 }
770
771 static unsigned long zap_pte_range(struct mmu_gather *tlb,
772                                 struct vm_area_struct *vma, pmd_t *pmd,
773                                 unsigned long addr, unsigned long end,
774                                 long *zap_work, struct zap_details *details)
775 {
776         struct mm_struct *mm = tlb->mm;
777         pte_t *pte;
778         spinlock_t *ptl;
779         int file_rss = 0;
780         int anon_rss = 0;
781
782         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
783         arch_enter_lazy_mmu_mode();
784         do {
785                 pte_t ptent = *pte;
786                 if (pte_none(ptent)) {
787                         (*zap_work)--;
788                         continue;
789                 }
790
791                 (*zap_work) -= PAGE_SIZE;
792
793                 if (pte_present(ptent)) {
794                         struct page *page;
795
796                         page = vm_normal_page(vma, addr, ptent);
797                         if (unlikely(details) && page) {
798                                 /*
799                                  * unmap_shared_mapping_pages() wants to
800                                  * invalidate cache without truncating:
801                                  * unmap shared but keep private pages.
802                                  */
803                                 if (details->check_mapping &&
804                                     details->check_mapping != page->mapping)
805                                         continue;
806                                 /*
807                                  * Each page->index must be checked when
808                                  * invalidating or truncating nonlinear.
809                                  */
810                                 if (details->nonlinear_vma &&
811                                     (page->index < details->first_index ||
812                                      page->index > details->last_index))
813                                         continue;
814                         }
815                         ptent = ptep_get_and_clear_full(mm, addr, pte,
816                                                         tlb->fullmm);
817                         tlb_remove_tlb_entry(tlb, pte, addr);
818                         if (unlikely(!page))
819                                 continue;
820                         if (unlikely(details) && details->nonlinear_vma
821                             && linear_page_index(details->nonlinear_vma,
822                                                 addr) != page->index)
823                                 set_pte_at(mm, addr, pte,
824                                            pgoff_to_pte(page->index));
825                         if (PageAnon(page))
826                                 anon_rss--;
827                         else {
828                                 if (pte_dirty(ptent))
829                                         set_page_dirty(page);
830                                 if (pte_young(ptent) &&
831                                     likely(!VM_SequentialReadHint(vma)))
832                                         mark_page_accessed(page);
833                                 file_rss--;
834                         }
835                         page_remove_rmap(page);
836                         if (unlikely(page_mapcount(page) < 0))
837                                 print_bad_pte(vma, addr, ptent, page);
838                         tlb_remove_page(tlb, page);
839                         continue;
840                 }
841                 /*
842                  * If details->check_mapping, we leave swap entries;
843                  * if details->nonlinear_vma, we leave file entries.
844                  */
845                 if (unlikely(details))
846                         continue;
847                 if (pte_file(ptent)) {
848                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
849                                 print_bad_pte(vma, addr, ptent, NULL);
850                 } else if
851                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
852                         print_bad_pte(vma, addr, ptent, NULL);
853                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
854         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
855
856         add_mm_rss(mm, file_rss, anon_rss);
857         arch_leave_lazy_mmu_mode();
858         pte_unmap_unlock(pte - 1, ptl);
859
860         return addr;
861 }
862
863 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
864                                 struct vm_area_struct *vma, pud_t *pud,
865                                 unsigned long addr, unsigned long end,
866                                 long *zap_work, struct zap_details *details)
867 {
868         pmd_t *pmd;
869         unsigned long next;
870
871         pmd = pmd_offset(pud, addr);
872         do {
873                 next = pmd_addr_end(addr, end);
874                 if (pmd_none_or_clear_bad(pmd)) {
875                         (*zap_work)--;
876                         continue;
877                 }
878                 next = zap_pte_range(tlb, vma, pmd, addr, next,
879                                                 zap_work, details);
880         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
881
882         return addr;
883 }
884
885 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
886                                 struct vm_area_struct *vma, pgd_t *pgd,
887                                 unsigned long addr, unsigned long end,
888                                 long *zap_work, struct zap_details *details)
889 {
890         pud_t *pud;
891         unsigned long next;
892
893         pud = pud_offset(pgd, addr);
894         do {
895                 next = pud_addr_end(addr, end);
896                 if (pud_none_or_clear_bad(pud)) {
897                         (*zap_work)--;
898                         continue;
899                 }
900                 next = zap_pmd_range(tlb, vma, pud, addr, next,
901                                                 zap_work, details);
902         } while (pud++, addr = next, (addr != end && *zap_work > 0));
903
904         return addr;
905 }
906
907 static unsigned long unmap_page_range(struct mmu_gather *tlb,
908                                 struct vm_area_struct *vma,
909                                 unsigned long addr, unsigned long end,
910                                 long *zap_work, struct zap_details *details)
911 {
912         pgd_t *pgd;
913         unsigned long next;
914
915         if (details && !details->check_mapping && !details->nonlinear_vma)
916                 details = NULL;
917
918         BUG_ON(addr >= end);
919         tlb_start_vma(tlb, vma);
920         pgd = pgd_offset(vma->vm_mm, addr);
921         do {
922                 next = pgd_addr_end(addr, end);
923                 if (pgd_none_or_clear_bad(pgd)) {
924                         (*zap_work)--;
925                         continue;
926                 }
927                 next = zap_pud_range(tlb, vma, pgd, addr, next,
928                                                 zap_work, details);
929         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
930         tlb_end_vma(tlb, vma);
931
932         return addr;
933 }
934
935 #ifdef CONFIG_PREEMPT
936 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
937 #else
938 /* No preempt: go for improved straight-line efficiency */
939 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
940 #endif
941
942 /**
943  * unmap_vmas - unmap a range of memory covered by a list of vma's
944  * @tlbp: address of the caller's struct mmu_gather
945  * @vma: the starting vma
946  * @start_addr: virtual address at which to start unmapping
947  * @end_addr: virtual address at which to end unmapping
948  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
949  * @details: details of nonlinear truncation or shared cache invalidation
950  *
951  * Returns the end address of the unmapping (restart addr if interrupted).
952  *
953  * Unmap all pages in the vma list.
954  *
955  * We aim to not hold locks for too long (for scheduling latency reasons).
956  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
957  * return the ending mmu_gather to the caller.
958  *
959  * Only addresses between `start' and `end' will be unmapped.
960  *
961  * The VMA list must be sorted in ascending virtual address order.
962  *
963  * unmap_vmas() assumes that the caller will flush the whole unmapped address
964  * range after unmap_vmas() returns.  So the only responsibility here is to
965  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
966  * drops the lock and schedules.
967  */
968 unsigned long unmap_vmas(struct mmu_gather **tlbp,
969                 struct vm_area_struct *vma, unsigned long start_addr,
970                 unsigned long end_addr, unsigned long *nr_accounted,
971                 struct zap_details *details)
972 {
973         long zap_work = ZAP_BLOCK_SIZE;
974         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
975         int tlb_start_valid = 0;
976         unsigned long start = start_addr;
977         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
978         int fullmm = (*tlbp)->fullmm;
979         struct mm_struct *mm = vma->vm_mm;
980
981         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
982         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
983                 unsigned long end;
984
985                 start = max(vma->vm_start, start_addr);
986                 if (start >= vma->vm_end)
987                         continue;
988                 end = min(vma->vm_end, end_addr);
989                 if (end <= vma->vm_start)
990                         continue;
991
992                 if (vma->vm_flags & VM_ACCOUNT)
993                         *nr_accounted += (end - start) >> PAGE_SHIFT;
994
995                 if (unlikely(is_pfn_mapping(vma)))
996                         untrack_pfn_vma(vma, 0, 0);
997
998                 while (start != end) {
999                         if (!tlb_start_valid) {
1000                                 tlb_start = start;
1001                                 tlb_start_valid = 1;
1002                         }
1003
1004                         if (unlikely(is_vm_hugetlb_page(vma))) {
1005                                 /*
1006                                  * It is undesirable to test vma->vm_file as it
1007                                  * should be non-null for valid hugetlb area.
1008                                  * However, vm_file will be NULL in the error
1009                                  * cleanup path of do_mmap_pgoff. When
1010                                  * hugetlbfs ->mmap method fails,
1011                                  * do_mmap_pgoff() nullifies vma->vm_file
1012                                  * before calling this function to clean up.
1013                                  * Since no pte has actually been setup, it is
1014                                  * safe to do nothing in this case.
1015                                  */
1016                                 if (vma->vm_file) {
1017                                         unmap_hugepage_range(vma, start, end, NULL);
1018                                         zap_work -= (end - start) /
1019                                         pages_per_huge_page(hstate_vma(vma));
1020                                 }
1021
1022                                 start = end;
1023                         } else
1024                                 start = unmap_page_range(*tlbp, vma,
1025                                                 start, end, &zap_work, details);
1026
1027                         if (zap_work > 0) {
1028                                 BUG_ON(start != end);
1029                                 break;
1030                         }
1031
1032                         tlb_finish_mmu(*tlbp, tlb_start, start);
1033
1034                         if (need_resched() ||
1035                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1036                                 if (i_mmap_lock) {
1037                                         *tlbp = NULL;
1038                                         goto out;
1039                                 }
1040                                 cond_resched();
1041                         }
1042
1043                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1044                         tlb_start_valid = 0;
1045                         zap_work = ZAP_BLOCK_SIZE;
1046                 }
1047         }
1048 out:
1049         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1050         return start;   /* which is now the end (or restart) address */
1051 }
1052
1053 /**
1054  * zap_page_range - remove user pages in a given range
1055  * @vma: vm_area_struct holding the applicable pages
1056  * @address: starting address of pages to zap
1057  * @size: number of bytes to zap
1058  * @details: details of nonlinear truncation or shared cache invalidation
1059  */
1060 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1061                 unsigned long size, struct zap_details *details)
1062 {
1063         struct mm_struct *mm = vma->vm_mm;
1064         struct mmu_gather *tlb;
1065         unsigned long end = address + size;
1066         unsigned long nr_accounted = 0;
1067
1068         lru_add_drain();
1069         tlb = tlb_gather_mmu(mm, 0);
1070         update_hiwater_rss(mm);
1071         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1072         if (tlb)
1073                 tlb_finish_mmu(tlb, address, end);
1074         return end;
1075 }
1076
1077 /**
1078  * zap_vma_ptes - remove ptes mapping the vma
1079  * @vma: vm_area_struct holding ptes to be zapped
1080  * @address: starting address of pages to zap
1081  * @size: number of bytes to zap
1082  *
1083  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1084  *
1085  * The entire address range must be fully contained within the vma.
1086  *
1087  * Returns 0 if successful.
1088  */
1089 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1090                 unsigned long size)
1091 {
1092         if (address < vma->vm_start || address + size > vma->vm_end ||
1093                         !(vma->vm_flags & VM_PFNMAP))
1094                 return -1;
1095         zap_page_range(vma, address, size, NULL);
1096         return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1099
1100 /*
1101  * Do a quick page-table lookup for a single page.
1102  */
1103 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1104                         unsigned int flags)
1105 {
1106         pgd_t *pgd;
1107         pud_t *pud;
1108         pmd_t *pmd;
1109         pte_t *ptep, pte;
1110         spinlock_t *ptl;
1111         struct page *page;
1112         struct mm_struct *mm = vma->vm_mm;
1113
1114         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1115         if (!IS_ERR(page)) {
1116                 BUG_ON(flags & FOLL_GET);
1117                 goto out;
1118         }
1119
1120         page = NULL;
1121         pgd = pgd_offset(mm, address);
1122         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1123                 goto no_page_table;
1124
1125         pud = pud_offset(pgd, address);
1126         if (pud_none(*pud))
1127                 goto no_page_table;
1128         if (pud_huge(*pud)) {
1129                 BUG_ON(flags & FOLL_GET);
1130                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1131                 goto out;
1132         }
1133         if (unlikely(pud_bad(*pud)))
1134                 goto no_page_table;
1135
1136         pmd = pmd_offset(pud, address);
1137         if (pmd_none(*pmd))
1138                 goto no_page_table;
1139         if (pmd_huge(*pmd)) {
1140                 BUG_ON(flags & FOLL_GET);
1141                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1142                 goto out;
1143         }
1144         if (unlikely(pmd_bad(*pmd)))
1145                 goto no_page_table;
1146
1147         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1148
1149         pte = *ptep;
1150         if (!pte_present(pte))
1151                 goto no_page;
1152         if ((flags & FOLL_WRITE) && !pte_write(pte))
1153                 goto unlock;
1154         page = vm_normal_page(vma, address, pte);
1155         if (unlikely(!page))
1156                 goto bad_page;
1157
1158         if (flags & FOLL_GET)
1159                 get_page(page);
1160         if (flags & FOLL_TOUCH) {
1161                 if ((flags & FOLL_WRITE) &&
1162                     !pte_dirty(pte) && !PageDirty(page))
1163                         set_page_dirty(page);
1164                 mark_page_accessed(page);
1165         }
1166 unlock:
1167         pte_unmap_unlock(ptep, ptl);
1168 out:
1169         return page;
1170
1171 bad_page:
1172         pte_unmap_unlock(ptep, ptl);
1173         return ERR_PTR(-EFAULT);
1174
1175 no_page:
1176         pte_unmap_unlock(ptep, ptl);
1177         if (!pte_none(pte))
1178                 return page;
1179         /* Fall through to ZERO_PAGE handling */
1180 no_page_table:
1181         /*
1182          * When core dumping an enormous anonymous area that nobody
1183          * has touched so far, we don't want to allocate page tables.
1184          */
1185         if (flags & FOLL_ANON) {
1186                 page = ZERO_PAGE(0);
1187                 if (flags & FOLL_GET)
1188                         get_page(page);
1189                 BUG_ON(flags & FOLL_WRITE);
1190         }
1191         return page;
1192 }
1193
1194 /* Can we do the FOLL_ANON optimization? */
1195 static inline int use_zero_page(struct vm_area_struct *vma)
1196 {
1197         /*
1198          * We don't want to optimize FOLL_ANON for make_pages_present()
1199          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1200          * we want to get the page from the page tables to make sure
1201          * that we serialize and update with any other user of that
1202          * mapping.
1203          */
1204         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1205                 return 0;
1206         /*
1207          * And if we have a fault routine, it's not an anonymous region.
1208          */
1209         return !vma->vm_ops || !vma->vm_ops->fault;
1210 }
1211
1212
1213
1214 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1215                      unsigned long start, int len, int flags,
1216                 struct page **pages, struct vm_area_struct **vmas)
1217 {
1218         int i;
1219         unsigned int vm_flags = 0;
1220         int write = !!(flags & GUP_FLAGS_WRITE);
1221         int force = !!(flags & GUP_FLAGS_FORCE);
1222         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1223         int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1224
1225         if (len <= 0)
1226                 return 0;
1227         /* 
1228          * Require read or write permissions.
1229          * If 'force' is set, we only require the "MAY" flags.
1230          */
1231         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1232         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1233         i = 0;
1234
1235         do {
1236                 struct vm_area_struct *vma;
1237                 unsigned int foll_flags;
1238
1239                 vma = find_extend_vma(mm, start);
1240                 if (!vma && in_gate_area(tsk, start)) {
1241                         unsigned long pg = start & PAGE_MASK;
1242                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1243                         pgd_t *pgd;
1244                         pud_t *pud;
1245                         pmd_t *pmd;
1246                         pte_t *pte;
1247
1248                         /* user gate pages are read-only */
1249                         if (!ignore && write)
1250                                 return i ? : -EFAULT;
1251                         if (pg > TASK_SIZE)
1252                                 pgd = pgd_offset_k(pg);
1253                         else
1254                                 pgd = pgd_offset_gate(mm, pg);
1255                         BUG_ON(pgd_none(*pgd));
1256                         pud = pud_offset(pgd, pg);
1257                         BUG_ON(pud_none(*pud));
1258                         pmd = pmd_offset(pud, pg);
1259                         if (pmd_none(*pmd))
1260                                 return i ? : -EFAULT;
1261                         pte = pte_offset_map(pmd, pg);
1262                         if (pte_none(*pte)) {
1263                                 pte_unmap(pte);
1264                                 return i ? : -EFAULT;
1265                         }
1266                         if (pages) {
1267                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1268                                 pages[i] = page;
1269                                 if (page)
1270                                         get_page(page);
1271                         }
1272                         pte_unmap(pte);
1273                         if (vmas)
1274                                 vmas[i] = gate_vma;
1275                         i++;
1276                         start += PAGE_SIZE;
1277                         len--;
1278                         continue;
1279                 }
1280
1281                 if (!vma ||
1282                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1283                     (!ignore && !(vm_flags & vma->vm_flags)))
1284                         return i ? : -EFAULT;
1285
1286                 if (is_vm_hugetlb_page(vma)) {
1287                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1288                                                 &start, &len, i, write);
1289                         continue;
1290                 }
1291
1292                 foll_flags = FOLL_TOUCH;
1293                 if (pages)
1294                         foll_flags |= FOLL_GET;
1295                 if (!write && use_zero_page(vma))
1296                         foll_flags |= FOLL_ANON;
1297
1298                 do {
1299                         struct page *page;
1300
1301                         /*
1302                          * If we have a pending SIGKILL, don't keep faulting
1303                          * pages and potentially allocating memory, unless
1304                          * current is handling munlock--e.g., on exit. In
1305                          * that case, we are not allocating memory.  Rather,
1306                          * we're only unlocking already resident/mapped pages.
1307                          */
1308                         if (unlikely(!ignore_sigkill &&
1309                                         fatal_signal_pending(current)))
1310                                 return i ? i : -ERESTARTSYS;
1311
1312                         if (write)
1313                                 foll_flags |= FOLL_WRITE;
1314
1315                         cond_resched();
1316                         while (!(page = follow_page(vma, start, foll_flags))) {
1317                                 int ret;
1318                                 ret = handle_mm_fault(mm, vma, start,
1319                                                 foll_flags & FOLL_WRITE);
1320                                 if (ret & VM_FAULT_ERROR) {
1321                                         if (ret & VM_FAULT_OOM)
1322                                                 return i ? i : -ENOMEM;
1323                                         else if (ret & VM_FAULT_SIGBUS)
1324                                                 return i ? i : -EFAULT;
1325                                         BUG();
1326                                 }
1327                                 if (ret & VM_FAULT_MAJOR)
1328                                         tsk->maj_flt++;
1329                                 else
1330                                         tsk->min_flt++;
1331
1332                                 /*
1333                                  * The VM_FAULT_WRITE bit tells us that
1334                                  * do_wp_page has broken COW when necessary,
1335                                  * even if maybe_mkwrite decided not to set
1336                                  * pte_write. We can thus safely do subsequent
1337                                  * page lookups as if they were reads. But only
1338                                  * do so when looping for pte_write is futile:
1339                                  * in some cases userspace may also be wanting
1340                                  * to write to the gotten user page, which a
1341                                  * read fault here might prevent (a readonly
1342                                  * page might get reCOWed by userspace write).
1343                                  */
1344                                 if ((ret & VM_FAULT_WRITE) &&
1345                                     !(vma->vm_flags & VM_WRITE))
1346                                         foll_flags &= ~FOLL_WRITE;
1347
1348                                 cond_resched();
1349                         }
1350                         if (IS_ERR(page))
1351                                 return i ? i : PTR_ERR(page);
1352                         if (pages) {
1353                                 pages[i] = page;
1354
1355                                 flush_anon_page(vma, page, start);
1356                                 flush_dcache_page(page);
1357                         }
1358                         if (vmas)
1359                                 vmas[i] = vma;
1360                         i++;
1361                         start += PAGE_SIZE;
1362                         len--;
1363                 } while (len && start < vma->vm_end);
1364         } while (len);
1365         return i;
1366 }
1367
1368 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1369                 unsigned long start, int len, int write, int force,
1370                 struct page **pages, struct vm_area_struct **vmas)
1371 {
1372         int flags = 0;
1373
1374         if (write)
1375                 flags |= GUP_FLAGS_WRITE;
1376         if (force)
1377                 flags |= GUP_FLAGS_FORCE;
1378
1379         return __get_user_pages(tsk, mm,
1380                                 start, len, flags,
1381                                 pages, vmas);
1382 }
1383
1384 EXPORT_SYMBOL(get_user_pages);
1385
1386 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1387                         spinlock_t **ptl)
1388 {
1389         pgd_t * pgd = pgd_offset(mm, addr);
1390         pud_t * pud = pud_alloc(mm, pgd, addr);
1391         if (pud) {
1392                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1393                 if (pmd)
1394                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1395         }
1396         return NULL;
1397 }
1398
1399 /*
1400  * This is the old fallback for page remapping.
1401  *
1402  * For historical reasons, it only allows reserved pages. Only
1403  * old drivers should use this, and they needed to mark their
1404  * pages reserved for the old functions anyway.
1405  */
1406 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1407                         struct page *page, pgprot_t prot)
1408 {
1409         struct mm_struct *mm = vma->vm_mm;
1410         int retval;
1411         pte_t *pte;
1412         spinlock_t *ptl;
1413
1414         retval = -EINVAL;
1415         if (PageAnon(page))
1416                 goto out;
1417         retval = -ENOMEM;
1418         flush_dcache_page(page);
1419         pte = get_locked_pte(mm, addr, &ptl);
1420         if (!pte)
1421                 goto out;
1422         retval = -EBUSY;
1423         if (!pte_none(*pte))
1424                 goto out_unlock;
1425
1426         /* Ok, finally just insert the thing.. */
1427         get_page(page);
1428         inc_mm_counter(mm, file_rss);
1429         page_add_file_rmap(page);
1430         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1431
1432         retval = 0;
1433         pte_unmap_unlock(pte, ptl);
1434         return retval;
1435 out_unlock:
1436         pte_unmap_unlock(pte, ptl);
1437 out:
1438         return retval;
1439 }
1440
1441 /**
1442  * vm_insert_page - insert single page into user vma
1443  * @vma: user vma to map to
1444  * @addr: target user address of this page
1445  * @page: source kernel page
1446  *
1447  * This allows drivers to insert individual pages they've allocated
1448  * into a user vma.
1449  *
1450  * The page has to be a nice clean _individual_ kernel allocation.
1451  * If you allocate a compound page, you need to have marked it as
1452  * such (__GFP_COMP), or manually just split the page up yourself
1453  * (see split_page()).
1454  *
1455  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1456  * took an arbitrary page protection parameter. This doesn't allow
1457  * that. Your vma protection will have to be set up correctly, which
1458  * means that if you want a shared writable mapping, you'd better
1459  * ask for a shared writable mapping!
1460  *
1461  * The page does not need to be reserved.
1462  */
1463 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1464                         struct page *page)
1465 {
1466         if (addr < vma->vm_start || addr >= vma->vm_end)
1467                 return -EFAULT;
1468         if (!page_count(page))
1469                 return -EINVAL;
1470         vma->vm_flags |= VM_INSERTPAGE;
1471         return insert_page(vma, addr, page, vma->vm_page_prot);
1472 }
1473 EXPORT_SYMBOL(vm_insert_page);
1474
1475 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1476                         unsigned long pfn, pgprot_t prot)
1477 {
1478         struct mm_struct *mm = vma->vm_mm;
1479         int retval;
1480         pte_t *pte, entry;
1481         spinlock_t *ptl;
1482
1483         retval = -ENOMEM;
1484         pte = get_locked_pte(mm, addr, &ptl);
1485         if (!pte)
1486                 goto out;
1487         retval = -EBUSY;
1488         if (!pte_none(*pte))
1489                 goto out_unlock;
1490
1491         /* Ok, finally just insert the thing.. */
1492         entry = pte_mkspecial(pfn_pte(pfn, prot));
1493         set_pte_at(mm, addr, pte, entry);
1494         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1495
1496         retval = 0;
1497 out_unlock:
1498         pte_unmap_unlock(pte, ptl);
1499 out:
1500         return retval;
1501 }
1502
1503 /**
1504  * vm_insert_pfn - insert single pfn into user vma
1505  * @vma: user vma to map to
1506  * @addr: target user address of this page
1507  * @pfn: source kernel pfn
1508  *
1509  * Similar to vm_inert_page, this allows drivers to insert individual pages
1510  * they've allocated into a user vma. Same comments apply.
1511  *
1512  * This function should only be called from a vm_ops->fault handler, and
1513  * in that case the handler should return NULL.
1514  *
1515  * vma cannot be a COW mapping.
1516  *
1517  * As this is called only for pages that do not currently exist, we
1518  * do not need to flush old virtual caches or the TLB.
1519  */
1520 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1521                         unsigned long pfn)
1522 {
1523         int ret;
1524         pgprot_t pgprot = vma->vm_page_prot;
1525         /*
1526          * Technically, architectures with pte_special can avoid all these
1527          * restrictions (same for remap_pfn_range).  However we would like
1528          * consistency in testing and feature parity among all, so we should
1529          * try to keep these invariants in place for everybody.
1530          */
1531         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1532         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1533                                                 (VM_PFNMAP|VM_MIXEDMAP));
1534         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1535         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1536
1537         if (addr < vma->vm_start || addr >= vma->vm_end)
1538                 return -EFAULT;
1539         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1540                 return -EINVAL;
1541
1542         ret = insert_pfn(vma, addr, pfn, pgprot);
1543
1544         if (ret)
1545                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1546
1547         return ret;
1548 }
1549 EXPORT_SYMBOL(vm_insert_pfn);
1550
1551 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1552                         unsigned long pfn)
1553 {
1554         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1555
1556         if (addr < vma->vm_start || addr >= vma->vm_end)
1557                 return -EFAULT;
1558
1559         /*
1560          * If we don't have pte special, then we have to use the pfn_valid()
1561          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1562          * refcount the page if pfn_valid is true (hence insert_page rather
1563          * than insert_pfn).
1564          */
1565         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1566                 struct page *page;
1567
1568                 page = pfn_to_page(pfn);
1569                 return insert_page(vma, addr, page, vma->vm_page_prot);
1570         }
1571         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1572 }
1573 EXPORT_SYMBOL(vm_insert_mixed);
1574
1575 /*
1576  * maps a range of physical memory into the requested pages. the old
1577  * mappings are removed. any references to nonexistent pages results
1578  * in null mappings (currently treated as "copy-on-access")
1579  */
1580 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1581                         unsigned long addr, unsigned long end,
1582                         unsigned long pfn, pgprot_t prot)
1583 {
1584         pte_t *pte;
1585         spinlock_t *ptl;
1586
1587         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1588         if (!pte)
1589                 return -ENOMEM;
1590         arch_enter_lazy_mmu_mode();
1591         do {
1592                 BUG_ON(!pte_none(*pte));
1593                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1594                 pfn++;
1595         } while (pte++, addr += PAGE_SIZE, addr != end);
1596         arch_leave_lazy_mmu_mode();
1597         pte_unmap_unlock(pte - 1, ptl);
1598         return 0;
1599 }
1600
1601 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1602                         unsigned long addr, unsigned long end,
1603                         unsigned long pfn, pgprot_t prot)
1604 {
1605         pmd_t *pmd;
1606         unsigned long next;
1607
1608         pfn -= addr >> PAGE_SHIFT;
1609         pmd = pmd_alloc(mm, pud, addr);
1610         if (!pmd)
1611                 return -ENOMEM;
1612         do {
1613                 next = pmd_addr_end(addr, end);
1614                 if (remap_pte_range(mm, pmd, addr, next,
1615                                 pfn + (addr >> PAGE_SHIFT), prot))
1616                         return -ENOMEM;
1617         } while (pmd++, addr = next, addr != end);
1618         return 0;
1619 }
1620
1621 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1622                         unsigned long addr, unsigned long end,
1623                         unsigned long pfn, pgprot_t prot)
1624 {
1625         pud_t *pud;
1626         unsigned long next;
1627
1628         pfn -= addr >> PAGE_SHIFT;
1629         pud = pud_alloc(mm, pgd, addr);
1630         if (!pud)
1631                 return -ENOMEM;
1632         do {
1633                 next = pud_addr_end(addr, end);
1634                 if (remap_pmd_range(mm, pud, addr, next,
1635                                 pfn + (addr >> PAGE_SHIFT), prot))
1636                         return -ENOMEM;
1637         } while (pud++, addr = next, addr != end);
1638         return 0;
1639 }
1640
1641 /**
1642  * remap_pfn_range - remap kernel memory to userspace
1643  * @vma: user vma to map to
1644  * @addr: target user address to start at
1645  * @pfn: physical address of kernel memory
1646  * @size: size of map area
1647  * @prot: page protection flags for this mapping
1648  *
1649  *  Note: this is only safe if the mm semaphore is held when called.
1650  */
1651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1652                     unsigned long pfn, unsigned long size, pgprot_t prot)
1653 {
1654         pgd_t *pgd;
1655         unsigned long next;
1656         unsigned long end = addr + PAGE_ALIGN(size);
1657         struct mm_struct *mm = vma->vm_mm;
1658         int err;
1659
1660         /*
1661          * Physically remapped pages are special. Tell the
1662          * rest of the world about it:
1663          *   VM_IO tells people not to look at these pages
1664          *      (accesses can have side effects).
1665          *   VM_RESERVED is specified all over the place, because
1666          *      in 2.4 it kept swapout's vma scan off this vma; but
1667          *      in 2.6 the LRU scan won't even find its pages, so this
1668          *      flag means no more than count its pages in reserved_vm,
1669          *      and omit it from core dump, even when VM_IO turned off.
1670          *   VM_PFNMAP tells the core MM that the base pages are just
1671          *      raw PFN mappings, and do not have a "struct page" associated
1672          *      with them.
1673          *
1674          * There's a horrible special case to handle copy-on-write
1675          * behaviour that some programs depend on. We mark the "original"
1676          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1677          */
1678         if (addr == vma->vm_start && end == vma->vm_end)
1679                 vma->vm_pgoff = pfn;
1680         else if (is_cow_mapping(vma->vm_flags))
1681                 return -EINVAL;
1682
1683         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1684
1685         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1686         if (err) {
1687                 /*
1688                  * To indicate that track_pfn related cleanup is not
1689                  * needed from higher level routine calling unmap_vmas
1690                  */
1691                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1692                 return -EINVAL;
1693         }
1694
1695         BUG_ON(addr >= end);
1696         pfn -= addr >> PAGE_SHIFT;
1697         pgd = pgd_offset(mm, addr);
1698         flush_cache_range(vma, addr, end);
1699         do {
1700                 next = pgd_addr_end(addr, end);
1701                 err = remap_pud_range(mm, pgd, addr, next,
1702                                 pfn + (addr >> PAGE_SHIFT), prot);
1703                 if (err)
1704                         break;
1705         } while (pgd++, addr = next, addr != end);
1706
1707         if (err)
1708                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1709
1710         return err;
1711 }
1712 EXPORT_SYMBOL(remap_pfn_range);
1713
1714 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1715                                      unsigned long addr, unsigned long end,
1716                                      pte_fn_t fn, void *data)
1717 {
1718         pte_t *pte;
1719         int err;
1720         pgtable_t token;
1721         spinlock_t *uninitialized_var(ptl);
1722
1723         pte = (mm == &init_mm) ?
1724                 pte_alloc_kernel(pmd, addr) :
1725                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1726         if (!pte)
1727                 return -ENOMEM;
1728
1729         BUG_ON(pmd_huge(*pmd));
1730
1731         arch_enter_lazy_mmu_mode();
1732
1733         token = pmd_pgtable(*pmd);
1734
1735         do {
1736                 err = fn(pte, token, addr, data);
1737                 if (err)
1738                         break;
1739         } while (pte++, addr += PAGE_SIZE, addr != end);
1740
1741         arch_leave_lazy_mmu_mode();
1742
1743         if (mm != &init_mm)
1744                 pte_unmap_unlock(pte-1, ptl);
1745         return err;
1746 }
1747
1748 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1749                                      unsigned long addr, unsigned long end,
1750                                      pte_fn_t fn, void *data)
1751 {
1752         pmd_t *pmd;
1753         unsigned long next;
1754         int err;
1755
1756         BUG_ON(pud_huge(*pud));
1757
1758         pmd = pmd_alloc(mm, pud, addr);
1759         if (!pmd)
1760                 return -ENOMEM;
1761         do {
1762                 next = pmd_addr_end(addr, end);
1763                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1764                 if (err)
1765                         break;
1766         } while (pmd++, addr = next, addr != end);
1767         return err;
1768 }
1769
1770 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1771                                      unsigned long addr, unsigned long end,
1772                                      pte_fn_t fn, void *data)
1773 {
1774         pud_t *pud;
1775         unsigned long next;
1776         int err;
1777
1778         pud = pud_alloc(mm, pgd, addr);
1779         if (!pud)
1780                 return -ENOMEM;
1781         do {
1782                 next = pud_addr_end(addr, end);
1783                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1784                 if (err)
1785                         break;
1786         } while (pud++, addr = next, addr != end);
1787         return err;
1788 }
1789
1790 /*
1791  * Scan a region of virtual memory, filling in page tables as necessary
1792  * and calling a provided function on each leaf page table.
1793  */
1794 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1795                         unsigned long size, pte_fn_t fn, void *data)
1796 {
1797         pgd_t *pgd;
1798         unsigned long next;
1799         unsigned long start = addr, end = addr + size;
1800         int err;
1801
1802         BUG_ON(addr >= end);
1803         mmu_notifier_invalidate_range_start(mm, start, end);
1804         pgd = pgd_offset(mm, addr);
1805         do {
1806                 next = pgd_addr_end(addr, end);
1807                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1808                 if (err)
1809                         break;
1810         } while (pgd++, addr = next, addr != end);
1811         mmu_notifier_invalidate_range_end(mm, start, end);
1812         return err;
1813 }
1814 EXPORT_SYMBOL_GPL(apply_to_page_range);
1815
1816 /*
1817  * handle_pte_fault chooses page fault handler according to an entry
1818  * which was read non-atomically.  Before making any commitment, on
1819  * those architectures or configurations (e.g. i386 with PAE) which
1820  * might give a mix of unmatched parts, do_swap_page and do_file_page
1821  * must check under lock before unmapping the pte and proceeding
1822  * (but do_wp_page is only called after already making such a check;
1823  * and do_anonymous_page and do_no_page can safely check later on).
1824  */
1825 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1826                                 pte_t *page_table, pte_t orig_pte)
1827 {
1828         int same = 1;
1829 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1830         if (sizeof(pte_t) > sizeof(unsigned long)) {
1831                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1832                 spin_lock(ptl);
1833                 same = pte_same(*page_table, orig_pte);
1834                 spin_unlock(ptl);
1835         }
1836 #endif
1837         pte_unmap(page_table);
1838         return same;
1839 }
1840
1841 /*
1842  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1843  * servicing faults for write access.  In the normal case, do always want
1844  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1845  * that do not have writing enabled, when used by access_process_vm.
1846  */
1847 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1848 {
1849         if (likely(vma->vm_flags & VM_WRITE))
1850                 pte = pte_mkwrite(pte);
1851         return pte;
1852 }
1853
1854 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1855 {
1856         /*
1857          * If the source page was a PFN mapping, we don't have
1858          * a "struct page" for it. We do a best-effort copy by
1859          * just copying from the original user address. If that
1860          * fails, we just zero-fill it. Live with it.
1861          */
1862         if (unlikely(!src)) {
1863                 void *kaddr = kmap_atomic(dst, KM_USER0);
1864                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1865
1866                 /*
1867                  * This really shouldn't fail, because the page is there
1868                  * in the page tables. But it might just be unreadable,
1869                  * in which case we just give up and fill the result with
1870                  * zeroes.
1871                  */
1872                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1873                         memset(kaddr, 0, PAGE_SIZE);
1874                 kunmap_atomic(kaddr, KM_USER0);
1875                 flush_dcache_page(dst);
1876         } else
1877                 copy_user_highpage(dst, src, va, vma);
1878 }
1879
1880 /*
1881  * This routine handles present pages, when users try to write
1882  * to a shared page. It is done by copying the page to a new address
1883  * and decrementing the shared-page counter for the old page.
1884  *
1885  * Note that this routine assumes that the protection checks have been
1886  * done by the caller (the low-level page fault routine in most cases).
1887  * Thus we can safely just mark it writable once we've done any necessary
1888  * COW.
1889  *
1890  * We also mark the page dirty at this point even though the page will
1891  * change only once the write actually happens. This avoids a few races,
1892  * and potentially makes it more efficient.
1893  *
1894  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1895  * but allow concurrent faults), with pte both mapped and locked.
1896  * We return with mmap_sem still held, but pte unmapped and unlocked.
1897  */
1898 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1899                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1900                 spinlock_t *ptl, pte_t orig_pte)
1901 {
1902         struct page *old_page, *new_page;
1903         pte_t entry;
1904         int reuse = 0, ret = 0;
1905         int page_mkwrite = 0;
1906         struct page *dirty_page = NULL;
1907
1908         old_page = vm_normal_page(vma, address, orig_pte);
1909         if (!old_page) {
1910                 /*
1911                  * VM_MIXEDMAP !pfn_valid() case
1912                  *
1913                  * We should not cow pages in a shared writeable mapping.
1914                  * Just mark the pages writable as we can't do any dirty
1915                  * accounting on raw pfn maps.
1916                  */
1917                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1918                                      (VM_WRITE|VM_SHARED))
1919                         goto reuse;
1920                 goto gotten;
1921         }
1922
1923         /*
1924          * Take out anonymous pages first, anonymous shared vmas are
1925          * not dirty accountable.
1926          */
1927         if (PageAnon(old_page)) {
1928                 if (!trylock_page(old_page)) {
1929                         page_cache_get(old_page);
1930                         pte_unmap_unlock(page_table, ptl);
1931                         lock_page(old_page);
1932                         page_table = pte_offset_map_lock(mm, pmd, address,
1933                                                          &ptl);
1934                         if (!pte_same(*page_table, orig_pte)) {
1935                                 unlock_page(old_page);
1936                                 page_cache_release(old_page);
1937                                 goto unlock;
1938                         }
1939                         page_cache_release(old_page);
1940                 }
1941                 reuse = reuse_swap_page(old_page);
1942                 unlock_page(old_page);
1943         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1944                                         (VM_WRITE|VM_SHARED))) {
1945                 /*
1946                  * Only catch write-faults on shared writable pages,
1947                  * read-only shared pages can get COWed by
1948                  * get_user_pages(.write=1, .force=1).
1949                  */
1950                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1951                         /*
1952                          * Notify the address space that the page is about to
1953                          * become writable so that it can prohibit this or wait
1954                          * for the page to get into an appropriate state.
1955                          *
1956                          * We do this without the lock held, so that it can
1957                          * sleep if it needs to.
1958                          */
1959                         page_cache_get(old_page);
1960                         pte_unmap_unlock(page_table, ptl);
1961
1962                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1963                                 goto unwritable_page;
1964
1965                         /*
1966                          * Since we dropped the lock we need to revalidate
1967                          * the PTE as someone else may have changed it.  If
1968                          * they did, we just return, as we can count on the
1969                          * MMU to tell us if they didn't also make it writable.
1970                          */
1971                         page_table = pte_offset_map_lock(mm, pmd, address,
1972                                                          &ptl);
1973                         page_cache_release(old_page);
1974                         if (!pte_same(*page_table, orig_pte))
1975                                 goto unlock;
1976
1977                         page_mkwrite = 1;
1978                 }
1979                 dirty_page = old_page;
1980                 get_page(dirty_page);
1981                 reuse = 1;
1982         }
1983
1984         if (reuse) {
1985 reuse:
1986                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1987                 entry = pte_mkyoung(orig_pte);
1988                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1989                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1990                         update_mmu_cache(vma, address, entry);
1991                 ret |= VM_FAULT_WRITE;
1992                 goto unlock;
1993         }
1994
1995         /*
1996          * Ok, we need to copy. Oh, well..
1997          */
1998         page_cache_get(old_page);
1999 gotten:
2000         pte_unmap_unlock(page_table, ptl);
2001
2002         if (unlikely(anon_vma_prepare(vma)))
2003                 goto oom;
2004         VM_BUG_ON(old_page == ZERO_PAGE(0));
2005         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2006         if (!new_page)
2007                 goto oom;
2008         /*
2009          * Don't let another task, with possibly unlocked vma,
2010          * keep the mlocked page.
2011          */
2012         if ((vma->vm_flags & VM_LOCKED) && old_page) {
2013                 lock_page(old_page);    /* for LRU manipulation */
2014                 clear_page_mlock(old_page);
2015                 unlock_page(old_page);
2016         }
2017         cow_user_page(new_page, old_page, address, vma);
2018         __SetPageUptodate(new_page);
2019
2020         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2021                 goto oom_free_new;
2022
2023         /*
2024          * Re-check the pte - we dropped the lock
2025          */
2026         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2027         if (likely(pte_same(*page_table, orig_pte))) {
2028                 if (old_page) {
2029                         if (!PageAnon(old_page)) {
2030                                 dec_mm_counter(mm, file_rss);
2031                                 inc_mm_counter(mm, anon_rss);
2032                         }
2033                 } else
2034                         inc_mm_counter(mm, anon_rss);
2035                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2036                 entry = mk_pte(new_page, vma->vm_page_prot);
2037                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2038                 /*
2039                  * Clear the pte entry and flush it first, before updating the
2040                  * pte with the new entry. This will avoid a race condition
2041                  * seen in the presence of one thread doing SMC and another
2042                  * thread doing COW.
2043                  */
2044                 ptep_clear_flush_notify(vma, address, page_table);
2045                 page_add_new_anon_rmap(new_page, vma, address);
2046                 set_pte_at(mm, address, page_table, entry);
2047                 update_mmu_cache(vma, address, entry);
2048                 if (old_page) {
2049                         /*
2050                          * Only after switching the pte to the new page may
2051                          * we remove the mapcount here. Otherwise another
2052                          * process may come and find the rmap count decremented
2053                          * before the pte is switched to the new page, and
2054                          * "reuse" the old page writing into it while our pte
2055                          * here still points into it and can be read by other
2056                          * threads.
2057                          *
2058                          * The critical issue is to order this
2059                          * page_remove_rmap with the ptp_clear_flush above.
2060                          * Those stores are ordered by (if nothing else,)
2061                          * the barrier present in the atomic_add_negative
2062                          * in page_remove_rmap.
2063                          *
2064                          * Then the TLB flush in ptep_clear_flush ensures that
2065                          * no process can access the old page before the
2066                          * decremented mapcount is visible. And the old page
2067                          * cannot be reused until after the decremented
2068                          * mapcount is visible. So transitively, TLBs to
2069                          * old page will be flushed before it can be reused.
2070                          */
2071                         page_remove_rmap(old_page);
2072                 }
2073
2074                 /* Free the old page.. */
2075                 new_page = old_page;
2076                 ret |= VM_FAULT_WRITE;
2077         } else
2078                 mem_cgroup_uncharge_page(new_page);
2079
2080         if (new_page)
2081                 page_cache_release(new_page);
2082         if (old_page)
2083                 page_cache_release(old_page);
2084 unlock:
2085         pte_unmap_unlock(page_table, ptl);
2086         if (dirty_page) {
2087                 if (vma->vm_file)
2088                         file_update_time(vma->vm_file);
2089
2090                 /*
2091                  * Yes, Virginia, this is actually required to prevent a race
2092                  * with clear_page_dirty_for_io() from clearing the page dirty
2093                  * bit after it clear all dirty ptes, but before a racing
2094                  * do_wp_page installs a dirty pte.
2095                  *
2096                  * do_no_page is protected similarly.
2097                  */
2098                 wait_on_page_locked(dirty_page);
2099                 set_page_dirty_balance(dirty_page, page_mkwrite);
2100                 put_page(dirty_page);
2101         }
2102         return ret;
2103 oom_free_new:
2104         page_cache_release(new_page);
2105 oom:
2106         if (old_page)
2107                 page_cache_release(old_page);
2108         return VM_FAULT_OOM;
2109
2110 unwritable_page:
2111         page_cache_release(old_page);
2112         return VM_FAULT_SIGBUS;
2113 }
2114
2115 /*
2116  * Helper functions for unmap_mapping_range().
2117  *
2118  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2119  *
2120  * We have to restart searching the prio_tree whenever we drop the lock,
2121  * since the iterator is only valid while the lock is held, and anyway
2122  * a later vma might be split and reinserted earlier while lock dropped.
2123  *
2124  * The list of nonlinear vmas could be handled more efficiently, using
2125  * a placeholder, but handle it in the same way until a need is shown.
2126  * It is important to search the prio_tree before nonlinear list: a vma
2127  * may become nonlinear and be shifted from prio_tree to nonlinear list
2128  * while the lock is dropped; but never shifted from list to prio_tree.
2129  *
2130  * In order to make forward progress despite restarting the search,
2131  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2132  * quickly skip it next time around.  Since the prio_tree search only
2133  * shows us those vmas affected by unmapping the range in question, we
2134  * can't efficiently keep all vmas in step with mapping->truncate_count:
2135  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2136  * mapping->truncate_count and vma->vm_truncate_count are protected by
2137  * i_mmap_lock.
2138  *
2139  * In order to make forward progress despite repeatedly restarting some
2140  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2141  * and restart from that address when we reach that vma again.  It might
2142  * have been split or merged, shrunk or extended, but never shifted: so
2143  * restart_addr remains valid so long as it remains in the vma's range.
2144  * unmap_mapping_range forces truncate_count to leap over page-aligned
2145  * values so we can save vma's restart_addr in its truncate_count field.
2146  */
2147 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2148
2149 static void reset_vma_truncate_counts(struct address_space *mapping)
2150 {
2151         struct vm_area_struct *vma;
2152         struct prio_tree_iter iter;
2153
2154         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2155                 vma->vm_truncate_count = 0;
2156         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2157                 vma->vm_truncate_count = 0;
2158 }
2159
2160 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2161                 unsigned long start_addr, unsigned long end_addr,
2162                 struct zap_details *details)
2163 {
2164         unsigned long restart_addr;
2165         int need_break;
2166
2167         /*
2168          * files that support invalidating or truncating portions of the
2169          * file from under mmaped areas must have their ->fault function
2170          * return a locked page (and set VM_FAULT_LOCKED in the return).
2171          * This provides synchronisation against concurrent unmapping here.
2172          */
2173
2174 again:
2175         restart_addr = vma->vm_truncate_count;
2176         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2177                 start_addr = restart_addr;
2178                 if (start_addr >= end_addr) {
2179                         /* Top of vma has been split off since last time */
2180                         vma->vm_truncate_count = details->truncate_count;
2181                         return 0;
2182                 }
2183         }
2184
2185         restart_addr = zap_page_range(vma, start_addr,
2186                                         end_addr - start_addr, details);
2187         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2188
2189         if (restart_addr >= end_addr) {
2190                 /* We have now completed this vma: mark it so */
2191                 vma->vm_truncate_count = details->truncate_count;
2192                 if (!need_break)
2193                         return 0;
2194         } else {
2195                 /* Note restart_addr in vma's truncate_count field */
2196                 vma->vm_truncate_count = restart_addr;
2197                 if (!need_break)
2198                         goto again;
2199         }
2200
2201         spin_unlock(details->i_mmap_lock);
2202         cond_resched();
2203         spin_lock(details->i_mmap_lock);
2204         return -EINTR;
2205 }
2206
2207 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2208                                             struct zap_details *details)
2209 {
2210         struct vm_area_struct *vma;
2211         struct prio_tree_iter iter;
2212         pgoff_t vba, vea, zba, zea;
2213
2214 restart:
2215         vma_prio_tree_foreach(vma, &iter, root,
2216                         details->first_index, details->last_index) {
2217                 /* Skip quickly over those we have already dealt with */
2218                 if (vma->vm_truncate_count == details->truncate_count)
2219                         continue;
2220
2221                 vba = vma->vm_pgoff;
2222                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2223                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2224                 zba = details->first_index;
2225                 if (zba < vba)
2226                         zba = vba;
2227                 zea = details->last_index;
2228                 if (zea > vea)
2229                         zea = vea;
2230
2231                 if (unmap_mapping_range_vma(vma,
2232                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2233                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2234                                 details) < 0)
2235                         goto restart;
2236         }
2237 }
2238
2239 static inline void unmap_mapping_range_list(struct list_head *head,
2240                                             struct zap_details *details)
2241 {
2242         struct vm_area_struct *vma;
2243
2244         /*
2245          * In nonlinear VMAs there is no correspondence between virtual address
2246          * offset and file offset.  So we must perform an exhaustive search
2247          * across *all* the pages in each nonlinear VMA, not just the pages
2248          * whose virtual address lies outside the file truncation point.
2249          */
2250 restart:
2251         list_for_each_entry(vma, head, shared.vm_set.list) {
2252                 /* Skip quickly over those we have already dealt with */
2253                 if (vma->vm_truncate_count == details->truncate_count)
2254                         continue;
2255                 details->nonlinear_vma = vma;
2256                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2257                                         vma->vm_end, details) < 0)
2258                         goto restart;
2259         }
2260 }
2261
2262 /**
2263  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2264  * @mapping: the address space containing mmaps to be unmapped.
2265  * @holebegin: byte in first page to unmap, relative to the start of
2266  * the underlying file.  This will be rounded down to a PAGE_SIZE
2267  * boundary.  Note that this is different from vmtruncate(), which
2268  * must keep the partial page.  In contrast, we must get rid of
2269  * partial pages.
2270  * @holelen: size of prospective hole in bytes.  This will be rounded
2271  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2272  * end of the file.
2273  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2274  * but 0 when invalidating pagecache, don't throw away private data.
2275  */
2276 void unmap_mapping_range(struct address_space *mapping,
2277                 loff_t const holebegin, loff_t const holelen, int even_cows)
2278 {
2279         struct zap_details details;
2280         pgoff_t hba = holebegin >> PAGE_SHIFT;
2281         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2282
2283         /* Check for overflow. */
2284         if (sizeof(holelen) > sizeof(hlen)) {
2285                 long long holeend =
2286                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2287                 if (holeend & ~(long long)ULONG_MAX)
2288                         hlen = ULONG_MAX - hba + 1;
2289         }
2290
2291         details.check_mapping = even_cows? NULL: mapping;
2292         details.nonlinear_vma = NULL;
2293         details.first_index = hba;
2294         details.last_index = hba + hlen - 1;
2295         if (details.last_index < details.first_index)
2296                 details.last_index = ULONG_MAX;
2297         details.i_mmap_lock = &mapping->i_mmap_lock;
2298
2299         spin_lock(&mapping->i_mmap_lock);
2300
2301         /* Protect against endless unmapping loops */
2302         mapping->truncate_count++;
2303         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2304                 if (mapping->truncate_count == 0)
2305                         reset_vma_truncate_counts(mapping);
2306                 mapping->truncate_count++;
2307         }
2308         details.truncate_count = mapping->truncate_count;
2309
2310         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2311                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2312         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2313                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2314         spin_unlock(&mapping->i_mmap_lock);
2315 }
2316 EXPORT_SYMBOL(unmap_mapping_range);
2317
2318 /**
2319  * vmtruncate - unmap mappings "freed" by truncate() syscall
2320  * @inode: inode of the file used
2321  * @offset: file offset to start truncating
2322  *
2323  * NOTE! We have to be ready to update the memory sharing
2324  * between the file and the memory map for a potential last
2325  * incomplete page.  Ugly, but necessary.
2326  */
2327 int vmtruncate(struct inode * inode, loff_t offset)
2328 {
2329         if (inode->i_size < offset) {
2330                 unsigned long limit;
2331
2332                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2333                 if (limit != RLIM_INFINITY && offset > limit)
2334                         goto out_sig;
2335                 if (offset > inode->i_sb->s_maxbytes)
2336                         goto out_big;
2337                 i_size_write(inode, offset);
2338         } else {
2339                 struct address_space *mapping = inode->i_mapping;
2340
2341                 /*
2342                  * truncation of in-use swapfiles is disallowed - it would
2343                  * cause subsequent swapout to scribble on the now-freed
2344                  * blocks.
2345                  */
2346                 if (IS_SWAPFILE(inode))
2347                         return -ETXTBSY;
2348                 i_size_write(inode, offset);
2349
2350                 /*
2351                  * unmap_mapping_range is called twice, first simply for
2352                  * efficiency so that truncate_inode_pages does fewer
2353                  * single-page unmaps.  However after this first call, and
2354                  * before truncate_inode_pages finishes, it is possible for
2355                  * private pages to be COWed, which remain after
2356                  * truncate_inode_pages finishes, hence the second
2357                  * unmap_mapping_range call must be made for correctness.
2358                  */
2359                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2360                 truncate_inode_pages(mapping, offset);
2361                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2362         }
2363
2364         if (inode->i_op->truncate)
2365                 inode->i_op->truncate(inode);
2366         return 0;
2367
2368 out_sig:
2369         send_sig(SIGXFSZ, current, 0);
2370 out_big:
2371         return -EFBIG;
2372 }
2373 EXPORT_SYMBOL(vmtruncate);
2374
2375 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2376 {
2377         struct address_space *mapping = inode->i_mapping;
2378
2379         /*
2380          * If the underlying filesystem is not going to provide
2381          * a way to truncate a range of blocks (punch a hole) -
2382          * we should return failure right now.
2383          */
2384         if (!inode->i_op->truncate_range)
2385                 return -ENOSYS;
2386
2387         mutex_lock(&inode->i_mutex);
2388         down_write(&inode->i_alloc_sem);
2389         unmap_mapping_range(mapping, offset, (end - offset), 1);
2390         truncate_inode_pages_range(mapping, offset, end);
2391         unmap_mapping_range(mapping, offset, (end - offset), 1);
2392         inode->i_op->truncate_range(inode, offset, end);
2393         up_write(&inode->i_alloc_sem);
2394         mutex_unlock(&inode->i_mutex);
2395
2396         return 0;
2397 }
2398
2399 /*
2400  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401  * but allow concurrent faults), and pte mapped but not yet locked.
2402  * We return with mmap_sem still held, but pte unmapped and unlocked.
2403  */
2404 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2405                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2406                 int write_access, pte_t orig_pte)
2407 {
2408         spinlock_t *ptl;
2409         struct page *page;
2410         swp_entry_t entry;
2411         pte_t pte;
2412         struct mem_cgroup *ptr = NULL;
2413         int ret = 0;
2414
2415         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2416                 goto out;
2417
2418         entry = pte_to_swp_entry(orig_pte);
2419         if (is_migration_entry(entry)) {
2420                 migration_entry_wait(mm, pmd, address);
2421                 goto out;
2422         }
2423         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2424         page = lookup_swap_cache(entry);
2425         if (!page) {
2426                 grab_swap_token(); /* Contend for token _before_ read-in */
2427                 page = swapin_readahead(entry,
2428                                         GFP_HIGHUSER_MOVABLE, vma, address);
2429                 if (!page) {
2430                         /*
2431                          * Back out if somebody else faulted in this pte
2432                          * while we released the pte lock.
2433                          */
2434                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2435                         if (likely(pte_same(*page_table, orig_pte)))
2436                                 ret = VM_FAULT_OOM;
2437                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2438                         goto unlock;
2439                 }
2440
2441                 /* Had to read the page from swap area: Major fault */
2442                 ret = VM_FAULT_MAJOR;
2443                 count_vm_event(PGMAJFAULT);
2444         }
2445
2446         mark_page_accessed(page);
2447
2448         lock_page(page);
2449         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2450
2451         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2452                 ret = VM_FAULT_OOM;
2453                 unlock_page(page);
2454                 goto out;
2455         }
2456
2457         /*
2458          * Back out if somebody else already faulted in this pte.
2459          */
2460         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2461         if (unlikely(!pte_same(*page_table, orig_pte)))
2462                 goto out_nomap;
2463
2464         if (unlikely(!PageUptodate(page))) {
2465                 ret = VM_FAULT_SIGBUS;
2466                 goto out_nomap;
2467         }
2468
2469         /*
2470          * The page isn't present yet, go ahead with the fault.
2471          *
2472          * Be careful about the sequence of operations here.
2473          * To get its accounting right, reuse_swap_page() must be called
2474          * while the page is counted on swap but not yet in mapcount i.e.
2475          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2476          * must be called after the swap_free(), or it will never succeed.
2477          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2478          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2479          * in page->private. In this case, a record in swap_cgroup  is silently
2480          * discarded at swap_free().
2481          */
2482
2483         inc_mm_counter(mm, anon_rss);
2484         pte = mk_pte(page, vma->vm_page_prot);
2485         if (write_access && reuse_swap_page(page)) {
2486                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2487                 write_access = 0;
2488         }
2489         flush_icache_page(vma, page);
2490         set_pte_at(mm, address, page_table, pte);
2491         page_add_anon_rmap(page, vma, address);
2492         /* It's better to call commit-charge after rmap is established */
2493         mem_cgroup_commit_charge_swapin(page, ptr);
2494
2495         swap_free(entry);
2496         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2497                 try_to_free_swap(page);
2498         unlock_page(page);
2499
2500         if (write_access) {
2501                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2502                 if (ret & VM_FAULT_ERROR)
2503                         ret &= VM_FAULT_ERROR;
2504                 goto out;
2505         }
2506
2507         /* No need to invalidate - it was non-present before */
2508         update_mmu_cache(vma, address, pte);
2509 unlock:
2510         pte_unmap_unlock(page_table, ptl);
2511 out:
2512         return ret;
2513 out_nomap:
2514         mem_cgroup_cancel_charge_swapin(ptr);
2515         pte_unmap_unlock(page_table, ptl);
2516         unlock_page(page);
2517         page_cache_release(page);
2518         return ret;
2519 }
2520
2521 /*
2522  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2523  * but allow concurrent faults), and pte mapped but not yet locked.
2524  * We return with mmap_sem still held, but pte unmapped and unlocked.
2525  */
2526 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2527                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2528                 int write_access)
2529 {
2530         struct page *page;
2531         spinlock_t *ptl;
2532         pte_t entry;
2533
2534         /* Allocate our own private page. */
2535         pte_unmap(page_table);
2536
2537         if (unlikely(anon_vma_prepare(vma)))
2538                 goto oom;
2539         page = alloc_zeroed_user_highpage_movable(vma, address);
2540         if (!page)
2541                 goto oom;
2542         __SetPageUptodate(page);
2543
2544         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2545                 goto oom_free_page;
2546
2547         entry = mk_pte(page, vma->vm_page_prot);
2548         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2549
2550         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2551         if (!pte_none(*page_table))
2552                 goto release;
2553         inc_mm_counter(mm, anon_rss);
2554         page_add_new_anon_rmap(page, vma, address);
2555         set_pte_at(mm, address, page_table, entry);
2556
2557         /* No need to invalidate - it was non-present before */
2558         update_mmu_cache(vma, address, entry);
2559 unlock:
2560         pte_unmap_unlock(page_table, ptl);
2561         return 0;
2562 release:
2563         mem_cgroup_uncharge_page(page);
2564         page_cache_release(page);
2565         goto unlock;
2566 oom_free_page:
2567         page_cache_release(page);
2568 oom:
2569         return VM_FAULT_OOM;
2570 }
2571
2572 /*
2573  * __do_fault() tries to create a new page mapping. It aggressively
2574  * tries to share with existing pages, but makes a separate copy if
2575  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2576  * the next page fault.
2577  *
2578  * As this is called only for pages that do not currently exist, we
2579  * do not need to flush old virtual caches or the TLB.
2580  *
2581  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2582  * but allow concurrent faults), and pte neither mapped nor locked.
2583  * We return with mmap_sem still held, but pte unmapped and unlocked.
2584  */
2585 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2586                 unsigned long address, pmd_t *pmd,
2587                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2588 {
2589         pte_t *page_table;
2590         spinlock_t *ptl;
2591         struct page *page;
2592         pte_t entry;
2593         int anon = 0;
2594         int charged = 0;
2595         struct page *dirty_page = NULL;
2596         struct vm_fault vmf;
2597         int ret;
2598         int page_mkwrite = 0;
2599
2600         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2601         vmf.pgoff = pgoff;
2602         vmf.flags = flags;
2603         vmf.page = NULL;
2604
2605         ret = vma->vm_ops->fault(vma, &vmf);
2606         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2607                 return ret;
2608
2609         /*
2610          * For consistency in subsequent calls, make the faulted page always
2611          * locked.
2612          */
2613         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2614                 lock_page(vmf.page);
2615         else
2616                 VM_BUG_ON(!PageLocked(vmf.page));
2617
2618         /*
2619          * Should we do an early C-O-W break?
2620          */
2621         page = vmf.page;
2622         if (flags & FAULT_FLAG_WRITE) {
2623                 if (!(vma->vm_flags & VM_SHARED)) {
2624                         anon = 1;
2625                         if (unlikely(anon_vma_prepare(vma))) {
2626                                 ret = VM_FAULT_OOM;
2627                                 goto out;
2628                         }
2629                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2630                                                 vma, address);
2631                         if (!page) {
2632                                 ret = VM_FAULT_OOM;
2633                                 goto out;
2634                         }
2635                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2636                                 ret = VM_FAULT_OOM;
2637                                 page_cache_release(page);
2638                                 goto out;
2639                         }
2640                         charged = 1;
2641                         /*
2642                          * Don't let another task, with possibly unlocked vma,
2643                          * keep the mlocked page.
2644                          */
2645                         if (vma->vm_flags & VM_LOCKED)
2646                                 clear_page_mlock(vmf.page);
2647                         copy_user_highpage(page, vmf.page, address, vma);
2648                         __SetPageUptodate(page);
2649                 } else {
2650                         /*
2651                          * If the page will be shareable, see if the backing
2652                          * address space wants to know that the page is about
2653                          * to become writable
2654                          */
2655                         if (vma->vm_ops->page_mkwrite) {
2656                                 unlock_page(page);
2657                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2658                                         ret = VM_FAULT_SIGBUS;
2659                                         anon = 1; /* no anon but release vmf.page */
2660                                         goto out_unlocked;
2661                                 }
2662                                 lock_page(page);
2663                                 /*
2664                                  * XXX: this is not quite right (racy vs
2665                                  * invalidate) to unlock and relock the page
2666                                  * like this, however a better fix requires
2667                                  * reworking page_mkwrite locking API, which
2668                                  * is better done later.
2669                                  */
2670                                 if (!page->mapping) {
2671                                         ret = 0;
2672                                         anon = 1; /* no anon but release vmf.page */
2673                                         goto out;
2674                                 }
2675                                 page_mkwrite = 1;
2676                         }
2677                 }
2678
2679         }
2680
2681         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2682
2683         /*
2684          * This silly early PAGE_DIRTY setting removes a race
2685          * due to the bad i386 page protection. But it's valid
2686          * for other architectures too.
2687          *
2688          * Note that if write_access is true, we either now have
2689          * an exclusive copy of the page, or this is a shared mapping,
2690          * so we can make it writable and dirty to avoid having to
2691          * handle that later.
2692          */
2693         /* Only go through if we didn't race with anybody else... */
2694         if (likely(pte_same(*page_table, orig_pte))) {
2695                 flush_icache_page(vma, page);
2696                 entry = mk_pte(page, vma->vm_page_prot);
2697                 if (flags & FAULT_FLAG_WRITE)
2698                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2699                 if (anon) {
2700                         inc_mm_counter(mm, anon_rss);
2701                         page_add_new_anon_rmap(page, vma, address);
2702                 } else {
2703                         inc_mm_counter(mm, file_rss);
2704                         page_add_file_rmap(page);
2705                         if (flags & FAULT_FLAG_WRITE) {
2706                                 dirty_page = page;
2707                                 get_page(dirty_page);
2708                         }
2709                 }
2710                 set_pte_at(mm, address, page_table, entry);
2711
2712                 /* no need to invalidate: a not-present page won't be cached */
2713                 update_mmu_cache(vma, address, entry);
2714         } else {
2715                 if (charged)
2716                         mem_cgroup_uncharge_page(page);
2717                 if (anon)
2718                         page_cache_release(page);
2719                 else
2720                         anon = 1; /* no anon but release faulted_page */
2721         }
2722
2723         pte_unmap_unlock(page_table, ptl);
2724
2725 out:
2726         unlock_page(vmf.page);
2727 out_unlocked:
2728         if (anon)
2729                 page_cache_release(vmf.page);
2730         else if (dirty_page) {
2731                 if (vma->vm_file)
2732                         file_update_time(vma->vm_file);
2733
2734                 set_page_dirty_balance(dirty_page, page_mkwrite);
2735                 put_page(dirty_page);
2736         }
2737
2738         return ret;
2739 }
2740
2741 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2742                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2743                 int write_access, pte_t orig_pte)
2744 {
2745         pgoff_t pgoff = (((address & PAGE_MASK)
2746                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2747         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2748
2749         pte_unmap(page_table);
2750         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2751 }
2752
2753 /*
2754  * Fault of a previously existing named mapping. Repopulate the pte
2755  * from the encoded file_pte if possible. This enables swappable
2756  * nonlinear vmas.
2757  *
2758  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759  * but allow concurrent faults), and pte mapped but not yet locked.
2760  * We return with mmap_sem still held, but pte unmapped and unlocked.
2761  */
2762 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2763                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2764                 int write_access, pte_t orig_pte)
2765 {
2766         unsigned int flags = FAULT_FLAG_NONLINEAR |
2767                                 (write_access ? FAULT_FLAG_WRITE : 0);
2768         pgoff_t pgoff;
2769
2770         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2771                 return 0;
2772
2773         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2774                 /*
2775                  * Page table corrupted: show pte and kill process.
2776                  */
2777                 print_bad_pte(vma, address, orig_pte, NULL);
2778                 return VM_FAULT_OOM;
2779         }
2780
2781         pgoff = pte_to_pgoff(orig_pte);
2782         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2783 }
2784
2785 /*
2786  * These routines also need to handle stuff like marking pages dirty
2787  * and/or accessed for architectures that don't do it in hardware (most
2788  * RISC architectures).  The early dirtying is also good on the i386.
2789  *
2790  * There is also a hook called "update_mmu_cache()" that architectures
2791  * with external mmu caches can use to update those (ie the Sparc or
2792  * PowerPC hashed page tables that act as extended TLBs).
2793  *
2794  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2795  * but allow concurrent faults), and pte mapped but not yet locked.
2796  * We return with mmap_sem still held, but pte unmapped and unlocked.
2797  */
2798 static inline int handle_pte_fault(struct mm_struct *mm,
2799                 struct vm_area_struct *vma, unsigned long address,
2800                 pte_t *pte, pmd_t *pmd, int write_access)
2801 {
2802         pte_t entry;
2803         spinlock_t *ptl;
2804
2805         entry = *pte;
2806         if (!pte_present(entry)) {
2807                 if (pte_none(entry)) {
2808                         if (vma->vm_ops) {
2809                                 if (likely(vma->vm_ops->fault))
2810                                         return do_linear_fault(mm, vma, address,
2811                                                 pte, pmd, write_access, entry);
2812                         }
2813                         return do_anonymous_page(mm, vma, address,
2814                                                  pte, pmd, write_access);
2815                 }
2816                 if (pte_file(entry))
2817                         return do_nonlinear_fault(mm, vma, address,
2818                                         pte, pmd, write_access, entry);
2819                 return do_swap_page(mm, vma, address,
2820                                         pte, pmd, write_access, entry);
2821         }
2822
2823         ptl = pte_lockptr(mm, pmd);
2824         spin_lock(ptl);
2825         if (unlikely(!pte_same(*pte, entry)))
2826                 goto unlock;
2827         if (write_access) {
2828                 if (!pte_write(entry))
2829                         return do_wp_page(mm, vma, address,
2830                                         pte, pmd, ptl, entry);
2831                 entry = pte_mkdirty(entry);
2832         }
2833         entry = pte_mkyoung(entry);
2834         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2835                 update_mmu_cache(vma, address, entry);
2836         } else {
2837                 /*
2838                  * This is needed only for protection faults but the arch code
2839                  * is not yet telling us if this is a protection fault or not.
2840                  * This still avoids useless tlb flushes for .text page faults
2841                  * with threads.
2842                  */
2843                 if (write_access)
2844                         flush_tlb_page(vma, address);
2845         }
2846 unlock:
2847         pte_unmap_unlock(pte, ptl);
2848         return 0;
2849 }
2850
2851 /*
2852  * By the time we get here, we already hold the mm semaphore
2853  */
2854 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2855                 unsigned long address, int write_access)
2856 {
2857         pgd_t *pgd;
2858         pud_t *pud;
2859         pmd_t *pmd;
2860         pte_t *pte;
2861
2862         __set_current_state(TASK_RUNNING);
2863
2864         count_vm_event(PGFAULT);
2865
2866         if (unlikely(is_vm_hugetlb_page(vma)))
2867                 return hugetlb_fault(mm, vma, address, write_access);
2868
2869         pgd = pgd_offset(mm, address);
2870         pud = pud_alloc(mm, pgd, address);
2871         if (!pud)
2872                 return VM_FAULT_OOM;
2873         pmd = pmd_alloc(mm, pud, address);
2874         if (!pmd)
2875                 return VM_FAULT_OOM;
2876         pte = pte_alloc_map(mm, pmd, address);
2877         if (!pte)
2878                 return VM_FAULT_OOM;
2879
2880         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2881 }
2882
2883 #ifndef __PAGETABLE_PUD_FOLDED
2884 /*
2885  * Allocate page upper directory.
2886  * We've already handled the fast-path in-line.
2887  */
2888 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2889 {
2890         pud_t *new = pud_alloc_one(mm, address);
2891         if (!new)
2892                 return -ENOMEM;
2893
2894         smp_wmb(); /* See comment in __pte_alloc */
2895
2896         spin_lock(&mm->page_table_lock);
2897         if (pgd_present(*pgd))          /* Another has populated it */
2898                 pud_free(mm, new);
2899         else
2900                 pgd_populate(mm, pgd, new);
2901         spin_unlock(&mm->page_table_lock);
2902         return 0;
2903 }
2904 #endif /* __PAGETABLE_PUD_FOLDED */
2905
2906 #ifndef __PAGETABLE_PMD_FOLDED
2907 /*
2908  * Allocate page middle directory.
2909  * We've already handled the fast-path in-line.
2910  */
2911 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2912 {
2913         pmd_t *new = pmd_alloc_one(mm, address);
2914         if (!new)
2915                 return -ENOMEM;
2916
2917         smp_wmb(); /* See comment in __pte_alloc */
2918
2919         spin_lock(&mm->page_table_lock);
2920 #ifndef __ARCH_HAS_4LEVEL_HACK
2921         if (pud_present(*pud))          /* Another has populated it */
2922                 pmd_free(mm, new);
2923         else
2924                 pud_populate(mm, pud, new);
2925 #else
2926         if (pgd_present(*pud))          /* Another has populated it */
2927                 pmd_free(mm, new);
2928         else
2929                 pgd_populate(mm, pud, new);
2930 #endif /* __ARCH_HAS_4LEVEL_HACK */
2931         spin_unlock(&mm->page_table_lock);
2932         return 0;
2933 }
2934 #endif /* __PAGETABLE_PMD_FOLDED */
2935
2936 int make_pages_present(unsigned long addr, unsigned long end)
2937 {
2938         int ret, len, write;
2939         struct vm_area_struct * vma;
2940
2941         vma = find_vma(current->mm, addr);
2942         if (!vma)
2943                 return -ENOMEM;
2944         write = (vma->vm_flags & VM_WRITE) != 0;
2945         BUG_ON(addr >= end);
2946         BUG_ON(end > vma->vm_end);
2947         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2948         ret = get_user_pages(current, current->mm, addr,
2949                         len, write, 0, NULL, NULL);
2950         if (ret < 0)
2951                 return ret;
2952         return ret == len ? 0 : -EFAULT;
2953 }
2954
2955 #if !defined(__HAVE_ARCH_GATE_AREA)
2956
2957 #if defined(AT_SYSINFO_EHDR)
2958 static struct vm_area_struct gate_vma;
2959
2960 static int __init gate_vma_init(void)
2961 {
2962         gate_vma.vm_mm = NULL;
2963         gate_vma.vm_start = FIXADDR_USER_START;
2964         gate_vma.vm_end = FIXADDR_USER_END;
2965         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2966         gate_vma.vm_page_prot = __P101;
2967         /*
2968          * Make sure the vDSO gets into every core dump.
2969          * Dumping its contents makes post-mortem fully interpretable later
2970          * without matching up the same kernel and hardware config to see
2971          * what PC values meant.
2972          */
2973         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2974         return 0;
2975 }
2976 __initcall(gate_vma_init);
2977 #endif
2978
2979 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2980 {
2981 #ifdef AT_SYSINFO_EHDR
2982         return &gate_vma;
2983 #else
2984         return NULL;
2985 #endif
2986 }
2987
2988 int in_gate_area_no_task(unsigned long addr)
2989 {
2990 #ifdef AT_SYSINFO_EHDR
2991         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2992                 return 1;
2993 #endif
2994         return 0;
2995 }
2996
2997 #endif  /* __HAVE_ARCH_GATE_AREA */
2998
2999 #ifdef CONFIG_HAVE_IOREMAP_PROT
3000 int follow_phys(struct vm_area_struct *vma,
3001                 unsigned long address, unsigned int flags,
3002                 unsigned long *prot, resource_size_t *phys)
3003 {
3004         pgd_t *pgd;
3005         pud_t *pud;
3006         pmd_t *pmd;
3007         pte_t *ptep, pte;
3008         spinlock_t *ptl;
3009         resource_size_t phys_addr = 0;
3010         struct mm_struct *mm = vma->vm_mm;
3011         int ret = -EINVAL;
3012
3013         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3014                 goto out;
3015
3016         pgd = pgd_offset(mm, address);
3017         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3018                 goto out;
3019
3020         pud = pud_offset(pgd, address);
3021         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3022                 goto out;
3023
3024         pmd = pmd_offset(pud, address);
3025         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3026                 goto out;
3027
3028         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3029         if (pmd_huge(*pmd))
3030                 goto out;
3031
3032         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3033         if (!ptep)
3034                 goto out;
3035
3036         pte = *ptep;
3037         if (!pte_present(pte))
3038                 goto unlock;
3039         if ((flags & FOLL_WRITE) && !pte_write(pte))
3040                 goto unlock;
3041         phys_addr = pte_pfn(pte);
3042         phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3043
3044         *prot = pgprot_val(pte_pgprot(pte));
3045         *phys = phys_addr;
3046         ret = 0;
3047
3048 unlock:
3049         pte_unmap_unlock(ptep, ptl);
3050 out:
3051         return ret;
3052 }
3053
3054 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3055                         void *buf, int len, int write)
3056 {
3057         resource_size_t phys_addr;
3058         unsigned long prot = 0;
3059         void __iomem *maddr;
3060         int offset = addr & (PAGE_SIZE-1);
3061
3062         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3063                 return -EINVAL;
3064
3065         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3066         if (write)
3067                 memcpy_toio(maddr + offset, buf, len);
3068         else
3069                 memcpy_fromio(buf, maddr + offset, len);
3070         iounmap(maddr);
3071
3072         return len;
3073 }
3074 #endif
3075
3076 /*
3077  * Access another process' address space.
3078  * Source/target buffer must be kernel space,
3079  * Do not walk the page table directly, use get_user_pages
3080  */
3081 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3082 {
3083         struct mm_struct *mm;
3084         struct vm_area_struct *vma;
3085         void *old_buf = buf;
3086
3087         mm = get_task_mm(tsk);
3088         if (!mm)
3089                 return 0;
3090
3091         down_read(&mm->mmap_sem);
3092         /* ignore errors, just check how much was successfully transferred */
3093         while (len) {
3094                 int bytes, ret, offset;
3095                 void *maddr;
3096                 struct page *page = NULL;
3097
3098                 ret = get_user_pages(tsk, mm, addr, 1,
3099                                 write, 1, &page, &vma);
3100                 if (ret <= 0) {
3101                         /*
3102                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3103                          * we can access using slightly different code.
3104                          */
3105 #ifdef CONFIG_HAVE_IOREMAP_PROT
3106                         vma = find_vma(mm, addr);
3107                         if (!vma)
3108                                 break;
3109                         if (vma->vm_ops && vma->vm_ops->access)
3110                                 ret = vma->vm_ops->access(vma, addr, buf,
3111                                                           len, write);
3112                         if (ret <= 0)
3113 #endif
3114                                 break;
3115                         bytes = ret;
3116                 } else {
3117                         bytes = len;
3118                         offset = addr & (PAGE_SIZE-1);
3119                         if (bytes > PAGE_SIZE-offset)
3120                                 bytes = PAGE_SIZE-offset;
3121
3122                         maddr = kmap(page);
3123                         if (write) {
3124                                 copy_to_user_page(vma, page, addr,
3125                                                   maddr + offset, buf, bytes);
3126                                 set_page_dirty_lock(page);
3127                         } else {
3128                                 copy_from_user_page(vma, page, addr,
3129                                                     buf, maddr + offset, bytes);
3130                         }
3131                         kunmap(page);
3132                         page_cache_release(page);
3133                 }
3134                 len -= bytes;
3135                 buf += bytes;
3136                 addr += bytes;
3137         }
3138         up_read(&mm->mmap_sem);
3139         mmput(mm);
3140
3141         return buf - old_buf;
3142 }
3143
3144 /*
3145  * Print the name of a VMA.
3146  */
3147 void print_vma_addr(char *prefix, unsigned long ip)
3148 {
3149         struct mm_struct *mm = current->mm;
3150         struct vm_area_struct *vma;
3151
3152         /*
3153          * Do not print if we are in atomic
3154          * contexts (in exception stacks, etc.):
3155          */
3156         if (preempt_count())
3157                 return;
3158
3159         down_read(&mm->mmap_sem);
3160         vma = find_vma(mm, ip);
3161         if (vma && vma->vm_file) {
3162                 struct file *f = vma->vm_file;
3163                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3164                 if (buf) {
3165                         char *p, *s;
3166
3167                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3168                         if (IS_ERR(p))
3169                                 p = "?";
3170                         s = strrchr(p, '/');
3171                         if (s)
3172                                 p = s+1;
3173                         printk("%s%s[%lx+%lx]", prefix, p,
3174                                         vma->vm_start,
3175                                         vma->vm_end - vma->vm_start);
3176                         free_page((unsigned long)buf);
3177                 }
3178         }
3179         up_read(&current->mm->mmap_sem);
3180 }
3181
3182 #ifdef CONFIG_PROVE_LOCKING
3183 void might_fault(void)
3184 {
3185         /*
3186          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3187          * holding the mmap_sem, this is safe because kernel memory doesn't
3188          * get paged out, therefore we'll never actually fault, and the
3189          * below annotations will generate false positives.
3190          */
3191         if (segment_eq(get_fs(), KERNEL_DS))
3192                 return;
3193
3194         might_sleep();
3195         /*
3196          * it would be nicer only to annotate paths which are not under
3197          * pagefault_disable, however that requires a larger audit and
3198          * providing helpers like get_user_atomic.
3199          */
3200         if (!in_atomic() && current->mm)
3201                 might_lock_read(&current->mm->mmap_sem);
3202 }
3203 EXPORT_SYMBOL(might_fault);
3204 #endif