b12888c1b4e3d8c9247cf013988a68c596454610
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97                                         1;
98 #else
99                                         2;
100 #endif
101
102 static int __init disable_randmaps(char *s)
103 {
104         randomize_va_space = 0;
105         return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108
109
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118         pgd_ERROR(*pgd);
119         pgd_clear(pgd);
120 }
121
122 void pud_clear_bad(pud_t *pud)
123 {
124         pud_ERROR(*pud);
125         pud_clear(pud);
126 }
127
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130         pmd_ERROR(*pmd);
131         pmd_clear(pmd);
132 }
133
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140         pgtable_t token = pmd_pgtable(*pmd);
141         pmd_clear(pmd);
142         pte_free_tlb(tlb, token);
143         tlb->mm->nr_ptes--;
144 }
145
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147                                 unsigned long addr, unsigned long end,
148                                 unsigned long floor, unsigned long ceiling)
149 {
150         pmd_t *pmd;
151         unsigned long next;
152         unsigned long start;
153
154         start = addr;
155         pmd = pmd_offset(pud, addr);
156         do {
157                 next = pmd_addr_end(addr, end);
158                 if (pmd_none_or_clear_bad(pmd))
159                         continue;
160                 free_pte_range(tlb, pmd);
161         } while (pmd++, addr = next, addr != end);
162
163         start &= PUD_MASK;
164         if (start < floor)
165                 return;
166         if (ceiling) {
167                 ceiling &= PUD_MASK;
168                 if (!ceiling)
169                         return;
170         }
171         if (end - 1 > ceiling - 1)
172                 return;
173
174         pmd = pmd_offset(pud, start);
175         pud_clear(pud);
176         pmd_free_tlb(tlb, pmd);
177 }
178
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180                                 unsigned long addr, unsigned long end,
181                                 unsigned long floor, unsigned long ceiling)
182 {
183         pud_t *pud;
184         unsigned long next;
185         unsigned long start;
186
187         start = addr;
188         pud = pud_offset(pgd, addr);
189         do {
190                 next = pud_addr_end(addr, end);
191                 if (pud_none_or_clear_bad(pud))
192                         continue;
193                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194         } while (pud++, addr = next, addr != end);
195
196         start &= PGDIR_MASK;
197         if (start < floor)
198                 return;
199         if (ceiling) {
200                 ceiling &= PGDIR_MASK;
201                 if (!ceiling)
202                         return;
203         }
204         if (end - 1 > ceiling - 1)
205                 return;
206
207         pud = pud_offset(pgd, start);
208         pgd_clear(pgd);
209         pud_free_tlb(tlb, pud);
210 }
211
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218                         unsigned long addr, unsigned long end,
219                         unsigned long floor, unsigned long ceiling)
220 {
221         pgd_t *pgd;
222         unsigned long next;
223         unsigned long start;
224
225         /*
226          * The next few lines have given us lots of grief...
227          *
228          * Why are we testing PMD* at this top level?  Because often
229          * there will be no work to do at all, and we'd prefer not to
230          * go all the way down to the bottom just to discover that.
231          *
232          * Why all these "- 1"s?  Because 0 represents both the bottom
233          * of the address space and the top of it (using -1 for the
234          * top wouldn't help much: the masks would do the wrong thing).
235          * The rule is that addr 0 and floor 0 refer to the bottom of
236          * the address space, but end 0 and ceiling 0 refer to the top
237          * Comparisons need to use "end - 1" and "ceiling - 1" (though
238          * that end 0 case should be mythical).
239          *
240          * Wherever addr is brought up or ceiling brought down, we must
241          * be careful to reject "the opposite 0" before it confuses the
242          * subsequent tests.  But what about where end is brought down
243          * by PMD_SIZE below? no, end can't go down to 0 there.
244          *
245          * Whereas we round start (addr) and ceiling down, by different
246          * masks at different levels, in order to test whether a table
247          * now has no other vmas using it, so can be freed, we don't
248          * bother to round floor or end up - the tests don't need that.
249          */
250
251         addr &= PMD_MASK;
252         if (addr < floor) {
253                 addr += PMD_SIZE;
254                 if (!addr)
255                         return;
256         }
257         if (ceiling) {
258                 ceiling &= PMD_MASK;
259                 if (!ceiling)
260                         return;
261         }
262         if (end - 1 > ceiling - 1)
263                 end -= PMD_SIZE;
264         if (addr > end - 1)
265                 return;
266
267         start = addr;
268         pgd = pgd_offset(tlb->mm, addr);
269         do {
270                 next = pgd_addr_end(addr, end);
271                 if (pgd_none_or_clear_bad(pgd))
272                         continue;
273                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274         } while (pgd++, addr = next, addr != end);
275 }
276
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278                 unsigned long floor, unsigned long ceiling)
279 {
280         while (vma) {
281                 struct vm_area_struct *next = vma->vm_next;
282                 unsigned long addr = vma->vm_start;
283
284                 /*
285                  * Hide vma from rmap and vmtruncate before freeing pgtables
286                  */
287                 anon_vma_unlink(vma);
288                 unlink_file_vma(vma);
289
290                 if (is_vm_hugetlb_page(vma)) {
291                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292                                 floor, next? next->vm_start: ceiling);
293                 } else {
294                         /*
295                          * Optimization: gather nearby vmas into one call down
296                          */
297                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298                                && !is_vm_hugetlb_page(next)) {
299                                 vma = next;
300                                 next = vma->vm_next;
301                                 anon_vma_unlink(vma);
302                                 unlink_file_vma(vma);
303                         }
304                         free_pgd_range(tlb, addr, vma->vm_end,
305                                 floor, next? next->vm_start: ceiling);
306                 }
307                 vma = next;
308         }
309 }
310
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313         pgtable_t new = pte_alloc_one(mm, address);
314         if (!new)
315                 return -ENOMEM;
316
317         /*
318          * Ensure all pte setup (eg. pte page lock and page clearing) are
319          * visible before the pte is made visible to other CPUs by being
320          * put into page tables.
321          *
322          * The other side of the story is the pointer chasing in the page
323          * table walking code (when walking the page table without locking;
324          * ie. most of the time). Fortunately, these data accesses consist
325          * of a chain of data-dependent loads, meaning most CPUs (alpha
326          * being the notable exception) will already guarantee loads are
327          * seen in-order. See the alpha page table accessors for the
328          * smp_read_barrier_depends() barriers in page table walking code.
329          */
330         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332         spin_lock(&mm->page_table_lock);
333         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
334                 mm->nr_ptes++;
335                 pmd_populate(mm, pmd, new);
336                 new = NULL;
337         }
338         spin_unlock(&mm->page_table_lock);
339         if (new)
340                 pte_free(mm, new);
341         return 0;
342 }
343
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347         if (!new)
348                 return -ENOMEM;
349
350         smp_wmb(); /* See comment in __pte_alloc */
351
352         spin_lock(&init_mm.page_table_lock);
353         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
354                 pmd_populate_kernel(&init_mm, pmd, new);
355                 new = NULL;
356         }
357         spin_unlock(&init_mm.page_table_lock);
358         if (new)
359                 pte_free_kernel(&init_mm, new);
360         return 0;
361 }
362
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365         if (file_rss)
366                 add_mm_counter(mm, file_rss, file_rss);
367         if (anon_rss)
368                 add_mm_counter(mm, anon_rss, anon_rss);
369 }
370
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379                           pte_t pte, struct page *page)
380 {
381         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382         pud_t *pud = pud_offset(pgd, addr);
383         pmd_t *pmd = pmd_offset(pud, addr);
384         struct address_space *mapping;
385         pgoff_t index;
386         static unsigned long resume;
387         static unsigned long nr_shown;
388         static unsigned long nr_unshown;
389
390         /*
391          * Allow a burst of 60 reports, then keep quiet for that minute;
392          * or allow a steady drip of one report per second.
393          */
394         if (nr_shown == 60) {
395                 if (time_before(jiffies, resume)) {
396                         nr_unshown++;
397                         return;
398                 }
399                 if (nr_unshown) {
400                         printk(KERN_EMERG
401                                 "Bad page map: %lu messages suppressed\n",
402                                 nr_unshown);
403                         nr_unshown = 0;
404                 }
405                 nr_shown = 0;
406         }
407         if (nr_shown++ == 0)
408                 resume = jiffies + 60 * HZ;
409
410         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411         index = linear_page_index(vma, addr);
412
413         printk(KERN_EMERG "Bad page map in process %s  pte:%08llx pmd:%08llx\n",
414                 current->comm,
415                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
416         if (page) {
417                 printk(KERN_EMERG
418                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
419                 page, (void *)page->flags, page_count(page),
420                 page_mapcount(page), page->mapping, page->index);
421         }
422         printk(KERN_EMERG
423                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
424                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
425         /*
426          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
427          */
428         if (vma->vm_ops)
429                 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
430                                 (unsigned long)vma->vm_ops->fault);
431         if (vma->vm_file && vma->vm_file->f_op)
432                 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
433                                 (unsigned long)vma->vm_file->f_op->mmap);
434         dump_stack();
435         add_taint(TAINT_BAD_PAGE);
436 }
437
438 static inline int is_cow_mapping(unsigned int flags)
439 {
440         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
441 }
442
443 /*
444  * vm_normal_page -- This function gets the "struct page" associated with a pte.
445  *
446  * "Special" mappings do not wish to be associated with a "struct page" (either
447  * it doesn't exist, or it exists but they don't want to touch it). In this
448  * case, NULL is returned here. "Normal" mappings do have a struct page.
449  *
450  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
451  * pte bit, in which case this function is trivial. Secondly, an architecture
452  * may not have a spare pte bit, which requires a more complicated scheme,
453  * described below.
454  *
455  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
456  * special mapping (even if there are underlying and valid "struct pages").
457  * COWed pages of a VM_PFNMAP are always normal.
458  *
459  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
460  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
461  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
462  * mapping will always honor the rule
463  *
464  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
465  *
466  * And for normal mappings this is false.
467  *
468  * This restricts such mappings to be a linear translation from virtual address
469  * to pfn. To get around this restriction, we allow arbitrary mappings so long
470  * as the vma is not a COW mapping; in that case, we know that all ptes are
471  * special (because none can have been COWed).
472  *
473  *
474  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
475  *
476  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
477  * page" backing, however the difference is that _all_ pages with a struct
478  * page (that is, those where pfn_valid is true) are refcounted and considered
479  * normal pages by the VM. The disadvantage is that pages are refcounted
480  * (which can be slower and simply not an option for some PFNMAP users). The
481  * advantage is that we don't have to follow the strict linearity rule of
482  * PFNMAP mappings in order to support COWable mappings.
483  *
484  */
485 #ifdef __HAVE_ARCH_PTE_SPECIAL
486 # define HAVE_PTE_SPECIAL 1
487 #else
488 # define HAVE_PTE_SPECIAL 0
489 #endif
490 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
491                                 pte_t pte)
492 {
493         unsigned long pfn = pte_pfn(pte);
494
495         if (HAVE_PTE_SPECIAL) {
496                 if (likely(!pte_special(pte)))
497                         goto check_pfn;
498                 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
499                         print_bad_pte(vma, addr, pte, NULL);
500                 return NULL;
501         }
502
503         /* !HAVE_PTE_SPECIAL case follows: */
504
505         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
506                 if (vma->vm_flags & VM_MIXEDMAP) {
507                         if (!pfn_valid(pfn))
508                                 return NULL;
509                         goto out;
510                 } else {
511                         unsigned long off;
512                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
513                         if (pfn == vma->vm_pgoff + off)
514                                 return NULL;
515                         if (!is_cow_mapping(vma->vm_flags))
516                                 return NULL;
517                 }
518         }
519
520 check_pfn:
521         if (unlikely(pfn > highest_memmap_pfn)) {
522                 print_bad_pte(vma, addr, pte, NULL);
523                 return NULL;
524         }
525
526         /*
527          * NOTE! We still have PageReserved() pages in the page tables.
528          * eg. VDSO mappings can cause them to exist.
529          */
530 out:
531         return pfn_to_page(pfn);
532 }
533
534 /*
535  * copy one vm_area from one task to the other. Assumes the page tables
536  * already present in the new task to be cleared in the whole range
537  * covered by this vma.
538  */
539
540 static inline void
541 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
542                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
543                 unsigned long addr, int *rss)
544 {
545         unsigned long vm_flags = vma->vm_flags;
546         pte_t pte = *src_pte;
547         struct page *page;
548
549         /* pte contains position in swap or file, so copy. */
550         if (unlikely(!pte_present(pte))) {
551                 if (!pte_file(pte)) {
552                         swp_entry_t entry = pte_to_swp_entry(pte);
553
554                         swap_duplicate(entry);
555                         /* make sure dst_mm is on swapoff's mmlist. */
556                         if (unlikely(list_empty(&dst_mm->mmlist))) {
557                                 spin_lock(&mmlist_lock);
558                                 if (list_empty(&dst_mm->mmlist))
559                                         list_add(&dst_mm->mmlist,
560                                                  &src_mm->mmlist);
561                                 spin_unlock(&mmlist_lock);
562                         }
563                         if (is_write_migration_entry(entry) &&
564                                         is_cow_mapping(vm_flags)) {
565                                 /*
566                                  * COW mappings require pages in both parent
567                                  * and child to be set to read.
568                                  */
569                                 make_migration_entry_read(&entry);
570                                 pte = swp_entry_to_pte(entry);
571                                 set_pte_at(src_mm, addr, src_pte, pte);
572                         }
573                 }
574                 goto out_set_pte;
575         }
576
577         /*
578          * If it's a COW mapping, write protect it both
579          * in the parent and the child
580          */
581         if (is_cow_mapping(vm_flags)) {
582                 ptep_set_wrprotect(src_mm, addr, src_pte);
583                 pte = pte_wrprotect(pte);
584         }
585
586         /*
587          * If it's a shared mapping, mark it clean in
588          * the child
589          */
590         if (vm_flags & VM_SHARED)
591                 pte = pte_mkclean(pte);
592         pte = pte_mkold(pte);
593
594         page = vm_normal_page(vma, addr, pte);
595         if (page) {
596                 get_page(page);
597                 page_dup_rmap(page, vma, addr);
598                 rss[!!PageAnon(page)]++;
599         }
600
601 out_set_pte:
602         set_pte_at(dst_mm, addr, dst_pte, pte);
603 }
604
605 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
607                 unsigned long addr, unsigned long end)
608 {
609         pte_t *src_pte, *dst_pte;
610         spinlock_t *src_ptl, *dst_ptl;
611         int progress = 0;
612         int rss[2];
613
614 again:
615         rss[1] = rss[0] = 0;
616         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
617         if (!dst_pte)
618                 return -ENOMEM;
619         src_pte = pte_offset_map_nested(src_pmd, addr);
620         src_ptl = pte_lockptr(src_mm, src_pmd);
621         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
622         arch_enter_lazy_mmu_mode();
623
624         do {
625                 /*
626                  * We are holding two locks at this point - either of them
627                  * could generate latencies in another task on another CPU.
628                  */
629                 if (progress >= 32) {
630                         progress = 0;
631                         if (need_resched() ||
632                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
633                                 break;
634                 }
635                 if (pte_none(*src_pte)) {
636                         progress++;
637                         continue;
638                 }
639                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
640                 progress += 8;
641         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
642
643         arch_leave_lazy_mmu_mode();
644         spin_unlock(src_ptl);
645         pte_unmap_nested(src_pte - 1);
646         add_mm_rss(dst_mm, rss[0], rss[1]);
647         pte_unmap_unlock(dst_pte - 1, dst_ptl);
648         cond_resched();
649         if (addr != end)
650                 goto again;
651         return 0;
652 }
653
654 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
655                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
656                 unsigned long addr, unsigned long end)
657 {
658         pmd_t *src_pmd, *dst_pmd;
659         unsigned long next;
660
661         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
662         if (!dst_pmd)
663                 return -ENOMEM;
664         src_pmd = pmd_offset(src_pud, addr);
665         do {
666                 next = pmd_addr_end(addr, end);
667                 if (pmd_none_or_clear_bad(src_pmd))
668                         continue;
669                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
670                                                 vma, addr, next))
671                         return -ENOMEM;
672         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
673         return 0;
674 }
675
676 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
677                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
678                 unsigned long addr, unsigned long end)
679 {
680         pud_t *src_pud, *dst_pud;
681         unsigned long next;
682
683         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
684         if (!dst_pud)
685                 return -ENOMEM;
686         src_pud = pud_offset(src_pgd, addr);
687         do {
688                 next = pud_addr_end(addr, end);
689                 if (pud_none_or_clear_bad(src_pud))
690                         continue;
691                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
692                                                 vma, addr, next))
693                         return -ENOMEM;
694         } while (dst_pud++, src_pud++, addr = next, addr != end);
695         return 0;
696 }
697
698 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 struct vm_area_struct *vma)
700 {
701         pgd_t *src_pgd, *dst_pgd;
702         unsigned long next;
703         unsigned long addr = vma->vm_start;
704         unsigned long end = vma->vm_end;
705         int ret;
706
707         /*
708          * Don't copy ptes where a page fault will fill them correctly.
709          * Fork becomes much lighter when there are big shared or private
710          * readonly mappings. The tradeoff is that copy_page_range is more
711          * efficient than faulting.
712          */
713         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
714                 if (!vma->anon_vma)
715                         return 0;
716         }
717
718         if (is_vm_hugetlb_page(vma))
719                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
720
721         if (unlikely(is_pfn_mapping(vma))) {
722                 /*
723                  * We do not free on error cases below as remove_vma
724                  * gets called on error from higher level routine
725                  */
726                 ret = track_pfn_vma_copy(vma);
727                 if (ret)
728                         return ret;
729         }
730
731         /*
732          * We need to invalidate the secondary MMU mappings only when
733          * there could be a permission downgrade on the ptes of the
734          * parent mm. And a permission downgrade will only happen if
735          * is_cow_mapping() returns true.
736          */
737         if (is_cow_mapping(vma->vm_flags))
738                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
739
740         ret = 0;
741         dst_pgd = pgd_offset(dst_mm, addr);
742         src_pgd = pgd_offset(src_mm, addr);
743         do {
744                 next = pgd_addr_end(addr, end);
745                 if (pgd_none_or_clear_bad(src_pgd))
746                         continue;
747                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
748                                             vma, addr, next))) {
749                         ret = -ENOMEM;
750                         break;
751                 }
752         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
753
754         if (is_cow_mapping(vma->vm_flags))
755                 mmu_notifier_invalidate_range_end(src_mm,
756                                                   vma->vm_start, end);
757         return ret;
758 }
759
760 static unsigned long zap_pte_range(struct mmu_gather *tlb,
761                                 struct vm_area_struct *vma, pmd_t *pmd,
762                                 unsigned long addr, unsigned long end,
763                                 long *zap_work, struct zap_details *details)
764 {
765         struct mm_struct *mm = tlb->mm;
766         pte_t *pte;
767         spinlock_t *ptl;
768         int file_rss = 0;
769         int anon_rss = 0;
770
771         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
772         arch_enter_lazy_mmu_mode();
773         do {
774                 pte_t ptent = *pte;
775                 if (pte_none(ptent)) {
776                         (*zap_work)--;
777                         continue;
778                 }
779
780                 (*zap_work) -= PAGE_SIZE;
781
782                 if (pte_present(ptent)) {
783                         struct page *page;
784
785                         page = vm_normal_page(vma, addr, ptent);
786                         if (unlikely(details) && page) {
787                                 /*
788                                  * unmap_shared_mapping_pages() wants to
789                                  * invalidate cache without truncating:
790                                  * unmap shared but keep private pages.
791                                  */
792                                 if (details->check_mapping &&
793                                     details->check_mapping != page->mapping)
794                                         continue;
795                                 /*
796                                  * Each page->index must be checked when
797                                  * invalidating or truncating nonlinear.
798                                  */
799                                 if (details->nonlinear_vma &&
800                                     (page->index < details->first_index ||
801                                      page->index > details->last_index))
802                                         continue;
803                         }
804                         ptent = ptep_get_and_clear_full(mm, addr, pte,
805                                                         tlb->fullmm);
806                         tlb_remove_tlb_entry(tlb, pte, addr);
807                         if (unlikely(!page))
808                                 continue;
809                         if (unlikely(details) && details->nonlinear_vma
810                             && linear_page_index(details->nonlinear_vma,
811                                                 addr) != page->index)
812                                 set_pte_at(mm, addr, pte,
813                                            pgoff_to_pte(page->index));
814                         if (PageAnon(page))
815                                 anon_rss--;
816                         else {
817                                 if (pte_dirty(ptent))
818                                         set_page_dirty(page);
819                                 if (pte_young(ptent) &&
820                                     likely(!VM_SequentialReadHint(vma)))
821                                         mark_page_accessed(page);
822                                 file_rss--;
823                         }
824                         page_remove_rmap(page);
825                         if (unlikely(page_mapcount(page) < 0))
826                                 print_bad_pte(vma, addr, ptent, page);
827                         tlb_remove_page(tlb, page);
828                         continue;
829                 }
830                 /*
831                  * If details->check_mapping, we leave swap entries;
832                  * if details->nonlinear_vma, we leave file entries.
833                  */
834                 if (unlikely(details))
835                         continue;
836                 if (pte_file(ptent)) {
837                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
838                                 print_bad_pte(vma, addr, ptent, NULL);
839                 } else if
840                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
841                         print_bad_pte(vma, addr, ptent, NULL);
842                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
843         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
844
845         add_mm_rss(mm, file_rss, anon_rss);
846         arch_leave_lazy_mmu_mode();
847         pte_unmap_unlock(pte - 1, ptl);
848
849         return addr;
850 }
851
852 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
853                                 struct vm_area_struct *vma, pud_t *pud,
854                                 unsigned long addr, unsigned long end,
855                                 long *zap_work, struct zap_details *details)
856 {
857         pmd_t *pmd;
858         unsigned long next;
859
860         pmd = pmd_offset(pud, addr);
861         do {
862                 next = pmd_addr_end(addr, end);
863                 if (pmd_none_or_clear_bad(pmd)) {
864                         (*zap_work)--;
865                         continue;
866                 }
867                 next = zap_pte_range(tlb, vma, pmd, addr, next,
868                                                 zap_work, details);
869         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
870
871         return addr;
872 }
873
874 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
875                                 struct vm_area_struct *vma, pgd_t *pgd,
876                                 unsigned long addr, unsigned long end,
877                                 long *zap_work, struct zap_details *details)
878 {
879         pud_t *pud;
880         unsigned long next;
881
882         pud = pud_offset(pgd, addr);
883         do {
884                 next = pud_addr_end(addr, end);
885                 if (pud_none_or_clear_bad(pud)) {
886                         (*zap_work)--;
887                         continue;
888                 }
889                 next = zap_pmd_range(tlb, vma, pud, addr, next,
890                                                 zap_work, details);
891         } while (pud++, addr = next, (addr != end && *zap_work > 0));
892
893         return addr;
894 }
895
896 static unsigned long unmap_page_range(struct mmu_gather *tlb,
897                                 struct vm_area_struct *vma,
898                                 unsigned long addr, unsigned long end,
899                                 long *zap_work, struct zap_details *details)
900 {
901         pgd_t *pgd;
902         unsigned long next;
903
904         if (details && !details->check_mapping && !details->nonlinear_vma)
905                 details = NULL;
906
907         BUG_ON(addr >= end);
908         tlb_start_vma(tlb, vma);
909         pgd = pgd_offset(vma->vm_mm, addr);
910         do {
911                 next = pgd_addr_end(addr, end);
912                 if (pgd_none_or_clear_bad(pgd)) {
913                         (*zap_work)--;
914                         continue;
915                 }
916                 next = zap_pud_range(tlb, vma, pgd, addr, next,
917                                                 zap_work, details);
918         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
919         tlb_end_vma(tlb, vma);
920
921         return addr;
922 }
923
924 #ifdef CONFIG_PREEMPT
925 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
926 #else
927 /* No preempt: go for improved straight-line efficiency */
928 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
929 #endif
930
931 /**
932  * unmap_vmas - unmap a range of memory covered by a list of vma's
933  * @tlbp: address of the caller's struct mmu_gather
934  * @vma: the starting vma
935  * @start_addr: virtual address at which to start unmapping
936  * @end_addr: virtual address at which to end unmapping
937  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
938  * @details: details of nonlinear truncation or shared cache invalidation
939  *
940  * Returns the end address of the unmapping (restart addr if interrupted).
941  *
942  * Unmap all pages in the vma list.
943  *
944  * We aim to not hold locks for too long (for scheduling latency reasons).
945  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
946  * return the ending mmu_gather to the caller.
947  *
948  * Only addresses between `start' and `end' will be unmapped.
949  *
950  * The VMA list must be sorted in ascending virtual address order.
951  *
952  * unmap_vmas() assumes that the caller will flush the whole unmapped address
953  * range after unmap_vmas() returns.  So the only responsibility here is to
954  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
955  * drops the lock and schedules.
956  */
957 unsigned long unmap_vmas(struct mmu_gather **tlbp,
958                 struct vm_area_struct *vma, unsigned long start_addr,
959                 unsigned long end_addr, unsigned long *nr_accounted,
960                 struct zap_details *details)
961 {
962         long zap_work = ZAP_BLOCK_SIZE;
963         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
964         int tlb_start_valid = 0;
965         unsigned long start = start_addr;
966         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
967         int fullmm = (*tlbp)->fullmm;
968         struct mm_struct *mm = vma->vm_mm;
969
970         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
971         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
972                 unsigned long end;
973
974                 start = max(vma->vm_start, start_addr);
975                 if (start >= vma->vm_end)
976                         continue;
977                 end = min(vma->vm_end, end_addr);
978                 if (end <= vma->vm_start)
979                         continue;
980
981                 if (vma->vm_flags & VM_ACCOUNT)
982                         *nr_accounted += (end - start) >> PAGE_SHIFT;
983
984                 if (unlikely(is_pfn_mapping(vma)))
985                         untrack_pfn_vma(vma, 0, 0);
986
987                 while (start != end) {
988                         if (!tlb_start_valid) {
989                                 tlb_start = start;
990                                 tlb_start_valid = 1;
991                         }
992
993                         if (unlikely(is_vm_hugetlb_page(vma))) {
994                                 /*
995                                  * It is undesirable to test vma->vm_file as it
996                                  * should be non-null for valid hugetlb area.
997                                  * However, vm_file will be NULL in the error
998                                  * cleanup path of do_mmap_pgoff. When
999                                  * hugetlbfs ->mmap method fails,
1000                                  * do_mmap_pgoff() nullifies vma->vm_file
1001                                  * before calling this function to clean up.
1002                                  * Since no pte has actually been setup, it is
1003                                  * safe to do nothing in this case.
1004                                  */
1005                                 if (vma->vm_file) {
1006                                         unmap_hugepage_range(vma, start, end, NULL);
1007                                         zap_work -= (end - start) /
1008                                         pages_per_huge_page(hstate_vma(vma));
1009                                 }
1010
1011                                 start = end;
1012                         } else
1013                                 start = unmap_page_range(*tlbp, vma,
1014                                                 start, end, &zap_work, details);
1015
1016                         if (zap_work > 0) {
1017                                 BUG_ON(start != end);
1018                                 break;
1019                         }
1020
1021                         tlb_finish_mmu(*tlbp, tlb_start, start);
1022
1023                         if (need_resched() ||
1024                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1025                                 if (i_mmap_lock) {
1026                                         *tlbp = NULL;
1027                                         goto out;
1028                                 }
1029                                 cond_resched();
1030                         }
1031
1032                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1033                         tlb_start_valid = 0;
1034                         zap_work = ZAP_BLOCK_SIZE;
1035                 }
1036         }
1037 out:
1038         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1039         return start;   /* which is now the end (or restart) address */
1040 }
1041
1042 /**
1043  * zap_page_range - remove user pages in a given range
1044  * @vma: vm_area_struct holding the applicable pages
1045  * @address: starting address of pages to zap
1046  * @size: number of bytes to zap
1047  * @details: details of nonlinear truncation or shared cache invalidation
1048  */
1049 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1050                 unsigned long size, struct zap_details *details)
1051 {
1052         struct mm_struct *mm = vma->vm_mm;
1053         struct mmu_gather *tlb;
1054         unsigned long end = address + size;
1055         unsigned long nr_accounted = 0;
1056
1057         lru_add_drain();
1058         tlb = tlb_gather_mmu(mm, 0);
1059         update_hiwater_rss(mm);
1060         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1061         if (tlb)
1062                 tlb_finish_mmu(tlb, address, end);
1063         return end;
1064 }
1065
1066 /**
1067  * zap_vma_ptes - remove ptes mapping the vma
1068  * @vma: vm_area_struct holding ptes to be zapped
1069  * @address: starting address of pages to zap
1070  * @size: number of bytes to zap
1071  *
1072  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1073  *
1074  * The entire address range must be fully contained within the vma.
1075  *
1076  * Returns 0 if successful.
1077  */
1078 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1079                 unsigned long size)
1080 {
1081         if (address < vma->vm_start || address + size > vma->vm_end ||
1082                         !(vma->vm_flags & VM_PFNMAP))
1083                 return -1;
1084         zap_page_range(vma, address, size, NULL);
1085         return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1088
1089 /*
1090  * Do a quick page-table lookup for a single page.
1091  */
1092 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1093                         unsigned int flags)
1094 {
1095         pgd_t *pgd;
1096         pud_t *pud;
1097         pmd_t *pmd;
1098         pte_t *ptep, pte;
1099         spinlock_t *ptl;
1100         struct page *page;
1101         struct mm_struct *mm = vma->vm_mm;
1102
1103         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1104         if (!IS_ERR(page)) {
1105                 BUG_ON(flags & FOLL_GET);
1106                 goto out;
1107         }
1108
1109         page = NULL;
1110         pgd = pgd_offset(mm, address);
1111         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1112                 goto no_page_table;
1113
1114         pud = pud_offset(pgd, address);
1115         if (pud_none(*pud))
1116                 goto no_page_table;
1117         if (pud_huge(*pud)) {
1118                 BUG_ON(flags & FOLL_GET);
1119                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1120                 goto out;
1121         }
1122         if (unlikely(pud_bad(*pud)))
1123                 goto no_page_table;
1124
1125         pmd = pmd_offset(pud, address);
1126         if (pmd_none(*pmd))
1127                 goto no_page_table;
1128         if (pmd_huge(*pmd)) {
1129                 BUG_ON(flags & FOLL_GET);
1130                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1131                 goto out;
1132         }
1133         if (unlikely(pmd_bad(*pmd)))
1134                 goto no_page_table;
1135
1136         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1137
1138         pte = *ptep;
1139         if (!pte_present(pte))
1140                 goto no_page;
1141         if ((flags & FOLL_WRITE) && !pte_write(pte))
1142                 goto unlock;
1143         page = vm_normal_page(vma, address, pte);
1144         if (unlikely(!page))
1145                 goto bad_page;
1146
1147         if (flags & FOLL_GET)
1148                 get_page(page);
1149         if (flags & FOLL_TOUCH) {
1150                 if ((flags & FOLL_WRITE) &&
1151                     !pte_dirty(pte) && !PageDirty(page))
1152                         set_page_dirty(page);
1153                 mark_page_accessed(page);
1154         }
1155 unlock:
1156         pte_unmap_unlock(ptep, ptl);
1157 out:
1158         return page;
1159
1160 bad_page:
1161         pte_unmap_unlock(ptep, ptl);
1162         return ERR_PTR(-EFAULT);
1163
1164 no_page:
1165         pte_unmap_unlock(ptep, ptl);
1166         if (!pte_none(pte))
1167                 return page;
1168         /* Fall through to ZERO_PAGE handling */
1169 no_page_table:
1170         /*
1171          * When core dumping an enormous anonymous area that nobody
1172          * has touched so far, we don't want to allocate page tables.
1173          */
1174         if (flags & FOLL_ANON) {
1175                 page = ZERO_PAGE(0);
1176                 if (flags & FOLL_GET)
1177                         get_page(page);
1178                 BUG_ON(flags & FOLL_WRITE);
1179         }
1180         return page;
1181 }
1182
1183 /* Can we do the FOLL_ANON optimization? */
1184 static inline int use_zero_page(struct vm_area_struct *vma)
1185 {
1186         /*
1187          * We don't want to optimize FOLL_ANON for make_pages_present()
1188          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1189          * we want to get the page from the page tables to make sure
1190          * that we serialize and update with any other user of that
1191          * mapping.
1192          */
1193         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1194                 return 0;
1195         /*
1196          * And if we have a fault routine, it's not an anonymous region.
1197          */
1198         return !vma->vm_ops || !vma->vm_ops->fault;
1199 }
1200
1201
1202
1203 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1204                      unsigned long start, int len, int flags,
1205                 struct page **pages, struct vm_area_struct **vmas)
1206 {
1207         int i;
1208         unsigned int vm_flags = 0;
1209         int write = !!(flags & GUP_FLAGS_WRITE);
1210         int force = !!(flags & GUP_FLAGS_FORCE);
1211         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1212
1213         if (len <= 0)
1214                 return 0;
1215         /* 
1216          * Require read or write permissions.
1217          * If 'force' is set, we only require the "MAY" flags.
1218          */
1219         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1220         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1221         i = 0;
1222
1223         do {
1224                 struct vm_area_struct *vma;
1225                 unsigned int foll_flags;
1226
1227                 vma = find_extend_vma(mm, start);
1228                 if (!vma && in_gate_area(tsk, start)) {
1229                         unsigned long pg = start & PAGE_MASK;
1230                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1231                         pgd_t *pgd;
1232                         pud_t *pud;
1233                         pmd_t *pmd;
1234                         pte_t *pte;
1235
1236                         /* user gate pages are read-only */
1237                         if (!ignore && write)
1238                                 return i ? : -EFAULT;
1239                         if (pg > TASK_SIZE)
1240                                 pgd = pgd_offset_k(pg);
1241                         else
1242                                 pgd = pgd_offset_gate(mm, pg);
1243                         BUG_ON(pgd_none(*pgd));
1244                         pud = pud_offset(pgd, pg);
1245                         BUG_ON(pud_none(*pud));
1246                         pmd = pmd_offset(pud, pg);
1247                         if (pmd_none(*pmd))
1248                                 return i ? : -EFAULT;
1249                         pte = pte_offset_map(pmd, pg);
1250                         if (pte_none(*pte)) {
1251                                 pte_unmap(pte);
1252                                 return i ? : -EFAULT;
1253                         }
1254                         if (pages) {
1255                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1256                                 pages[i] = page;
1257                                 if (page)
1258                                         get_page(page);
1259                         }
1260                         pte_unmap(pte);
1261                         if (vmas)
1262                                 vmas[i] = gate_vma;
1263                         i++;
1264                         start += PAGE_SIZE;
1265                         len--;
1266                         continue;
1267                 }
1268
1269                 if (!vma ||
1270                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1271                     (!ignore && !(vm_flags & vma->vm_flags)))
1272                         return i ? : -EFAULT;
1273
1274                 if (is_vm_hugetlb_page(vma)) {
1275                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1276                                                 &start, &len, i, write);
1277                         continue;
1278                 }
1279
1280                 foll_flags = FOLL_TOUCH;
1281                 if (pages)
1282                         foll_flags |= FOLL_GET;
1283                 if (!write && use_zero_page(vma))
1284                         foll_flags |= FOLL_ANON;
1285
1286                 do {
1287                         struct page *page;
1288
1289                         /*
1290                          * If tsk is ooming, cut off its access to large memory
1291                          * allocations. It has a pending SIGKILL, but it can't
1292                          * be processed until returning to user space.
1293                          */
1294                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1295                                 return i ? i : -ENOMEM;
1296
1297                         if (write)
1298                                 foll_flags |= FOLL_WRITE;
1299
1300                         cond_resched();
1301                         while (!(page = follow_page(vma, start, foll_flags))) {
1302                                 int ret;
1303                                 ret = handle_mm_fault(mm, vma, start,
1304                                                 foll_flags & FOLL_WRITE);
1305                                 if (ret & VM_FAULT_ERROR) {
1306                                         if (ret & VM_FAULT_OOM)
1307                                                 return i ? i : -ENOMEM;
1308                                         else if (ret & VM_FAULT_SIGBUS)
1309                                                 return i ? i : -EFAULT;
1310                                         BUG();
1311                                 }
1312                                 if (ret & VM_FAULT_MAJOR)
1313                                         tsk->maj_flt++;
1314                                 else
1315                                         tsk->min_flt++;
1316
1317                                 /*
1318                                  * The VM_FAULT_WRITE bit tells us that
1319                                  * do_wp_page has broken COW when necessary,
1320                                  * even if maybe_mkwrite decided not to set
1321                                  * pte_write. We can thus safely do subsequent
1322                                  * page lookups as if they were reads. But only
1323                                  * do so when looping for pte_write is futile:
1324                                  * in some cases userspace may also be wanting
1325                                  * to write to the gotten user page, which a
1326                                  * read fault here might prevent (a readonly
1327                                  * page might get reCOWed by userspace write).
1328                                  */
1329                                 if ((ret & VM_FAULT_WRITE) &&
1330                                     !(vma->vm_flags & VM_WRITE))
1331                                         foll_flags &= ~FOLL_WRITE;
1332
1333                                 cond_resched();
1334                         }
1335                         if (IS_ERR(page))
1336                                 return i ? i : PTR_ERR(page);
1337                         if (pages) {
1338                                 pages[i] = page;
1339
1340                                 flush_anon_page(vma, page, start);
1341                                 flush_dcache_page(page);
1342                         }
1343                         if (vmas)
1344                                 vmas[i] = vma;
1345                         i++;
1346                         start += PAGE_SIZE;
1347                         len--;
1348                 } while (len && start < vma->vm_end);
1349         } while (len);
1350         return i;
1351 }
1352
1353 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1354                 unsigned long start, int len, int write, int force,
1355                 struct page **pages, struct vm_area_struct **vmas)
1356 {
1357         int flags = 0;
1358
1359         if (write)
1360                 flags |= GUP_FLAGS_WRITE;
1361         if (force)
1362                 flags |= GUP_FLAGS_FORCE;
1363
1364         return __get_user_pages(tsk, mm,
1365                                 start, len, flags,
1366                                 pages, vmas);
1367 }
1368
1369 EXPORT_SYMBOL(get_user_pages);
1370
1371 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1372                         spinlock_t **ptl)
1373 {
1374         pgd_t * pgd = pgd_offset(mm, addr);
1375         pud_t * pud = pud_alloc(mm, pgd, addr);
1376         if (pud) {
1377                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1378                 if (pmd)
1379                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1380         }
1381         return NULL;
1382 }
1383
1384 /*
1385  * This is the old fallback for page remapping.
1386  *
1387  * For historical reasons, it only allows reserved pages. Only
1388  * old drivers should use this, and they needed to mark their
1389  * pages reserved for the old functions anyway.
1390  */
1391 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1392                         struct page *page, pgprot_t prot)
1393 {
1394         struct mm_struct *mm = vma->vm_mm;
1395         int retval;
1396         pte_t *pte;
1397         spinlock_t *ptl;
1398
1399         retval = -EINVAL;
1400         if (PageAnon(page))
1401                 goto out;
1402         retval = -ENOMEM;
1403         flush_dcache_page(page);
1404         pte = get_locked_pte(mm, addr, &ptl);
1405         if (!pte)
1406                 goto out;
1407         retval = -EBUSY;
1408         if (!pte_none(*pte))
1409                 goto out_unlock;
1410
1411         /* Ok, finally just insert the thing.. */
1412         get_page(page);
1413         inc_mm_counter(mm, file_rss);
1414         page_add_file_rmap(page);
1415         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1416
1417         retval = 0;
1418         pte_unmap_unlock(pte, ptl);
1419         return retval;
1420 out_unlock:
1421         pte_unmap_unlock(pte, ptl);
1422 out:
1423         return retval;
1424 }
1425
1426 /**
1427  * vm_insert_page - insert single page into user vma
1428  * @vma: user vma to map to
1429  * @addr: target user address of this page
1430  * @page: source kernel page
1431  *
1432  * This allows drivers to insert individual pages they've allocated
1433  * into a user vma.
1434  *
1435  * The page has to be a nice clean _individual_ kernel allocation.
1436  * If you allocate a compound page, you need to have marked it as
1437  * such (__GFP_COMP), or manually just split the page up yourself
1438  * (see split_page()).
1439  *
1440  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1441  * took an arbitrary page protection parameter. This doesn't allow
1442  * that. Your vma protection will have to be set up correctly, which
1443  * means that if you want a shared writable mapping, you'd better
1444  * ask for a shared writable mapping!
1445  *
1446  * The page does not need to be reserved.
1447  */
1448 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1449                         struct page *page)
1450 {
1451         if (addr < vma->vm_start || addr >= vma->vm_end)
1452                 return -EFAULT;
1453         if (!page_count(page))
1454                 return -EINVAL;
1455         vma->vm_flags |= VM_INSERTPAGE;
1456         return insert_page(vma, addr, page, vma->vm_page_prot);
1457 }
1458 EXPORT_SYMBOL(vm_insert_page);
1459
1460 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1461                         unsigned long pfn, pgprot_t prot)
1462 {
1463         struct mm_struct *mm = vma->vm_mm;
1464         int retval;
1465         pte_t *pte, entry;
1466         spinlock_t *ptl;
1467
1468         retval = -ENOMEM;
1469         pte = get_locked_pte(mm, addr, &ptl);
1470         if (!pte)
1471                 goto out;
1472         retval = -EBUSY;
1473         if (!pte_none(*pte))
1474                 goto out_unlock;
1475
1476         /* Ok, finally just insert the thing.. */
1477         entry = pte_mkspecial(pfn_pte(pfn, prot));
1478         set_pte_at(mm, addr, pte, entry);
1479         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1480
1481         retval = 0;
1482 out_unlock:
1483         pte_unmap_unlock(pte, ptl);
1484 out:
1485         return retval;
1486 }
1487
1488 /**
1489  * vm_insert_pfn - insert single pfn into user vma
1490  * @vma: user vma to map to
1491  * @addr: target user address of this page
1492  * @pfn: source kernel pfn
1493  *
1494  * Similar to vm_inert_page, this allows drivers to insert individual pages
1495  * they've allocated into a user vma. Same comments apply.
1496  *
1497  * This function should only be called from a vm_ops->fault handler, and
1498  * in that case the handler should return NULL.
1499  *
1500  * vma cannot be a COW mapping.
1501  *
1502  * As this is called only for pages that do not currently exist, we
1503  * do not need to flush old virtual caches or the TLB.
1504  */
1505 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1506                         unsigned long pfn)
1507 {
1508         int ret;
1509         /*
1510          * Technically, architectures with pte_special can avoid all these
1511          * restrictions (same for remap_pfn_range).  However we would like
1512          * consistency in testing and feature parity among all, so we should
1513          * try to keep these invariants in place for everybody.
1514          */
1515         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1516         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1517                                                 (VM_PFNMAP|VM_MIXEDMAP));
1518         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1519         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1520
1521         if (addr < vma->vm_start || addr >= vma->vm_end)
1522                 return -EFAULT;
1523         if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1524                 return -EINVAL;
1525
1526         ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1527
1528         if (ret)
1529                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1530
1531         return ret;
1532 }
1533 EXPORT_SYMBOL(vm_insert_pfn);
1534
1535 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1536                         unsigned long pfn)
1537 {
1538         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1539
1540         if (addr < vma->vm_start || addr >= vma->vm_end)
1541                 return -EFAULT;
1542
1543         /*
1544          * If we don't have pte special, then we have to use the pfn_valid()
1545          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1546          * refcount the page if pfn_valid is true (hence insert_page rather
1547          * than insert_pfn).
1548          */
1549         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1550                 struct page *page;
1551
1552                 page = pfn_to_page(pfn);
1553                 return insert_page(vma, addr, page, vma->vm_page_prot);
1554         }
1555         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1556 }
1557 EXPORT_SYMBOL(vm_insert_mixed);
1558
1559 /*
1560  * maps a range of physical memory into the requested pages. the old
1561  * mappings are removed. any references to nonexistent pages results
1562  * in null mappings (currently treated as "copy-on-access")
1563  */
1564 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1565                         unsigned long addr, unsigned long end,
1566                         unsigned long pfn, pgprot_t prot)
1567 {
1568         pte_t *pte;
1569         spinlock_t *ptl;
1570
1571         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1572         if (!pte)
1573                 return -ENOMEM;
1574         arch_enter_lazy_mmu_mode();
1575         do {
1576                 BUG_ON(!pte_none(*pte));
1577                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1578                 pfn++;
1579         } while (pte++, addr += PAGE_SIZE, addr != end);
1580         arch_leave_lazy_mmu_mode();
1581         pte_unmap_unlock(pte - 1, ptl);
1582         return 0;
1583 }
1584
1585 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1586                         unsigned long addr, unsigned long end,
1587                         unsigned long pfn, pgprot_t prot)
1588 {
1589         pmd_t *pmd;
1590         unsigned long next;
1591
1592         pfn -= addr >> PAGE_SHIFT;
1593         pmd = pmd_alloc(mm, pud, addr);
1594         if (!pmd)
1595                 return -ENOMEM;
1596         do {
1597                 next = pmd_addr_end(addr, end);
1598                 if (remap_pte_range(mm, pmd, addr, next,
1599                                 pfn + (addr >> PAGE_SHIFT), prot))
1600                         return -ENOMEM;
1601         } while (pmd++, addr = next, addr != end);
1602         return 0;
1603 }
1604
1605 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1606                         unsigned long addr, unsigned long end,
1607                         unsigned long pfn, pgprot_t prot)
1608 {
1609         pud_t *pud;
1610         unsigned long next;
1611
1612         pfn -= addr >> PAGE_SHIFT;
1613         pud = pud_alloc(mm, pgd, addr);
1614         if (!pud)
1615                 return -ENOMEM;
1616         do {
1617                 next = pud_addr_end(addr, end);
1618                 if (remap_pmd_range(mm, pud, addr, next,
1619                                 pfn + (addr >> PAGE_SHIFT), prot))
1620                         return -ENOMEM;
1621         } while (pud++, addr = next, addr != end);
1622         return 0;
1623 }
1624
1625 /**
1626  * remap_pfn_range - remap kernel memory to userspace
1627  * @vma: user vma to map to
1628  * @addr: target user address to start at
1629  * @pfn: physical address of kernel memory
1630  * @size: size of map area
1631  * @prot: page protection flags for this mapping
1632  *
1633  *  Note: this is only safe if the mm semaphore is held when called.
1634  */
1635 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1636                     unsigned long pfn, unsigned long size, pgprot_t prot)
1637 {
1638         pgd_t *pgd;
1639         unsigned long next;
1640         unsigned long end = addr + PAGE_ALIGN(size);
1641         struct mm_struct *mm = vma->vm_mm;
1642         int err;
1643
1644         /*
1645          * Physically remapped pages are special. Tell the
1646          * rest of the world about it:
1647          *   VM_IO tells people not to look at these pages
1648          *      (accesses can have side effects).
1649          *   VM_RESERVED is specified all over the place, because
1650          *      in 2.4 it kept swapout's vma scan off this vma; but
1651          *      in 2.6 the LRU scan won't even find its pages, so this
1652          *      flag means no more than count its pages in reserved_vm,
1653          *      and omit it from core dump, even when VM_IO turned off.
1654          *   VM_PFNMAP tells the core MM that the base pages are just
1655          *      raw PFN mappings, and do not have a "struct page" associated
1656          *      with them.
1657          *
1658          * There's a horrible special case to handle copy-on-write
1659          * behaviour that some programs depend on. We mark the "original"
1660          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1661          */
1662         if (addr == vma->vm_start && end == vma->vm_end)
1663                 vma->vm_pgoff = pfn;
1664         else if (is_cow_mapping(vma->vm_flags))
1665                 return -EINVAL;
1666
1667         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1668
1669         err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1670         if (err)
1671                 return -EINVAL;
1672
1673         BUG_ON(addr >= end);
1674         pfn -= addr >> PAGE_SHIFT;
1675         pgd = pgd_offset(mm, addr);
1676         flush_cache_range(vma, addr, end);
1677         do {
1678                 next = pgd_addr_end(addr, end);
1679                 err = remap_pud_range(mm, pgd, addr, next,
1680                                 pfn + (addr >> PAGE_SHIFT), prot);
1681                 if (err)
1682                         break;
1683         } while (pgd++, addr = next, addr != end);
1684
1685         if (err)
1686                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1687
1688         return err;
1689 }
1690 EXPORT_SYMBOL(remap_pfn_range);
1691
1692 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1693                                      unsigned long addr, unsigned long end,
1694                                      pte_fn_t fn, void *data)
1695 {
1696         pte_t *pte;
1697         int err;
1698         pgtable_t token;
1699         spinlock_t *uninitialized_var(ptl);
1700
1701         pte = (mm == &init_mm) ?
1702                 pte_alloc_kernel(pmd, addr) :
1703                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1704         if (!pte)
1705                 return -ENOMEM;
1706
1707         BUG_ON(pmd_huge(*pmd));
1708
1709         arch_enter_lazy_mmu_mode();
1710
1711         token = pmd_pgtable(*pmd);
1712
1713         do {
1714                 err = fn(pte, token, addr, data);
1715                 if (err)
1716                         break;
1717         } while (pte++, addr += PAGE_SIZE, addr != end);
1718
1719         arch_leave_lazy_mmu_mode();
1720
1721         if (mm != &init_mm)
1722                 pte_unmap_unlock(pte-1, ptl);
1723         return err;
1724 }
1725
1726 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1727                                      unsigned long addr, unsigned long end,
1728                                      pte_fn_t fn, void *data)
1729 {
1730         pmd_t *pmd;
1731         unsigned long next;
1732         int err;
1733
1734         BUG_ON(pud_huge(*pud));
1735
1736         pmd = pmd_alloc(mm, pud, addr);
1737         if (!pmd)
1738                 return -ENOMEM;
1739         do {
1740                 next = pmd_addr_end(addr, end);
1741                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1742                 if (err)
1743                         break;
1744         } while (pmd++, addr = next, addr != end);
1745         return err;
1746 }
1747
1748 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1749                                      unsigned long addr, unsigned long end,
1750                                      pte_fn_t fn, void *data)
1751 {
1752         pud_t *pud;
1753         unsigned long next;
1754         int err;
1755
1756         pud = pud_alloc(mm, pgd, addr);
1757         if (!pud)
1758                 return -ENOMEM;
1759         do {
1760                 next = pud_addr_end(addr, end);
1761                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1762                 if (err)
1763                         break;
1764         } while (pud++, addr = next, addr != end);
1765         return err;
1766 }
1767
1768 /*
1769  * Scan a region of virtual memory, filling in page tables as necessary
1770  * and calling a provided function on each leaf page table.
1771  */
1772 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1773                         unsigned long size, pte_fn_t fn, void *data)
1774 {
1775         pgd_t *pgd;
1776         unsigned long next;
1777         unsigned long start = addr, end = addr + size;
1778         int err;
1779
1780         BUG_ON(addr >= end);
1781         mmu_notifier_invalidate_range_start(mm, start, end);
1782         pgd = pgd_offset(mm, addr);
1783         do {
1784                 next = pgd_addr_end(addr, end);
1785                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1786                 if (err)
1787                         break;
1788         } while (pgd++, addr = next, addr != end);
1789         mmu_notifier_invalidate_range_end(mm, start, end);
1790         return err;
1791 }
1792 EXPORT_SYMBOL_GPL(apply_to_page_range);
1793
1794 /*
1795  * handle_pte_fault chooses page fault handler according to an entry
1796  * which was read non-atomically.  Before making any commitment, on
1797  * those architectures or configurations (e.g. i386 with PAE) which
1798  * might give a mix of unmatched parts, do_swap_page and do_file_page
1799  * must check under lock before unmapping the pte and proceeding
1800  * (but do_wp_page is only called after already making such a check;
1801  * and do_anonymous_page and do_no_page can safely check later on).
1802  */
1803 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1804                                 pte_t *page_table, pte_t orig_pte)
1805 {
1806         int same = 1;
1807 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1808         if (sizeof(pte_t) > sizeof(unsigned long)) {
1809                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1810                 spin_lock(ptl);
1811                 same = pte_same(*page_table, orig_pte);
1812                 spin_unlock(ptl);
1813         }
1814 #endif
1815         pte_unmap(page_table);
1816         return same;
1817 }
1818
1819 /*
1820  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1821  * servicing faults for write access.  In the normal case, do always want
1822  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1823  * that do not have writing enabled, when used by access_process_vm.
1824  */
1825 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1826 {
1827         if (likely(vma->vm_flags & VM_WRITE))
1828                 pte = pte_mkwrite(pte);
1829         return pte;
1830 }
1831
1832 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1833 {
1834         /*
1835          * If the source page was a PFN mapping, we don't have
1836          * a "struct page" for it. We do a best-effort copy by
1837          * just copying from the original user address. If that
1838          * fails, we just zero-fill it. Live with it.
1839          */
1840         if (unlikely(!src)) {
1841                 void *kaddr = kmap_atomic(dst, KM_USER0);
1842                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1843
1844                 /*
1845                  * This really shouldn't fail, because the page is there
1846                  * in the page tables. But it might just be unreadable,
1847                  * in which case we just give up and fill the result with
1848                  * zeroes.
1849                  */
1850                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1851                         memset(kaddr, 0, PAGE_SIZE);
1852                 kunmap_atomic(kaddr, KM_USER0);
1853                 flush_dcache_page(dst);
1854         } else
1855                 copy_user_highpage(dst, src, va, vma);
1856 }
1857
1858 /*
1859  * This routine handles present pages, when users try to write
1860  * to a shared page. It is done by copying the page to a new address
1861  * and decrementing the shared-page counter for the old page.
1862  *
1863  * Note that this routine assumes that the protection checks have been
1864  * done by the caller (the low-level page fault routine in most cases).
1865  * Thus we can safely just mark it writable once we've done any necessary
1866  * COW.
1867  *
1868  * We also mark the page dirty at this point even though the page will
1869  * change only once the write actually happens. This avoids a few races,
1870  * and potentially makes it more efficient.
1871  *
1872  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1873  * but allow concurrent faults), with pte both mapped and locked.
1874  * We return with mmap_sem still held, but pte unmapped and unlocked.
1875  */
1876 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1877                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1878                 spinlock_t *ptl, pte_t orig_pte)
1879 {
1880         struct page *old_page, *new_page;
1881         pte_t entry;
1882         int reuse = 0, ret = 0;
1883         int page_mkwrite = 0;
1884         struct page *dirty_page = NULL;
1885
1886         old_page = vm_normal_page(vma, address, orig_pte);
1887         if (!old_page) {
1888                 /*
1889                  * VM_MIXEDMAP !pfn_valid() case
1890                  *
1891                  * We should not cow pages in a shared writeable mapping.
1892                  * Just mark the pages writable as we can't do any dirty
1893                  * accounting on raw pfn maps.
1894                  */
1895                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1896                                      (VM_WRITE|VM_SHARED))
1897                         goto reuse;
1898                 goto gotten;
1899         }
1900
1901         /*
1902          * Take out anonymous pages first, anonymous shared vmas are
1903          * not dirty accountable.
1904          */
1905         if (PageAnon(old_page)) {
1906                 if (!trylock_page(old_page)) {
1907                         page_cache_get(old_page);
1908                         pte_unmap_unlock(page_table, ptl);
1909                         lock_page(old_page);
1910                         page_table = pte_offset_map_lock(mm, pmd, address,
1911                                                          &ptl);
1912                         if (!pte_same(*page_table, orig_pte)) {
1913                                 unlock_page(old_page);
1914                                 page_cache_release(old_page);
1915                                 goto unlock;
1916                         }
1917                         page_cache_release(old_page);
1918                 }
1919                 reuse = reuse_swap_page(old_page);
1920                 unlock_page(old_page);
1921         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1922                                         (VM_WRITE|VM_SHARED))) {
1923                 /*
1924                  * Only catch write-faults on shared writable pages,
1925                  * read-only shared pages can get COWed by
1926                  * get_user_pages(.write=1, .force=1).
1927                  */
1928                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1929                         /*
1930                          * Notify the address space that the page is about to
1931                          * become writable so that it can prohibit this or wait
1932                          * for the page to get into an appropriate state.
1933                          *
1934                          * We do this without the lock held, so that it can
1935                          * sleep if it needs to.
1936                          */
1937                         page_cache_get(old_page);
1938                         pte_unmap_unlock(page_table, ptl);
1939
1940                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1941                                 goto unwritable_page;
1942
1943                         /*
1944                          * Since we dropped the lock we need to revalidate
1945                          * the PTE as someone else may have changed it.  If
1946                          * they did, we just return, as we can count on the
1947                          * MMU to tell us if they didn't also make it writable.
1948                          */
1949                         page_table = pte_offset_map_lock(mm, pmd, address,
1950                                                          &ptl);
1951                         page_cache_release(old_page);
1952                         if (!pte_same(*page_table, orig_pte))
1953                                 goto unlock;
1954
1955                         page_mkwrite = 1;
1956                 }
1957                 dirty_page = old_page;
1958                 get_page(dirty_page);
1959                 reuse = 1;
1960         }
1961
1962         if (reuse) {
1963 reuse:
1964                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1965                 entry = pte_mkyoung(orig_pte);
1966                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1968                         update_mmu_cache(vma, address, entry);
1969                 ret |= VM_FAULT_WRITE;
1970                 goto unlock;
1971         }
1972
1973         /*
1974          * Ok, we need to copy. Oh, well..
1975          */
1976         page_cache_get(old_page);
1977 gotten:
1978         pte_unmap_unlock(page_table, ptl);
1979
1980         if (unlikely(anon_vma_prepare(vma)))
1981                 goto oom;
1982         VM_BUG_ON(old_page == ZERO_PAGE(0));
1983         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1984         if (!new_page)
1985                 goto oom;
1986         /*
1987          * Don't let another task, with possibly unlocked vma,
1988          * keep the mlocked page.
1989          */
1990         if (vma->vm_flags & VM_LOCKED) {
1991                 lock_page(old_page);    /* for LRU manipulation */
1992                 clear_page_mlock(old_page);
1993                 unlock_page(old_page);
1994         }
1995         cow_user_page(new_page, old_page, address, vma);
1996         __SetPageUptodate(new_page);
1997
1998         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1999                 goto oom_free_new;
2000
2001         /*
2002          * Re-check the pte - we dropped the lock
2003          */
2004         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2005         if (likely(pte_same(*page_table, orig_pte))) {
2006                 if (old_page) {
2007                         if (!PageAnon(old_page)) {
2008                                 dec_mm_counter(mm, file_rss);
2009                                 inc_mm_counter(mm, anon_rss);
2010                         }
2011                 } else
2012                         inc_mm_counter(mm, anon_rss);
2013                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2014                 entry = mk_pte(new_page, vma->vm_page_prot);
2015                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2016                 /*
2017                  * Clear the pte entry and flush it first, before updating the
2018                  * pte with the new entry. This will avoid a race condition
2019                  * seen in the presence of one thread doing SMC and another
2020                  * thread doing COW.
2021                  */
2022                 ptep_clear_flush_notify(vma, address, page_table);
2023                 page_add_new_anon_rmap(new_page, vma, address);
2024                 set_pte_at(mm, address, page_table, entry);
2025                 update_mmu_cache(vma, address, entry);
2026                 if (old_page) {
2027                         /*
2028                          * Only after switching the pte to the new page may
2029                          * we remove the mapcount here. Otherwise another
2030                          * process may come and find the rmap count decremented
2031                          * before the pte is switched to the new page, and
2032                          * "reuse" the old page writing into it while our pte
2033                          * here still points into it and can be read by other
2034                          * threads.
2035                          *
2036                          * The critical issue is to order this
2037                          * page_remove_rmap with the ptp_clear_flush above.
2038                          * Those stores are ordered by (if nothing else,)
2039                          * the barrier present in the atomic_add_negative
2040                          * in page_remove_rmap.
2041                          *
2042                          * Then the TLB flush in ptep_clear_flush ensures that
2043                          * no process can access the old page before the
2044                          * decremented mapcount is visible. And the old page
2045                          * cannot be reused until after the decremented
2046                          * mapcount is visible. So transitively, TLBs to
2047                          * old page will be flushed before it can be reused.
2048                          */
2049                         page_remove_rmap(old_page);
2050                 }
2051
2052                 /* Free the old page.. */
2053                 new_page = old_page;
2054                 ret |= VM_FAULT_WRITE;
2055         } else
2056                 mem_cgroup_uncharge_page(new_page);
2057
2058         if (new_page)
2059                 page_cache_release(new_page);
2060         if (old_page)
2061                 page_cache_release(old_page);
2062 unlock:
2063         pte_unmap_unlock(page_table, ptl);
2064         if (dirty_page) {
2065                 if (vma->vm_file)
2066                         file_update_time(vma->vm_file);
2067
2068                 /*
2069                  * Yes, Virginia, this is actually required to prevent a race
2070                  * with clear_page_dirty_for_io() from clearing the page dirty
2071                  * bit after it clear all dirty ptes, but before a racing
2072                  * do_wp_page installs a dirty pte.
2073                  *
2074                  * do_no_page is protected similarly.
2075                  */
2076                 wait_on_page_locked(dirty_page);
2077                 set_page_dirty_balance(dirty_page, page_mkwrite);
2078                 put_page(dirty_page);
2079         }
2080         return ret;
2081 oom_free_new:
2082         page_cache_release(new_page);
2083 oom:
2084         if (old_page)
2085                 page_cache_release(old_page);
2086         return VM_FAULT_OOM;
2087
2088 unwritable_page:
2089         page_cache_release(old_page);
2090         return VM_FAULT_SIGBUS;
2091 }
2092
2093 /*
2094  * Helper functions for unmap_mapping_range().
2095  *
2096  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2097  *
2098  * We have to restart searching the prio_tree whenever we drop the lock,
2099  * since the iterator is only valid while the lock is held, and anyway
2100  * a later vma might be split and reinserted earlier while lock dropped.
2101  *
2102  * The list of nonlinear vmas could be handled more efficiently, using
2103  * a placeholder, but handle it in the same way until a need is shown.
2104  * It is important to search the prio_tree before nonlinear list: a vma
2105  * may become nonlinear and be shifted from prio_tree to nonlinear list
2106  * while the lock is dropped; but never shifted from list to prio_tree.
2107  *
2108  * In order to make forward progress despite restarting the search,
2109  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2110  * quickly skip it next time around.  Since the prio_tree search only
2111  * shows us those vmas affected by unmapping the range in question, we
2112  * can't efficiently keep all vmas in step with mapping->truncate_count:
2113  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2114  * mapping->truncate_count and vma->vm_truncate_count are protected by
2115  * i_mmap_lock.
2116  *
2117  * In order to make forward progress despite repeatedly restarting some
2118  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2119  * and restart from that address when we reach that vma again.  It might
2120  * have been split or merged, shrunk or extended, but never shifted: so
2121  * restart_addr remains valid so long as it remains in the vma's range.
2122  * unmap_mapping_range forces truncate_count to leap over page-aligned
2123  * values so we can save vma's restart_addr in its truncate_count field.
2124  */
2125 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2126
2127 static void reset_vma_truncate_counts(struct address_space *mapping)
2128 {
2129         struct vm_area_struct *vma;
2130         struct prio_tree_iter iter;
2131
2132         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2133                 vma->vm_truncate_count = 0;
2134         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2135                 vma->vm_truncate_count = 0;
2136 }
2137
2138 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2139                 unsigned long start_addr, unsigned long end_addr,
2140                 struct zap_details *details)
2141 {
2142         unsigned long restart_addr;
2143         int need_break;
2144
2145         /*
2146          * files that support invalidating or truncating portions of the
2147          * file from under mmaped areas must have their ->fault function
2148          * return a locked page (and set VM_FAULT_LOCKED in the return).
2149          * This provides synchronisation against concurrent unmapping here.
2150          */
2151
2152 again:
2153         restart_addr = vma->vm_truncate_count;
2154         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2155                 start_addr = restart_addr;
2156                 if (start_addr >= end_addr) {
2157                         /* Top of vma has been split off since last time */
2158                         vma->vm_truncate_count = details->truncate_count;
2159                         return 0;
2160                 }
2161         }
2162
2163         restart_addr = zap_page_range(vma, start_addr,
2164                                         end_addr - start_addr, details);
2165         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2166
2167         if (restart_addr >= end_addr) {
2168                 /* We have now completed this vma: mark it so */
2169                 vma->vm_truncate_count = details->truncate_count;
2170                 if (!need_break)
2171                         return 0;
2172         } else {
2173                 /* Note restart_addr in vma's truncate_count field */
2174                 vma->vm_truncate_count = restart_addr;
2175                 if (!need_break)
2176                         goto again;
2177         }
2178
2179         spin_unlock(details->i_mmap_lock);
2180         cond_resched();
2181         spin_lock(details->i_mmap_lock);
2182         return -EINTR;
2183 }
2184
2185 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2186                                             struct zap_details *details)
2187 {
2188         struct vm_area_struct *vma;
2189         struct prio_tree_iter iter;
2190         pgoff_t vba, vea, zba, zea;
2191
2192 restart:
2193         vma_prio_tree_foreach(vma, &iter, root,
2194                         details->first_index, details->last_index) {
2195                 /* Skip quickly over those we have already dealt with */
2196                 if (vma->vm_truncate_count == details->truncate_count)
2197                         continue;
2198
2199                 vba = vma->vm_pgoff;
2200                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2201                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2202                 zba = details->first_index;
2203                 if (zba < vba)
2204                         zba = vba;
2205                 zea = details->last_index;
2206                 if (zea > vea)
2207                         zea = vea;
2208
2209                 if (unmap_mapping_range_vma(vma,
2210                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2211                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2212                                 details) < 0)
2213                         goto restart;
2214         }
2215 }
2216
2217 static inline void unmap_mapping_range_list(struct list_head *head,
2218                                             struct zap_details *details)
2219 {
2220         struct vm_area_struct *vma;
2221
2222         /*
2223          * In nonlinear VMAs there is no correspondence between virtual address
2224          * offset and file offset.  So we must perform an exhaustive search
2225          * across *all* the pages in each nonlinear VMA, not just the pages
2226          * whose virtual address lies outside the file truncation point.
2227          */
2228 restart:
2229         list_for_each_entry(vma, head, shared.vm_set.list) {
2230                 /* Skip quickly over those we have already dealt with */
2231                 if (vma->vm_truncate_count == details->truncate_count)
2232                         continue;
2233                 details->nonlinear_vma = vma;
2234                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2235                                         vma->vm_end, details) < 0)
2236                         goto restart;
2237         }
2238 }
2239
2240 /**
2241  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2242  * @mapping: the address space containing mmaps to be unmapped.
2243  * @holebegin: byte in first page to unmap, relative to the start of
2244  * the underlying file.  This will be rounded down to a PAGE_SIZE
2245  * boundary.  Note that this is different from vmtruncate(), which
2246  * must keep the partial page.  In contrast, we must get rid of
2247  * partial pages.
2248  * @holelen: size of prospective hole in bytes.  This will be rounded
2249  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2250  * end of the file.
2251  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2252  * but 0 when invalidating pagecache, don't throw away private data.
2253  */
2254 void unmap_mapping_range(struct address_space *mapping,
2255                 loff_t const holebegin, loff_t const holelen, int even_cows)
2256 {
2257         struct zap_details details;
2258         pgoff_t hba = holebegin >> PAGE_SHIFT;
2259         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2260
2261         /* Check for overflow. */
2262         if (sizeof(holelen) > sizeof(hlen)) {
2263                 long long holeend =
2264                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2265                 if (holeend & ~(long long)ULONG_MAX)
2266                         hlen = ULONG_MAX - hba + 1;
2267         }
2268
2269         details.check_mapping = even_cows? NULL: mapping;
2270         details.nonlinear_vma = NULL;
2271         details.first_index = hba;
2272         details.last_index = hba + hlen - 1;
2273         if (details.last_index < details.first_index)
2274                 details.last_index = ULONG_MAX;
2275         details.i_mmap_lock = &mapping->i_mmap_lock;
2276
2277         spin_lock(&mapping->i_mmap_lock);
2278
2279         /* Protect against endless unmapping loops */
2280         mapping->truncate_count++;
2281         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2282                 if (mapping->truncate_count == 0)
2283                         reset_vma_truncate_counts(mapping);
2284                 mapping->truncate_count++;
2285         }
2286         details.truncate_count = mapping->truncate_count;
2287
2288         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2289                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2290         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2291                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2292         spin_unlock(&mapping->i_mmap_lock);
2293 }
2294 EXPORT_SYMBOL(unmap_mapping_range);
2295
2296 /**
2297  * vmtruncate - unmap mappings "freed" by truncate() syscall
2298  * @inode: inode of the file used
2299  * @offset: file offset to start truncating
2300  *
2301  * NOTE! We have to be ready to update the memory sharing
2302  * between the file and the memory map for a potential last
2303  * incomplete page.  Ugly, but necessary.
2304  */
2305 int vmtruncate(struct inode * inode, loff_t offset)
2306 {
2307         if (inode->i_size < offset) {
2308                 unsigned long limit;
2309
2310                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2311                 if (limit != RLIM_INFINITY && offset > limit)
2312                         goto out_sig;
2313                 if (offset > inode->i_sb->s_maxbytes)
2314                         goto out_big;
2315                 i_size_write(inode, offset);
2316         } else {
2317                 struct address_space *mapping = inode->i_mapping;
2318
2319                 /*
2320                  * truncation of in-use swapfiles is disallowed - it would
2321                  * cause subsequent swapout to scribble on the now-freed
2322                  * blocks.
2323                  */
2324                 if (IS_SWAPFILE(inode))
2325                         return -ETXTBSY;
2326                 i_size_write(inode, offset);
2327
2328                 /*
2329                  * unmap_mapping_range is called twice, first simply for
2330                  * efficiency so that truncate_inode_pages does fewer
2331                  * single-page unmaps.  However after this first call, and
2332                  * before truncate_inode_pages finishes, it is possible for
2333                  * private pages to be COWed, which remain after
2334                  * truncate_inode_pages finishes, hence the second
2335                  * unmap_mapping_range call must be made for correctness.
2336                  */
2337                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2338                 truncate_inode_pages(mapping, offset);
2339                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2340         }
2341
2342         if (inode->i_op->truncate)
2343                 inode->i_op->truncate(inode);
2344         return 0;
2345
2346 out_sig:
2347         send_sig(SIGXFSZ, current, 0);
2348 out_big:
2349         return -EFBIG;
2350 }
2351 EXPORT_SYMBOL(vmtruncate);
2352
2353 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2354 {
2355         struct address_space *mapping = inode->i_mapping;
2356
2357         /*
2358          * If the underlying filesystem is not going to provide
2359          * a way to truncate a range of blocks (punch a hole) -
2360          * we should return failure right now.
2361          */
2362         if (!inode->i_op->truncate_range)
2363                 return -ENOSYS;
2364
2365         mutex_lock(&inode->i_mutex);
2366         down_write(&inode->i_alloc_sem);
2367         unmap_mapping_range(mapping, offset, (end - offset), 1);
2368         truncate_inode_pages_range(mapping, offset, end);
2369         unmap_mapping_range(mapping, offset, (end - offset), 1);
2370         inode->i_op->truncate_range(inode, offset, end);
2371         up_write(&inode->i_alloc_sem);
2372         mutex_unlock(&inode->i_mutex);
2373
2374         return 0;
2375 }
2376
2377 /*
2378  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2379  * but allow concurrent faults), and pte mapped but not yet locked.
2380  * We return with mmap_sem still held, but pte unmapped and unlocked.
2381  */
2382 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2383                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2384                 int write_access, pte_t orig_pte)
2385 {
2386         spinlock_t *ptl;
2387         struct page *page;
2388         swp_entry_t entry;
2389         pte_t pte;
2390         int ret = 0;
2391
2392         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2393                 goto out;
2394
2395         entry = pte_to_swp_entry(orig_pte);
2396         if (is_migration_entry(entry)) {
2397                 migration_entry_wait(mm, pmd, address);
2398                 goto out;
2399         }
2400         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2401         page = lookup_swap_cache(entry);
2402         if (!page) {
2403                 grab_swap_token(); /* Contend for token _before_ read-in */
2404                 page = swapin_readahead(entry,
2405                                         GFP_HIGHUSER_MOVABLE, vma, address);
2406                 if (!page) {
2407                         /*
2408                          * Back out if somebody else faulted in this pte
2409                          * while we released the pte lock.
2410                          */
2411                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2412                         if (likely(pte_same(*page_table, orig_pte)))
2413                                 ret = VM_FAULT_OOM;
2414                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2415                         goto unlock;
2416                 }
2417
2418                 /* Had to read the page from swap area: Major fault */
2419                 ret = VM_FAULT_MAJOR;
2420                 count_vm_event(PGMAJFAULT);
2421         }
2422
2423         mark_page_accessed(page);
2424
2425         lock_page(page);
2426         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2427
2428         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2429                 ret = VM_FAULT_OOM;
2430                 unlock_page(page);
2431                 goto out;
2432         }
2433
2434         /*
2435          * Back out if somebody else already faulted in this pte.
2436          */
2437         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2438         if (unlikely(!pte_same(*page_table, orig_pte)))
2439                 goto out_nomap;
2440
2441         if (unlikely(!PageUptodate(page))) {
2442                 ret = VM_FAULT_SIGBUS;
2443                 goto out_nomap;
2444         }
2445
2446         /* The page isn't present yet, go ahead with the fault. */
2447
2448         inc_mm_counter(mm, anon_rss);
2449         pte = mk_pte(page, vma->vm_page_prot);
2450         if (write_access && reuse_swap_page(page)) {
2451                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2452                 write_access = 0;
2453         }
2454
2455         flush_icache_page(vma, page);
2456         set_pte_at(mm, address, page_table, pte);
2457         page_add_anon_rmap(page, vma, address);
2458
2459         swap_free(entry);
2460         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2461                 try_to_free_swap(page);
2462         unlock_page(page);
2463
2464         if (write_access) {
2465                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2466                 if (ret & VM_FAULT_ERROR)
2467                         ret &= VM_FAULT_ERROR;
2468                 goto out;
2469         }
2470
2471         /* No need to invalidate - it was non-present before */
2472         update_mmu_cache(vma, address, pte);
2473 unlock:
2474         pte_unmap_unlock(page_table, ptl);
2475 out:
2476         return ret;
2477 out_nomap:
2478         mem_cgroup_uncharge_page(page);
2479         pte_unmap_unlock(page_table, ptl);
2480         unlock_page(page);
2481         page_cache_release(page);
2482         return ret;
2483 }
2484
2485 /*
2486  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2487  * but allow concurrent faults), and pte mapped but not yet locked.
2488  * We return with mmap_sem still held, but pte unmapped and unlocked.
2489  */
2490 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2491                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2492                 int write_access)
2493 {
2494         struct page *page;
2495         spinlock_t *ptl;
2496         pte_t entry;
2497
2498         /* Allocate our own private page. */
2499         pte_unmap(page_table);
2500
2501         if (unlikely(anon_vma_prepare(vma)))
2502                 goto oom;
2503         page = alloc_zeroed_user_highpage_movable(vma, address);
2504         if (!page)
2505                 goto oom;
2506         __SetPageUptodate(page);
2507
2508         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2509                 goto oom_free_page;
2510
2511         entry = mk_pte(page, vma->vm_page_prot);
2512         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2513
2514         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2515         if (!pte_none(*page_table))
2516                 goto release;
2517         inc_mm_counter(mm, anon_rss);
2518         page_add_new_anon_rmap(page, vma, address);
2519         set_pte_at(mm, address, page_table, entry);
2520
2521         /* No need to invalidate - it was non-present before */
2522         update_mmu_cache(vma, address, entry);
2523 unlock:
2524         pte_unmap_unlock(page_table, ptl);
2525         return 0;
2526 release:
2527         mem_cgroup_uncharge_page(page);
2528         page_cache_release(page);
2529         goto unlock;
2530 oom_free_page:
2531         page_cache_release(page);
2532 oom:
2533         return VM_FAULT_OOM;
2534 }
2535
2536 /*
2537  * __do_fault() tries to create a new page mapping. It aggressively
2538  * tries to share with existing pages, but makes a separate copy if
2539  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2540  * the next page fault.
2541  *
2542  * As this is called only for pages that do not currently exist, we
2543  * do not need to flush old virtual caches or the TLB.
2544  *
2545  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2546  * but allow concurrent faults), and pte neither mapped nor locked.
2547  * We return with mmap_sem still held, but pte unmapped and unlocked.
2548  */
2549 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2550                 unsigned long address, pmd_t *pmd,
2551                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2552 {
2553         pte_t *page_table;
2554         spinlock_t *ptl;
2555         struct page *page;
2556         pte_t entry;
2557         int anon = 0;
2558         int charged = 0;
2559         struct page *dirty_page = NULL;
2560         struct vm_fault vmf;
2561         int ret;
2562         int page_mkwrite = 0;
2563
2564         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2565         vmf.pgoff = pgoff;
2566         vmf.flags = flags;
2567         vmf.page = NULL;
2568
2569         ret = vma->vm_ops->fault(vma, &vmf);
2570         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2571                 return ret;
2572
2573         /*
2574          * For consistency in subsequent calls, make the faulted page always
2575          * locked.
2576          */
2577         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2578                 lock_page(vmf.page);
2579         else
2580                 VM_BUG_ON(!PageLocked(vmf.page));
2581
2582         /*
2583          * Should we do an early C-O-W break?
2584          */
2585         page = vmf.page;
2586         if (flags & FAULT_FLAG_WRITE) {
2587                 if (!(vma->vm_flags & VM_SHARED)) {
2588                         anon = 1;
2589                         if (unlikely(anon_vma_prepare(vma))) {
2590                                 ret = VM_FAULT_OOM;
2591                                 goto out;
2592                         }
2593                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2594                                                 vma, address);
2595                         if (!page) {
2596                                 ret = VM_FAULT_OOM;
2597                                 goto out;
2598                         }
2599                         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2600                                 ret = VM_FAULT_OOM;
2601                                 page_cache_release(page);
2602                                 goto out;
2603                         }
2604                         charged = 1;
2605                         /*
2606                          * Don't let another task, with possibly unlocked vma,
2607                          * keep the mlocked page.
2608                          */
2609                         if (vma->vm_flags & VM_LOCKED)
2610                                 clear_page_mlock(vmf.page);
2611                         copy_user_highpage(page, vmf.page, address, vma);
2612                         __SetPageUptodate(page);
2613                 } else {
2614                         /*
2615                          * If the page will be shareable, see if the backing
2616                          * address space wants to know that the page is about
2617                          * to become writable
2618                          */
2619                         if (vma->vm_ops->page_mkwrite) {
2620                                 unlock_page(page);
2621                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2622                                         ret = VM_FAULT_SIGBUS;
2623                                         anon = 1; /* no anon but release vmf.page */
2624                                         goto out_unlocked;
2625                                 }
2626                                 lock_page(page);
2627                                 /*
2628                                  * XXX: this is not quite right (racy vs
2629                                  * invalidate) to unlock and relock the page
2630                                  * like this, however a better fix requires
2631                                  * reworking page_mkwrite locking API, which
2632                                  * is better done later.
2633                                  */
2634                                 if (!page->mapping) {
2635                                         ret = 0;
2636                                         anon = 1; /* no anon but release vmf.page */
2637                                         goto out;
2638                                 }
2639                                 page_mkwrite = 1;
2640                         }
2641                 }
2642
2643         }
2644
2645         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2646
2647         /*
2648          * This silly early PAGE_DIRTY setting removes a race
2649          * due to the bad i386 page protection. But it's valid
2650          * for other architectures too.
2651          *
2652          * Note that if write_access is true, we either now have
2653          * an exclusive copy of the page, or this is a shared mapping,
2654          * so we can make it writable and dirty to avoid having to
2655          * handle that later.
2656          */
2657         /* Only go through if we didn't race with anybody else... */
2658         if (likely(pte_same(*page_table, orig_pte))) {
2659                 flush_icache_page(vma, page);
2660                 entry = mk_pte(page, vma->vm_page_prot);
2661                 if (flags & FAULT_FLAG_WRITE)
2662                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2663                 if (anon) {
2664                         inc_mm_counter(mm, anon_rss);
2665                         page_add_new_anon_rmap(page, vma, address);
2666                 } else {
2667                         inc_mm_counter(mm, file_rss);
2668                         page_add_file_rmap(page);
2669                         if (flags & FAULT_FLAG_WRITE) {
2670                                 dirty_page = page;
2671                                 get_page(dirty_page);
2672                         }
2673                 }
2674                 set_pte_at(mm, address, page_table, entry);
2675
2676                 /* no need to invalidate: a not-present page won't be cached */
2677                 update_mmu_cache(vma, address, entry);
2678         } else {
2679                 if (charged)
2680                         mem_cgroup_uncharge_page(page);
2681                 if (anon)
2682                         page_cache_release(page);
2683                 else
2684                         anon = 1; /* no anon but release faulted_page */
2685         }
2686
2687         pte_unmap_unlock(page_table, ptl);
2688
2689 out:
2690         unlock_page(vmf.page);
2691 out_unlocked:
2692         if (anon)
2693                 page_cache_release(vmf.page);
2694         else if (dirty_page) {
2695                 if (vma->vm_file)
2696                         file_update_time(vma->vm_file);
2697
2698                 set_page_dirty_balance(dirty_page, page_mkwrite);
2699                 put_page(dirty_page);
2700         }
2701
2702         return ret;
2703 }
2704
2705 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2706                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2707                 int write_access, pte_t orig_pte)
2708 {
2709         pgoff_t pgoff = (((address & PAGE_MASK)
2710                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2711         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2712
2713         pte_unmap(page_table);
2714         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2715 }
2716
2717 /*
2718  * Fault of a previously existing named mapping. Repopulate the pte
2719  * from the encoded file_pte if possible. This enables swappable
2720  * nonlinear vmas.
2721  *
2722  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2723  * but allow concurrent faults), and pte mapped but not yet locked.
2724  * We return with mmap_sem still held, but pte unmapped and unlocked.
2725  */
2726 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2727                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2728                 int write_access, pte_t orig_pte)
2729 {
2730         unsigned int flags = FAULT_FLAG_NONLINEAR |
2731                                 (write_access ? FAULT_FLAG_WRITE : 0);
2732         pgoff_t pgoff;
2733
2734         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2735                 return 0;
2736
2737         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2738                 /*
2739                  * Page table corrupted: show pte and kill process.
2740                  */
2741                 print_bad_pte(vma, address, orig_pte, NULL);
2742                 return VM_FAULT_OOM;
2743         }
2744
2745         pgoff = pte_to_pgoff(orig_pte);
2746         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2747 }
2748
2749 /*
2750  * These routines also need to handle stuff like marking pages dirty
2751  * and/or accessed for architectures that don't do it in hardware (most
2752  * RISC architectures).  The early dirtying is also good on the i386.
2753  *
2754  * There is also a hook called "update_mmu_cache()" that architectures
2755  * with external mmu caches can use to update those (ie the Sparc or
2756  * PowerPC hashed page tables that act as extended TLBs).
2757  *
2758  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759  * but allow concurrent faults), and pte mapped but not yet locked.
2760  * We return with mmap_sem still held, but pte unmapped and unlocked.
2761  */
2762 static inline int handle_pte_fault(struct mm_struct *mm,
2763                 struct vm_area_struct *vma, unsigned long address,
2764                 pte_t *pte, pmd_t *pmd, int write_access)
2765 {
2766         pte_t entry;
2767         spinlock_t *ptl;
2768
2769         entry = *pte;
2770         if (!pte_present(entry)) {
2771                 if (pte_none(entry)) {
2772                         if (vma->vm_ops) {
2773                                 if (likely(vma->vm_ops->fault))
2774                                         return do_linear_fault(mm, vma, address,
2775                                                 pte, pmd, write_access, entry);
2776                         }
2777                         return do_anonymous_page(mm, vma, address,
2778                                                  pte, pmd, write_access);
2779                 }
2780                 if (pte_file(entry))
2781                         return do_nonlinear_fault(mm, vma, address,
2782                                         pte, pmd, write_access, entry);
2783                 return do_swap_page(mm, vma, address,
2784                                         pte, pmd, write_access, entry);
2785         }
2786
2787         ptl = pte_lockptr(mm, pmd);
2788         spin_lock(ptl);
2789         if (unlikely(!pte_same(*pte, entry)))
2790                 goto unlock;
2791         if (write_access) {
2792                 if (!pte_write(entry))
2793                         return do_wp_page(mm, vma, address,
2794                                         pte, pmd, ptl, entry);
2795                 entry = pte_mkdirty(entry);
2796         }
2797         entry = pte_mkyoung(entry);
2798         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2799                 update_mmu_cache(vma, address, entry);
2800         } else {
2801                 /*
2802                  * This is needed only for protection faults but the arch code
2803                  * is not yet telling us if this is a protection fault or not.
2804                  * This still avoids useless tlb flushes for .text page faults
2805                  * with threads.
2806                  */
2807                 if (write_access)
2808                         flush_tlb_page(vma, address);
2809         }
2810 unlock:
2811         pte_unmap_unlock(pte, ptl);
2812         return 0;
2813 }
2814
2815 /*
2816  * By the time we get here, we already hold the mm semaphore
2817  */
2818 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2819                 unsigned long address, int write_access)
2820 {
2821         pgd_t *pgd;
2822         pud_t *pud;
2823         pmd_t *pmd;
2824         pte_t *pte;
2825
2826         __set_current_state(TASK_RUNNING);
2827
2828         count_vm_event(PGFAULT);
2829
2830         if (unlikely(is_vm_hugetlb_page(vma)))
2831                 return hugetlb_fault(mm, vma, address, write_access);
2832
2833         pgd = pgd_offset(mm, address);
2834         pud = pud_alloc(mm, pgd, address);
2835         if (!pud)
2836                 return VM_FAULT_OOM;
2837         pmd = pmd_alloc(mm, pud, address);
2838         if (!pmd)
2839                 return VM_FAULT_OOM;
2840         pte = pte_alloc_map(mm, pmd, address);
2841         if (!pte)
2842                 return VM_FAULT_OOM;
2843
2844         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2845 }
2846
2847 #ifndef __PAGETABLE_PUD_FOLDED
2848 /*
2849  * Allocate page upper directory.
2850  * We've already handled the fast-path in-line.
2851  */
2852 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2853 {
2854         pud_t *new = pud_alloc_one(mm, address);
2855         if (!new)
2856                 return -ENOMEM;
2857
2858         smp_wmb(); /* See comment in __pte_alloc */
2859
2860         spin_lock(&mm->page_table_lock);
2861         if (pgd_present(*pgd))          /* Another has populated it */
2862                 pud_free(mm, new);
2863         else
2864                 pgd_populate(mm, pgd, new);
2865         spin_unlock(&mm->page_table_lock);
2866         return 0;
2867 }
2868 #endif /* __PAGETABLE_PUD_FOLDED */
2869
2870 #ifndef __PAGETABLE_PMD_FOLDED
2871 /*
2872  * Allocate page middle directory.
2873  * We've already handled the fast-path in-line.
2874  */
2875 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2876 {
2877         pmd_t *new = pmd_alloc_one(mm, address);
2878         if (!new)
2879                 return -ENOMEM;
2880
2881         smp_wmb(); /* See comment in __pte_alloc */
2882
2883         spin_lock(&mm->page_table_lock);
2884 #ifndef __ARCH_HAS_4LEVEL_HACK
2885         if (pud_present(*pud))          /* Another has populated it */
2886                 pmd_free(mm, new);
2887         else
2888                 pud_populate(mm, pud, new);
2889 #else
2890         if (pgd_present(*pud))          /* Another has populated it */
2891                 pmd_free(mm, new);
2892         else
2893                 pgd_populate(mm, pud, new);
2894 #endif /* __ARCH_HAS_4LEVEL_HACK */
2895         spin_unlock(&mm->page_table_lock);
2896         return 0;
2897 }
2898 #endif /* __PAGETABLE_PMD_FOLDED */
2899
2900 int make_pages_present(unsigned long addr, unsigned long end)
2901 {
2902         int ret, len, write;
2903         struct vm_area_struct * vma;
2904
2905         vma = find_vma(current->mm, addr);
2906         if (!vma)
2907                 return -ENOMEM;
2908         write = (vma->vm_flags & VM_WRITE) != 0;
2909         BUG_ON(addr >= end);
2910         BUG_ON(end > vma->vm_end);
2911         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2912         ret = get_user_pages(current, current->mm, addr,
2913                         len, write, 0, NULL, NULL);
2914         if (ret < 0)
2915                 return ret;
2916         return ret == len ? 0 : -EFAULT;
2917 }
2918
2919 #if !defined(__HAVE_ARCH_GATE_AREA)
2920
2921 #if defined(AT_SYSINFO_EHDR)
2922 static struct vm_area_struct gate_vma;
2923
2924 static int __init gate_vma_init(void)
2925 {
2926         gate_vma.vm_mm = NULL;
2927         gate_vma.vm_start = FIXADDR_USER_START;
2928         gate_vma.vm_end = FIXADDR_USER_END;
2929         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2930         gate_vma.vm_page_prot = __P101;
2931         /*
2932          * Make sure the vDSO gets into every core dump.
2933          * Dumping its contents makes post-mortem fully interpretable later
2934          * without matching up the same kernel and hardware config to see
2935          * what PC values meant.
2936          */
2937         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2938         return 0;
2939 }
2940 __initcall(gate_vma_init);
2941 #endif
2942
2943 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2944 {
2945 #ifdef AT_SYSINFO_EHDR
2946         return &gate_vma;
2947 #else
2948         return NULL;
2949 #endif
2950 }
2951
2952 int in_gate_area_no_task(unsigned long addr)
2953 {
2954 #ifdef AT_SYSINFO_EHDR
2955         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2956                 return 1;
2957 #endif
2958         return 0;
2959 }
2960
2961 #endif  /* __HAVE_ARCH_GATE_AREA */
2962
2963 #ifdef CONFIG_HAVE_IOREMAP_PROT
2964 int follow_phys(struct vm_area_struct *vma,
2965                 unsigned long address, unsigned int flags,
2966                 unsigned long *prot, resource_size_t *phys)
2967 {
2968         pgd_t *pgd;
2969         pud_t *pud;
2970         pmd_t *pmd;
2971         pte_t *ptep, pte;
2972         spinlock_t *ptl;
2973         resource_size_t phys_addr = 0;
2974         struct mm_struct *mm = vma->vm_mm;
2975         int ret = -EINVAL;
2976
2977         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2978                 goto out;
2979
2980         pgd = pgd_offset(mm, address);
2981         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2982                 goto out;
2983
2984         pud = pud_offset(pgd, address);
2985         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2986                 goto out;
2987
2988         pmd = pmd_offset(pud, address);
2989         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2990                 goto out;
2991
2992         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2993         if (pmd_huge(*pmd))
2994                 goto out;
2995
2996         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2997         if (!ptep)
2998                 goto out;
2999
3000         pte = *ptep;
3001         if (!pte_present(pte))
3002                 goto unlock;
3003         if ((flags & FOLL_WRITE) && !pte_write(pte))
3004                 goto unlock;
3005         phys_addr = pte_pfn(pte);
3006         phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3007
3008         *prot = pgprot_val(pte_pgprot(pte));
3009         *phys = phys_addr;
3010         ret = 0;
3011
3012 unlock:
3013         pte_unmap_unlock(ptep, ptl);
3014 out:
3015         return ret;
3016 }
3017
3018 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3019                         void *buf, int len, int write)
3020 {
3021         resource_size_t phys_addr;
3022         unsigned long prot = 0;
3023         void __iomem *maddr;
3024         int offset = addr & (PAGE_SIZE-1);
3025
3026         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3027                 return -EINVAL;
3028
3029         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3030         if (write)
3031                 memcpy_toio(maddr + offset, buf, len);
3032         else
3033                 memcpy_fromio(buf, maddr + offset, len);
3034         iounmap(maddr);
3035
3036         return len;
3037 }
3038 #endif
3039
3040 /*
3041  * Access another process' address space.
3042  * Source/target buffer must be kernel space,
3043  * Do not walk the page table directly, use get_user_pages
3044  */
3045 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3046 {
3047         struct mm_struct *mm;
3048         struct vm_area_struct *vma;
3049         void *old_buf = buf;
3050
3051         mm = get_task_mm(tsk);
3052         if (!mm)
3053                 return 0;
3054
3055         down_read(&mm->mmap_sem);
3056         /* ignore errors, just check how much was successfully transferred */
3057         while (len) {
3058                 int bytes, ret, offset;
3059                 void *maddr;
3060                 struct page *page = NULL;
3061
3062                 ret = get_user_pages(tsk, mm, addr, 1,
3063                                 write, 1, &page, &vma);
3064                 if (ret <= 0) {
3065                         /*
3066                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3067                          * we can access using slightly different code.
3068                          */
3069 #ifdef CONFIG_HAVE_IOREMAP_PROT
3070                         vma = find_vma(mm, addr);
3071                         if (!vma)
3072                                 break;
3073                         if (vma->vm_ops && vma->vm_ops->access)
3074                                 ret = vma->vm_ops->access(vma, addr, buf,
3075                                                           len, write);
3076                         if (ret <= 0)
3077 #endif
3078                                 break;
3079                         bytes = ret;
3080                 } else {
3081                         bytes = len;
3082                         offset = addr & (PAGE_SIZE-1);
3083                         if (bytes > PAGE_SIZE-offset)
3084                                 bytes = PAGE_SIZE-offset;
3085
3086                         maddr = kmap(page);
3087                         if (write) {
3088                                 copy_to_user_page(vma, page, addr,
3089                                                   maddr + offset, buf, bytes);
3090                                 set_page_dirty_lock(page);
3091                         } else {
3092                                 copy_from_user_page(vma, page, addr,
3093                                                     buf, maddr + offset, bytes);
3094                         }
3095                         kunmap(page);
3096                         page_cache_release(page);
3097                 }
3098                 len -= bytes;
3099                 buf += bytes;
3100                 addr += bytes;
3101         }
3102         up_read(&mm->mmap_sem);
3103         mmput(mm);
3104
3105         return buf - old_buf;
3106 }
3107
3108 /*
3109  * Print the name of a VMA.
3110  */
3111 void print_vma_addr(char *prefix, unsigned long ip)
3112 {
3113         struct mm_struct *mm = current->mm;
3114         struct vm_area_struct *vma;
3115
3116         /*
3117          * Do not print if we are in atomic
3118          * contexts (in exception stacks, etc.):
3119          */
3120         if (preempt_count())
3121                 return;
3122
3123         down_read(&mm->mmap_sem);
3124         vma = find_vma(mm, ip);
3125         if (vma && vma->vm_file) {
3126                 struct file *f = vma->vm_file;
3127                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3128                 if (buf) {
3129                         char *p, *s;
3130
3131                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3132                         if (IS_ERR(p))
3133                                 p = "?";
3134                         s = strrchr(p, '/');
3135                         if (s)
3136                                 p = s+1;
3137                         printk("%s%s[%lx+%lx]", prefix, p,
3138                                         vma->vm_start,
3139                                         vma->vm_end - vma->vm_start);
3140                         free_page((unsigned long)buf);
3141                 }
3142         }
3143         up_read(&current->mm->mmap_sem);
3144 }
3145
3146 #ifdef CONFIG_PROVE_LOCKING
3147 void might_fault(void)
3148 {
3149         might_sleep();
3150         /*
3151          * it would be nicer only to annotate paths which are not under
3152          * pagefault_disable, however that requires a larger audit and
3153          * providing helpers like get_user_atomic.
3154          */
3155         if (!in_atomic() && current->mm)
3156                 might_lock_read(&current->mm->mmap_sem);
3157 }
3158 EXPORT_SYMBOL(might_fault);
3159 #endif