memcg: show real limit under hierarchy mode
[safe/jmp/linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES      5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account         (0)
52 #endif
53
54
55 /*
56  * Statistics for memory cgroup.
57  */
58 enum mem_cgroup_stat_index {
59         /*
60          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61          */
62         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
63         MEM_CGROUP_STAT_RSS,       /* # of pages charged as rss */
64         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
65         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
66
67         MEM_CGROUP_STAT_NSTATS,
68 };
69
70 struct mem_cgroup_stat_cpu {
71         s64 count[MEM_CGROUP_STAT_NSTATS];
72 } ____cacheline_aligned_in_smp;
73
74 struct mem_cgroup_stat {
75         struct mem_cgroup_stat_cpu cpustat[0];
76 };
77
78 /*
79  * For accounting under irq disable, no need for increment preempt count.
80  */
81 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82                 enum mem_cgroup_stat_index idx, int val)
83 {
84         stat->count[idx] += val;
85 }
86
87 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88                 enum mem_cgroup_stat_index idx)
89 {
90         int cpu;
91         s64 ret = 0;
92         for_each_possible_cpu(cpu)
93                 ret += stat->cpustat[cpu].count[idx];
94         return ret;
95 }
96
97 /*
98  * per-zone information in memory controller.
99  */
100 struct mem_cgroup_per_zone {
101         /*
102          * spin_lock to protect the per cgroup LRU
103          */
104         struct list_head        lists[NR_LRU_LISTS];
105         unsigned long           count[NR_LRU_LISTS];
106
107         struct zone_reclaim_stat reclaim_stat;
108 };
109 /* Macro for accessing counter */
110 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
111
112 struct mem_cgroup_per_node {
113         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114 };
115
116 struct mem_cgroup_lru_info {
117         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
118 };
119
120 /*
121  * The memory controller data structure. The memory controller controls both
122  * page cache and RSS per cgroup. We would eventually like to provide
123  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124  * to help the administrator determine what knobs to tune.
125  *
126  * TODO: Add a water mark for the memory controller. Reclaim will begin when
127  * we hit the water mark. May be even add a low water mark, such that
128  * no reclaim occurs from a cgroup at it's low water mark, this is
129  * a feature that will be implemented much later in the future.
130  */
131 struct mem_cgroup {
132         struct cgroup_subsys_state css;
133         /*
134          * the counter to account for memory usage
135          */
136         struct res_counter res;
137         /*
138          * the counter to account for mem+swap usage.
139          */
140         struct res_counter memsw;
141         /*
142          * Per cgroup active and inactive list, similar to the
143          * per zone LRU lists.
144          */
145         struct mem_cgroup_lru_info info;
146
147         /*
148           protect against reclaim related member.
149         */
150         spinlock_t reclaim_param_lock;
151
152         int     prev_priority;  /* for recording reclaim priority */
153
154         /*
155          * While reclaiming in a hiearchy, we cache the last child we
156          * reclaimed from. Protected by cgroup_lock()
157          */
158         struct mem_cgroup *last_scanned_child;
159         /*
160          * Should the accounting and control be hierarchical, per subtree?
161          */
162         bool use_hierarchy;
163         unsigned long   last_oom_jiffies;
164         int             obsolete;
165         atomic_t        refcnt;
166
167         unsigned int    swappiness;
168
169         /*
170          * statistics. This must be placed at the end of memcg.
171          */
172         struct mem_cgroup_stat stat;
173 };
174
175 enum charge_type {
176         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177         MEM_CGROUP_CHARGE_TYPE_MAPPED,
178         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
179         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
180         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181         NR_CHARGE_TYPE,
182 };
183
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE      (1UL << PCG_CACHE)
186 #define PCGF_USED       (1UL << PCG_USED)
187 #define PCGF_LOCK       (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191         PCGF_USED | PCGF_LOCK, /* Anon */
192         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193         0, /* FORCE */
194 };
195
196 /* for encoding cft->private value on file */
197 #define _MEM                    (0)
198 #define _MEMSWAP                (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
202
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
205
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207                                          struct page_cgroup *pc,
208                                          bool charge)
209 {
210         int val = (charge)? 1 : -1;
211         struct mem_cgroup_stat *stat = &mem->stat;
212         struct mem_cgroup_stat_cpu *cpustat;
213         int cpu = get_cpu();
214
215         cpustat = &stat->cpustat[cpu];
216         if (PageCgroupCache(pc))
217                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218         else
219                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221         if (charge)
222                 __mem_cgroup_stat_add_safe(cpustat,
223                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224         else
225                 __mem_cgroup_stat_add_safe(cpustat,
226                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227         put_cpu();
228 }
229
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232 {
233         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234 }
235
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
238 {
239         struct mem_cgroup *mem = pc->mem_cgroup;
240         int nid = page_cgroup_nid(pc);
241         int zid = page_cgroup_zid(pc);
242
243         if (!mem)
244                 return NULL;
245
246         return mem_cgroup_zoneinfo(mem, nid, zid);
247 }
248
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250                                         enum lru_list idx)
251 {
252         int nid, zid;
253         struct mem_cgroup_per_zone *mz;
254         u64 total = 0;
255
256         for_each_online_node(nid)
257                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
259                         total += MEM_CGROUP_ZSTAT(mz, idx);
260                 }
261         return total;
262 }
263
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265 {
266         return container_of(cgroup_subsys_state(cont,
267                                 mem_cgroup_subsys_id), struct mem_cgroup,
268                                 css);
269 }
270
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272 {
273         /*
274          * mm_update_next_owner() may clear mm->owner to NULL
275          * if it races with swapoff, page migration, etc.
276          * So this can be called with p == NULL.
277          */
278         if (unlikely(!p))
279                 return NULL;
280
281         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282                                 struct mem_cgroup, css);
283 }
284
285 /*
286  * Following LRU functions are allowed to be used without PCG_LOCK.
287  * Operations are called by routine of global LRU independently from memcg.
288  * What we have to take care of here is validness of pc->mem_cgroup.
289  *
290  * Changes to pc->mem_cgroup happens when
291  * 1. charge
292  * 2. moving account
293  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
294  * It is added to LRU before charge.
295  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
296  * When moving account, the page is not on LRU. It's isolated.
297  */
298
299 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
300 {
301         struct page_cgroup *pc;
302         struct mem_cgroup *mem;
303         struct mem_cgroup_per_zone *mz;
304
305         if (mem_cgroup_disabled())
306                 return;
307         pc = lookup_page_cgroup(page);
308         /* can happen while we handle swapcache. */
309         if (list_empty(&pc->lru))
310                 return;
311         mz = page_cgroup_zoneinfo(pc);
312         mem = pc->mem_cgroup;
313         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
314         list_del_init(&pc->lru);
315         return;
316 }
317
318 void mem_cgroup_del_lru(struct page *page)
319 {
320         mem_cgroup_del_lru_list(page, page_lru(page));
321 }
322
323 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
324 {
325         struct mem_cgroup_per_zone *mz;
326         struct page_cgroup *pc;
327
328         if (mem_cgroup_disabled())
329                 return;
330
331         pc = lookup_page_cgroup(page);
332         smp_rmb();
333         /* unused page is not rotated. */
334         if (!PageCgroupUsed(pc))
335                 return;
336         mz = page_cgroup_zoneinfo(pc);
337         list_move(&pc->lru, &mz->lists[lru]);
338 }
339
340 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
341 {
342         struct page_cgroup *pc;
343         struct mem_cgroup_per_zone *mz;
344
345         if (mem_cgroup_disabled())
346                 return;
347         pc = lookup_page_cgroup(page);
348         /* barrier to sync with "charge" */
349         smp_rmb();
350         if (!PageCgroupUsed(pc))
351                 return;
352
353         mz = page_cgroup_zoneinfo(pc);
354         MEM_CGROUP_ZSTAT(mz, lru) += 1;
355         list_add(&pc->lru, &mz->lists[lru]);
356 }
357 /*
358  * To add swapcache into LRU. Be careful to all this function.
359  * zone->lru_lock shouldn't be held and irq must not be disabled.
360  */
361 static void mem_cgroup_lru_fixup(struct page *page)
362 {
363         if (!isolate_lru_page(page))
364                 putback_lru_page(page);
365 }
366
367 void mem_cgroup_move_lists(struct page *page,
368                            enum lru_list from, enum lru_list to)
369 {
370         if (mem_cgroup_disabled())
371                 return;
372         mem_cgroup_del_lru_list(page, from);
373         mem_cgroup_add_lru_list(page, to);
374 }
375
376 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
377 {
378         int ret;
379
380         task_lock(task);
381         ret = task->mm && mm_match_cgroup(task->mm, mem);
382         task_unlock(task);
383         return ret;
384 }
385
386 /*
387  * Calculate mapped_ratio under memory controller. This will be used in
388  * vmscan.c for deteremining we have to reclaim mapped pages.
389  */
390 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
391 {
392         long total, rss;
393
394         /*
395          * usage is recorded in bytes. But, here, we assume the number of
396          * physical pages can be represented by "long" on any arch.
397          */
398         total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
399         rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
400         return (int)((rss * 100L) / total);
401 }
402
403 /*
404  * prev_priority control...this will be used in memory reclaim path.
405  */
406 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
407 {
408         int prev_priority;
409
410         spin_lock(&mem->reclaim_param_lock);
411         prev_priority = mem->prev_priority;
412         spin_unlock(&mem->reclaim_param_lock);
413
414         return prev_priority;
415 }
416
417 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
418 {
419         spin_lock(&mem->reclaim_param_lock);
420         if (priority < mem->prev_priority)
421                 mem->prev_priority = priority;
422         spin_unlock(&mem->reclaim_param_lock);
423 }
424
425 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
426 {
427         spin_lock(&mem->reclaim_param_lock);
428         mem->prev_priority = priority;
429         spin_unlock(&mem->reclaim_param_lock);
430 }
431
432 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
433 {
434         unsigned long active;
435         unsigned long inactive;
436         unsigned long gb;
437         unsigned long inactive_ratio;
438
439         inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
440         active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
441
442         gb = (inactive + active) >> (30 - PAGE_SHIFT);
443         if (gb)
444                 inactive_ratio = int_sqrt(10 * gb);
445         else
446                 inactive_ratio = 1;
447
448         if (present_pages) {
449                 present_pages[0] = inactive;
450                 present_pages[1] = active;
451         }
452
453         return inactive_ratio;
454 }
455
456 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
457 {
458         unsigned long active;
459         unsigned long inactive;
460         unsigned long present_pages[2];
461         unsigned long inactive_ratio;
462
463         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
464
465         inactive = present_pages[0];
466         active = present_pages[1];
467
468         if (inactive * inactive_ratio < active)
469                 return 1;
470
471         return 0;
472 }
473
474 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
475                                        struct zone *zone,
476                                        enum lru_list lru)
477 {
478         int nid = zone->zone_pgdat->node_id;
479         int zid = zone_idx(zone);
480         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
481
482         return MEM_CGROUP_ZSTAT(mz, lru);
483 }
484
485 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
486                                                       struct zone *zone)
487 {
488         int nid = zone->zone_pgdat->node_id;
489         int zid = zone_idx(zone);
490         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
491
492         return &mz->reclaim_stat;
493 }
494
495 struct zone_reclaim_stat *
496 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
497 {
498         struct page_cgroup *pc;
499         struct mem_cgroup_per_zone *mz;
500
501         if (mem_cgroup_disabled())
502                 return NULL;
503
504         pc = lookup_page_cgroup(page);
505         mz = page_cgroup_zoneinfo(pc);
506         if (!mz)
507                 return NULL;
508
509         return &mz->reclaim_stat;
510 }
511
512 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
513                                         struct list_head *dst,
514                                         unsigned long *scanned, int order,
515                                         int mode, struct zone *z,
516                                         struct mem_cgroup *mem_cont,
517                                         int active, int file)
518 {
519         unsigned long nr_taken = 0;
520         struct page *page;
521         unsigned long scan;
522         LIST_HEAD(pc_list);
523         struct list_head *src;
524         struct page_cgroup *pc, *tmp;
525         int nid = z->zone_pgdat->node_id;
526         int zid = zone_idx(z);
527         struct mem_cgroup_per_zone *mz;
528         int lru = LRU_FILE * !!file + !!active;
529
530         BUG_ON(!mem_cont);
531         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
532         src = &mz->lists[lru];
533
534         scan = 0;
535         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
536                 if (scan >= nr_to_scan)
537                         break;
538
539                 page = pc->page;
540                 if (unlikely(!PageCgroupUsed(pc)))
541                         continue;
542                 if (unlikely(!PageLRU(page)))
543                         continue;
544
545                 scan++;
546                 if (__isolate_lru_page(page, mode, file) == 0) {
547                         list_move(&page->lru, dst);
548                         nr_taken++;
549                 }
550         }
551
552         *scanned = scan;
553         return nr_taken;
554 }
555
556 #define mem_cgroup_from_res_counter(counter, member)    \
557         container_of(counter, struct mem_cgroup, member)
558
559 /*
560  * This routine finds the DFS walk successor. This routine should be
561  * called with cgroup_mutex held
562  */
563 static struct mem_cgroup *
564 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
565 {
566         struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
567
568         curr_cgroup = curr->css.cgroup;
569         root_cgroup = root_mem->css.cgroup;
570
571         if (!list_empty(&curr_cgroup->children)) {
572                 /*
573                  * Walk down to children
574                  */
575                 mem_cgroup_put(curr);
576                 cgroup = list_entry(curr_cgroup->children.next,
577                                                 struct cgroup, sibling);
578                 curr = mem_cgroup_from_cont(cgroup);
579                 mem_cgroup_get(curr);
580                 goto done;
581         }
582
583 visit_parent:
584         if (curr_cgroup == root_cgroup) {
585                 mem_cgroup_put(curr);
586                 curr = root_mem;
587                 mem_cgroup_get(curr);
588                 goto done;
589         }
590
591         /*
592          * Goto next sibling
593          */
594         if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
595                 mem_cgroup_put(curr);
596                 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
597                                                 sibling);
598                 curr = mem_cgroup_from_cont(cgroup);
599                 mem_cgroup_get(curr);
600                 goto done;
601         }
602
603         /*
604          * Go up to next parent and next parent's sibling if need be
605          */
606         curr_cgroup = curr_cgroup->parent;
607         goto visit_parent;
608
609 done:
610         root_mem->last_scanned_child = curr;
611         return curr;
612 }
613
614 /*
615  * Visit the first child (need not be the first child as per the ordering
616  * of the cgroup list, since we track last_scanned_child) of @mem and use
617  * that to reclaim free pages from.
618  */
619 static struct mem_cgroup *
620 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
621 {
622         struct cgroup *cgroup;
623         struct mem_cgroup *ret;
624         bool obsolete = (root_mem->last_scanned_child &&
625                                 root_mem->last_scanned_child->obsolete);
626
627         /*
628          * Scan all children under the mem_cgroup mem
629          */
630         cgroup_lock();
631         if (list_empty(&root_mem->css.cgroup->children)) {
632                 ret = root_mem;
633                 goto done;
634         }
635
636         if (!root_mem->last_scanned_child || obsolete) {
637
638                 if (obsolete)
639                         mem_cgroup_put(root_mem->last_scanned_child);
640
641                 cgroup = list_first_entry(&root_mem->css.cgroup->children,
642                                 struct cgroup, sibling);
643                 ret = mem_cgroup_from_cont(cgroup);
644                 mem_cgroup_get(ret);
645         } else
646                 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
647                                                 root_mem);
648
649 done:
650         root_mem->last_scanned_child = ret;
651         cgroup_unlock();
652         return ret;
653 }
654
655 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
656 {
657         if (do_swap_account) {
658                 if (res_counter_check_under_limit(&mem->res) &&
659                         res_counter_check_under_limit(&mem->memsw))
660                         return true;
661         } else
662                 if (res_counter_check_under_limit(&mem->res))
663                         return true;
664         return false;
665 }
666
667 static unsigned int get_swappiness(struct mem_cgroup *memcg)
668 {
669         struct cgroup *cgrp = memcg->css.cgroup;
670         unsigned int swappiness;
671
672         /* root ? */
673         if (cgrp->parent == NULL)
674                 return vm_swappiness;
675
676         spin_lock(&memcg->reclaim_param_lock);
677         swappiness = memcg->swappiness;
678         spin_unlock(&memcg->reclaim_param_lock);
679
680         return swappiness;
681 }
682
683 /*
684  * Dance down the hierarchy if needed to reclaim memory. We remember the
685  * last child we reclaimed from, so that we don't end up penalizing
686  * one child extensively based on its position in the children list.
687  *
688  * root_mem is the original ancestor that we've been reclaim from.
689  */
690 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
691                                                 gfp_t gfp_mask, bool noswap)
692 {
693         struct mem_cgroup *next_mem;
694         int ret = 0;
695
696         /*
697          * Reclaim unconditionally and don't check for return value.
698          * We need to reclaim in the current group and down the tree.
699          * One might think about checking for children before reclaiming,
700          * but there might be left over accounting, even after children
701          * have left.
702          */
703         ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
704                                            get_swappiness(root_mem));
705         if (mem_cgroup_check_under_limit(root_mem))
706                 return 0;
707         if (!root_mem->use_hierarchy)
708                 return ret;
709
710         next_mem = mem_cgroup_get_first_node(root_mem);
711
712         while (next_mem != root_mem) {
713                 if (next_mem->obsolete) {
714                         mem_cgroup_put(next_mem);
715                         cgroup_lock();
716                         next_mem = mem_cgroup_get_first_node(root_mem);
717                         cgroup_unlock();
718                         continue;
719                 }
720                 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
721                                                    get_swappiness(next_mem));
722                 if (mem_cgroup_check_under_limit(root_mem))
723                         return 0;
724                 cgroup_lock();
725                 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
726                 cgroup_unlock();
727         }
728         return ret;
729 }
730
731 bool mem_cgroup_oom_called(struct task_struct *task)
732 {
733         bool ret = false;
734         struct mem_cgroup *mem;
735         struct mm_struct *mm;
736
737         rcu_read_lock();
738         mm = task->mm;
739         if (!mm)
740                 mm = &init_mm;
741         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
742         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
743                 ret = true;
744         rcu_read_unlock();
745         return ret;
746 }
747 /*
748  * Unlike exported interface, "oom" parameter is added. if oom==true,
749  * oom-killer can be invoked.
750  */
751 static int __mem_cgroup_try_charge(struct mm_struct *mm,
752                         gfp_t gfp_mask, struct mem_cgroup **memcg,
753                         bool oom)
754 {
755         struct mem_cgroup *mem, *mem_over_limit;
756         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
757         struct res_counter *fail_res;
758
759         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
760                 /* Don't account this! */
761                 *memcg = NULL;
762                 return 0;
763         }
764
765         /*
766          * We always charge the cgroup the mm_struct belongs to.
767          * The mm_struct's mem_cgroup changes on task migration if the
768          * thread group leader migrates. It's possible that mm is not
769          * set, if so charge the init_mm (happens for pagecache usage).
770          */
771         if (likely(!*memcg)) {
772                 rcu_read_lock();
773                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
774                 if (unlikely(!mem)) {
775                         rcu_read_unlock();
776                         return 0;
777                 }
778                 /*
779                  * For every charge from the cgroup, increment reference count
780                  */
781                 css_get(&mem->css);
782                 *memcg = mem;
783                 rcu_read_unlock();
784         } else {
785                 mem = *memcg;
786                 css_get(&mem->css);
787         }
788
789         while (1) {
790                 int ret;
791                 bool noswap = false;
792
793                 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
794                 if (likely(!ret)) {
795                         if (!do_swap_account)
796                                 break;
797                         ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
798                                                         &fail_res);
799                         if (likely(!ret))
800                                 break;
801                         /* mem+swap counter fails */
802                         res_counter_uncharge(&mem->res, PAGE_SIZE);
803                         noswap = true;
804                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
805                                                                         memsw);
806                 } else
807                         /* mem counter fails */
808                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
809                                                                         res);
810
811                 if (!(gfp_mask & __GFP_WAIT))
812                         goto nomem;
813
814                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
815                                                         noswap);
816
817                 /*
818                  * try_to_free_mem_cgroup_pages() might not give us a full
819                  * picture of reclaim. Some pages are reclaimed and might be
820                  * moved to swap cache or just unmapped from the cgroup.
821                  * Check the limit again to see if the reclaim reduced the
822                  * current usage of the cgroup before giving up
823                  *
824                  */
825                 if (mem_cgroup_check_under_limit(mem_over_limit))
826                         continue;
827
828                 if (!nr_retries--) {
829                         if (oom) {
830                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
831                                 mem_over_limit->last_oom_jiffies = jiffies;
832                         }
833                         goto nomem;
834                 }
835         }
836         return 0;
837 nomem:
838         css_put(&mem->css);
839         return -ENOMEM;
840 }
841
842 /**
843  * mem_cgroup_try_charge - get charge of PAGE_SIZE.
844  * @mm: an mm_struct which is charged against. (when *memcg is NULL)
845  * @gfp_mask: gfp_mask for reclaim.
846  * @memcg: a pointer to memory cgroup which is charged against.
847  *
848  * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
849  * memory cgroup from @mm is got and stored in *memcg.
850  *
851  * Returns 0 if success. -ENOMEM at failure.
852  * This call can invoke OOM-Killer.
853  */
854
855 int mem_cgroup_try_charge(struct mm_struct *mm,
856                           gfp_t mask, struct mem_cgroup **memcg)
857 {
858         return __mem_cgroup_try_charge(mm, mask, memcg, true);
859 }
860
861 /*
862  * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
863  * USED state. If already USED, uncharge and return.
864  */
865
866 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
867                                      struct page_cgroup *pc,
868                                      enum charge_type ctype)
869 {
870         /* try_charge() can return NULL to *memcg, taking care of it. */
871         if (!mem)
872                 return;
873
874         lock_page_cgroup(pc);
875         if (unlikely(PageCgroupUsed(pc))) {
876                 unlock_page_cgroup(pc);
877                 res_counter_uncharge(&mem->res, PAGE_SIZE);
878                 if (do_swap_account)
879                         res_counter_uncharge(&mem->memsw, PAGE_SIZE);
880                 css_put(&mem->css);
881                 return;
882         }
883         pc->mem_cgroup = mem;
884         smp_wmb();
885         pc->flags = pcg_default_flags[ctype];
886
887         mem_cgroup_charge_statistics(mem, pc, true);
888
889         unlock_page_cgroup(pc);
890 }
891
892 /**
893  * mem_cgroup_move_account - move account of the page
894  * @pc: page_cgroup of the page.
895  * @from: mem_cgroup which the page is moved from.
896  * @to: mem_cgroup which the page is moved to. @from != @to.
897  *
898  * The caller must confirm following.
899  * - page is not on LRU (isolate_page() is useful.)
900  *
901  * returns 0 at success,
902  * returns -EBUSY when lock is busy or "pc" is unstable.
903  *
904  * This function does "uncharge" from old cgroup but doesn't do "charge" to
905  * new cgroup. It should be done by a caller.
906  */
907
908 static int mem_cgroup_move_account(struct page_cgroup *pc,
909         struct mem_cgroup *from, struct mem_cgroup *to)
910 {
911         struct mem_cgroup_per_zone *from_mz, *to_mz;
912         int nid, zid;
913         int ret = -EBUSY;
914
915         VM_BUG_ON(from == to);
916         VM_BUG_ON(PageLRU(pc->page));
917
918         nid = page_cgroup_nid(pc);
919         zid = page_cgroup_zid(pc);
920         from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
921         to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
922
923         if (!trylock_page_cgroup(pc))
924                 return ret;
925
926         if (!PageCgroupUsed(pc))
927                 goto out;
928
929         if (pc->mem_cgroup != from)
930                 goto out;
931
932         css_put(&from->css);
933         res_counter_uncharge(&from->res, PAGE_SIZE);
934         mem_cgroup_charge_statistics(from, pc, false);
935         if (do_swap_account)
936                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
937         pc->mem_cgroup = to;
938         mem_cgroup_charge_statistics(to, pc, true);
939         css_get(&to->css);
940         ret = 0;
941 out:
942         unlock_page_cgroup(pc);
943         return ret;
944 }
945
946 /*
947  * move charges to its parent.
948  */
949
950 static int mem_cgroup_move_parent(struct page_cgroup *pc,
951                                   struct mem_cgroup *child,
952                                   gfp_t gfp_mask)
953 {
954         struct page *page = pc->page;
955         struct cgroup *cg = child->css.cgroup;
956         struct cgroup *pcg = cg->parent;
957         struct mem_cgroup *parent;
958         int ret;
959
960         /* Is ROOT ? */
961         if (!pcg)
962                 return -EINVAL;
963
964
965         parent = mem_cgroup_from_cont(pcg);
966
967
968         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
969         if (ret || !parent)
970                 return ret;
971
972         if (!get_page_unless_zero(page))
973                 return -EBUSY;
974
975         ret = isolate_lru_page(page);
976
977         if (ret)
978                 goto cancel;
979
980         ret = mem_cgroup_move_account(pc, child, parent);
981
982         /* drop extra refcnt by try_charge() (move_account increment one) */
983         css_put(&parent->css);
984         putback_lru_page(page);
985         if (!ret) {
986                 put_page(page);
987                 return 0;
988         }
989         /* uncharge if move fails */
990 cancel:
991         res_counter_uncharge(&parent->res, PAGE_SIZE);
992         if (do_swap_account)
993                 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
994         put_page(page);
995         return ret;
996 }
997
998 /*
999  * Charge the memory controller for page usage.
1000  * Return
1001  * 0 if the charge was successful
1002  * < 0 if the cgroup is over its limit
1003  */
1004 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1005                                 gfp_t gfp_mask, enum charge_type ctype,
1006                                 struct mem_cgroup *memcg)
1007 {
1008         struct mem_cgroup *mem;
1009         struct page_cgroup *pc;
1010         int ret;
1011
1012         pc = lookup_page_cgroup(page);
1013         /* can happen at boot */
1014         if (unlikely(!pc))
1015                 return 0;
1016         prefetchw(pc);
1017
1018         mem = memcg;
1019         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1020         if (ret || !mem)
1021                 return ret;
1022
1023         __mem_cgroup_commit_charge(mem, pc, ctype);
1024         return 0;
1025 }
1026
1027 int mem_cgroup_newpage_charge(struct page *page,
1028                               struct mm_struct *mm, gfp_t gfp_mask)
1029 {
1030         if (mem_cgroup_disabled())
1031                 return 0;
1032         if (PageCompound(page))
1033                 return 0;
1034         /*
1035          * If already mapped, we don't have to account.
1036          * If page cache, page->mapping has address_space.
1037          * But page->mapping may have out-of-use anon_vma pointer,
1038          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1039          * is NULL.
1040          */
1041         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1042                 return 0;
1043         if (unlikely(!mm))
1044                 mm = &init_mm;
1045         return mem_cgroup_charge_common(page, mm, gfp_mask,
1046                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1047 }
1048
1049 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1050                                 gfp_t gfp_mask)
1051 {
1052         if (mem_cgroup_disabled())
1053                 return 0;
1054         if (PageCompound(page))
1055                 return 0;
1056         /*
1057          * Corner case handling. This is called from add_to_page_cache()
1058          * in usual. But some FS (shmem) precharges this page before calling it
1059          * and call add_to_page_cache() with GFP_NOWAIT.
1060          *
1061          * For GFP_NOWAIT case, the page may be pre-charged before calling
1062          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1063          * charge twice. (It works but has to pay a bit larger cost.)
1064          */
1065         if (!(gfp_mask & __GFP_WAIT)) {
1066                 struct page_cgroup *pc;
1067
1068
1069                 pc = lookup_page_cgroup(page);
1070                 if (!pc)
1071                         return 0;
1072                 lock_page_cgroup(pc);
1073                 if (PageCgroupUsed(pc)) {
1074                         unlock_page_cgroup(pc);
1075                         return 0;
1076                 }
1077                 unlock_page_cgroup(pc);
1078         }
1079
1080         if (unlikely(!mm))
1081                 mm = &init_mm;
1082
1083         if (page_is_file_cache(page))
1084                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1085                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1086         else
1087                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1088                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1089 }
1090
1091 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1092                                  struct page *page,
1093                                  gfp_t mask, struct mem_cgroup **ptr)
1094 {
1095         struct mem_cgroup *mem;
1096         swp_entry_t     ent;
1097
1098         if (mem_cgroup_disabled())
1099                 return 0;
1100
1101         if (!do_swap_account)
1102                 goto charge_cur_mm;
1103
1104         /*
1105          * A racing thread's fault, or swapoff, may have already updated
1106          * the pte, and even removed page from swap cache: return success
1107          * to go on to do_swap_page()'s pte_same() test, which should fail.
1108          */
1109         if (!PageSwapCache(page))
1110                 return 0;
1111
1112         ent.val = page_private(page);
1113
1114         mem = lookup_swap_cgroup(ent);
1115         if (!mem || mem->obsolete)
1116                 goto charge_cur_mm;
1117         *ptr = mem;
1118         return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1119 charge_cur_mm:
1120         if (unlikely(!mm))
1121                 mm = &init_mm;
1122         return __mem_cgroup_try_charge(mm, mask, ptr, true);
1123 }
1124
1125 #ifdef CONFIG_SWAP
1126
1127 int mem_cgroup_cache_charge_swapin(struct page *page,
1128                         struct mm_struct *mm, gfp_t mask, bool locked)
1129 {
1130         int ret = 0;
1131
1132         if (mem_cgroup_disabled())
1133                 return 0;
1134         if (unlikely(!mm))
1135                 mm = &init_mm;
1136         if (!locked)
1137                 lock_page(page);
1138         /*
1139          * If not locked, the page can be dropped from SwapCache until
1140          * we reach here.
1141          */
1142         if (PageSwapCache(page)) {
1143                 struct mem_cgroup *mem = NULL;
1144                 swp_entry_t ent;
1145
1146                 ent.val = page_private(page);
1147                 if (do_swap_account) {
1148                         mem = lookup_swap_cgroup(ent);
1149                         if (mem && mem->obsolete)
1150                                 mem = NULL;
1151                         if (mem)
1152                                 mm = NULL;
1153                 }
1154                 ret = mem_cgroup_charge_common(page, mm, mask,
1155                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1156
1157                 if (!ret && do_swap_account) {
1158                         /* avoid double counting */
1159                         mem = swap_cgroup_record(ent, NULL);
1160                         if (mem) {
1161                                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1162                                 mem_cgroup_put(mem);
1163                         }
1164                 }
1165         }
1166         if (!locked)
1167                 unlock_page(page);
1168         /* add this page(page_cgroup) to the LRU we want. */
1169         mem_cgroup_lru_fixup(page);
1170
1171         return ret;
1172 }
1173 #endif
1174
1175 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1176 {
1177         struct page_cgroup *pc;
1178
1179         if (mem_cgroup_disabled())
1180                 return;
1181         if (!ptr)
1182                 return;
1183         pc = lookup_page_cgroup(page);
1184         __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1185         /*
1186          * Now swap is on-memory. This means this page may be
1187          * counted both as mem and swap....double count.
1188          * Fix it by uncharging from memsw. This SwapCache is stable
1189          * because we're still under lock_page().
1190          */
1191         if (do_swap_account) {
1192                 swp_entry_t ent = {.val = page_private(page)};
1193                 struct mem_cgroup *memcg;
1194                 memcg = swap_cgroup_record(ent, NULL);
1195                 if (memcg) {
1196                         /* If memcg is obsolete, memcg can be != ptr */
1197                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1198                         mem_cgroup_put(memcg);
1199                 }
1200
1201         }
1202         /* add this page(page_cgroup) to the LRU we want. */
1203         mem_cgroup_lru_fixup(page);
1204 }
1205
1206 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1207 {
1208         if (mem_cgroup_disabled())
1209                 return;
1210         if (!mem)
1211                 return;
1212         res_counter_uncharge(&mem->res, PAGE_SIZE);
1213         if (do_swap_account)
1214                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1215         css_put(&mem->css);
1216 }
1217
1218
1219 /*
1220  * uncharge if !page_mapped(page)
1221  */
1222 static struct mem_cgroup *
1223 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1224 {
1225         struct page_cgroup *pc;
1226         struct mem_cgroup *mem = NULL;
1227         struct mem_cgroup_per_zone *mz;
1228
1229         if (mem_cgroup_disabled())
1230                 return NULL;
1231
1232         if (PageSwapCache(page))
1233                 return NULL;
1234
1235         /*
1236          * Check if our page_cgroup is valid
1237          */
1238         pc = lookup_page_cgroup(page);
1239         if (unlikely(!pc || !PageCgroupUsed(pc)))
1240                 return NULL;
1241
1242         lock_page_cgroup(pc);
1243
1244         mem = pc->mem_cgroup;
1245
1246         if (!PageCgroupUsed(pc))
1247                 goto unlock_out;
1248
1249         switch (ctype) {
1250         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1251                 if (page_mapped(page))
1252                         goto unlock_out;
1253                 break;
1254         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1255                 if (!PageAnon(page)) {  /* Shared memory */
1256                         if (page->mapping && !page_is_file_cache(page))
1257                                 goto unlock_out;
1258                 } else if (page_mapped(page)) /* Anon */
1259                                 goto unlock_out;
1260                 break;
1261         default:
1262                 break;
1263         }
1264
1265         res_counter_uncharge(&mem->res, PAGE_SIZE);
1266         if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1267                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1268
1269         mem_cgroup_charge_statistics(mem, pc, false);
1270         ClearPageCgroupUsed(pc);
1271
1272         mz = page_cgroup_zoneinfo(pc);
1273         unlock_page_cgroup(pc);
1274
1275         /* at swapout, this memcg will be accessed to record to swap */
1276         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1277                 css_put(&mem->css);
1278
1279         return mem;
1280
1281 unlock_out:
1282         unlock_page_cgroup(pc);
1283         return NULL;
1284 }
1285
1286 void mem_cgroup_uncharge_page(struct page *page)
1287 {
1288         /* early check. */
1289         if (page_mapped(page))
1290                 return;
1291         if (page->mapping && !PageAnon(page))
1292                 return;
1293         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1294 }
1295
1296 void mem_cgroup_uncharge_cache_page(struct page *page)
1297 {
1298         VM_BUG_ON(page_mapped(page));
1299         VM_BUG_ON(page->mapping);
1300         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1301 }
1302
1303 /*
1304  * called from __delete_from_swap_cache() and drop "page" account.
1305  * memcg information is recorded to swap_cgroup of "ent"
1306  */
1307 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1308 {
1309         struct mem_cgroup *memcg;
1310
1311         memcg = __mem_cgroup_uncharge_common(page,
1312                                         MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1313         /* record memcg information */
1314         if (do_swap_account && memcg) {
1315                 swap_cgroup_record(ent, memcg);
1316                 mem_cgroup_get(memcg);
1317         }
1318         if (memcg)
1319                 css_put(&memcg->css);
1320 }
1321
1322 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1323 /*
1324  * called from swap_entry_free(). remove record in swap_cgroup and
1325  * uncharge "memsw" account.
1326  */
1327 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1328 {
1329         struct mem_cgroup *memcg;
1330
1331         if (!do_swap_account)
1332                 return;
1333
1334         memcg = swap_cgroup_record(ent, NULL);
1335         if (memcg) {
1336                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1337                 mem_cgroup_put(memcg);
1338         }
1339 }
1340 #endif
1341
1342 /*
1343  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1344  * page belongs to.
1345  */
1346 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1347 {
1348         struct page_cgroup *pc;
1349         struct mem_cgroup *mem = NULL;
1350         int ret = 0;
1351
1352         if (mem_cgroup_disabled())
1353                 return 0;
1354
1355         pc = lookup_page_cgroup(page);
1356         lock_page_cgroup(pc);
1357         if (PageCgroupUsed(pc)) {
1358                 mem = pc->mem_cgroup;
1359                 css_get(&mem->css);
1360         }
1361         unlock_page_cgroup(pc);
1362
1363         if (mem) {
1364                 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1365                 css_put(&mem->css);
1366         }
1367         *ptr = mem;
1368         return ret;
1369 }
1370
1371 /* remove redundant charge if migration failed*/
1372 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1373                 struct page *oldpage, struct page *newpage)
1374 {
1375         struct page *target, *unused;
1376         struct page_cgroup *pc;
1377         enum charge_type ctype;
1378
1379         if (!mem)
1380                 return;
1381
1382         /* at migration success, oldpage->mapping is NULL. */
1383         if (oldpage->mapping) {
1384                 target = oldpage;
1385                 unused = NULL;
1386         } else {
1387                 target = newpage;
1388                 unused = oldpage;
1389         }
1390
1391         if (PageAnon(target))
1392                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1393         else if (page_is_file_cache(target))
1394                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1395         else
1396                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1397
1398         /* unused page is not on radix-tree now. */
1399         if (unused)
1400                 __mem_cgroup_uncharge_common(unused, ctype);
1401
1402         pc = lookup_page_cgroup(target);
1403         /*
1404          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1405          * So, double-counting is effectively avoided.
1406          */
1407         __mem_cgroup_commit_charge(mem, pc, ctype);
1408
1409         /*
1410          * Both of oldpage and newpage are still under lock_page().
1411          * Then, we don't have to care about race in radix-tree.
1412          * But we have to be careful that this page is unmapped or not.
1413          *
1414          * There is a case for !page_mapped(). At the start of
1415          * migration, oldpage was mapped. But now, it's zapped.
1416          * But we know *target* page is not freed/reused under us.
1417          * mem_cgroup_uncharge_page() does all necessary checks.
1418          */
1419         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1420                 mem_cgroup_uncharge_page(target);
1421 }
1422
1423 /*
1424  * A call to try to shrink memory usage under specified resource controller.
1425  * This is typically used for page reclaiming for shmem for reducing side
1426  * effect of page allocation from shmem, which is used by some mem_cgroup.
1427  */
1428 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1429 {
1430         struct mem_cgroup *mem;
1431         int progress = 0;
1432         int retry = MEM_CGROUP_RECLAIM_RETRIES;
1433
1434         if (mem_cgroup_disabled())
1435                 return 0;
1436         if (!mm)
1437                 return 0;
1438
1439         rcu_read_lock();
1440         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1441         if (unlikely(!mem)) {
1442                 rcu_read_unlock();
1443                 return 0;
1444         }
1445         css_get(&mem->css);
1446         rcu_read_unlock();
1447
1448         do {
1449                 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true,
1450                                                         get_swappiness(mem));
1451                 progress += mem_cgroup_check_under_limit(mem);
1452         } while (!progress && --retry);
1453
1454         css_put(&mem->css);
1455         if (!retry)
1456                 return -ENOMEM;
1457         return 0;
1458 }
1459
1460 static DEFINE_MUTEX(set_limit_mutex);
1461
1462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1463                                 unsigned long long val)
1464 {
1465
1466         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1467         int progress;
1468         u64 memswlimit;
1469         int ret = 0;
1470
1471         while (retry_count) {
1472                 if (signal_pending(current)) {
1473                         ret = -EINTR;
1474                         break;
1475                 }
1476                 /*
1477                  * Rather than hide all in some function, I do this in
1478                  * open coded manner. You see what this really does.
1479                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1480                  */
1481                 mutex_lock(&set_limit_mutex);
1482                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1483                 if (memswlimit < val) {
1484                         ret = -EINVAL;
1485                         mutex_unlock(&set_limit_mutex);
1486                         break;
1487                 }
1488                 ret = res_counter_set_limit(&memcg->res, val);
1489                 mutex_unlock(&set_limit_mutex);
1490
1491                 if (!ret)
1492                         break;
1493
1494                 progress = try_to_free_mem_cgroup_pages(memcg,
1495                                                         GFP_KERNEL,
1496                                                         false,
1497                                                         get_swappiness(memcg));
1498                 if (!progress)                  retry_count--;
1499         }
1500
1501         return ret;
1502 }
1503
1504 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1505                                 unsigned long long val)
1506 {
1507         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1508         u64 memlimit, oldusage, curusage;
1509         int ret;
1510
1511         if (!do_swap_account)
1512                 return -EINVAL;
1513
1514         while (retry_count) {
1515                 if (signal_pending(current)) {
1516                         ret = -EINTR;
1517                         break;
1518                 }
1519                 /*
1520                  * Rather than hide all in some function, I do this in
1521                  * open coded manner. You see what this really does.
1522                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1523                  */
1524                 mutex_lock(&set_limit_mutex);
1525                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1526                 if (memlimit > val) {
1527                         ret = -EINVAL;
1528                         mutex_unlock(&set_limit_mutex);
1529                         break;
1530                 }
1531                 ret = res_counter_set_limit(&memcg->memsw, val);
1532                 mutex_unlock(&set_limit_mutex);
1533
1534                 if (!ret)
1535                         break;
1536
1537                 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1538                 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true,
1539                                              get_swappiness(memcg));
1540                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1541                 if (curusage >= oldusage)
1542                         retry_count--;
1543         }
1544         return ret;
1545 }
1546
1547 /*
1548  * This routine traverse page_cgroup in given list and drop them all.
1549  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1550  */
1551 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1552                                 int node, int zid, enum lru_list lru)
1553 {
1554         struct zone *zone;
1555         struct mem_cgroup_per_zone *mz;
1556         struct page_cgroup *pc, *busy;
1557         unsigned long flags, loop;
1558         struct list_head *list;
1559         int ret = 0;
1560
1561         zone = &NODE_DATA(node)->node_zones[zid];
1562         mz = mem_cgroup_zoneinfo(mem, node, zid);
1563         list = &mz->lists[lru];
1564
1565         loop = MEM_CGROUP_ZSTAT(mz, lru);
1566         /* give some margin against EBUSY etc...*/
1567         loop += 256;
1568         busy = NULL;
1569         while (loop--) {
1570                 ret = 0;
1571                 spin_lock_irqsave(&zone->lru_lock, flags);
1572                 if (list_empty(list)) {
1573                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1574                         break;
1575                 }
1576                 pc = list_entry(list->prev, struct page_cgroup, lru);
1577                 if (busy == pc) {
1578                         list_move(&pc->lru, list);
1579                         busy = 0;
1580                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1581                         continue;
1582                 }
1583                 spin_unlock_irqrestore(&zone->lru_lock, flags);
1584
1585                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1586                 if (ret == -ENOMEM)
1587                         break;
1588
1589                 if (ret == -EBUSY || ret == -EINVAL) {
1590                         /* found lock contention or "pc" is obsolete. */
1591                         busy = pc;
1592                         cond_resched();
1593                 } else
1594                         busy = NULL;
1595         }
1596
1597         if (!ret && !list_empty(list))
1598                 return -EBUSY;
1599         return ret;
1600 }
1601
1602 /*
1603  * make mem_cgroup's charge to be 0 if there is no task.
1604  * This enables deleting this mem_cgroup.
1605  */
1606 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1607 {
1608         int ret;
1609         int node, zid, shrink;
1610         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1611         struct cgroup *cgrp = mem->css.cgroup;
1612
1613         css_get(&mem->css);
1614
1615         shrink = 0;
1616         /* should free all ? */
1617         if (free_all)
1618                 goto try_to_free;
1619 move_account:
1620         while (mem->res.usage > 0) {
1621                 ret = -EBUSY;
1622                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1623                         goto out;
1624                 ret = -EINTR;
1625                 if (signal_pending(current))
1626                         goto out;
1627                 /* This is for making all *used* pages to be on LRU. */
1628                 lru_add_drain_all();
1629                 ret = 0;
1630                 for_each_node_state(node, N_POSSIBLE) {
1631                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1632                                 enum lru_list l;
1633                                 for_each_lru(l) {
1634                                         ret = mem_cgroup_force_empty_list(mem,
1635                                                         node, zid, l);
1636                                         if (ret)
1637                                                 break;
1638                                 }
1639                         }
1640                         if (ret)
1641                                 break;
1642                 }
1643                 /* it seems parent cgroup doesn't have enough mem */
1644                 if (ret == -ENOMEM)
1645                         goto try_to_free;
1646                 cond_resched();
1647         }
1648         ret = 0;
1649 out:
1650         css_put(&mem->css);
1651         return ret;
1652
1653 try_to_free:
1654         /* returns EBUSY if there is a task or if we come here twice. */
1655         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1656                 ret = -EBUSY;
1657                 goto out;
1658         }
1659         /* we call try-to-free pages for make this cgroup empty */
1660         lru_add_drain_all();
1661         /* try to free all pages in this cgroup */
1662         shrink = 1;
1663         while (nr_retries && mem->res.usage > 0) {
1664                 int progress;
1665
1666                 if (signal_pending(current)) {
1667                         ret = -EINTR;
1668                         goto out;
1669                 }
1670                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1671                                                 false, get_swappiness(mem));
1672                 if (!progress) {
1673                         nr_retries--;
1674                         /* maybe some writeback is necessary */
1675                         congestion_wait(WRITE, HZ/10);
1676                 }
1677
1678         }
1679         lru_add_drain();
1680         /* try move_account...there may be some *locked* pages. */
1681         if (mem->res.usage)
1682                 goto move_account;
1683         ret = 0;
1684         goto out;
1685 }
1686
1687 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1688 {
1689         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1690 }
1691
1692
1693 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1694 {
1695         return mem_cgroup_from_cont(cont)->use_hierarchy;
1696 }
1697
1698 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1699                                         u64 val)
1700 {
1701         int retval = 0;
1702         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1703         struct cgroup *parent = cont->parent;
1704         struct mem_cgroup *parent_mem = NULL;
1705
1706         if (parent)
1707                 parent_mem = mem_cgroup_from_cont(parent);
1708
1709         cgroup_lock();
1710         /*
1711          * If parent's use_hiearchy is set, we can't make any modifications
1712          * in the child subtrees. If it is unset, then the change can
1713          * occur, provided the current cgroup has no children.
1714          *
1715          * For the root cgroup, parent_mem is NULL, we allow value to be
1716          * set if there are no children.
1717          */
1718         if ((!parent_mem || !parent_mem->use_hierarchy) &&
1719                                 (val == 1 || val == 0)) {
1720                 if (list_empty(&cont->children))
1721                         mem->use_hierarchy = val;
1722                 else
1723                         retval = -EBUSY;
1724         } else
1725                 retval = -EINVAL;
1726         cgroup_unlock();
1727
1728         return retval;
1729 }
1730
1731 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1732 {
1733         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1734         u64 val = 0;
1735         int type, name;
1736
1737         type = MEMFILE_TYPE(cft->private);
1738         name = MEMFILE_ATTR(cft->private);
1739         switch (type) {
1740         case _MEM:
1741                 val = res_counter_read_u64(&mem->res, name);
1742                 break;
1743         case _MEMSWAP:
1744                 if (do_swap_account)
1745                         val = res_counter_read_u64(&mem->memsw, name);
1746                 break;
1747         default:
1748                 BUG();
1749                 break;
1750         }
1751         return val;
1752 }
1753 /*
1754  * The user of this function is...
1755  * RES_LIMIT.
1756  */
1757 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1758                             const char *buffer)
1759 {
1760         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1761         int type, name;
1762         unsigned long long val;
1763         int ret;
1764
1765         type = MEMFILE_TYPE(cft->private);
1766         name = MEMFILE_ATTR(cft->private);
1767         switch (name) {
1768         case RES_LIMIT:
1769                 /* This function does all necessary parse...reuse it */
1770                 ret = res_counter_memparse_write_strategy(buffer, &val);
1771                 if (ret)
1772                         break;
1773                 if (type == _MEM)
1774                         ret = mem_cgroup_resize_limit(memcg, val);
1775                 else
1776                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
1777                 break;
1778         default:
1779                 ret = -EINVAL; /* should be BUG() ? */
1780                 break;
1781         }
1782         return ret;
1783 }
1784
1785 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1786                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1787 {
1788         struct cgroup *cgroup;
1789         unsigned long long min_limit, min_memsw_limit, tmp;
1790
1791         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1792         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1793         cgroup = memcg->css.cgroup;
1794         if (!memcg->use_hierarchy)
1795                 goto out;
1796
1797         while (cgroup->parent) {
1798                 cgroup = cgroup->parent;
1799                 memcg = mem_cgroup_from_cont(cgroup);
1800                 if (!memcg->use_hierarchy)
1801                         break;
1802                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1803                 min_limit = min(min_limit, tmp);
1804                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1805                 min_memsw_limit = min(min_memsw_limit, tmp);
1806         }
1807 out:
1808         *mem_limit = min_limit;
1809         *memsw_limit = min_memsw_limit;
1810         return;
1811 }
1812
1813 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1814 {
1815         struct mem_cgroup *mem;
1816         int type, name;
1817
1818         mem = mem_cgroup_from_cont(cont);
1819         type = MEMFILE_TYPE(event);
1820         name = MEMFILE_ATTR(event);
1821         switch (name) {
1822         case RES_MAX_USAGE:
1823                 if (type == _MEM)
1824                         res_counter_reset_max(&mem->res);
1825                 else
1826                         res_counter_reset_max(&mem->memsw);
1827                 break;
1828         case RES_FAILCNT:
1829                 if (type == _MEM)
1830                         res_counter_reset_failcnt(&mem->res);
1831                 else
1832                         res_counter_reset_failcnt(&mem->memsw);
1833                 break;
1834         }
1835         return 0;
1836 }
1837
1838 static const struct mem_cgroup_stat_desc {
1839         const char *msg;
1840         u64 unit;
1841 } mem_cgroup_stat_desc[] = {
1842         [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1843         [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1844         [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1845         [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1846 };
1847
1848 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1849                                  struct cgroup_map_cb *cb)
1850 {
1851         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1852         struct mem_cgroup_stat *stat = &mem_cont->stat;
1853         int i;
1854
1855         for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1856                 s64 val;
1857
1858                 val = mem_cgroup_read_stat(stat, i);
1859                 val *= mem_cgroup_stat_desc[i].unit;
1860                 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1861         }
1862         /* showing # of active pages */
1863         {
1864                 unsigned long active_anon, inactive_anon;
1865                 unsigned long active_file, inactive_file;
1866                 unsigned long unevictable;
1867
1868                 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1869                                                 LRU_INACTIVE_ANON);
1870                 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1871                                                 LRU_ACTIVE_ANON);
1872                 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1873                                                 LRU_INACTIVE_FILE);
1874                 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1875                                                 LRU_ACTIVE_FILE);
1876                 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1877                                                         LRU_UNEVICTABLE);
1878
1879                 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1880                 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1881                 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1882                 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1883                 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1884
1885         }
1886         {
1887                 unsigned long long limit, memsw_limit;
1888                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1889                 cb->fill(cb, "hierarchical_memory_limit", limit);
1890                 if (do_swap_account)
1891                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1892         }
1893
1894 #ifdef CONFIG_DEBUG_VM
1895         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1896
1897         {
1898                 int nid, zid;
1899                 struct mem_cgroup_per_zone *mz;
1900                 unsigned long recent_rotated[2] = {0, 0};
1901                 unsigned long recent_scanned[2] = {0, 0};
1902
1903                 for_each_online_node(nid)
1904                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1905                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1906
1907                                 recent_rotated[0] +=
1908                                         mz->reclaim_stat.recent_rotated[0];
1909                                 recent_rotated[1] +=
1910                                         mz->reclaim_stat.recent_rotated[1];
1911                                 recent_scanned[0] +=
1912                                         mz->reclaim_stat.recent_scanned[0];
1913                                 recent_scanned[1] +=
1914                                         mz->reclaim_stat.recent_scanned[1];
1915                         }
1916                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1917                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1918                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1919                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1920         }
1921 #endif
1922
1923         return 0;
1924 }
1925
1926 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1927 {
1928         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1929
1930         return get_swappiness(memcg);
1931 }
1932
1933 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1934                                        u64 val)
1935 {
1936         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1937         struct mem_cgroup *parent;
1938         if (val > 100)
1939                 return -EINVAL;
1940
1941         if (cgrp->parent == NULL)
1942                 return -EINVAL;
1943
1944         parent = mem_cgroup_from_cont(cgrp->parent);
1945         /* If under hierarchy, only empty-root can set this value */
1946         if ((parent->use_hierarchy) ||
1947             (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1948                 return -EINVAL;
1949
1950         spin_lock(&memcg->reclaim_param_lock);
1951         memcg->swappiness = val;
1952         spin_unlock(&memcg->reclaim_param_lock);
1953
1954         return 0;
1955 }
1956
1957
1958 static struct cftype mem_cgroup_files[] = {
1959         {
1960                 .name = "usage_in_bytes",
1961                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1962                 .read_u64 = mem_cgroup_read,
1963         },
1964         {
1965                 .name = "max_usage_in_bytes",
1966                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1967                 .trigger = mem_cgroup_reset,
1968                 .read_u64 = mem_cgroup_read,
1969         },
1970         {
1971                 .name = "limit_in_bytes",
1972                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1973                 .write_string = mem_cgroup_write,
1974                 .read_u64 = mem_cgroup_read,
1975         },
1976         {
1977                 .name = "failcnt",
1978                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1979                 .trigger = mem_cgroup_reset,
1980                 .read_u64 = mem_cgroup_read,
1981         },
1982         {
1983                 .name = "stat",
1984                 .read_map = mem_control_stat_show,
1985         },
1986         {
1987                 .name = "force_empty",
1988                 .trigger = mem_cgroup_force_empty_write,
1989         },
1990         {
1991                 .name = "use_hierarchy",
1992                 .write_u64 = mem_cgroup_hierarchy_write,
1993                 .read_u64 = mem_cgroup_hierarchy_read,
1994         },
1995         {
1996                 .name = "swappiness",
1997                 .read_u64 = mem_cgroup_swappiness_read,
1998                 .write_u64 = mem_cgroup_swappiness_write,
1999         },
2000 };
2001
2002 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2003 static struct cftype memsw_cgroup_files[] = {
2004         {
2005                 .name = "memsw.usage_in_bytes",
2006                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2007                 .read_u64 = mem_cgroup_read,
2008         },
2009         {
2010                 .name = "memsw.max_usage_in_bytes",
2011                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2012                 .trigger = mem_cgroup_reset,
2013                 .read_u64 = mem_cgroup_read,
2014         },
2015         {
2016                 .name = "memsw.limit_in_bytes",
2017                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2018                 .write_string = mem_cgroup_write,
2019                 .read_u64 = mem_cgroup_read,
2020         },
2021         {
2022                 .name = "memsw.failcnt",
2023                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2024                 .trigger = mem_cgroup_reset,
2025                 .read_u64 = mem_cgroup_read,
2026         },
2027 };
2028
2029 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2030 {
2031         if (!do_swap_account)
2032                 return 0;
2033         return cgroup_add_files(cont, ss, memsw_cgroup_files,
2034                                 ARRAY_SIZE(memsw_cgroup_files));
2035 };
2036 #else
2037 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2038 {
2039         return 0;
2040 }
2041 #endif
2042
2043 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2044 {
2045         struct mem_cgroup_per_node *pn;
2046         struct mem_cgroup_per_zone *mz;
2047         enum lru_list l;
2048         int zone, tmp = node;
2049         /*
2050          * This routine is called against possible nodes.
2051          * But it's BUG to call kmalloc() against offline node.
2052          *
2053          * TODO: this routine can waste much memory for nodes which will
2054          *       never be onlined. It's better to use memory hotplug callback
2055          *       function.
2056          */
2057         if (!node_state(node, N_NORMAL_MEMORY))
2058                 tmp = -1;
2059         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2060         if (!pn)
2061                 return 1;
2062
2063         mem->info.nodeinfo[node] = pn;
2064         memset(pn, 0, sizeof(*pn));
2065
2066         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2067                 mz = &pn->zoneinfo[zone];
2068                 for_each_lru(l)
2069                         INIT_LIST_HEAD(&mz->lists[l]);
2070         }
2071         return 0;
2072 }
2073
2074 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2075 {
2076         kfree(mem->info.nodeinfo[node]);
2077 }
2078
2079 static int mem_cgroup_size(void)
2080 {
2081         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2082         return sizeof(struct mem_cgroup) + cpustat_size;
2083 }
2084
2085 static struct mem_cgroup *mem_cgroup_alloc(void)
2086 {
2087         struct mem_cgroup *mem;
2088         int size = mem_cgroup_size();
2089
2090         if (size < PAGE_SIZE)
2091                 mem = kmalloc(size, GFP_KERNEL);
2092         else
2093                 mem = vmalloc(size);
2094
2095         if (mem)
2096                 memset(mem, 0, size);
2097         return mem;
2098 }
2099
2100 /*
2101  * At destroying mem_cgroup, references from swap_cgroup can remain.
2102  * (scanning all at force_empty is too costly...)
2103  *
2104  * Instead of clearing all references at force_empty, we remember
2105  * the number of reference from swap_cgroup and free mem_cgroup when
2106  * it goes down to 0.
2107  *
2108  * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2109  * entry which points to this memcg will be ignore at swapin.
2110  *
2111  * Removal of cgroup itself succeeds regardless of refs from swap.
2112  */
2113
2114 static void mem_cgroup_free(struct mem_cgroup *mem)
2115 {
2116         int node;
2117
2118         if (atomic_read(&mem->refcnt) > 0)
2119                 return;
2120
2121
2122         for_each_node_state(node, N_POSSIBLE)
2123                 free_mem_cgroup_per_zone_info(mem, node);
2124
2125         if (mem_cgroup_size() < PAGE_SIZE)
2126                 kfree(mem);
2127         else
2128                 vfree(mem);
2129 }
2130
2131 static void mem_cgroup_get(struct mem_cgroup *mem)
2132 {
2133         atomic_inc(&mem->refcnt);
2134 }
2135
2136 static void mem_cgroup_put(struct mem_cgroup *mem)
2137 {
2138         if (atomic_dec_and_test(&mem->refcnt)) {
2139                 if (!mem->obsolete)
2140                         return;
2141                 mem_cgroup_free(mem);
2142         }
2143 }
2144
2145
2146 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2147 static void __init enable_swap_cgroup(void)
2148 {
2149         if (!mem_cgroup_disabled() && really_do_swap_account)
2150                 do_swap_account = 1;
2151 }
2152 #else
2153 static void __init enable_swap_cgroup(void)
2154 {
2155 }
2156 #endif
2157
2158 static struct cgroup_subsys_state *
2159 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2160 {
2161         struct mem_cgroup *mem, *parent;
2162         int node;
2163
2164         mem = mem_cgroup_alloc();
2165         if (!mem)
2166                 return ERR_PTR(-ENOMEM);
2167
2168         for_each_node_state(node, N_POSSIBLE)
2169                 if (alloc_mem_cgroup_per_zone_info(mem, node))
2170                         goto free_out;
2171         /* root ? */
2172         if (cont->parent == NULL) {
2173                 enable_swap_cgroup();
2174                 parent = NULL;
2175         } else {
2176                 parent = mem_cgroup_from_cont(cont->parent);
2177                 mem->use_hierarchy = parent->use_hierarchy;
2178         }
2179
2180         if (parent && parent->use_hierarchy) {
2181                 res_counter_init(&mem->res, &parent->res);
2182                 res_counter_init(&mem->memsw, &parent->memsw);
2183         } else {
2184                 res_counter_init(&mem->res, NULL);
2185                 res_counter_init(&mem->memsw, NULL);
2186         }
2187         mem->last_scanned_child = NULL;
2188         spin_lock_init(&mem->reclaim_param_lock);
2189
2190         if (parent)
2191                 mem->swappiness = get_swappiness(parent);
2192
2193         return &mem->css;
2194 free_out:
2195         for_each_node_state(node, N_POSSIBLE)
2196                 free_mem_cgroup_per_zone_info(mem, node);
2197         mem_cgroup_free(mem);
2198         return ERR_PTR(-ENOMEM);
2199 }
2200
2201 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2202                                         struct cgroup *cont)
2203 {
2204         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2205         mem->obsolete = 1;
2206         mem_cgroup_force_empty(mem, false);
2207 }
2208
2209 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2210                                 struct cgroup *cont)
2211 {
2212         mem_cgroup_free(mem_cgroup_from_cont(cont));
2213 }
2214
2215 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2216                                 struct cgroup *cont)
2217 {
2218         int ret;
2219
2220         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2221                                 ARRAY_SIZE(mem_cgroup_files));
2222
2223         if (!ret)
2224                 ret = register_memsw_files(cont, ss);
2225         return ret;
2226 }
2227
2228 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2229                                 struct cgroup *cont,
2230                                 struct cgroup *old_cont,
2231                                 struct task_struct *p)
2232 {
2233         /*
2234          * FIXME: It's better to move charges of this process from old
2235          * memcg to new memcg. But it's just on TODO-List now.
2236          */
2237 }
2238
2239 struct cgroup_subsys mem_cgroup_subsys = {
2240         .name = "memory",
2241         .subsys_id = mem_cgroup_subsys_id,
2242         .create = mem_cgroup_create,
2243         .pre_destroy = mem_cgroup_pre_destroy,
2244         .destroy = mem_cgroup_destroy,
2245         .populate = mem_cgroup_populate,
2246         .attach = mem_cgroup_move_task,
2247         .early_init = 0,
2248 };
2249
2250 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2251
2252 static int __init disable_swap_account(char *s)
2253 {
2254         really_do_swap_account = 0;
2255         return 1;
2256 }
2257 __setup("noswapaccount", disable_swap_account);
2258 #endif