memcg: fix try_get_mem_cgroup_from_swapcache()
[safe/jmp/linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
41
42 #include <asm/uaccess.h>
43
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES      5
46
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account         (0)
53 #endif
54
55 static DEFINE_MUTEX(memcg_tasklist);    /* can be hold under cgroup_mutex */
56
57 /*
58  * Statistics for memory cgroup.
59  */
60 enum mem_cgroup_stat_index {
61         /*
62          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63          */
64         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
65         MEM_CGROUP_STAT_RSS,       /* # of pages charged as rss */
66         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
67         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
68
69         MEM_CGROUP_STAT_NSTATS,
70 };
71
72 struct mem_cgroup_stat_cpu {
73         s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
75
76 struct mem_cgroup_stat {
77         struct mem_cgroup_stat_cpu cpustat[0];
78 };
79
80 /*
81  * For accounting under irq disable, no need for increment preempt count.
82  */
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84                 enum mem_cgroup_stat_index idx, int val)
85 {
86         stat->count[idx] += val;
87 }
88
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90                 enum mem_cgroup_stat_index idx)
91 {
92         int cpu;
93         s64 ret = 0;
94         for_each_possible_cpu(cpu)
95                 ret += stat->cpustat[cpu].count[idx];
96         return ret;
97 }
98
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100 {
101         s64 ret;
102
103         ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104         ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105         return ret;
106 }
107
108 /*
109  * per-zone information in memory controller.
110  */
111 struct mem_cgroup_per_zone {
112         /*
113          * spin_lock to protect the per cgroup LRU
114          */
115         struct list_head        lists[NR_LRU_LISTS];
116         unsigned long           count[NR_LRU_LISTS];
117
118         struct zone_reclaim_stat reclaim_stat;
119 };
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
122
123 struct mem_cgroup_per_node {
124         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125 };
126
127 struct mem_cgroup_lru_info {
128         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129 };
130
131 /*
132  * The memory controller data structure. The memory controller controls both
133  * page cache and RSS per cgroup. We would eventually like to provide
134  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135  * to help the administrator determine what knobs to tune.
136  *
137  * TODO: Add a water mark for the memory controller. Reclaim will begin when
138  * we hit the water mark. May be even add a low water mark, such that
139  * no reclaim occurs from a cgroup at it's low water mark, this is
140  * a feature that will be implemented much later in the future.
141  */
142 struct mem_cgroup {
143         struct cgroup_subsys_state css;
144         /*
145          * the counter to account for memory usage
146          */
147         struct res_counter res;
148         /*
149          * the counter to account for mem+swap usage.
150          */
151         struct res_counter memsw;
152         /*
153          * Per cgroup active and inactive list, similar to the
154          * per zone LRU lists.
155          */
156         struct mem_cgroup_lru_info info;
157
158         /*
159           protect against reclaim related member.
160         */
161         spinlock_t reclaim_param_lock;
162
163         int     prev_priority;  /* for recording reclaim priority */
164
165         /*
166          * While reclaiming in a hiearchy, we cache the last child we
167          * reclaimed from.
168          */
169         int last_scanned_child;
170         /*
171          * Should the accounting and control be hierarchical, per subtree?
172          */
173         bool use_hierarchy;
174         unsigned long   last_oom_jiffies;
175         atomic_t        refcnt;
176
177         unsigned int    swappiness;
178
179         /*
180          * statistics. This must be placed at the end of memcg.
181          */
182         struct mem_cgroup_stat stat;
183 };
184
185 enum charge_type {
186         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187         MEM_CGROUP_CHARGE_TYPE_MAPPED,
188         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
189         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
190         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
191         NR_CHARGE_TYPE,
192 };
193
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE      (1UL << PCG_CACHE)
196 #define PCGF_USED       (1UL << PCG_USED)
197 #define PCGF_LOCK       (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201         PCGF_USED | PCGF_LOCK, /* Anon */
202         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
203         0, /* FORCE */
204 };
205
206 /* for encoding cft->private value on file */
207 #define _MEM                    (0)
208 #define _MEMSWAP                (1)
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
212
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
216
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218                                          struct page_cgroup *pc,
219                                          bool charge)
220 {
221         int val = (charge)? 1 : -1;
222         struct mem_cgroup_stat *stat = &mem->stat;
223         struct mem_cgroup_stat_cpu *cpustat;
224         int cpu = get_cpu();
225
226         cpustat = &stat->cpustat[cpu];
227         if (PageCgroupCache(pc))
228                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229         else
230                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
231
232         if (charge)
233                 __mem_cgroup_stat_add_safe(cpustat,
234                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235         else
236                 __mem_cgroup_stat_add_safe(cpustat,
237                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
238         put_cpu();
239 }
240
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243 {
244         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245 }
246
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
249 {
250         struct mem_cgroup *mem = pc->mem_cgroup;
251         int nid = page_cgroup_nid(pc);
252         int zid = page_cgroup_zid(pc);
253
254         if (!mem)
255                 return NULL;
256
257         return mem_cgroup_zoneinfo(mem, nid, zid);
258 }
259
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261                                         enum lru_list idx)
262 {
263         int nid, zid;
264         struct mem_cgroup_per_zone *mz;
265         u64 total = 0;
266
267         for_each_online_node(nid)
268                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
270                         total += MEM_CGROUP_ZSTAT(mz, idx);
271                 }
272         return total;
273 }
274
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
276 {
277         return container_of(cgroup_subsys_state(cont,
278                                 mem_cgroup_subsys_id), struct mem_cgroup,
279                                 css);
280 }
281
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
283 {
284         /*
285          * mm_update_next_owner() may clear mm->owner to NULL
286          * if it races with swapoff, page migration, etc.
287          * So this can be called with p == NULL.
288          */
289         if (unlikely(!p))
290                 return NULL;
291
292         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293                                 struct mem_cgroup, css);
294 }
295
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297 {
298         struct mem_cgroup *mem = NULL;
299
300         if (!mm)
301                 return NULL;
302         /*
303          * Because we have no locks, mm->owner's may be being moved to other
304          * cgroup. We use css_tryget() here even if this looks
305          * pessimistic (rather than adding locks here).
306          */
307         rcu_read_lock();
308         do {
309                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310                 if (unlikely(!mem))
311                         break;
312         } while (!css_tryget(&mem->css));
313         rcu_read_unlock();
314         return mem;
315 }
316
317 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
318 {
319         if (!mem)
320                 return true;
321         return css_is_removed(&mem->css);
322 }
323
324
325 /*
326  * Call callback function against all cgroup under hierarchy tree.
327  */
328 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329                           int (*func)(struct mem_cgroup *, void *))
330 {
331         int found, ret, nextid;
332         struct cgroup_subsys_state *css;
333         struct mem_cgroup *mem;
334
335         if (!root->use_hierarchy)
336                 return (*func)(root, data);
337
338         nextid = 1;
339         do {
340                 ret = 0;
341                 mem = NULL;
342
343                 rcu_read_lock();
344                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
345                                    &found);
346                 if (css && css_tryget(css))
347                         mem = container_of(css, struct mem_cgroup, css);
348                 rcu_read_unlock();
349
350                 if (mem) {
351                         ret = (*func)(mem, data);
352                         css_put(&mem->css);
353                 }
354                 nextid = found + 1;
355         } while (!ret && css);
356
357         return ret;
358 }
359
360 /*
361  * Following LRU functions are allowed to be used without PCG_LOCK.
362  * Operations are called by routine of global LRU independently from memcg.
363  * What we have to take care of here is validness of pc->mem_cgroup.
364  *
365  * Changes to pc->mem_cgroup happens when
366  * 1. charge
367  * 2. moving account
368  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369  * It is added to LRU before charge.
370  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371  * When moving account, the page is not on LRU. It's isolated.
372  */
373
374 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
375 {
376         struct page_cgroup *pc;
377         struct mem_cgroup *mem;
378         struct mem_cgroup_per_zone *mz;
379
380         if (mem_cgroup_disabled())
381                 return;
382         pc = lookup_page_cgroup(page);
383         /* can happen while we handle swapcache. */
384         if (list_empty(&pc->lru) || !pc->mem_cgroup)
385                 return;
386         /*
387          * We don't check PCG_USED bit. It's cleared when the "page" is finally
388          * removed from global LRU.
389          */
390         mz = page_cgroup_zoneinfo(pc);
391         mem = pc->mem_cgroup;
392         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
393         list_del_init(&pc->lru);
394         return;
395 }
396
397 void mem_cgroup_del_lru(struct page *page)
398 {
399         mem_cgroup_del_lru_list(page, page_lru(page));
400 }
401
402 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403 {
404         struct mem_cgroup_per_zone *mz;
405         struct page_cgroup *pc;
406
407         if (mem_cgroup_disabled())
408                 return;
409
410         pc = lookup_page_cgroup(page);
411         /*
412          * Used bit is set without atomic ops but after smp_wmb().
413          * For making pc->mem_cgroup visible, insert smp_rmb() here.
414          */
415         smp_rmb();
416         /* unused page is not rotated. */
417         if (!PageCgroupUsed(pc))
418                 return;
419         mz = page_cgroup_zoneinfo(pc);
420         list_move(&pc->lru, &mz->lists[lru]);
421 }
422
423 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
424 {
425         struct page_cgroup *pc;
426         struct mem_cgroup_per_zone *mz;
427
428         if (mem_cgroup_disabled())
429                 return;
430         pc = lookup_page_cgroup(page);
431         /*
432          * Used bit is set without atomic ops but after smp_wmb().
433          * For making pc->mem_cgroup visible, insert smp_rmb() here.
434          */
435         smp_rmb();
436         if (!PageCgroupUsed(pc))
437                 return;
438
439         mz = page_cgroup_zoneinfo(pc);
440         MEM_CGROUP_ZSTAT(mz, lru) += 1;
441         list_add(&pc->lru, &mz->lists[lru]);
442 }
443
444 /*
445  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446  * lru because the page may.be reused after it's fully uncharged (because of
447  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448  * it again. This function is only used to charge SwapCache. It's done under
449  * lock_page and expected that zone->lru_lock is never held.
450  */
451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
452 {
453         unsigned long flags;
454         struct zone *zone = page_zone(page);
455         struct page_cgroup *pc = lookup_page_cgroup(page);
456
457         spin_lock_irqsave(&zone->lru_lock, flags);
458         /*
459          * Forget old LRU when this page_cgroup is *not* used. This Used bit
460          * is guarded by lock_page() because the page is SwapCache.
461          */
462         if (!PageCgroupUsed(pc))
463                 mem_cgroup_del_lru_list(page, page_lru(page));
464         spin_unlock_irqrestore(&zone->lru_lock, flags);
465 }
466
467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
468 {
469         unsigned long flags;
470         struct zone *zone = page_zone(page);
471         struct page_cgroup *pc = lookup_page_cgroup(page);
472
473         spin_lock_irqsave(&zone->lru_lock, flags);
474         /* link when the page is linked to LRU but page_cgroup isn't */
475         if (PageLRU(page) && list_empty(&pc->lru))
476                 mem_cgroup_add_lru_list(page, page_lru(page));
477         spin_unlock_irqrestore(&zone->lru_lock, flags);
478 }
479
480
481 void mem_cgroup_move_lists(struct page *page,
482                            enum lru_list from, enum lru_list to)
483 {
484         if (mem_cgroup_disabled())
485                 return;
486         mem_cgroup_del_lru_list(page, from);
487         mem_cgroup_add_lru_list(page, to);
488 }
489
490 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
491 {
492         int ret;
493         struct mem_cgroup *curr = NULL;
494
495         task_lock(task);
496         rcu_read_lock();
497         curr = try_get_mem_cgroup_from_mm(task->mm);
498         rcu_read_unlock();
499         task_unlock(task);
500         if (!curr)
501                 return 0;
502         if (curr->use_hierarchy)
503                 ret = css_is_ancestor(&curr->css, &mem->css);
504         else
505                 ret = (curr == mem);
506         css_put(&curr->css);
507         return ret;
508 }
509
510 /*
511  * prev_priority control...this will be used in memory reclaim path.
512  */
513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
514 {
515         int prev_priority;
516
517         spin_lock(&mem->reclaim_param_lock);
518         prev_priority = mem->prev_priority;
519         spin_unlock(&mem->reclaim_param_lock);
520
521         return prev_priority;
522 }
523
524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
525 {
526         spin_lock(&mem->reclaim_param_lock);
527         if (priority < mem->prev_priority)
528                 mem->prev_priority = priority;
529         spin_unlock(&mem->reclaim_param_lock);
530 }
531
532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
533 {
534         spin_lock(&mem->reclaim_param_lock);
535         mem->prev_priority = priority;
536         spin_unlock(&mem->reclaim_param_lock);
537 }
538
539 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
540 {
541         unsigned long active;
542         unsigned long inactive;
543         unsigned long gb;
544         unsigned long inactive_ratio;
545
546         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
547         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
548
549         gb = (inactive + active) >> (30 - PAGE_SHIFT);
550         if (gb)
551                 inactive_ratio = int_sqrt(10 * gb);
552         else
553                 inactive_ratio = 1;
554
555         if (present_pages) {
556                 present_pages[0] = inactive;
557                 present_pages[1] = active;
558         }
559
560         return inactive_ratio;
561 }
562
563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
564 {
565         unsigned long active;
566         unsigned long inactive;
567         unsigned long present_pages[2];
568         unsigned long inactive_ratio;
569
570         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
571
572         inactive = present_pages[0];
573         active = present_pages[1];
574
575         if (inactive * inactive_ratio < active)
576                 return 1;
577
578         return 0;
579 }
580
581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
582                                        struct zone *zone,
583                                        enum lru_list lru)
584 {
585         int nid = zone->zone_pgdat->node_id;
586         int zid = zone_idx(zone);
587         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
588
589         return MEM_CGROUP_ZSTAT(mz, lru);
590 }
591
592 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
593                                                       struct zone *zone)
594 {
595         int nid = zone->zone_pgdat->node_id;
596         int zid = zone_idx(zone);
597         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598
599         return &mz->reclaim_stat;
600 }
601
602 struct zone_reclaim_stat *
603 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
604 {
605         struct page_cgroup *pc;
606         struct mem_cgroup_per_zone *mz;
607
608         if (mem_cgroup_disabled())
609                 return NULL;
610
611         pc = lookup_page_cgroup(page);
612         /*
613          * Used bit is set without atomic ops but after smp_wmb().
614          * For making pc->mem_cgroup visible, insert smp_rmb() here.
615          */
616         smp_rmb();
617         if (!PageCgroupUsed(pc))
618                 return NULL;
619
620         mz = page_cgroup_zoneinfo(pc);
621         if (!mz)
622                 return NULL;
623
624         return &mz->reclaim_stat;
625 }
626
627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
628                                         struct list_head *dst,
629                                         unsigned long *scanned, int order,
630                                         int mode, struct zone *z,
631                                         struct mem_cgroup *mem_cont,
632                                         int active, int file)
633 {
634         unsigned long nr_taken = 0;
635         struct page *page;
636         unsigned long scan;
637         LIST_HEAD(pc_list);
638         struct list_head *src;
639         struct page_cgroup *pc, *tmp;
640         int nid = z->zone_pgdat->node_id;
641         int zid = zone_idx(z);
642         struct mem_cgroup_per_zone *mz;
643         int lru = LRU_FILE * !!file + !!active;
644
645         BUG_ON(!mem_cont);
646         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
647         src = &mz->lists[lru];
648
649         scan = 0;
650         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
651                 if (scan >= nr_to_scan)
652                         break;
653
654                 page = pc->page;
655                 if (unlikely(!PageCgroupUsed(pc)))
656                         continue;
657                 if (unlikely(!PageLRU(page)))
658                         continue;
659
660                 scan++;
661                 if (__isolate_lru_page(page, mode, file) == 0) {
662                         list_move(&page->lru, dst);
663                         nr_taken++;
664                 }
665         }
666
667         *scanned = scan;
668         return nr_taken;
669 }
670
671 #define mem_cgroup_from_res_counter(counter, member)    \
672         container_of(counter, struct mem_cgroup, member)
673
674 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
675 {
676         if (do_swap_account) {
677                 if (res_counter_check_under_limit(&mem->res) &&
678                         res_counter_check_under_limit(&mem->memsw))
679                         return true;
680         } else
681                 if (res_counter_check_under_limit(&mem->res))
682                         return true;
683         return false;
684 }
685
686 static unsigned int get_swappiness(struct mem_cgroup *memcg)
687 {
688         struct cgroup *cgrp = memcg->css.cgroup;
689         unsigned int swappiness;
690
691         /* root ? */
692         if (cgrp->parent == NULL)
693                 return vm_swappiness;
694
695         spin_lock(&memcg->reclaim_param_lock);
696         swappiness = memcg->swappiness;
697         spin_unlock(&memcg->reclaim_param_lock);
698
699         return swappiness;
700 }
701
702 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
703 {
704         int *val = data;
705         (*val)++;
706         return 0;
707 }
708
709 /**
710  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711  * @memcg: The memory cgroup that went over limit
712  * @p: Task that is going to be killed
713  *
714  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
715  * enabled
716  */
717 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
718 {
719         struct cgroup *task_cgrp;
720         struct cgroup *mem_cgrp;
721         /*
722          * Need a buffer in BSS, can't rely on allocations. The code relies
723          * on the assumption that OOM is serialized for memory controller.
724          * If this assumption is broken, revisit this code.
725          */
726         static char memcg_name[PATH_MAX];
727         int ret;
728
729         if (!memcg)
730                 return;
731
732
733         rcu_read_lock();
734
735         mem_cgrp = memcg->css.cgroup;
736         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
737
738         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
739         if (ret < 0) {
740                 /*
741                  * Unfortunately, we are unable to convert to a useful name
742                  * But we'll still print out the usage information
743                  */
744                 rcu_read_unlock();
745                 goto done;
746         }
747         rcu_read_unlock();
748
749         printk(KERN_INFO "Task in %s killed", memcg_name);
750
751         rcu_read_lock();
752         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
753         if (ret < 0) {
754                 rcu_read_unlock();
755                 goto done;
756         }
757         rcu_read_unlock();
758
759         /*
760          * Continues from above, so we don't need an KERN_ level
761          */
762         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
763 done:
764
765         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
766                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
767                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
768                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
769         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
770                 "failcnt %llu\n",
771                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
774 }
775
776 /*
777  * This function returns the number of memcg under hierarchy tree. Returns
778  * 1(self count) if no children.
779  */
780 static int mem_cgroup_count_children(struct mem_cgroup *mem)
781 {
782         int num = 0;
783         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
784         return num;
785 }
786
787 /*
788  * Visit the first child (need not be the first child as per the ordering
789  * of the cgroup list, since we track last_scanned_child) of @mem and use
790  * that to reclaim free pages from.
791  */
792 static struct mem_cgroup *
793 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
794 {
795         struct mem_cgroup *ret = NULL;
796         struct cgroup_subsys_state *css;
797         int nextid, found;
798
799         if (!root_mem->use_hierarchy) {
800                 css_get(&root_mem->css);
801                 ret = root_mem;
802         }
803
804         while (!ret) {
805                 rcu_read_lock();
806                 nextid = root_mem->last_scanned_child + 1;
807                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
808                                    &found);
809                 if (css && css_tryget(css))
810                         ret = container_of(css, struct mem_cgroup, css);
811
812                 rcu_read_unlock();
813                 /* Updates scanning parameter */
814                 spin_lock(&root_mem->reclaim_param_lock);
815                 if (!css) {
816                         /* this means start scan from ID:1 */
817                         root_mem->last_scanned_child = 0;
818                 } else
819                         root_mem->last_scanned_child = found;
820                 spin_unlock(&root_mem->reclaim_param_lock);
821         }
822
823         return ret;
824 }
825
826 /*
827  * Scan the hierarchy if needed to reclaim memory. We remember the last child
828  * we reclaimed from, so that we don't end up penalizing one child extensively
829  * based on its position in the children list.
830  *
831  * root_mem is the original ancestor that we've been reclaim from.
832  *
833  * We give up and return to the caller when we visit root_mem twice.
834  * (other groups can be removed while we're walking....)
835  *
836  * If shrink==true, for avoiding to free too much, this returns immedieately.
837  */
838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
839                                    gfp_t gfp_mask, bool noswap, bool shrink)
840 {
841         struct mem_cgroup *victim;
842         int ret, total = 0;
843         int loop = 0;
844
845         while (loop < 2) {
846                 victim = mem_cgroup_select_victim(root_mem);
847                 if (victim == root_mem)
848                         loop++;
849                 if (!mem_cgroup_local_usage(&victim->stat)) {
850                         /* this cgroup's local usage == 0 */
851                         css_put(&victim->css);
852                         continue;
853                 }
854                 /* we use swappiness of local cgroup */
855                 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856                                                    get_swappiness(victim));
857                 css_put(&victim->css);
858                 /*
859                  * At shrinking usage, we can't check we should stop here or
860                  * reclaim more. It's depends on callers. last_scanned_child
861                  * will work enough for keeping fairness under tree.
862                  */
863                 if (shrink)
864                         return ret;
865                 total += ret;
866                 if (mem_cgroup_check_under_limit(root_mem))
867                         return 1 + total;
868         }
869         return total;
870 }
871
872 bool mem_cgroup_oom_called(struct task_struct *task)
873 {
874         bool ret = false;
875         struct mem_cgroup *mem;
876         struct mm_struct *mm;
877
878         rcu_read_lock();
879         mm = task->mm;
880         if (!mm)
881                 mm = &init_mm;
882         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
883         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
884                 ret = true;
885         rcu_read_unlock();
886         return ret;
887 }
888
889 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
890 {
891         mem->last_oom_jiffies = jiffies;
892         return 0;
893 }
894
895 static void record_last_oom(struct mem_cgroup *mem)
896 {
897         mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
898 }
899
900
901 /*
902  * Unlike exported interface, "oom" parameter is added. if oom==true,
903  * oom-killer can be invoked.
904  */
905 static int __mem_cgroup_try_charge(struct mm_struct *mm,
906                         gfp_t gfp_mask, struct mem_cgroup **memcg,
907                         bool oom)
908 {
909         struct mem_cgroup *mem, *mem_over_limit;
910         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
911         struct res_counter *fail_res;
912
913         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
914                 /* Don't account this! */
915                 *memcg = NULL;
916                 return 0;
917         }
918
919         /*
920          * We always charge the cgroup the mm_struct belongs to.
921          * The mm_struct's mem_cgroup changes on task migration if the
922          * thread group leader migrates. It's possible that mm is not
923          * set, if so charge the init_mm (happens for pagecache usage).
924          */
925         mem = *memcg;
926         if (likely(!mem)) {
927                 mem = try_get_mem_cgroup_from_mm(mm);
928                 *memcg = mem;
929         } else {
930                 css_get(&mem->css);
931         }
932         if (unlikely(!mem))
933                 return 0;
934
935         VM_BUG_ON(!mem || mem_cgroup_is_obsolete(mem));
936
937         while (1) {
938                 int ret;
939                 bool noswap = false;
940
941                 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
942                 if (likely(!ret)) {
943                         if (!do_swap_account)
944                                 break;
945                         ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
946                                                         &fail_res);
947                         if (likely(!ret))
948                                 break;
949                         /* mem+swap counter fails */
950                         res_counter_uncharge(&mem->res, PAGE_SIZE);
951                         noswap = true;
952                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
953                                                                         memsw);
954                 } else
955                         /* mem counter fails */
956                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
957                                                                         res);
958
959                 if (!(gfp_mask & __GFP_WAIT))
960                         goto nomem;
961
962                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
963                                                         noswap, false);
964                 if (ret)
965                         continue;
966
967                 /*
968                  * try_to_free_mem_cgroup_pages() might not give us a full
969                  * picture of reclaim. Some pages are reclaimed and might be
970                  * moved to swap cache or just unmapped from the cgroup.
971                  * Check the limit again to see if the reclaim reduced the
972                  * current usage of the cgroup before giving up
973                  *
974                  */
975                 if (mem_cgroup_check_under_limit(mem_over_limit))
976                         continue;
977
978                 if (!nr_retries--) {
979                         if (oom) {
980                                 mutex_lock(&memcg_tasklist);
981                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
982                                 mutex_unlock(&memcg_tasklist);
983                                 record_last_oom(mem_over_limit);
984                         }
985                         goto nomem;
986                 }
987         }
988         return 0;
989 nomem:
990         css_put(&mem->css);
991         return -ENOMEM;
992 }
993
994
995 /*
996  * A helper function to get mem_cgroup from ID. must be called under
997  * rcu_read_lock(). The caller must check css_is_removed() or some if
998  * it's concern. (dropping refcnt from swap can be called against removed
999  * memcg.)
1000  */
1001 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1002 {
1003         struct cgroup_subsys_state *css;
1004
1005         /* ID 0 is unused ID */
1006         if (!id)
1007                 return NULL;
1008         css = css_lookup(&mem_cgroup_subsys, id);
1009         if (!css)
1010                 return NULL;
1011         return container_of(css, struct mem_cgroup, css);
1012 }
1013
1014 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1015 {
1016         struct mem_cgroup *mem;
1017         struct page_cgroup *pc;
1018         unsigned short id;
1019         swp_entry_t ent;
1020
1021         VM_BUG_ON(!PageLocked(page));
1022
1023         if (!PageSwapCache(page))
1024                 return NULL;
1025
1026         pc = lookup_page_cgroup(page);
1027         lock_page_cgroup(pc);
1028         if (PageCgroupUsed(pc)) {
1029                 mem = pc->mem_cgroup;
1030                 if (mem && !css_tryget(&mem->css))
1031                         mem = NULL;
1032         } else {
1033                 ent.val = page_private(page);
1034                 id = lookup_swap_cgroup(ent);
1035                 rcu_read_lock();
1036                 mem = mem_cgroup_lookup(id);
1037                 if (mem && !css_tryget(&mem->css))
1038                         mem = NULL;
1039                 rcu_read_unlock();
1040         }
1041         unlock_page_cgroup(pc);
1042         return mem;
1043 }
1044
1045 /*
1046  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1047  * USED state. If already USED, uncharge and return.
1048  */
1049
1050 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1051                                      struct page_cgroup *pc,
1052                                      enum charge_type ctype)
1053 {
1054         /* try_charge() can return NULL to *memcg, taking care of it. */
1055         if (!mem)
1056                 return;
1057
1058         lock_page_cgroup(pc);
1059         if (unlikely(PageCgroupUsed(pc))) {
1060                 unlock_page_cgroup(pc);
1061                 res_counter_uncharge(&mem->res, PAGE_SIZE);
1062                 if (do_swap_account)
1063                         res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1064                 css_put(&mem->css);
1065                 return;
1066         }
1067         pc->mem_cgroup = mem;
1068         smp_wmb();
1069         pc->flags = pcg_default_flags[ctype];
1070
1071         mem_cgroup_charge_statistics(mem, pc, true);
1072
1073         unlock_page_cgroup(pc);
1074 }
1075
1076 /**
1077  * mem_cgroup_move_account - move account of the page
1078  * @pc: page_cgroup of the page.
1079  * @from: mem_cgroup which the page is moved from.
1080  * @to: mem_cgroup which the page is moved to. @from != @to.
1081  *
1082  * The caller must confirm following.
1083  * - page is not on LRU (isolate_page() is useful.)
1084  *
1085  * returns 0 at success,
1086  * returns -EBUSY when lock is busy or "pc" is unstable.
1087  *
1088  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1089  * new cgroup. It should be done by a caller.
1090  */
1091
1092 static int mem_cgroup_move_account(struct page_cgroup *pc,
1093         struct mem_cgroup *from, struct mem_cgroup *to)
1094 {
1095         struct mem_cgroup_per_zone *from_mz, *to_mz;
1096         int nid, zid;
1097         int ret = -EBUSY;
1098
1099         VM_BUG_ON(from == to);
1100         VM_BUG_ON(PageLRU(pc->page));
1101
1102         nid = page_cgroup_nid(pc);
1103         zid = page_cgroup_zid(pc);
1104         from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1105         to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1106
1107         if (!trylock_page_cgroup(pc))
1108                 return ret;
1109
1110         if (!PageCgroupUsed(pc))
1111                 goto out;
1112
1113         if (pc->mem_cgroup != from)
1114                 goto out;
1115
1116         res_counter_uncharge(&from->res, PAGE_SIZE);
1117         mem_cgroup_charge_statistics(from, pc, false);
1118         if (do_swap_account)
1119                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1120         css_put(&from->css);
1121
1122         css_get(&to->css);
1123         pc->mem_cgroup = to;
1124         mem_cgroup_charge_statistics(to, pc, true);
1125         ret = 0;
1126 out:
1127         unlock_page_cgroup(pc);
1128         return ret;
1129 }
1130
1131 /*
1132  * move charges to its parent.
1133  */
1134
1135 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1136                                   struct mem_cgroup *child,
1137                                   gfp_t gfp_mask)
1138 {
1139         struct page *page = pc->page;
1140         struct cgroup *cg = child->css.cgroup;
1141         struct cgroup *pcg = cg->parent;
1142         struct mem_cgroup *parent;
1143         int ret;
1144
1145         /* Is ROOT ? */
1146         if (!pcg)
1147                 return -EINVAL;
1148
1149
1150         parent = mem_cgroup_from_cont(pcg);
1151
1152
1153         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1154         if (ret || !parent)
1155                 return ret;
1156
1157         if (!get_page_unless_zero(page)) {
1158                 ret = -EBUSY;
1159                 goto uncharge;
1160         }
1161
1162         ret = isolate_lru_page(page);
1163
1164         if (ret)
1165                 goto cancel;
1166
1167         ret = mem_cgroup_move_account(pc, child, parent);
1168
1169         putback_lru_page(page);
1170         if (!ret) {
1171                 put_page(page);
1172                 /* drop extra refcnt by try_charge() */
1173                 css_put(&parent->css);
1174                 return 0;
1175         }
1176
1177 cancel:
1178         put_page(page);
1179 uncharge:
1180         /* drop extra refcnt by try_charge() */
1181         css_put(&parent->css);
1182         /* uncharge if move fails */
1183         res_counter_uncharge(&parent->res, PAGE_SIZE);
1184         if (do_swap_account)
1185                 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1186         return ret;
1187 }
1188
1189 /*
1190  * Charge the memory controller for page usage.
1191  * Return
1192  * 0 if the charge was successful
1193  * < 0 if the cgroup is over its limit
1194  */
1195 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1196                                 gfp_t gfp_mask, enum charge_type ctype,
1197                                 struct mem_cgroup *memcg)
1198 {
1199         struct mem_cgroup *mem;
1200         struct page_cgroup *pc;
1201         int ret;
1202
1203         pc = lookup_page_cgroup(page);
1204         /* can happen at boot */
1205         if (unlikely(!pc))
1206                 return 0;
1207         prefetchw(pc);
1208
1209         mem = memcg;
1210         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1211         if (ret || !mem)
1212                 return ret;
1213
1214         __mem_cgroup_commit_charge(mem, pc, ctype);
1215         return 0;
1216 }
1217
1218 int mem_cgroup_newpage_charge(struct page *page,
1219                               struct mm_struct *mm, gfp_t gfp_mask)
1220 {
1221         if (mem_cgroup_disabled())
1222                 return 0;
1223         if (PageCompound(page))
1224                 return 0;
1225         /*
1226          * If already mapped, we don't have to account.
1227          * If page cache, page->mapping has address_space.
1228          * But page->mapping may have out-of-use anon_vma pointer,
1229          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1230          * is NULL.
1231          */
1232         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1233                 return 0;
1234         if (unlikely(!mm))
1235                 mm = &init_mm;
1236         return mem_cgroup_charge_common(page, mm, gfp_mask,
1237                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1238 }
1239
1240 static void
1241 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1242                                         enum charge_type ctype);
1243
1244 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1245                                 gfp_t gfp_mask)
1246 {
1247         struct mem_cgroup *mem = NULL;
1248         int ret;
1249
1250         if (mem_cgroup_disabled())
1251                 return 0;
1252         if (PageCompound(page))
1253                 return 0;
1254         /*
1255          * Corner case handling. This is called from add_to_page_cache()
1256          * in usual. But some FS (shmem) precharges this page before calling it
1257          * and call add_to_page_cache() with GFP_NOWAIT.
1258          *
1259          * For GFP_NOWAIT case, the page may be pre-charged before calling
1260          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1261          * charge twice. (It works but has to pay a bit larger cost.)
1262          * And when the page is SwapCache, it should take swap information
1263          * into account. This is under lock_page() now.
1264          */
1265         if (!(gfp_mask & __GFP_WAIT)) {
1266                 struct page_cgroup *pc;
1267
1268
1269                 pc = lookup_page_cgroup(page);
1270                 if (!pc)
1271                         return 0;
1272                 lock_page_cgroup(pc);
1273                 if (PageCgroupUsed(pc)) {
1274                         unlock_page_cgroup(pc);
1275                         return 0;
1276                 }
1277                 unlock_page_cgroup(pc);
1278         }
1279
1280         if (unlikely(!mm && !mem))
1281                 mm = &init_mm;
1282
1283         if (page_is_file_cache(page))
1284                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1285                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1286
1287         /* shmem */
1288         if (PageSwapCache(page)) {
1289                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1290                 if (!ret)
1291                         __mem_cgroup_commit_charge_swapin(page, mem,
1292                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
1293         } else
1294                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1295                                         MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1296
1297         return ret;
1298 }
1299
1300 /*
1301  * While swap-in, try_charge -> commit or cancel, the page is locked.
1302  * And when try_charge() successfully returns, one refcnt to memcg without
1303  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1304  * "commit()" or removed by "cancel()"
1305  */
1306 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1307                                  struct page *page,
1308                                  gfp_t mask, struct mem_cgroup **ptr)
1309 {
1310         struct mem_cgroup *mem;
1311         int ret;
1312
1313         if (mem_cgroup_disabled())
1314                 return 0;
1315
1316         if (!do_swap_account)
1317                 goto charge_cur_mm;
1318         /*
1319          * A racing thread's fault, or swapoff, may have already updated
1320          * the pte, and even removed page from swap cache: return success
1321          * to go on to do_swap_page()'s pte_same() test, which should fail.
1322          */
1323         if (!PageSwapCache(page))
1324                 return 0;
1325         mem = try_get_mem_cgroup_from_swapcache(page);
1326         if (!mem)
1327                 goto charge_cur_mm;
1328         *ptr = mem;
1329         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1330         /* drop extra refcnt from tryget */
1331         css_put(&mem->css);
1332         return ret;
1333 charge_cur_mm:
1334         if (unlikely(!mm))
1335                 mm = &init_mm;
1336         return __mem_cgroup_try_charge(mm, mask, ptr, true);
1337 }
1338
1339 static void
1340 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1341                                         enum charge_type ctype)
1342 {
1343         struct page_cgroup *pc;
1344
1345         if (mem_cgroup_disabled())
1346                 return;
1347         if (!ptr)
1348                 return;
1349         pc = lookup_page_cgroup(page);
1350         mem_cgroup_lru_del_before_commit_swapcache(page);
1351         __mem_cgroup_commit_charge(ptr, pc, ctype);
1352         mem_cgroup_lru_add_after_commit_swapcache(page);
1353         /*
1354          * Now swap is on-memory. This means this page may be
1355          * counted both as mem and swap....double count.
1356          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1357          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1358          * may call delete_from_swap_cache() before reach here.
1359          */
1360         if (do_swap_account && PageSwapCache(page)) {
1361                 swp_entry_t ent = {.val = page_private(page)};
1362                 unsigned short id;
1363                 struct mem_cgroup *memcg;
1364
1365                 id = swap_cgroup_record(ent, 0);
1366                 rcu_read_lock();
1367                 memcg = mem_cgroup_lookup(id);
1368                 if (memcg) {
1369                         /*
1370                          * This recorded memcg can be obsolete one. So, avoid
1371                          * calling css_tryget
1372                          */
1373                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1374                         mem_cgroup_put(memcg);
1375                 }
1376                 rcu_read_unlock();
1377         }
1378         /* add this page(page_cgroup) to the LRU we want. */
1379
1380 }
1381
1382 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1383 {
1384         __mem_cgroup_commit_charge_swapin(page, ptr,
1385                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
1386 }
1387
1388 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1389 {
1390         if (mem_cgroup_disabled())
1391                 return;
1392         if (!mem)
1393                 return;
1394         res_counter_uncharge(&mem->res, PAGE_SIZE);
1395         if (do_swap_account)
1396                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1397         css_put(&mem->css);
1398 }
1399
1400
1401 /*
1402  * uncharge if !page_mapped(page)
1403  */
1404 static struct mem_cgroup *
1405 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1406 {
1407         struct page_cgroup *pc;
1408         struct mem_cgroup *mem = NULL;
1409         struct mem_cgroup_per_zone *mz;
1410
1411         if (mem_cgroup_disabled())
1412                 return NULL;
1413
1414         if (PageSwapCache(page))
1415                 return NULL;
1416
1417         /*
1418          * Check if our page_cgroup is valid
1419          */
1420         pc = lookup_page_cgroup(page);
1421         if (unlikely(!pc || !PageCgroupUsed(pc)))
1422                 return NULL;
1423
1424         lock_page_cgroup(pc);
1425
1426         mem = pc->mem_cgroup;
1427
1428         if (!PageCgroupUsed(pc))
1429                 goto unlock_out;
1430
1431         switch (ctype) {
1432         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1433                 if (page_mapped(page))
1434                         goto unlock_out;
1435                 break;
1436         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1437                 if (!PageAnon(page)) {  /* Shared memory */
1438                         if (page->mapping && !page_is_file_cache(page))
1439                                 goto unlock_out;
1440                 } else if (page_mapped(page)) /* Anon */
1441                                 goto unlock_out;
1442                 break;
1443         default:
1444                 break;
1445         }
1446
1447         res_counter_uncharge(&mem->res, PAGE_SIZE);
1448         if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1449                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1450         mem_cgroup_charge_statistics(mem, pc, false);
1451
1452         ClearPageCgroupUsed(pc);
1453         /*
1454          * pc->mem_cgroup is not cleared here. It will be accessed when it's
1455          * freed from LRU. This is safe because uncharged page is expected not
1456          * to be reused (freed soon). Exception is SwapCache, it's handled by
1457          * special functions.
1458          */
1459
1460         mz = page_cgroup_zoneinfo(pc);
1461         unlock_page_cgroup(pc);
1462
1463         /* at swapout, this memcg will be accessed to record to swap */
1464         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1465                 css_put(&mem->css);
1466
1467         return mem;
1468
1469 unlock_out:
1470         unlock_page_cgroup(pc);
1471         return NULL;
1472 }
1473
1474 void mem_cgroup_uncharge_page(struct page *page)
1475 {
1476         /* early check. */
1477         if (page_mapped(page))
1478                 return;
1479         if (page->mapping && !PageAnon(page))
1480                 return;
1481         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1482 }
1483
1484 void mem_cgroup_uncharge_cache_page(struct page *page)
1485 {
1486         VM_BUG_ON(page_mapped(page));
1487         VM_BUG_ON(page->mapping);
1488         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1489 }
1490
1491 /*
1492  * called from __delete_from_swap_cache() and drop "page" account.
1493  * memcg information is recorded to swap_cgroup of "ent"
1494  */
1495 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1496 {
1497         struct mem_cgroup *memcg;
1498
1499         memcg = __mem_cgroup_uncharge_common(page,
1500                                         MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1501         /* record memcg information */
1502         if (do_swap_account && memcg) {
1503                 swap_cgroup_record(ent, css_id(&memcg->css));
1504                 mem_cgroup_get(memcg);
1505         }
1506         if (memcg)
1507                 css_put(&memcg->css);
1508 }
1509
1510 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1511 /*
1512  * called from swap_entry_free(). remove record in swap_cgroup and
1513  * uncharge "memsw" account.
1514  */
1515 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1516 {
1517         struct mem_cgroup *memcg;
1518         unsigned short id;
1519
1520         if (!do_swap_account)
1521                 return;
1522
1523         id = swap_cgroup_record(ent, 0);
1524         rcu_read_lock();
1525         memcg = mem_cgroup_lookup(id);
1526         if (memcg) {
1527                 /*
1528                  * We uncharge this because swap is freed.
1529                  * This memcg can be obsolete one. We avoid calling css_tryget
1530                  */
1531                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1532                 mem_cgroup_put(memcg);
1533         }
1534         rcu_read_unlock();
1535 }
1536 #endif
1537
1538 /*
1539  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1540  * page belongs to.
1541  */
1542 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1543 {
1544         struct page_cgroup *pc;
1545         struct mem_cgroup *mem = NULL;
1546         int ret = 0;
1547
1548         if (mem_cgroup_disabled())
1549                 return 0;
1550
1551         pc = lookup_page_cgroup(page);
1552         lock_page_cgroup(pc);
1553         if (PageCgroupUsed(pc)) {
1554                 mem = pc->mem_cgroup;
1555                 css_get(&mem->css);
1556         }
1557         unlock_page_cgroup(pc);
1558
1559         if (mem) {
1560                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1561                 css_put(&mem->css);
1562         }
1563         *ptr = mem;
1564         return ret;
1565 }
1566
1567 /* remove redundant charge if migration failed*/
1568 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1569                 struct page *oldpage, struct page *newpage)
1570 {
1571         struct page *target, *unused;
1572         struct page_cgroup *pc;
1573         enum charge_type ctype;
1574
1575         if (!mem)
1576                 return;
1577
1578         /* at migration success, oldpage->mapping is NULL. */
1579         if (oldpage->mapping) {
1580                 target = oldpage;
1581                 unused = NULL;
1582         } else {
1583                 target = newpage;
1584                 unused = oldpage;
1585         }
1586
1587         if (PageAnon(target))
1588                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1589         else if (page_is_file_cache(target))
1590                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1591         else
1592                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1593
1594         /* unused page is not on radix-tree now. */
1595         if (unused)
1596                 __mem_cgroup_uncharge_common(unused, ctype);
1597
1598         pc = lookup_page_cgroup(target);
1599         /*
1600          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1601          * So, double-counting is effectively avoided.
1602          */
1603         __mem_cgroup_commit_charge(mem, pc, ctype);
1604
1605         /*
1606          * Both of oldpage and newpage are still under lock_page().
1607          * Then, we don't have to care about race in radix-tree.
1608          * But we have to be careful that this page is unmapped or not.
1609          *
1610          * There is a case for !page_mapped(). At the start of
1611          * migration, oldpage was mapped. But now, it's zapped.
1612          * But we know *target* page is not freed/reused under us.
1613          * mem_cgroup_uncharge_page() does all necessary checks.
1614          */
1615         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1616                 mem_cgroup_uncharge_page(target);
1617 }
1618
1619 /*
1620  * A call to try to shrink memory usage under specified resource controller.
1621  * This is typically used for page reclaiming for shmem for reducing side
1622  * effect of page allocation from shmem, which is used by some mem_cgroup.
1623  */
1624 int mem_cgroup_shrink_usage(struct page *page,
1625                             struct mm_struct *mm,
1626                             gfp_t gfp_mask)
1627 {
1628         struct mem_cgroup *mem = NULL;
1629         int progress = 0;
1630         int retry = MEM_CGROUP_RECLAIM_RETRIES;
1631
1632         if (mem_cgroup_disabled())
1633                 return 0;
1634         if (page)
1635                 mem = try_get_mem_cgroup_from_swapcache(page);
1636         if (!mem && mm)
1637                 mem = try_get_mem_cgroup_from_mm(mm);
1638         if (unlikely(!mem))
1639                 return 0;
1640
1641         do {
1642                 progress = mem_cgroup_hierarchical_reclaim(mem,
1643                                         gfp_mask, true, false);
1644                 progress += mem_cgroup_check_under_limit(mem);
1645         } while (!progress && --retry);
1646
1647         css_put(&mem->css);
1648         if (!retry)
1649                 return -ENOMEM;
1650         return 0;
1651 }
1652
1653 static DEFINE_MUTEX(set_limit_mutex);
1654
1655 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1656                                 unsigned long long val)
1657 {
1658         int retry_count;
1659         int progress;
1660         u64 memswlimit;
1661         int ret = 0;
1662         int children = mem_cgroup_count_children(memcg);
1663         u64 curusage, oldusage;
1664
1665         /*
1666          * For keeping hierarchical_reclaim simple, how long we should retry
1667          * is depends on callers. We set our retry-count to be function
1668          * of # of children which we should visit in this loop.
1669          */
1670         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1671
1672         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1673
1674         while (retry_count) {
1675                 if (signal_pending(current)) {
1676                         ret = -EINTR;
1677                         break;
1678                 }
1679                 /*
1680                  * Rather than hide all in some function, I do this in
1681                  * open coded manner. You see what this really does.
1682                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1683                  */
1684                 mutex_lock(&set_limit_mutex);
1685                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1686                 if (memswlimit < val) {
1687                         ret = -EINVAL;
1688                         mutex_unlock(&set_limit_mutex);
1689                         break;
1690                 }
1691                 ret = res_counter_set_limit(&memcg->res, val);
1692                 mutex_unlock(&set_limit_mutex);
1693
1694                 if (!ret)
1695                         break;
1696
1697                 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1698                                                    false, true);
1699                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1700                 /* Usage is reduced ? */
1701                 if (curusage >= oldusage)
1702                         retry_count--;
1703                 else
1704                         oldusage = curusage;
1705         }
1706
1707         return ret;
1708 }
1709
1710 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1711                                 unsigned long long val)
1712 {
1713         int retry_count;
1714         u64 memlimit, oldusage, curusage;
1715         int children = mem_cgroup_count_children(memcg);
1716         int ret = -EBUSY;
1717
1718         if (!do_swap_account)
1719                 return -EINVAL;
1720         /* see mem_cgroup_resize_res_limit */
1721         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1722         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1723         while (retry_count) {
1724                 if (signal_pending(current)) {
1725                         ret = -EINTR;
1726                         break;
1727                 }
1728                 /*
1729                  * Rather than hide all in some function, I do this in
1730                  * open coded manner. You see what this really does.
1731                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1732                  */
1733                 mutex_lock(&set_limit_mutex);
1734                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1735                 if (memlimit > val) {
1736                         ret = -EINVAL;
1737                         mutex_unlock(&set_limit_mutex);
1738                         break;
1739                 }
1740                 ret = res_counter_set_limit(&memcg->memsw, val);
1741                 mutex_unlock(&set_limit_mutex);
1742
1743                 if (!ret)
1744                         break;
1745
1746                 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1747                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1748                 /* Usage is reduced ? */
1749                 if (curusage >= oldusage)
1750                         retry_count--;
1751                 else
1752                         oldusage = curusage;
1753         }
1754         return ret;
1755 }
1756
1757 /*
1758  * This routine traverse page_cgroup in given list and drop them all.
1759  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1760  */
1761 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1762                                 int node, int zid, enum lru_list lru)
1763 {
1764         struct zone *zone;
1765         struct mem_cgroup_per_zone *mz;
1766         struct page_cgroup *pc, *busy;
1767         unsigned long flags, loop;
1768         struct list_head *list;
1769         int ret = 0;
1770
1771         zone = &NODE_DATA(node)->node_zones[zid];
1772         mz = mem_cgroup_zoneinfo(mem, node, zid);
1773         list = &mz->lists[lru];
1774
1775         loop = MEM_CGROUP_ZSTAT(mz, lru);
1776         /* give some margin against EBUSY etc...*/
1777         loop += 256;
1778         busy = NULL;
1779         while (loop--) {
1780                 ret = 0;
1781                 spin_lock_irqsave(&zone->lru_lock, flags);
1782                 if (list_empty(list)) {
1783                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1784                         break;
1785                 }
1786                 pc = list_entry(list->prev, struct page_cgroup, lru);
1787                 if (busy == pc) {
1788                         list_move(&pc->lru, list);
1789                         busy = 0;
1790                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1791                         continue;
1792                 }
1793                 spin_unlock_irqrestore(&zone->lru_lock, flags);
1794
1795                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1796                 if (ret == -ENOMEM)
1797                         break;
1798
1799                 if (ret == -EBUSY || ret == -EINVAL) {
1800                         /* found lock contention or "pc" is obsolete. */
1801                         busy = pc;
1802                         cond_resched();
1803                 } else
1804                         busy = NULL;
1805         }
1806
1807         if (!ret && !list_empty(list))
1808                 return -EBUSY;
1809         return ret;
1810 }
1811
1812 /*
1813  * make mem_cgroup's charge to be 0 if there is no task.
1814  * This enables deleting this mem_cgroup.
1815  */
1816 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1817 {
1818         int ret;
1819         int node, zid, shrink;
1820         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1821         struct cgroup *cgrp = mem->css.cgroup;
1822
1823         css_get(&mem->css);
1824
1825         shrink = 0;
1826         /* should free all ? */
1827         if (free_all)
1828                 goto try_to_free;
1829 move_account:
1830         while (mem->res.usage > 0) {
1831                 ret = -EBUSY;
1832                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1833                         goto out;
1834                 ret = -EINTR;
1835                 if (signal_pending(current))
1836                         goto out;
1837                 /* This is for making all *used* pages to be on LRU. */
1838                 lru_add_drain_all();
1839                 ret = 0;
1840                 for_each_node_state(node, N_HIGH_MEMORY) {
1841                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1842                                 enum lru_list l;
1843                                 for_each_lru(l) {
1844                                         ret = mem_cgroup_force_empty_list(mem,
1845                                                         node, zid, l);
1846                                         if (ret)
1847                                                 break;
1848                                 }
1849                         }
1850                         if (ret)
1851                                 break;
1852                 }
1853                 /* it seems parent cgroup doesn't have enough mem */
1854                 if (ret == -ENOMEM)
1855                         goto try_to_free;
1856                 cond_resched();
1857         }
1858         ret = 0;
1859 out:
1860         css_put(&mem->css);
1861         return ret;
1862
1863 try_to_free:
1864         /* returns EBUSY if there is a task or if we come here twice. */
1865         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1866                 ret = -EBUSY;
1867                 goto out;
1868         }
1869         /* we call try-to-free pages for make this cgroup empty */
1870         lru_add_drain_all();
1871         /* try to free all pages in this cgroup */
1872         shrink = 1;
1873         while (nr_retries && mem->res.usage > 0) {
1874                 int progress;
1875
1876                 if (signal_pending(current)) {
1877                         ret = -EINTR;
1878                         goto out;
1879                 }
1880                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1881                                                 false, get_swappiness(mem));
1882                 if (!progress) {
1883                         nr_retries--;
1884                         /* maybe some writeback is necessary */
1885                         congestion_wait(WRITE, HZ/10);
1886                 }
1887
1888         }
1889         lru_add_drain();
1890         /* try move_account...there may be some *locked* pages. */
1891         if (mem->res.usage)
1892                 goto move_account;
1893         ret = 0;
1894         goto out;
1895 }
1896
1897 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1898 {
1899         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1900 }
1901
1902
1903 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1904 {
1905         return mem_cgroup_from_cont(cont)->use_hierarchy;
1906 }
1907
1908 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1909                                         u64 val)
1910 {
1911         int retval = 0;
1912         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1913         struct cgroup *parent = cont->parent;
1914         struct mem_cgroup *parent_mem = NULL;
1915
1916         if (parent)
1917                 parent_mem = mem_cgroup_from_cont(parent);
1918
1919         cgroup_lock();
1920         /*
1921          * If parent's use_hiearchy is set, we can't make any modifications
1922          * in the child subtrees. If it is unset, then the change can
1923          * occur, provided the current cgroup has no children.
1924          *
1925          * For the root cgroup, parent_mem is NULL, we allow value to be
1926          * set if there are no children.
1927          */
1928         if ((!parent_mem || !parent_mem->use_hierarchy) &&
1929                                 (val == 1 || val == 0)) {
1930                 if (list_empty(&cont->children))
1931                         mem->use_hierarchy = val;
1932                 else
1933                         retval = -EBUSY;
1934         } else
1935                 retval = -EINVAL;
1936         cgroup_unlock();
1937
1938         return retval;
1939 }
1940
1941 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1942 {
1943         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1944         u64 val = 0;
1945         int type, name;
1946
1947         type = MEMFILE_TYPE(cft->private);
1948         name = MEMFILE_ATTR(cft->private);
1949         switch (type) {
1950         case _MEM:
1951                 val = res_counter_read_u64(&mem->res, name);
1952                 break;
1953         case _MEMSWAP:
1954                 if (do_swap_account)
1955                         val = res_counter_read_u64(&mem->memsw, name);
1956                 break;
1957         default:
1958                 BUG();
1959                 break;
1960         }
1961         return val;
1962 }
1963 /*
1964  * The user of this function is...
1965  * RES_LIMIT.
1966  */
1967 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1968                             const char *buffer)
1969 {
1970         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1971         int type, name;
1972         unsigned long long val;
1973         int ret;
1974
1975         type = MEMFILE_TYPE(cft->private);
1976         name = MEMFILE_ATTR(cft->private);
1977         switch (name) {
1978         case RES_LIMIT:
1979                 /* This function does all necessary parse...reuse it */
1980                 ret = res_counter_memparse_write_strategy(buffer, &val);
1981                 if (ret)
1982                         break;
1983                 if (type == _MEM)
1984                         ret = mem_cgroup_resize_limit(memcg, val);
1985                 else
1986                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
1987                 break;
1988         default:
1989                 ret = -EINVAL; /* should be BUG() ? */
1990                 break;
1991         }
1992         return ret;
1993 }
1994
1995 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1996                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1997 {
1998         struct cgroup *cgroup;
1999         unsigned long long min_limit, min_memsw_limit, tmp;
2000
2001         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2002         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2003         cgroup = memcg->css.cgroup;
2004         if (!memcg->use_hierarchy)
2005                 goto out;
2006
2007         while (cgroup->parent) {
2008                 cgroup = cgroup->parent;
2009                 memcg = mem_cgroup_from_cont(cgroup);
2010                 if (!memcg->use_hierarchy)
2011                         break;
2012                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2013                 min_limit = min(min_limit, tmp);
2014                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2015                 min_memsw_limit = min(min_memsw_limit, tmp);
2016         }
2017 out:
2018         *mem_limit = min_limit;
2019         *memsw_limit = min_memsw_limit;
2020         return;
2021 }
2022
2023 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2024 {
2025         struct mem_cgroup *mem;
2026         int type, name;
2027
2028         mem = mem_cgroup_from_cont(cont);
2029         type = MEMFILE_TYPE(event);
2030         name = MEMFILE_ATTR(event);
2031         switch (name) {
2032         case RES_MAX_USAGE:
2033                 if (type == _MEM)
2034                         res_counter_reset_max(&mem->res);
2035                 else
2036                         res_counter_reset_max(&mem->memsw);
2037                 break;
2038         case RES_FAILCNT:
2039                 if (type == _MEM)
2040                         res_counter_reset_failcnt(&mem->res);
2041                 else
2042                         res_counter_reset_failcnt(&mem->memsw);
2043                 break;
2044         }
2045         return 0;
2046 }
2047
2048
2049 /* For read statistics */
2050 enum {
2051         MCS_CACHE,
2052         MCS_RSS,
2053         MCS_PGPGIN,
2054         MCS_PGPGOUT,
2055         MCS_INACTIVE_ANON,
2056         MCS_ACTIVE_ANON,
2057         MCS_INACTIVE_FILE,
2058         MCS_ACTIVE_FILE,
2059         MCS_UNEVICTABLE,
2060         NR_MCS_STAT,
2061 };
2062
2063 struct mcs_total_stat {
2064         s64 stat[NR_MCS_STAT];
2065 };
2066
2067 struct {
2068         char *local_name;
2069         char *total_name;
2070 } memcg_stat_strings[NR_MCS_STAT] = {
2071         {"cache", "total_cache"},
2072         {"rss", "total_rss"},
2073         {"pgpgin", "total_pgpgin"},
2074         {"pgpgout", "total_pgpgout"},
2075         {"inactive_anon", "total_inactive_anon"},
2076         {"active_anon", "total_active_anon"},
2077         {"inactive_file", "total_inactive_file"},
2078         {"active_file", "total_active_file"},
2079         {"unevictable", "total_unevictable"}
2080 };
2081
2082
2083 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2084 {
2085         struct mcs_total_stat *s = data;
2086         s64 val;
2087
2088         /* per cpu stat */
2089         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2090         s->stat[MCS_CACHE] += val * PAGE_SIZE;
2091         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2092         s->stat[MCS_RSS] += val * PAGE_SIZE;
2093         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2094         s->stat[MCS_PGPGIN] += val;
2095         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2096         s->stat[MCS_PGPGOUT] += val;
2097
2098         /* per zone stat */
2099         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2100         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2101         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2102         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2103         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2104         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2105         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2106         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2107         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2108         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2109         return 0;
2110 }
2111
2112 static void
2113 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2114 {
2115         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2116 }
2117
2118 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2119                                  struct cgroup_map_cb *cb)
2120 {
2121         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2122         struct mcs_total_stat mystat;
2123         int i;
2124
2125         memset(&mystat, 0, sizeof(mystat));
2126         mem_cgroup_get_local_stat(mem_cont, &mystat);
2127
2128         for (i = 0; i < NR_MCS_STAT; i++)
2129                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2130
2131         /* Hierarchical information */
2132         {
2133                 unsigned long long limit, memsw_limit;
2134                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2135                 cb->fill(cb, "hierarchical_memory_limit", limit);
2136                 if (do_swap_account)
2137                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2138         }
2139
2140         memset(&mystat, 0, sizeof(mystat));
2141         mem_cgroup_get_total_stat(mem_cont, &mystat);
2142         for (i = 0; i < NR_MCS_STAT; i++)
2143                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2144
2145
2146 #ifdef CONFIG_DEBUG_VM
2147         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2148
2149         {
2150                 int nid, zid;
2151                 struct mem_cgroup_per_zone *mz;
2152                 unsigned long recent_rotated[2] = {0, 0};
2153                 unsigned long recent_scanned[2] = {0, 0};
2154
2155                 for_each_online_node(nid)
2156                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2157                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2158
2159                                 recent_rotated[0] +=
2160                                         mz->reclaim_stat.recent_rotated[0];
2161                                 recent_rotated[1] +=
2162                                         mz->reclaim_stat.recent_rotated[1];
2163                                 recent_scanned[0] +=
2164                                         mz->reclaim_stat.recent_scanned[0];
2165                                 recent_scanned[1] +=
2166                                         mz->reclaim_stat.recent_scanned[1];
2167                         }
2168                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2169                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2170                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2171                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2172         }
2173 #endif
2174
2175         return 0;
2176 }
2177
2178 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2179 {
2180         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2181
2182         return get_swappiness(memcg);
2183 }
2184
2185 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2186                                        u64 val)
2187 {
2188         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2189         struct mem_cgroup *parent;
2190
2191         if (val > 100)
2192                 return -EINVAL;
2193
2194         if (cgrp->parent == NULL)
2195                 return -EINVAL;
2196
2197         parent = mem_cgroup_from_cont(cgrp->parent);
2198
2199         cgroup_lock();
2200
2201         /* If under hierarchy, only empty-root can set this value */
2202         if ((parent->use_hierarchy) ||
2203             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2204                 cgroup_unlock();
2205                 return -EINVAL;
2206         }
2207
2208         spin_lock(&memcg->reclaim_param_lock);
2209         memcg->swappiness = val;
2210         spin_unlock(&memcg->reclaim_param_lock);
2211
2212         cgroup_unlock();
2213
2214         return 0;
2215 }
2216
2217
2218 static struct cftype mem_cgroup_files[] = {
2219         {
2220                 .name = "usage_in_bytes",
2221                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2222                 .read_u64 = mem_cgroup_read,
2223         },
2224         {
2225                 .name = "max_usage_in_bytes",
2226                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2227                 .trigger = mem_cgroup_reset,
2228                 .read_u64 = mem_cgroup_read,
2229         },
2230         {
2231                 .name = "limit_in_bytes",
2232                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2233                 .write_string = mem_cgroup_write,
2234                 .read_u64 = mem_cgroup_read,
2235         },
2236         {
2237                 .name = "failcnt",
2238                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2239                 .trigger = mem_cgroup_reset,
2240                 .read_u64 = mem_cgroup_read,
2241         },
2242         {
2243                 .name = "stat",
2244                 .read_map = mem_control_stat_show,
2245         },
2246         {
2247                 .name = "force_empty",
2248                 .trigger = mem_cgroup_force_empty_write,
2249         },
2250         {
2251                 .name = "use_hierarchy",
2252                 .write_u64 = mem_cgroup_hierarchy_write,
2253                 .read_u64 = mem_cgroup_hierarchy_read,
2254         },
2255         {
2256                 .name = "swappiness",
2257                 .read_u64 = mem_cgroup_swappiness_read,
2258                 .write_u64 = mem_cgroup_swappiness_write,
2259         },
2260 };
2261
2262 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2263 static struct cftype memsw_cgroup_files[] = {
2264         {
2265                 .name = "memsw.usage_in_bytes",
2266                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2267                 .read_u64 = mem_cgroup_read,
2268         },
2269         {
2270                 .name = "memsw.max_usage_in_bytes",
2271                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2272                 .trigger = mem_cgroup_reset,
2273                 .read_u64 = mem_cgroup_read,
2274         },
2275         {
2276                 .name = "memsw.limit_in_bytes",
2277                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2278                 .write_string = mem_cgroup_write,
2279                 .read_u64 = mem_cgroup_read,
2280         },
2281         {
2282                 .name = "memsw.failcnt",
2283                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2284                 .trigger = mem_cgroup_reset,
2285                 .read_u64 = mem_cgroup_read,
2286         },
2287 };
2288
2289 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2290 {
2291         if (!do_swap_account)
2292                 return 0;
2293         return cgroup_add_files(cont, ss, memsw_cgroup_files,
2294                                 ARRAY_SIZE(memsw_cgroup_files));
2295 };
2296 #else
2297 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2298 {
2299         return 0;
2300 }
2301 #endif
2302
2303 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2304 {
2305         struct mem_cgroup_per_node *pn;
2306         struct mem_cgroup_per_zone *mz;
2307         enum lru_list l;
2308         int zone, tmp = node;
2309         /*
2310          * This routine is called against possible nodes.
2311          * But it's BUG to call kmalloc() against offline node.
2312          *
2313          * TODO: this routine can waste much memory for nodes which will
2314          *       never be onlined. It's better to use memory hotplug callback
2315          *       function.
2316          */
2317         if (!node_state(node, N_NORMAL_MEMORY))
2318                 tmp = -1;
2319         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2320         if (!pn)
2321                 return 1;
2322
2323         mem->info.nodeinfo[node] = pn;
2324         memset(pn, 0, sizeof(*pn));
2325
2326         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2327                 mz = &pn->zoneinfo[zone];
2328                 for_each_lru(l)
2329                         INIT_LIST_HEAD(&mz->lists[l]);
2330         }
2331         return 0;
2332 }
2333
2334 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2335 {
2336         kfree(mem->info.nodeinfo[node]);
2337 }
2338
2339 static int mem_cgroup_size(void)
2340 {
2341         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2342         return sizeof(struct mem_cgroup) + cpustat_size;
2343 }
2344
2345 static struct mem_cgroup *mem_cgroup_alloc(void)
2346 {
2347         struct mem_cgroup *mem;
2348         int size = mem_cgroup_size();
2349
2350         if (size < PAGE_SIZE)
2351                 mem = kmalloc(size, GFP_KERNEL);
2352         else
2353                 mem = vmalloc(size);
2354
2355         if (mem)
2356                 memset(mem, 0, size);
2357         return mem;
2358 }
2359
2360 /*
2361  * At destroying mem_cgroup, references from swap_cgroup can remain.
2362  * (scanning all at force_empty is too costly...)
2363  *
2364  * Instead of clearing all references at force_empty, we remember
2365  * the number of reference from swap_cgroup and free mem_cgroup when
2366  * it goes down to 0.
2367  *
2368  * Removal of cgroup itself succeeds regardless of refs from swap.
2369  */
2370
2371 static void __mem_cgroup_free(struct mem_cgroup *mem)
2372 {
2373         int node;
2374
2375         free_css_id(&mem_cgroup_subsys, &mem->css);
2376
2377         for_each_node_state(node, N_POSSIBLE)
2378                 free_mem_cgroup_per_zone_info(mem, node);
2379
2380         if (mem_cgroup_size() < PAGE_SIZE)
2381                 kfree(mem);
2382         else
2383                 vfree(mem);
2384 }
2385
2386 static void mem_cgroup_get(struct mem_cgroup *mem)
2387 {
2388         atomic_inc(&mem->refcnt);
2389 }
2390
2391 static void mem_cgroup_put(struct mem_cgroup *mem)
2392 {
2393         if (atomic_dec_and_test(&mem->refcnt)) {
2394                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2395                 __mem_cgroup_free(mem);
2396                 if (parent)
2397                         mem_cgroup_put(parent);
2398         }
2399 }
2400
2401 /*
2402  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2403  */
2404 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2405 {
2406         if (!mem->res.parent)
2407                 return NULL;
2408         return mem_cgroup_from_res_counter(mem->res.parent, res);
2409 }
2410
2411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2412 static void __init enable_swap_cgroup(void)
2413 {
2414         if (!mem_cgroup_disabled() && really_do_swap_account)
2415                 do_swap_account = 1;
2416 }
2417 #else
2418 static void __init enable_swap_cgroup(void)
2419 {
2420 }
2421 #endif
2422
2423 static struct cgroup_subsys_state * __ref
2424 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2425 {
2426         struct mem_cgroup *mem, *parent;
2427         long error = -ENOMEM;
2428         int node;
2429
2430         mem = mem_cgroup_alloc();
2431         if (!mem)
2432                 return ERR_PTR(error);
2433
2434         for_each_node_state(node, N_POSSIBLE)
2435                 if (alloc_mem_cgroup_per_zone_info(mem, node))
2436                         goto free_out;
2437         /* root ? */
2438         if (cont->parent == NULL) {
2439                 enable_swap_cgroup();
2440                 parent = NULL;
2441         } else {
2442                 parent = mem_cgroup_from_cont(cont->parent);
2443                 mem->use_hierarchy = parent->use_hierarchy;
2444         }
2445
2446         if (parent && parent->use_hierarchy) {
2447                 res_counter_init(&mem->res, &parent->res);
2448                 res_counter_init(&mem->memsw, &parent->memsw);
2449                 /*
2450                  * We increment refcnt of the parent to ensure that we can
2451                  * safely access it on res_counter_charge/uncharge.
2452                  * This refcnt will be decremented when freeing this
2453                  * mem_cgroup(see mem_cgroup_put).
2454                  */
2455                 mem_cgroup_get(parent);
2456         } else {
2457                 res_counter_init(&mem->res, NULL);
2458                 res_counter_init(&mem->memsw, NULL);
2459         }
2460         mem->last_scanned_child = 0;
2461         spin_lock_init(&mem->reclaim_param_lock);
2462
2463         if (parent)
2464                 mem->swappiness = get_swappiness(parent);
2465         atomic_set(&mem->refcnt, 1);
2466         return &mem->css;
2467 free_out:
2468         __mem_cgroup_free(mem);
2469         return ERR_PTR(error);
2470 }
2471
2472 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2473                                         struct cgroup *cont)
2474 {
2475         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2476
2477         return mem_cgroup_force_empty(mem, false);
2478 }
2479
2480 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2481                                 struct cgroup *cont)
2482 {
2483         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2484
2485         mem_cgroup_put(mem);
2486 }
2487
2488 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2489                                 struct cgroup *cont)
2490 {
2491         int ret;
2492
2493         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2494                                 ARRAY_SIZE(mem_cgroup_files));
2495
2496         if (!ret)
2497                 ret = register_memsw_files(cont, ss);
2498         return ret;
2499 }
2500
2501 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2502                                 struct cgroup *cont,
2503                                 struct cgroup *old_cont,
2504                                 struct task_struct *p)
2505 {
2506         mutex_lock(&memcg_tasklist);
2507         /*
2508          * FIXME: It's better to move charges of this process from old
2509          * memcg to new memcg. But it's just on TODO-List now.
2510          */
2511         mutex_unlock(&memcg_tasklist);
2512 }
2513
2514 struct cgroup_subsys mem_cgroup_subsys = {
2515         .name = "memory",
2516         .subsys_id = mem_cgroup_subsys_id,
2517         .create = mem_cgroup_create,
2518         .pre_destroy = mem_cgroup_pre_destroy,
2519         .destroy = mem_cgroup_destroy,
2520         .populate = mem_cgroup_populate,
2521         .attach = mem_cgroup_move_task,
2522         .early_init = 0,
2523         .use_id = 1,
2524 };
2525
2526 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2527
2528 static int __init disable_swap_account(char *s)
2529 {
2530         really_do_swap_account = 0;
2531         return 1;
2532 }
2533 __setup("noswapaccount", disable_swap_account);
2534 #endif