memory controller: soft limit refactor reclaim flags
[safe/jmp/linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
36 #include <linux/fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include "internal.h"
42
43 #include <asm/uaccess.h>
44
45 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
46 #define MEM_CGROUP_RECLAIM_RETRIES      5
47 struct mem_cgroup *root_mem_cgroup __read_mostly;
48
49 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
50 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 int do_swap_account __read_mostly;
52 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53 #else
54 #define do_swap_account         (0)
55 #endif
56
57 static DEFINE_MUTEX(memcg_tasklist);    /* can be hold under cgroup_mutex */
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
59
60 /*
61  * Statistics for memory cgroup.
62  */
63 enum mem_cgroup_stat_index {
64         /*
65          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66          */
67         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
68         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
69         MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
71         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
72         MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
73
74         MEM_CGROUP_STAT_NSTATS,
75 };
76
77 struct mem_cgroup_stat_cpu {
78         s64 count[MEM_CGROUP_STAT_NSTATS];
79 } ____cacheline_aligned_in_smp;
80
81 struct mem_cgroup_stat {
82         struct mem_cgroup_stat_cpu cpustat[0];
83 };
84
85 static inline void
86 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
87                                 enum mem_cgroup_stat_index idx)
88 {
89         stat->count[idx] = 0;
90 }
91
92 static inline s64
93 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
94                                 enum mem_cgroup_stat_index idx)
95 {
96         return stat->count[idx];
97 }
98
99 /*
100  * For accounting under irq disable, no need for increment preempt count.
101  */
102 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
103                 enum mem_cgroup_stat_index idx, int val)
104 {
105         stat->count[idx] += val;
106 }
107
108 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
109                 enum mem_cgroup_stat_index idx)
110 {
111         int cpu;
112         s64 ret = 0;
113         for_each_possible_cpu(cpu)
114                 ret += stat->cpustat[cpu].count[idx];
115         return ret;
116 }
117
118 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
119 {
120         s64 ret;
121
122         ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
123         ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
124         return ret;
125 }
126
127 /*
128  * per-zone information in memory controller.
129  */
130 struct mem_cgroup_per_zone {
131         /*
132          * spin_lock to protect the per cgroup LRU
133          */
134         struct list_head        lists[NR_LRU_LISTS];
135         unsigned long           count[NR_LRU_LISTS];
136
137         struct zone_reclaim_stat reclaim_stat;
138         struct rb_node          tree_node;      /* RB tree node */
139         unsigned long long      usage_in_excess;/* Set to the value by which */
140                                                 /* the soft limit is exceeded*/
141         bool                    on_tree;
142 };
143 /* Macro for accessing counter */
144 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
145
146 struct mem_cgroup_per_node {
147         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
148 };
149
150 struct mem_cgroup_lru_info {
151         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
152 };
153
154 /*
155  * Cgroups above their limits are maintained in a RB-Tree, independent of
156  * their hierarchy representation
157  */
158
159 struct mem_cgroup_tree_per_zone {
160         struct rb_root rb_root;
161         spinlock_t lock;
162 };
163
164 struct mem_cgroup_tree_per_node {
165         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
166 };
167
168 struct mem_cgroup_tree {
169         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
170 };
171
172 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
173
174 /*
175  * The memory controller data structure. The memory controller controls both
176  * page cache and RSS per cgroup. We would eventually like to provide
177  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
178  * to help the administrator determine what knobs to tune.
179  *
180  * TODO: Add a water mark for the memory controller. Reclaim will begin when
181  * we hit the water mark. May be even add a low water mark, such that
182  * no reclaim occurs from a cgroup at it's low water mark, this is
183  * a feature that will be implemented much later in the future.
184  */
185 struct mem_cgroup {
186         struct cgroup_subsys_state css;
187         /*
188          * the counter to account for memory usage
189          */
190         struct res_counter res;
191         /*
192          * the counter to account for mem+swap usage.
193          */
194         struct res_counter memsw;
195         /*
196          * Per cgroup active and inactive list, similar to the
197          * per zone LRU lists.
198          */
199         struct mem_cgroup_lru_info info;
200
201         /*
202           protect against reclaim related member.
203         */
204         spinlock_t reclaim_param_lock;
205
206         int     prev_priority;  /* for recording reclaim priority */
207
208         /*
209          * While reclaiming in a hiearchy, we cache the last child we
210          * reclaimed from.
211          */
212         int last_scanned_child;
213         /*
214          * Should the accounting and control be hierarchical, per subtree?
215          */
216         bool use_hierarchy;
217         unsigned long   last_oom_jiffies;
218         atomic_t        refcnt;
219
220         unsigned int    swappiness;
221
222         /* set when res.limit == memsw.limit */
223         bool            memsw_is_minimum;
224
225         /*
226          * statistics. This must be placed at the end of memcg.
227          */
228         struct mem_cgroup_stat stat;
229 };
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_MAPPED,
234         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
235         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
236         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
237         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
238         NR_CHARGE_TYPE,
239 };
240
241 /* only for here (for easy reading.) */
242 #define PCGF_CACHE      (1UL << PCG_CACHE)
243 #define PCGF_USED       (1UL << PCG_USED)
244 #define PCGF_LOCK       (1UL << PCG_LOCK)
245 /* Not used, but added here for completeness */
246 #define PCGF_ACCT       (1UL << PCG_ACCT)
247
248 /* for encoding cft->private value on file */
249 #define _MEM                    (0)
250 #define _MEMSWAP                (1)
251 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
252 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
253 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
254
255 /*
256  * Reclaim flags for mem_cgroup_hierarchical_reclaim
257  */
258 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
259 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
260 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
261 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
262
263 static void mem_cgroup_get(struct mem_cgroup *mem);
264 static void mem_cgroup_put(struct mem_cgroup *mem);
265 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
266
267 static struct mem_cgroup_per_zone *
268 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
269 {
270         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
271 }
272
273 static struct mem_cgroup_per_zone *
274 page_cgroup_zoneinfo(struct page_cgroup *pc)
275 {
276         struct mem_cgroup *mem = pc->mem_cgroup;
277         int nid = page_cgroup_nid(pc);
278         int zid = page_cgroup_zid(pc);
279
280         if (!mem)
281                 return NULL;
282
283         return mem_cgroup_zoneinfo(mem, nid, zid);
284 }
285
286 static struct mem_cgroup_tree_per_zone *
287 soft_limit_tree_node_zone(int nid, int zid)
288 {
289         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
290 }
291
292 static struct mem_cgroup_tree_per_zone *
293 soft_limit_tree_from_page(struct page *page)
294 {
295         int nid = page_to_nid(page);
296         int zid = page_zonenum(page);
297
298         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
299 }
300
301 static void
302 mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
303                                 struct mem_cgroup_per_zone *mz,
304                                 struct mem_cgroup_tree_per_zone *mctz)
305 {
306         struct rb_node **p = &mctz->rb_root.rb_node;
307         struct rb_node *parent = NULL;
308         struct mem_cgroup_per_zone *mz_node;
309
310         if (mz->on_tree)
311                 return;
312
313         mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
314         spin_lock(&mctz->lock);
315         while (*p) {
316                 parent = *p;
317                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
318                                         tree_node);
319                 if (mz->usage_in_excess < mz_node->usage_in_excess)
320                         p = &(*p)->rb_left;
321                 /*
322                  * We can't avoid mem cgroups that are over their soft
323                  * limit by the same amount
324                  */
325                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
326                         p = &(*p)->rb_right;
327         }
328         rb_link_node(&mz->tree_node, parent, p);
329         rb_insert_color(&mz->tree_node, &mctz->rb_root);
330         mz->on_tree = true;
331         spin_unlock(&mctz->lock);
332 }
333
334 static void
335 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
336                                 struct mem_cgroup_per_zone *mz,
337                                 struct mem_cgroup_tree_per_zone *mctz)
338 {
339         spin_lock(&mctz->lock);
340         rb_erase(&mz->tree_node, &mctz->rb_root);
341         mz->on_tree = false;
342         spin_unlock(&mctz->lock);
343 }
344
345 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
346 {
347         bool ret = false;
348         int cpu;
349         s64 val;
350         struct mem_cgroup_stat_cpu *cpustat;
351
352         cpu = get_cpu();
353         cpustat = &mem->stat.cpustat[cpu];
354         val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
355         if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
356                 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
357                 ret = true;
358         }
359         put_cpu();
360         return ret;
361 }
362
363 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
364 {
365         unsigned long long prev_usage_in_excess, new_usage_in_excess;
366         bool updated_tree = false;
367         struct mem_cgroup_per_zone *mz;
368         struct mem_cgroup_tree_per_zone *mctz;
369
370         mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
371         mctz = soft_limit_tree_from_page(page);
372
373         /*
374          * We do updates in lazy mode, mem's are removed
375          * lazily from the per-zone, per-node rb tree
376          */
377         prev_usage_in_excess = mz->usage_in_excess;
378
379         new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
380         if (prev_usage_in_excess) {
381                 mem_cgroup_remove_exceeded(mem, mz, mctz);
382                 updated_tree = true;
383         }
384         if (!new_usage_in_excess)
385                 goto done;
386         mem_cgroup_insert_exceeded(mem, mz, mctz);
387
388 done:
389         if (updated_tree) {
390                 spin_lock(&mctz->lock);
391                 mz->usage_in_excess = new_usage_in_excess;
392                 spin_unlock(&mctz->lock);
393         }
394 }
395
396 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
397 {
398         int node, zone;
399         struct mem_cgroup_per_zone *mz;
400         struct mem_cgroup_tree_per_zone *mctz;
401
402         for_each_node_state(node, N_POSSIBLE) {
403                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
404                         mz = mem_cgroup_zoneinfo(mem, node, zone);
405                         mctz = soft_limit_tree_node_zone(node, zone);
406                         mem_cgroup_remove_exceeded(mem, mz, mctz);
407                 }
408         }
409 }
410
411 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
412                                          struct page_cgroup *pc,
413                                          bool charge)
414 {
415         int val = (charge)? 1 : -1;
416         struct mem_cgroup_stat *stat = &mem->stat;
417         struct mem_cgroup_stat_cpu *cpustat;
418         int cpu = get_cpu();
419
420         cpustat = &stat->cpustat[cpu];
421         if (PageCgroupCache(pc))
422                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
423         else
424                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
425
426         if (charge)
427                 __mem_cgroup_stat_add_safe(cpustat,
428                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
429         else
430                 __mem_cgroup_stat_add_safe(cpustat,
431                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
432         __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
433         put_cpu();
434 }
435
436 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
437                                         enum lru_list idx)
438 {
439         int nid, zid;
440         struct mem_cgroup_per_zone *mz;
441         u64 total = 0;
442
443         for_each_online_node(nid)
444                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
445                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
446                         total += MEM_CGROUP_ZSTAT(mz, idx);
447                 }
448         return total;
449 }
450
451 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
452 {
453         return container_of(cgroup_subsys_state(cont,
454                                 mem_cgroup_subsys_id), struct mem_cgroup,
455                                 css);
456 }
457
458 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
459 {
460         /*
461          * mm_update_next_owner() may clear mm->owner to NULL
462          * if it races with swapoff, page migration, etc.
463          * So this can be called with p == NULL.
464          */
465         if (unlikely(!p))
466                 return NULL;
467
468         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
469                                 struct mem_cgroup, css);
470 }
471
472 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
473 {
474         struct mem_cgroup *mem = NULL;
475
476         if (!mm)
477                 return NULL;
478         /*
479          * Because we have no locks, mm->owner's may be being moved to other
480          * cgroup. We use css_tryget() here even if this looks
481          * pessimistic (rather than adding locks here).
482          */
483         rcu_read_lock();
484         do {
485                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
486                 if (unlikely(!mem))
487                         break;
488         } while (!css_tryget(&mem->css));
489         rcu_read_unlock();
490         return mem;
491 }
492
493 /*
494  * Call callback function against all cgroup under hierarchy tree.
495  */
496 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
497                           int (*func)(struct mem_cgroup *, void *))
498 {
499         int found, ret, nextid;
500         struct cgroup_subsys_state *css;
501         struct mem_cgroup *mem;
502
503         if (!root->use_hierarchy)
504                 return (*func)(root, data);
505
506         nextid = 1;
507         do {
508                 ret = 0;
509                 mem = NULL;
510
511                 rcu_read_lock();
512                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
513                                    &found);
514                 if (css && css_tryget(css))
515                         mem = container_of(css, struct mem_cgroup, css);
516                 rcu_read_unlock();
517
518                 if (mem) {
519                         ret = (*func)(mem, data);
520                         css_put(&mem->css);
521                 }
522                 nextid = found + 1;
523         } while (!ret && css);
524
525         return ret;
526 }
527
528 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
529 {
530         return (mem == root_mem_cgroup);
531 }
532
533 /*
534  * Following LRU functions are allowed to be used without PCG_LOCK.
535  * Operations are called by routine of global LRU independently from memcg.
536  * What we have to take care of here is validness of pc->mem_cgroup.
537  *
538  * Changes to pc->mem_cgroup happens when
539  * 1. charge
540  * 2. moving account
541  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
542  * It is added to LRU before charge.
543  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
544  * When moving account, the page is not on LRU. It's isolated.
545  */
546
547 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
548 {
549         struct page_cgroup *pc;
550         struct mem_cgroup_per_zone *mz;
551
552         if (mem_cgroup_disabled())
553                 return;
554         pc = lookup_page_cgroup(page);
555         /* can happen while we handle swapcache. */
556         if (!TestClearPageCgroupAcctLRU(pc))
557                 return;
558         VM_BUG_ON(!pc->mem_cgroup);
559         /*
560          * We don't check PCG_USED bit. It's cleared when the "page" is finally
561          * removed from global LRU.
562          */
563         mz = page_cgroup_zoneinfo(pc);
564         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
565         if (mem_cgroup_is_root(pc->mem_cgroup))
566                 return;
567         VM_BUG_ON(list_empty(&pc->lru));
568         list_del_init(&pc->lru);
569         return;
570 }
571
572 void mem_cgroup_del_lru(struct page *page)
573 {
574         mem_cgroup_del_lru_list(page, page_lru(page));
575 }
576
577 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
578 {
579         struct mem_cgroup_per_zone *mz;
580         struct page_cgroup *pc;
581
582         if (mem_cgroup_disabled())
583                 return;
584
585         pc = lookup_page_cgroup(page);
586         /*
587          * Used bit is set without atomic ops but after smp_wmb().
588          * For making pc->mem_cgroup visible, insert smp_rmb() here.
589          */
590         smp_rmb();
591         /* unused or root page is not rotated. */
592         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
593                 return;
594         mz = page_cgroup_zoneinfo(pc);
595         list_move(&pc->lru, &mz->lists[lru]);
596 }
597
598 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
599 {
600         struct page_cgroup *pc;
601         struct mem_cgroup_per_zone *mz;
602
603         if (mem_cgroup_disabled())
604                 return;
605         pc = lookup_page_cgroup(page);
606         VM_BUG_ON(PageCgroupAcctLRU(pc));
607         /*
608          * Used bit is set without atomic ops but after smp_wmb().
609          * For making pc->mem_cgroup visible, insert smp_rmb() here.
610          */
611         smp_rmb();
612         if (!PageCgroupUsed(pc))
613                 return;
614
615         mz = page_cgroup_zoneinfo(pc);
616         MEM_CGROUP_ZSTAT(mz, lru) += 1;
617         SetPageCgroupAcctLRU(pc);
618         if (mem_cgroup_is_root(pc->mem_cgroup))
619                 return;
620         list_add(&pc->lru, &mz->lists[lru]);
621 }
622
623 /*
624  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
625  * lru because the page may.be reused after it's fully uncharged (because of
626  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
627  * it again. This function is only used to charge SwapCache. It's done under
628  * lock_page and expected that zone->lru_lock is never held.
629  */
630 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
631 {
632         unsigned long flags;
633         struct zone *zone = page_zone(page);
634         struct page_cgroup *pc = lookup_page_cgroup(page);
635
636         spin_lock_irqsave(&zone->lru_lock, flags);
637         /*
638          * Forget old LRU when this page_cgroup is *not* used. This Used bit
639          * is guarded by lock_page() because the page is SwapCache.
640          */
641         if (!PageCgroupUsed(pc))
642                 mem_cgroup_del_lru_list(page, page_lru(page));
643         spin_unlock_irqrestore(&zone->lru_lock, flags);
644 }
645
646 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
647 {
648         unsigned long flags;
649         struct zone *zone = page_zone(page);
650         struct page_cgroup *pc = lookup_page_cgroup(page);
651
652         spin_lock_irqsave(&zone->lru_lock, flags);
653         /* link when the page is linked to LRU but page_cgroup isn't */
654         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
655                 mem_cgroup_add_lru_list(page, page_lru(page));
656         spin_unlock_irqrestore(&zone->lru_lock, flags);
657 }
658
659
660 void mem_cgroup_move_lists(struct page *page,
661                            enum lru_list from, enum lru_list to)
662 {
663         if (mem_cgroup_disabled())
664                 return;
665         mem_cgroup_del_lru_list(page, from);
666         mem_cgroup_add_lru_list(page, to);
667 }
668
669 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
670 {
671         int ret;
672         struct mem_cgroup *curr = NULL;
673
674         task_lock(task);
675         rcu_read_lock();
676         curr = try_get_mem_cgroup_from_mm(task->mm);
677         rcu_read_unlock();
678         task_unlock(task);
679         if (!curr)
680                 return 0;
681         if (curr->use_hierarchy)
682                 ret = css_is_ancestor(&curr->css, &mem->css);
683         else
684                 ret = (curr == mem);
685         css_put(&curr->css);
686         return ret;
687 }
688
689 /*
690  * prev_priority control...this will be used in memory reclaim path.
691  */
692 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
693 {
694         int prev_priority;
695
696         spin_lock(&mem->reclaim_param_lock);
697         prev_priority = mem->prev_priority;
698         spin_unlock(&mem->reclaim_param_lock);
699
700         return prev_priority;
701 }
702
703 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
704 {
705         spin_lock(&mem->reclaim_param_lock);
706         if (priority < mem->prev_priority)
707                 mem->prev_priority = priority;
708         spin_unlock(&mem->reclaim_param_lock);
709 }
710
711 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
712 {
713         spin_lock(&mem->reclaim_param_lock);
714         mem->prev_priority = priority;
715         spin_unlock(&mem->reclaim_param_lock);
716 }
717
718 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
719 {
720         unsigned long active;
721         unsigned long inactive;
722         unsigned long gb;
723         unsigned long inactive_ratio;
724
725         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
726         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
727
728         gb = (inactive + active) >> (30 - PAGE_SHIFT);
729         if (gb)
730                 inactive_ratio = int_sqrt(10 * gb);
731         else
732                 inactive_ratio = 1;
733
734         if (present_pages) {
735                 present_pages[0] = inactive;
736                 present_pages[1] = active;
737         }
738
739         return inactive_ratio;
740 }
741
742 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
743 {
744         unsigned long active;
745         unsigned long inactive;
746         unsigned long present_pages[2];
747         unsigned long inactive_ratio;
748
749         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
750
751         inactive = present_pages[0];
752         active = present_pages[1];
753
754         if (inactive * inactive_ratio < active)
755                 return 1;
756
757         return 0;
758 }
759
760 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
761 {
762         unsigned long active;
763         unsigned long inactive;
764
765         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
766         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
767
768         return (active > inactive);
769 }
770
771 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
772                                        struct zone *zone,
773                                        enum lru_list lru)
774 {
775         int nid = zone->zone_pgdat->node_id;
776         int zid = zone_idx(zone);
777         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
778
779         return MEM_CGROUP_ZSTAT(mz, lru);
780 }
781
782 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
783                                                       struct zone *zone)
784 {
785         int nid = zone->zone_pgdat->node_id;
786         int zid = zone_idx(zone);
787         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
788
789         return &mz->reclaim_stat;
790 }
791
792 struct zone_reclaim_stat *
793 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
794 {
795         struct page_cgroup *pc;
796         struct mem_cgroup_per_zone *mz;
797
798         if (mem_cgroup_disabled())
799                 return NULL;
800
801         pc = lookup_page_cgroup(page);
802         /*
803          * Used bit is set without atomic ops but after smp_wmb().
804          * For making pc->mem_cgroup visible, insert smp_rmb() here.
805          */
806         smp_rmb();
807         if (!PageCgroupUsed(pc))
808                 return NULL;
809
810         mz = page_cgroup_zoneinfo(pc);
811         if (!mz)
812                 return NULL;
813
814         return &mz->reclaim_stat;
815 }
816
817 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
818                                         struct list_head *dst,
819                                         unsigned long *scanned, int order,
820                                         int mode, struct zone *z,
821                                         struct mem_cgroup *mem_cont,
822                                         int active, int file)
823 {
824         unsigned long nr_taken = 0;
825         struct page *page;
826         unsigned long scan;
827         LIST_HEAD(pc_list);
828         struct list_head *src;
829         struct page_cgroup *pc, *tmp;
830         int nid = z->zone_pgdat->node_id;
831         int zid = zone_idx(z);
832         struct mem_cgroup_per_zone *mz;
833         int lru = LRU_FILE * file + active;
834         int ret;
835
836         BUG_ON(!mem_cont);
837         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
838         src = &mz->lists[lru];
839
840         scan = 0;
841         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
842                 if (scan >= nr_to_scan)
843                         break;
844
845                 page = pc->page;
846                 if (unlikely(!PageCgroupUsed(pc)))
847                         continue;
848                 if (unlikely(!PageLRU(page)))
849                         continue;
850
851                 scan++;
852                 ret = __isolate_lru_page(page, mode, file);
853                 switch (ret) {
854                 case 0:
855                         list_move(&page->lru, dst);
856                         mem_cgroup_del_lru(page);
857                         nr_taken++;
858                         break;
859                 case -EBUSY:
860                         /* we don't affect global LRU but rotate in our LRU */
861                         mem_cgroup_rotate_lru_list(page, page_lru(page));
862                         break;
863                 default:
864                         break;
865                 }
866         }
867
868         *scanned = scan;
869         return nr_taken;
870 }
871
872 #define mem_cgroup_from_res_counter(counter, member)    \
873         container_of(counter, struct mem_cgroup, member)
874
875 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
876 {
877         if (do_swap_account) {
878                 if (res_counter_check_under_limit(&mem->res) &&
879                         res_counter_check_under_limit(&mem->memsw))
880                         return true;
881         } else
882                 if (res_counter_check_under_limit(&mem->res))
883                         return true;
884         return false;
885 }
886
887 static unsigned int get_swappiness(struct mem_cgroup *memcg)
888 {
889         struct cgroup *cgrp = memcg->css.cgroup;
890         unsigned int swappiness;
891
892         /* root ? */
893         if (cgrp->parent == NULL)
894                 return vm_swappiness;
895
896         spin_lock(&memcg->reclaim_param_lock);
897         swappiness = memcg->swappiness;
898         spin_unlock(&memcg->reclaim_param_lock);
899
900         return swappiness;
901 }
902
903 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
904 {
905         int *val = data;
906         (*val)++;
907         return 0;
908 }
909
910 /**
911  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
912  * @memcg: The memory cgroup that went over limit
913  * @p: Task that is going to be killed
914  *
915  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
916  * enabled
917  */
918 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
919 {
920         struct cgroup *task_cgrp;
921         struct cgroup *mem_cgrp;
922         /*
923          * Need a buffer in BSS, can't rely on allocations. The code relies
924          * on the assumption that OOM is serialized for memory controller.
925          * If this assumption is broken, revisit this code.
926          */
927         static char memcg_name[PATH_MAX];
928         int ret;
929
930         if (!memcg)
931                 return;
932
933
934         rcu_read_lock();
935
936         mem_cgrp = memcg->css.cgroup;
937         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
938
939         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
940         if (ret < 0) {
941                 /*
942                  * Unfortunately, we are unable to convert to a useful name
943                  * But we'll still print out the usage information
944                  */
945                 rcu_read_unlock();
946                 goto done;
947         }
948         rcu_read_unlock();
949
950         printk(KERN_INFO "Task in %s killed", memcg_name);
951
952         rcu_read_lock();
953         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
954         if (ret < 0) {
955                 rcu_read_unlock();
956                 goto done;
957         }
958         rcu_read_unlock();
959
960         /*
961          * Continues from above, so we don't need an KERN_ level
962          */
963         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
964 done:
965
966         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
967                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
968                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
969                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
970         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
971                 "failcnt %llu\n",
972                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
973                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
974                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
975 }
976
977 /*
978  * This function returns the number of memcg under hierarchy tree. Returns
979  * 1(self count) if no children.
980  */
981 static int mem_cgroup_count_children(struct mem_cgroup *mem)
982 {
983         int num = 0;
984         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
985         return num;
986 }
987
988 /*
989  * Visit the first child (need not be the first child as per the ordering
990  * of the cgroup list, since we track last_scanned_child) of @mem and use
991  * that to reclaim free pages from.
992  */
993 static struct mem_cgroup *
994 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
995 {
996         struct mem_cgroup *ret = NULL;
997         struct cgroup_subsys_state *css;
998         int nextid, found;
999
1000         if (!root_mem->use_hierarchy) {
1001                 css_get(&root_mem->css);
1002                 ret = root_mem;
1003         }
1004
1005         while (!ret) {
1006                 rcu_read_lock();
1007                 nextid = root_mem->last_scanned_child + 1;
1008                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1009                                    &found);
1010                 if (css && css_tryget(css))
1011                         ret = container_of(css, struct mem_cgroup, css);
1012
1013                 rcu_read_unlock();
1014                 /* Updates scanning parameter */
1015                 spin_lock(&root_mem->reclaim_param_lock);
1016                 if (!css) {
1017                         /* this means start scan from ID:1 */
1018                         root_mem->last_scanned_child = 0;
1019                 } else
1020                         root_mem->last_scanned_child = found;
1021                 spin_unlock(&root_mem->reclaim_param_lock);
1022         }
1023
1024         return ret;
1025 }
1026
1027 /*
1028  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1029  * we reclaimed from, so that we don't end up penalizing one child extensively
1030  * based on its position in the children list.
1031  *
1032  * root_mem is the original ancestor that we've been reclaim from.
1033  *
1034  * We give up and return to the caller when we visit root_mem twice.
1035  * (other groups can be removed while we're walking....)
1036  *
1037  * If shrink==true, for avoiding to free too much, this returns immedieately.
1038  */
1039 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1040                                                 gfp_t gfp_mask,
1041                                                 unsigned long reclaim_options)
1042 {
1043         struct mem_cgroup *victim;
1044         int ret, total = 0;
1045         int loop = 0;
1046         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1047         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1048
1049         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1050         if (root_mem->memsw_is_minimum)
1051                 noswap = true;
1052
1053         while (loop < 2) {
1054                 victim = mem_cgroup_select_victim(root_mem);
1055                 if (victim == root_mem)
1056                         loop++;
1057                 if (!mem_cgroup_local_usage(&victim->stat)) {
1058                         /* this cgroup's local usage == 0 */
1059                         css_put(&victim->css);
1060                         continue;
1061                 }
1062                 /* we use swappiness of local cgroup */
1063                 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
1064                                                    get_swappiness(victim));
1065                 css_put(&victim->css);
1066                 /*
1067                  * At shrinking usage, we can't check we should stop here or
1068                  * reclaim more. It's depends on callers. last_scanned_child
1069                  * will work enough for keeping fairness under tree.
1070                  */
1071                 if (shrink)
1072                         return ret;
1073                 total += ret;
1074                 if (mem_cgroup_check_under_limit(root_mem))
1075                         return 1 + total;
1076         }
1077         return total;
1078 }
1079
1080 bool mem_cgroup_oom_called(struct task_struct *task)
1081 {
1082         bool ret = false;
1083         struct mem_cgroup *mem;
1084         struct mm_struct *mm;
1085
1086         rcu_read_lock();
1087         mm = task->mm;
1088         if (!mm)
1089                 mm = &init_mm;
1090         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1091         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1092                 ret = true;
1093         rcu_read_unlock();
1094         return ret;
1095 }
1096
1097 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1098 {
1099         mem->last_oom_jiffies = jiffies;
1100         return 0;
1101 }
1102
1103 static void record_last_oom(struct mem_cgroup *mem)
1104 {
1105         mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1106 }
1107
1108 /*
1109  * Currently used to update mapped file statistics, but the routine can be
1110  * generalized to update other statistics as well.
1111  */
1112 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1113 {
1114         struct mem_cgroup *mem;
1115         struct mem_cgroup_stat *stat;
1116         struct mem_cgroup_stat_cpu *cpustat;
1117         int cpu;
1118         struct page_cgroup *pc;
1119
1120         if (!page_is_file_cache(page))
1121                 return;
1122
1123         pc = lookup_page_cgroup(page);
1124         if (unlikely(!pc))
1125                 return;
1126
1127         lock_page_cgroup(pc);
1128         mem = pc->mem_cgroup;
1129         if (!mem)
1130                 goto done;
1131
1132         if (!PageCgroupUsed(pc))
1133                 goto done;
1134
1135         /*
1136          * Preemption is already disabled, we don't need get_cpu()
1137          */
1138         cpu = smp_processor_id();
1139         stat = &mem->stat;
1140         cpustat = &stat->cpustat[cpu];
1141
1142         __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1143 done:
1144         unlock_page_cgroup(pc);
1145 }
1146
1147 /*
1148  * Unlike exported interface, "oom" parameter is added. if oom==true,
1149  * oom-killer can be invoked.
1150  */
1151 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1152                         gfp_t gfp_mask, struct mem_cgroup **memcg,
1153                         bool oom, struct page *page)
1154 {
1155         struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1156         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1157         struct res_counter *fail_res, *soft_fail_res = NULL;
1158
1159         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1160                 /* Don't account this! */
1161                 *memcg = NULL;
1162                 return 0;
1163         }
1164
1165         /*
1166          * We always charge the cgroup the mm_struct belongs to.
1167          * The mm_struct's mem_cgroup changes on task migration if the
1168          * thread group leader migrates. It's possible that mm is not
1169          * set, if so charge the init_mm (happens for pagecache usage).
1170          */
1171         mem = *memcg;
1172         if (likely(!mem)) {
1173                 mem = try_get_mem_cgroup_from_mm(mm);
1174                 *memcg = mem;
1175         } else {
1176                 css_get(&mem->css);
1177         }
1178         if (unlikely(!mem))
1179                 return 0;
1180
1181         VM_BUG_ON(css_is_removed(&mem->css));
1182
1183         while (1) {
1184                 int ret;
1185                 unsigned long flags = 0;
1186
1187                 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
1188                                                 &soft_fail_res);
1189                 if (likely(!ret)) {
1190                         if (!do_swap_account)
1191                                 break;
1192                         ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1193                                                         &fail_res, NULL);
1194                         if (likely(!ret))
1195                                 break;
1196                         /* mem+swap counter fails */
1197                         res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1198                         flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1199                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1200                                                                         memsw);
1201                 } else
1202                         /* mem counter fails */
1203                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1204                                                                         res);
1205
1206                 if (!(gfp_mask & __GFP_WAIT))
1207                         goto nomem;
1208
1209                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1210                                                         flags);
1211                 if (ret)
1212                         continue;
1213
1214                 /*
1215                  * try_to_free_mem_cgroup_pages() might not give us a full
1216                  * picture of reclaim. Some pages are reclaimed and might be
1217                  * moved to swap cache or just unmapped from the cgroup.
1218                  * Check the limit again to see if the reclaim reduced the
1219                  * current usage of the cgroup before giving up
1220                  *
1221                  */
1222                 if (mem_cgroup_check_under_limit(mem_over_limit))
1223                         continue;
1224
1225                 if (!nr_retries--) {
1226                         if (oom) {
1227                                 mutex_lock(&memcg_tasklist);
1228                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1229                                 mutex_unlock(&memcg_tasklist);
1230                                 record_last_oom(mem_over_limit);
1231                         }
1232                         goto nomem;
1233                 }
1234         }
1235         /*
1236          * Insert just the ancestor, we should trickle down to the correct
1237          * cgroup for reclaim, since the other nodes will be below their
1238          * soft limit
1239          */
1240         if (soft_fail_res) {
1241                 mem_over_soft_limit =
1242                         mem_cgroup_from_res_counter(soft_fail_res, res);
1243                 if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
1244                         mem_cgroup_update_tree(mem_over_soft_limit, page);
1245         }
1246         return 0;
1247 nomem:
1248         css_put(&mem->css);
1249         return -ENOMEM;
1250 }
1251
1252 /*
1253  * A helper function to get mem_cgroup from ID. must be called under
1254  * rcu_read_lock(). The caller must check css_is_removed() or some if
1255  * it's concern. (dropping refcnt from swap can be called against removed
1256  * memcg.)
1257  */
1258 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1259 {
1260         struct cgroup_subsys_state *css;
1261
1262         /* ID 0 is unused ID */
1263         if (!id)
1264                 return NULL;
1265         css = css_lookup(&mem_cgroup_subsys, id);
1266         if (!css)
1267                 return NULL;
1268         return container_of(css, struct mem_cgroup, css);
1269 }
1270
1271 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1272 {
1273         struct mem_cgroup *mem;
1274         struct page_cgroup *pc;
1275         unsigned short id;
1276         swp_entry_t ent;
1277
1278         VM_BUG_ON(!PageLocked(page));
1279
1280         if (!PageSwapCache(page))
1281                 return NULL;
1282
1283         pc = lookup_page_cgroup(page);
1284         lock_page_cgroup(pc);
1285         if (PageCgroupUsed(pc)) {
1286                 mem = pc->mem_cgroup;
1287                 if (mem && !css_tryget(&mem->css))
1288                         mem = NULL;
1289         } else {
1290                 ent.val = page_private(page);
1291                 id = lookup_swap_cgroup(ent);
1292                 rcu_read_lock();
1293                 mem = mem_cgroup_lookup(id);
1294                 if (mem && !css_tryget(&mem->css))
1295                         mem = NULL;
1296                 rcu_read_unlock();
1297         }
1298         unlock_page_cgroup(pc);
1299         return mem;
1300 }
1301
1302 /*
1303  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1304  * USED state. If already USED, uncharge and return.
1305  */
1306
1307 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1308                                      struct page_cgroup *pc,
1309                                      enum charge_type ctype)
1310 {
1311         /* try_charge() can return NULL to *memcg, taking care of it. */
1312         if (!mem)
1313                 return;
1314
1315         lock_page_cgroup(pc);
1316         if (unlikely(PageCgroupUsed(pc))) {
1317                 unlock_page_cgroup(pc);
1318                 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1319                 if (do_swap_account)
1320                         res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1321                 css_put(&mem->css);
1322                 return;
1323         }
1324
1325         pc->mem_cgroup = mem;
1326         /*
1327          * We access a page_cgroup asynchronously without lock_page_cgroup().
1328          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1329          * is accessed after testing USED bit. To make pc->mem_cgroup visible
1330          * before USED bit, we need memory barrier here.
1331          * See mem_cgroup_add_lru_list(), etc.
1332          */
1333         smp_wmb();
1334         switch (ctype) {
1335         case MEM_CGROUP_CHARGE_TYPE_CACHE:
1336         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1337                 SetPageCgroupCache(pc);
1338                 SetPageCgroupUsed(pc);
1339                 break;
1340         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1341                 ClearPageCgroupCache(pc);
1342                 SetPageCgroupUsed(pc);
1343                 break;
1344         default:
1345                 break;
1346         }
1347
1348         mem_cgroup_charge_statistics(mem, pc, true);
1349
1350         unlock_page_cgroup(pc);
1351 }
1352
1353 /**
1354  * mem_cgroup_move_account - move account of the page
1355  * @pc: page_cgroup of the page.
1356  * @from: mem_cgroup which the page is moved from.
1357  * @to: mem_cgroup which the page is moved to. @from != @to.
1358  *
1359  * The caller must confirm following.
1360  * - page is not on LRU (isolate_page() is useful.)
1361  *
1362  * returns 0 at success,
1363  * returns -EBUSY when lock is busy or "pc" is unstable.
1364  *
1365  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1366  * new cgroup. It should be done by a caller.
1367  */
1368
1369 static int mem_cgroup_move_account(struct page_cgroup *pc,
1370         struct mem_cgroup *from, struct mem_cgroup *to)
1371 {
1372         struct mem_cgroup_per_zone *from_mz, *to_mz;
1373         int nid, zid;
1374         int ret = -EBUSY;
1375         struct page *page;
1376         int cpu;
1377         struct mem_cgroup_stat *stat;
1378         struct mem_cgroup_stat_cpu *cpustat;
1379
1380         VM_BUG_ON(from == to);
1381         VM_BUG_ON(PageLRU(pc->page));
1382
1383         nid = page_cgroup_nid(pc);
1384         zid = page_cgroup_zid(pc);
1385         from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1386         to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1387
1388         if (!trylock_page_cgroup(pc))
1389                 return ret;
1390
1391         if (!PageCgroupUsed(pc))
1392                 goto out;
1393
1394         if (pc->mem_cgroup != from)
1395                 goto out;
1396
1397         res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
1398         mem_cgroup_charge_statistics(from, pc, false);
1399
1400         page = pc->page;
1401         if (page_is_file_cache(page) && page_mapped(page)) {
1402                 cpu = smp_processor_id();
1403                 /* Update mapped_file data for mem_cgroup "from" */
1404                 stat = &from->stat;
1405                 cpustat = &stat->cpustat[cpu];
1406                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1407                                                 -1);
1408
1409                 /* Update mapped_file data for mem_cgroup "to" */
1410                 stat = &to->stat;
1411                 cpustat = &stat->cpustat[cpu];
1412                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1413                                                 1);
1414         }
1415
1416         if (do_swap_account)
1417                 res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1418         css_put(&from->css);
1419
1420         css_get(&to->css);
1421         pc->mem_cgroup = to;
1422         mem_cgroup_charge_statistics(to, pc, true);
1423         ret = 0;
1424 out:
1425         unlock_page_cgroup(pc);
1426         /*
1427          * We charges against "to" which may not have any tasks. Then, "to"
1428          * can be under rmdir(). But in current implementation, caller of
1429          * this function is just force_empty() and it's garanteed that
1430          * "to" is never removed. So, we don't check rmdir status here.
1431          */
1432         return ret;
1433 }
1434
1435 /*
1436  * move charges to its parent.
1437  */
1438
1439 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1440                                   struct mem_cgroup *child,
1441                                   gfp_t gfp_mask)
1442 {
1443         struct page *page = pc->page;
1444         struct cgroup *cg = child->css.cgroup;
1445         struct cgroup *pcg = cg->parent;
1446         struct mem_cgroup *parent;
1447         int ret;
1448
1449         /* Is ROOT ? */
1450         if (!pcg)
1451                 return -EINVAL;
1452
1453
1454         parent = mem_cgroup_from_cont(pcg);
1455
1456
1457         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1458         if (ret || !parent)
1459                 return ret;
1460
1461         if (!get_page_unless_zero(page)) {
1462                 ret = -EBUSY;
1463                 goto uncharge;
1464         }
1465
1466         ret = isolate_lru_page(page);
1467
1468         if (ret)
1469                 goto cancel;
1470
1471         ret = mem_cgroup_move_account(pc, child, parent);
1472
1473         putback_lru_page(page);
1474         if (!ret) {
1475                 put_page(page);
1476                 /* drop extra refcnt by try_charge() */
1477                 css_put(&parent->css);
1478                 return 0;
1479         }
1480
1481 cancel:
1482         put_page(page);
1483 uncharge:
1484         /* drop extra refcnt by try_charge() */
1485         css_put(&parent->css);
1486         /* uncharge if move fails */
1487         res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
1488         if (do_swap_account)
1489                 res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
1490         return ret;
1491 }
1492
1493 /*
1494  * Charge the memory controller for page usage.
1495  * Return
1496  * 0 if the charge was successful
1497  * < 0 if the cgroup is over its limit
1498  */
1499 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1500                                 gfp_t gfp_mask, enum charge_type ctype,
1501                                 struct mem_cgroup *memcg)
1502 {
1503         struct mem_cgroup *mem;
1504         struct page_cgroup *pc;
1505         int ret;
1506
1507         pc = lookup_page_cgroup(page);
1508         /* can happen at boot */
1509         if (unlikely(!pc))
1510                 return 0;
1511         prefetchw(pc);
1512
1513         mem = memcg;
1514         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1515         if (ret || !mem)
1516                 return ret;
1517
1518         __mem_cgroup_commit_charge(mem, pc, ctype);
1519         return 0;
1520 }
1521
1522 int mem_cgroup_newpage_charge(struct page *page,
1523                               struct mm_struct *mm, gfp_t gfp_mask)
1524 {
1525         if (mem_cgroup_disabled())
1526                 return 0;
1527         if (PageCompound(page))
1528                 return 0;
1529         /*
1530          * If already mapped, we don't have to account.
1531          * If page cache, page->mapping has address_space.
1532          * But page->mapping may have out-of-use anon_vma pointer,
1533          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1534          * is NULL.
1535          */
1536         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1537                 return 0;
1538         if (unlikely(!mm))
1539                 mm = &init_mm;
1540         return mem_cgroup_charge_common(page, mm, gfp_mask,
1541                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1542 }
1543
1544 static void
1545 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1546                                         enum charge_type ctype);
1547
1548 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1549                                 gfp_t gfp_mask)
1550 {
1551         struct mem_cgroup *mem = NULL;
1552         int ret;
1553
1554         if (mem_cgroup_disabled())
1555                 return 0;
1556         if (PageCompound(page))
1557                 return 0;
1558         /*
1559          * Corner case handling. This is called from add_to_page_cache()
1560          * in usual. But some FS (shmem) precharges this page before calling it
1561          * and call add_to_page_cache() with GFP_NOWAIT.
1562          *
1563          * For GFP_NOWAIT case, the page may be pre-charged before calling
1564          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1565          * charge twice. (It works but has to pay a bit larger cost.)
1566          * And when the page is SwapCache, it should take swap information
1567          * into account. This is under lock_page() now.
1568          */
1569         if (!(gfp_mask & __GFP_WAIT)) {
1570                 struct page_cgroup *pc;
1571
1572
1573                 pc = lookup_page_cgroup(page);
1574                 if (!pc)
1575                         return 0;
1576                 lock_page_cgroup(pc);
1577                 if (PageCgroupUsed(pc)) {
1578                         unlock_page_cgroup(pc);
1579                         return 0;
1580                 }
1581                 unlock_page_cgroup(pc);
1582         }
1583
1584         if (unlikely(!mm && !mem))
1585                 mm = &init_mm;
1586
1587         if (page_is_file_cache(page))
1588                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1589                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1590
1591         /* shmem */
1592         if (PageSwapCache(page)) {
1593                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1594                 if (!ret)
1595                         __mem_cgroup_commit_charge_swapin(page, mem,
1596                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
1597         } else
1598                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1599                                         MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1600
1601         return ret;
1602 }
1603
1604 /*
1605  * While swap-in, try_charge -> commit or cancel, the page is locked.
1606  * And when try_charge() successfully returns, one refcnt to memcg without
1607  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1608  * "commit()" or removed by "cancel()"
1609  */
1610 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1611                                  struct page *page,
1612                                  gfp_t mask, struct mem_cgroup **ptr)
1613 {
1614         struct mem_cgroup *mem;
1615         int ret;
1616
1617         if (mem_cgroup_disabled())
1618                 return 0;
1619
1620         if (!do_swap_account)
1621                 goto charge_cur_mm;
1622         /*
1623          * A racing thread's fault, or swapoff, may have already updated
1624          * the pte, and even removed page from swap cache: return success
1625          * to go on to do_swap_page()'s pte_same() test, which should fail.
1626          */
1627         if (!PageSwapCache(page))
1628                 return 0;
1629         mem = try_get_mem_cgroup_from_swapcache(page);
1630         if (!mem)
1631                 goto charge_cur_mm;
1632         *ptr = mem;
1633         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1634         /* drop extra refcnt from tryget */
1635         css_put(&mem->css);
1636         return ret;
1637 charge_cur_mm:
1638         if (unlikely(!mm))
1639                 mm = &init_mm;
1640         return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1641 }
1642
1643 static void
1644 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1645                                         enum charge_type ctype)
1646 {
1647         struct page_cgroup *pc;
1648
1649         if (mem_cgroup_disabled())
1650                 return;
1651         if (!ptr)
1652                 return;
1653         cgroup_exclude_rmdir(&ptr->css);
1654         pc = lookup_page_cgroup(page);
1655         mem_cgroup_lru_del_before_commit_swapcache(page);
1656         __mem_cgroup_commit_charge(ptr, pc, ctype);
1657         mem_cgroup_lru_add_after_commit_swapcache(page);
1658         /*
1659          * Now swap is on-memory. This means this page may be
1660          * counted both as mem and swap....double count.
1661          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1662          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1663          * may call delete_from_swap_cache() before reach here.
1664          */
1665         if (do_swap_account && PageSwapCache(page)) {
1666                 swp_entry_t ent = {.val = page_private(page)};
1667                 unsigned short id;
1668                 struct mem_cgroup *memcg;
1669
1670                 id = swap_cgroup_record(ent, 0);
1671                 rcu_read_lock();
1672                 memcg = mem_cgroup_lookup(id);
1673                 if (memcg) {
1674                         /*
1675                          * This recorded memcg can be obsolete one. So, avoid
1676                          * calling css_tryget
1677                          */
1678                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1679                         mem_cgroup_put(memcg);
1680                 }
1681                 rcu_read_unlock();
1682         }
1683         /*
1684          * At swapin, we may charge account against cgroup which has no tasks.
1685          * So, rmdir()->pre_destroy() can be called while we do this charge.
1686          * In that case, we need to call pre_destroy() again. check it here.
1687          */
1688         cgroup_release_and_wakeup_rmdir(&ptr->css);
1689 }
1690
1691 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1692 {
1693         __mem_cgroup_commit_charge_swapin(page, ptr,
1694                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
1695 }
1696
1697 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1698 {
1699         if (mem_cgroup_disabled())
1700                 return;
1701         if (!mem)
1702                 return;
1703         res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1704         if (do_swap_account)
1705                 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1706         css_put(&mem->css);
1707 }
1708
1709
1710 /*
1711  * uncharge if !page_mapped(page)
1712  */
1713 static struct mem_cgroup *
1714 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1715 {
1716         struct page_cgroup *pc;
1717         struct mem_cgroup *mem = NULL;
1718         struct mem_cgroup_per_zone *mz;
1719         bool soft_limit_excess = false;
1720
1721         if (mem_cgroup_disabled())
1722                 return NULL;
1723
1724         if (PageSwapCache(page))
1725                 return NULL;
1726
1727         /*
1728          * Check if our page_cgroup is valid
1729          */
1730         pc = lookup_page_cgroup(page);
1731         if (unlikely(!pc || !PageCgroupUsed(pc)))
1732                 return NULL;
1733
1734         lock_page_cgroup(pc);
1735
1736         mem = pc->mem_cgroup;
1737
1738         if (!PageCgroupUsed(pc))
1739                 goto unlock_out;
1740
1741         switch (ctype) {
1742         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1743         case MEM_CGROUP_CHARGE_TYPE_DROP:
1744                 if (page_mapped(page))
1745                         goto unlock_out;
1746                 break;
1747         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1748                 if (!PageAnon(page)) {  /* Shared memory */
1749                         if (page->mapping && !page_is_file_cache(page))
1750                                 goto unlock_out;
1751                 } else if (page_mapped(page)) /* Anon */
1752                                 goto unlock_out;
1753                 break;
1754         default:
1755                 break;
1756         }
1757
1758         res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
1759         if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1760                 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1761         mem_cgroup_charge_statistics(mem, pc, false);
1762
1763         ClearPageCgroupUsed(pc);
1764         /*
1765          * pc->mem_cgroup is not cleared here. It will be accessed when it's
1766          * freed from LRU. This is safe because uncharged page is expected not
1767          * to be reused (freed soon). Exception is SwapCache, it's handled by
1768          * special functions.
1769          */
1770
1771         mz = page_cgroup_zoneinfo(pc);
1772         unlock_page_cgroup(pc);
1773
1774         if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
1775                 mem_cgroup_update_tree(mem, page);
1776         /* at swapout, this memcg will be accessed to record to swap */
1777         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1778                 css_put(&mem->css);
1779
1780         return mem;
1781
1782 unlock_out:
1783         unlock_page_cgroup(pc);
1784         return NULL;
1785 }
1786
1787 void mem_cgroup_uncharge_page(struct page *page)
1788 {
1789         /* early check. */
1790         if (page_mapped(page))
1791                 return;
1792         if (page->mapping && !PageAnon(page))
1793                 return;
1794         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1795 }
1796
1797 void mem_cgroup_uncharge_cache_page(struct page *page)
1798 {
1799         VM_BUG_ON(page_mapped(page));
1800         VM_BUG_ON(page->mapping);
1801         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1802 }
1803
1804 #ifdef CONFIG_SWAP
1805 /*
1806  * called after __delete_from_swap_cache() and drop "page" account.
1807  * memcg information is recorded to swap_cgroup of "ent"
1808  */
1809 void
1810 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1811 {
1812         struct mem_cgroup *memcg;
1813         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1814
1815         if (!swapout) /* this was a swap cache but the swap is unused ! */
1816                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1817
1818         memcg = __mem_cgroup_uncharge_common(page, ctype);
1819
1820         /* record memcg information */
1821         if (do_swap_account && swapout && memcg) {
1822                 swap_cgroup_record(ent, css_id(&memcg->css));
1823                 mem_cgroup_get(memcg);
1824         }
1825         if (swapout && memcg)
1826                 css_put(&memcg->css);
1827 }
1828 #endif
1829
1830 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1831 /*
1832  * called from swap_entry_free(). remove record in swap_cgroup and
1833  * uncharge "memsw" account.
1834  */
1835 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1836 {
1837         struct mem_cgroup *memcg;
1838         unsigned short id;
1839
1840         if (!do_swap_account)
1841                 return;
1842
1843         id = swap_cgroup_record(ent, 0);
1844         rcu_read_lock();
1845         memcg = mem_cgroup_lookup(id);
1846         if (memcg) {
1847                 /*
1848                  * We uncharge this because swap is freed.
1849                  * This memcg can be obsolete one. We avoid calling css_tryget
1850                  */
1851                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1852                 mem_cgroup_put(memcg);
1853         }
1854         rcu_read_unlock();
1855 }
1856 #endif
1857
1858 /*
1859  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1860  * page belongs to.
1861  */
1862 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1863 {
1864         struct page_cgroup *pc;
1865         struct mem_cgroup *mem = NULL;
1866         int ret = 0;
1867
1868         if (mem_cgroup_disabled())
1869                 return 0;
1870
1871         pc = lookup_page_cgroup(page);
1872         lock_page_cgroup(pc);
1873         if (PageCgroupUsed(pc)) {
1874                 mem = pc->mem_cgroup;
1875                 css_get(&mem->css);
1876         }
1877         unlock_page_cgroup(pc);
1878
1879         if (mem) {
1880                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
1881                                                 page);
1882                 css_put(&mem->css);
1883         }
1884         *ptr = mem;
1885         return ret;
1886 }
1887
1888 /* remove redundant charge if migration failed*/
1889 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1890                 struct page *oldpage, struct page *newpage)
1891 {
1892         struct page *target, *unused;
1893         struct page_cgroup *pc;
1894         enum charge_type ctype;
1895
1896         if (!mem)
1897                 return;
1898         cgroup_exclude_rmdir(&mem->css);
1899         /* at migration success, oldpage->mapping is NULL. */
1900         if (oldpage->mapping) {
1901                 target = oldpage;
1902                 unused = NULL;
1903         } else {
1904                 target = newpage;
1905                 unused = oldpage;
1906         }
1907
1908         if (PageAnon(target))
1909                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1910         else if (page_is_file_cache(target))
1911                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1912         else
1913                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1914
1915         /* unused page is not on radix-tree now. */
1916         if (unused)
1917                 __mem_cgroup_uncharge_common(unused, ctype);
1918
1919         pc = lookup_page_cgroup(target);
1920         /*
1921          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1922          * So, double-counting is effectively avoided.
1923          */
1924         __mem_cgroup_commit_charge(mem, pc, ctype);
1925
1926         /*
1927          * Both of oldpage and newpage are still under lock_page().
1928          * Then, we don't have to care about race in radix-tree.
1929          * But we have to be careful that this page is unmapped or not.
1930          *
1931          * There is a case for !page_mapped(). At the start of
1932          * migration, oldpage was mapped. But now, it's zapped.
1933          * But we know *target* page is not freed/reused under us.
1934          * mem_cgroup_uncharge_page() does all necessary checks.
1935          */
1936         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1937                 mem_cgroup_uncharge_page(target);
1938         /*
1939          * At migration, we may charge account against cgroup which has no tasks
1940          * So, rmdir()->pre_destroy() can be called while we do this charge.
1941          * In that case, we need to call pre_destroy() again. check it here.
1942          */
1943         cgroup_release_and_wakeup_rmdir(&mem->css);
1944 }
1945
1946 /*
1947  * A call to try to shrink memory usage on charge failure at shmem's swapin.
1948  * Calling hierarchical_reclaim is not enough because we should update
1949  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1950  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1951  * not from the memcg which this page would be charged to.
1952  * try_charge_swapin does all of these works properly.
1953  */
1954 int mem_cgroup_shmem_charge_fallback(struct page *page,
1955                             struct mm_struct *mm,
1956                             gfp_t gfp_mask)
1957 {
1958         struct mem_cgroup *mem = NULL;
1959         int ret;
1960
1961         if (mem_cgroup_disabled())
1962                 return 0;
1963
1964         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1965         if (!ret)
1966                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1967
1968         return ret;
1969 }
1970
1971 static DEFINE_MUTEX(set_limit_mutex);
1972
1973 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1974                                 unsigned long long val)
1975 {
1976         int retry_count;
1977         int progress;
1978         u64 memswlimit;
1979         int ret = 0;
1980         int children = mem_cgroup_count_children(memcg);
1981         u64 curusage, oldusage;
1982
1983         /*
1984          * For keeping hierarchical_reclaim simple, how long we should retry
1985          * is depends on callers. We set our retry-count to be function
1986          * of # of children which we should visit in this loop.
1987          */
1988         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1989
1990         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1991
1992         while (retry_count) {
1993                 if (signal_pending(current)) {
1994                         ret = -EINTR;
1995                         break;
1996                 }
1997                 /*
1998                  * Rather than hide all in some function, I do this in
1999                  * open coded manner. You see what this really does.
2000                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2001                  */
2002                 mutex_lock(&set_limit_mutex);
2003                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2004                 if (memswlimit < val) {
2005                         ret = -EINVAL;
2006                         mutex_unlock(&set_limit_mutex);
2007                         break;
2008                 }
2009                 ret = res_counter_set_limit(&memcg->res, val);
2010                 if (!ret) {
2011                         if (memswlimit == val)
2012                                 memcg->memsw_is_minimum = true;
2013                         else
2014                                 memcg->memsw_is_minimum = false;
2015                 }
2016                 mutex_unlock(&set_limit_mutex);
2017
2018                 if (!ret)
2019                         break;
2020
2021                 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
2022                                                    MEM_CGROUP_RECLAIM_SHRINK);
2023                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2024                 /* Usage is reduced ? */
2025                 if (curusage >= oldusage)
2026                         retry_count--;
2027                 else
2028                         oldusage = curusage;
2029         }
2030
2031         return ret;
2032 }
2033
2034 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2035                                         unsigned long long val)
2036 {
2037         int retry_count;
2038         u64 memlimit, oldusage, curusage;
2039         int children = mem_cgroup_count_children(memcg);
2040         int ret = -EBUSY;
2041
2042         /* see mem_cgroup_resize_res_limit */
2043         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2044         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2045         while (retry_count) {
2046                 if (signal_pending(current)) {
2047                         ret = -EINTR;
2048                         break;
2049                 }
2050                 /*
2051                  * Rather than hide all in some function, I do this in
2052                  * open coded manner. You see what this really does.
2053                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2054                  */
2055                 mutex_lock(&set_limit_mutex);
2056                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2057                 if (memlimit > val) {
2058                         ret = -EINVAL;
2059                         mutex_unlock(&set_limit_mutex);
2060                         break;
2061                 }
2062                 ret = res_counter_set_limit(&memcg->memsw, val);
2063                 if (!ret) {
2064                         if (memlimit == val)
2065                                 memcg->memsw_is_minimum = true;
2066                         else
2067                                 memcg->memsw_is_minimum = false;
2068                 }
2069                 mutex_unlock(&set_limit_mutex);
2070
2071                 if (!ret)
2072                         break;
2073
2074                 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
2075                                                 MEM_CGROUP_RECLAIM_NOSWAP |
2076                                                 MEM_CGROUP_RECLAIM_SHRINK);
2077                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2078                 /* Usage is reduced ? */
2079                 if (curusage >= oldusage)
2080                         retry_count--;
2081                 else
2082                         oldusage = curusage;
2083         }
2084         return ret;
2085 }
2086
2087 /*
2088  * This routine traverse page_cgroup in given list and drop them all.
2089  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2090  */
2091 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2092                                 int node, int zid, enum lru_list lru)
2093 {
2094         struct zone *zone;
2095         struct mem_cgroup_per_zone *mz;
2096         struct page_cgroup *pc, *busy;
2097         unsigned long flags, loop;
2098         struct list_head *list;
2099         int ret = 0;
2100
2101         zone = &NODE_DATA(node)->node_zones[zid];
2102         mz = mem_cgroup_zoneinfo(mem, node, zid);
2103         list = &mz->lists[lru];
2104
2105         loop = MEM_CGROUP_ZSTAT(mz, lru);
2106         /* give some margin against EBUSY etc...*/
2107         loop += 256;
2108         busy = NULL;
2109         while (loop--) {
2110                 ret = 0;
2111                 spin_lock_irqsave(&zone->lru_lock, flags);
2112                 if (list_empty(list)) {
2113                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2114                         break;
2115                 }
2116                 pc = list_entry(list->prev, struct page_cgroup, lru);
2117                 if (busy == pc) {
2118                         list_move(&pc->lru, list);
2119                         busy = 0;
2120                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2121                         continue;
2122                 }
2123                 spin_unlock_irqrestore(&zone->lru_lock, flags);
2124
2125                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2126                 if (ret == -ENOMEM)
2127                         break;
2128
2129                 if (ret == -EBUSY || ret == -EINVAL) {
2130                         /* found lock contention or "pc" is obsolete. */
2131                         busy = pc;
2132                         cond_resched();
2133                 } else
2134                         busy = NULL;
2135         }
2136
2137         if (!ret && !list_empty(list))
2138                 return -EBUSY;
2139         return ret;
2140 }
2141
2142 /*
2143  * make mem_cgroup's charge to be 0 if there is no task.
2144  * This enables deleting this mem_cgroup.
2145  */
2146 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2147 {
2148         int ret;
2149         int node, zid, shrink;
2150         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2151         struct cgroup *cgrp = mem->css.cgroup;
2152
2153         css_get(&mem->css);
2154
2155         shrink = 0;
2156         /* should free all ? */
2157         if (free_all)
2158                 goto try_to_free;
2159 move_account:
2160         while (mem->res.usage > 0) {
2161                 ret = -EBUSY;
2162                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2163                         goto out;
2164                 ret = -EINTR;
2165                 if (signal_pending(current))
2166                         goto out;
2167                 /* This is for making all *used* pages to be on LRU. */
2168                 lru_add_drain_all();
2169                 ret = 0;
2170                 for_each_node_state(node, N_HIGH_MEMORY) {
2171                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2172                                 enum lru_list l;
2173                                 for_each_lru(l) {
2174                                         ret = mem_cgroup_force_empty_list(mem,
2175                                                         node, zid, l);
2176                                         if (ret)
2177                                                 break;
2178                                 }
2179                         }
2180                         if (ret)
2181                                 break;
2182                 }
2183                 /* it seems parent cgroup doesn't have enough mem */
2184                 if (ret == -ENOMEM)
2185                         goto try_to_free;
2186                 cond_resched();
2187         }
2188         ret = 0;
2189 out:
2190         css_put(&mem->css);
2191         return ret;
2192
2193 try_to_free:
2194         /* returns EBUSY if there is a task or if we come here twice. */
2195         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2196                 ret = -EBUSY;
2197                 goto out;
2198         }
2199         /* we call try-to-free pages for make this cgroup empty */
2200         lru_add_drain_all();
2201         /* try to free all pages in this cgroup */
2202         shrink = 1;
2203         while (nr_retries && mem->res.usage > 0) {
2204                 int progress;
2205
2206                 if (signal_pending(current)) {
2207                         ret = -EINTR;
2208                         goto out;
2209                 }
2210                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2211                                                 false, get_swappiness(mem));
2212                 if (!progress) {
2213                         nr_retries--;
2214                         /* maybe some writeback is necessary */
2215                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2216                 }
2217
2218         }
2219         lru_add_drain();
2220         /* try move_account...there may be some *locked* pages. */
2221         if (mem->res.usage)
2222                 goto move_account;
2223         ret = 0;
2224         goto out;
2225 }
2226
2227 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2228 {
2229         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2230 }
2231
2232
2233 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2234 {
2235         return mem_cgroup_from_cont(cont)->use_hierarchy;
2236 }
2237
2238 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2239                                         u64 val)
2240 {
2241         int retval = 0;
2242         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2243         struct cgroup *parent = cont->parent;
2244         struct mem_cgroup *parent_mem = NULL;
2245
2246         if (parent)
2247                 parent_mem = mem_cgroup_from_cont(parent);
2248
2249         cgroup_lock();
2250         /*
2251          * If parent's use_hiearchy is set, we can't make any modifications
2252          * in the child subtrees. If it is unset, then the change can
2253          * occur, provided the current cgroup has no children.
2254          *
2255          * For the root cgroup, parent_mem is NULL, we allow value to be
2256          * set if there are no children.
2257          */
2258         if ((!parent_mem || !parent_mem->use_hierarchy) &&
2259                                 (val == 1 || val == 0)) {
2260                 if (list_empty(&cont->children))
2261                         mem->use_hierarchy = val;
2262                 else
2263                         retval = -EBUSY;
2264         } else
2265                 retval = -EINVAL;
2266         cgroup_unlock();
2267
2268         return retval;
2269 }
2270
2271 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2272 {
2273         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2274         u64 val = 0;
2275         int type, name;
2276
2277         type = MEMFILE_TYPE(cft->private);
2278         name = MEMFILE_ATTR(cft->private);
2279         switch (type) {
2280         case _MEM:
2281                 val = res_counter_read_u64(&mem->res, name);
2282                 break;
2283         case _MEMSWAP:
2284                 val = res_counter_read_u64(&mem->memsw, name);
2285                 break;
2286         default:
2287                 BUG();
2288                 break;
2289         }
2290         return val;
2291 }
2292 /*
2293  * The user of this function is...
2294  * RES_LIMIT.
2295  */
2296 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2297                             const char *buffer)
2298 {
2299         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2300         int type, name;
2301         unsigned long long val;
2302         int ret;
2303
2304         type = MEMFILE_TYPE(cft->private);
2305         name = MEMFILE_ATTR(cft->private);
2306         switch (name) {
2307         case RES_LIMIT:
2308                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2309                         ret = -EINVAL;
2310                         break;
2311                 }
2312                 /* This function does all necessary parse...reuse it */
2313                 ret = res_counter_memparse_write_strategy(buffer, &val);
2314                 if (ret)
2315                         break;
2316                 if (type == _MEM)
2317                         ret = mem_cgroup_resize_limit(memcg, val);
2318                 else
2319                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
2320                 break;
2321         case RES_SOFT_LIMIT:
2322                 ret = res_counter_memparse_write_strategy(buffer, &val);
2323                 if (ret)
2324                         break;
2325                 /*
2326                  * For memsw, soft limits are hard to implement in terms
2327                  * of semantics, for now, we support soft limits for
2328                  * control without swap
2329                  */
2330                 if (type == _MEM)
2331                         ret = res_counter_set_soft_limit(&memcg->res, val);
2332                 else
2333                         ret = -EINVAL;
2334                 break;
2335         default:
2336                 ret = -EINVAL; /* should be BUG() ? */
2337                 break;
2338         }
2339         return ret;
2340 }
2341
2342 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2343                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2344 {
2345         struct cgroup *cgroup;
2346         unsigned long long min_limit, min_memsw_limit, tmp;
2347
2348         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2349         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2350         cgroup = memcg->css.cgroup;
2351         if (!memcg->use_hierarchy)
2352                 goto out;
2353
2354         while (cgroup->parent) {
2355                 cgroup = cgroup->parent;
2356                 memcg = mem_cgroup_from_cont(cgroup);
2357                 if (!memcg->use_hierarchy)
2358                         break;
2359                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2360                 min_limit = min(min_limit, tmp);
2361                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2362                 min_memsw_limit = min(min_memsw_limit, tmp);
2363         }
2364 out:
2365         *mem_limit = min_limit;
2366         *memsw_limit = min_memsw_limit;
2367         return;
2368 }
2369
2370 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2371 {
2372         struct mem_cgroup *mem;
2373         int type, name;
2374
2375         mem = mem_cgroup_from_cont(cont);
2376         type = MEMFILE_TYPE(event);
2377         name = MEMFILE_ATTR(event);
2378         switch (name) {
2379         case RES_MAX_USAGE:
2380                 if (type == _MEM)
2381                         res_counter_reset_max(&mem->res);
2382                 else
2383                         res_counter_reset_max(&mem->memsw);
2384                 break;
2385         case RES_FAILCNT:
2386                 if (type == _MEM)
2387                         res_counter_reset_failcnt(&mem->res);
2388                 else
2389                         res_counter_reset_failcnt(&mem->memsw);
2390                 break;
2391         }
2392
2393         return 0;
2394 }
2395
2396
2397 /* For read statistics */
2398 enum {
2399         MCS_CACHE,
2400         MCS_RSS,
2401         MCS_MAPPED_FILE,
2402         MCS_PGPGIN,
2403         MCS_PGPGOUT,
2404         MCS_INACTIVE_ANON,
2405         MCS_ACTIVE_ANON,
2406         MCS_INACTIVE_FILE,
2407         MCS_ACTIVE_FILE,
2408         MCS_UNEVICTABLE,
2409         NR_MCS_STAT,
2410 };
2411
2412 struct mcs_total_stat {
2413         s64 stat[NR_MCS_STAT];
2414 };
2415
2416 struct {
2417         char *local_name;
2418         char *total_name;
2419 } memcg_stat_strings[NR_MCS_STAT] = {
2420         {"cache", "total_cache"},
2421         {"rss", "total_rss"},
2422         {"mapped_file", "total_mapped_file"},
2423         {"pgpgin", "total_pgpgin"},
2424         {"pgpgout", "total_pgpgout"},
2425         {"inactive_anon", "total_inactive_anon"},
2426         {"active_anon", "total_active_anon"},
2427         {"inactive_file", "total_inactive_file"},
2428         {"active_file", "total_active_file"},
2429         {"unevictable", "total_unevictable"}
2430 };
2431
2432
2433 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2434 {
2435         struct mcs_total_stat *s = data;
2436         s64 val;
2437
2438         /* per cpu stat */
2439         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2440         s->stat[MCS_CACHE] += val * PAGE_SIZE;
2441         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2442         s->stat[MCS_RSS] += val * PAGE_SIZE;
2443         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2444         s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2445         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2446         s->stat[MCS_PGPGIN] += val;
2447         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2448         s->stat[MCS_PGPGOUT] += val;
2449
2450         /* per zone stat */
2451         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2452         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2453         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2454         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2455         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2456         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2457         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2458         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2459         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2460         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2461         return 0;
2462 }
2463
2464 static void
2465 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2466 {
2467         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2468 }
2469
2470 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2471                                  struct cgroup_map_cb *cb)
2472 {
2473         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2474         struct mcs_total_stat mystat;
2475         int i;
2476
2477         memset(&mystat, 0, sizeof(mystat));
2478         mem_cgroup_get_local_stat(mem_cont, &mystat);
2479
2480         for (i = 0; i < NR_MCS_STAT; i++)
2481                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2482
2483         /* Hierarchical information */
2484         {
2485                 unsigned long long limit, memsw_limit;
2486                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2487                 cb->fill(cb, "hierarchical_memory_limit", limit);
2488                 if (do_swap_account)
2489                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2490         }
2491
2492         memset(&mystat, 0, sizeof(mystat));
2493         mem_cgroup_get_total_stat(mem_cont, &mystat);
2494         for (i = 0; i < NR_MCS_STAT; i++)
2495                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2496
2497
2498 #ifdef CONFIG_DEBUG_VM
2499         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2500
2501         {
2502                 int nid, zid;
2503                 struct mem_cgroup_per_zone *mz;
2504                 unsigned long recent_rotated[2] = {0, 0};
2505                 unsigned long recent_scanned[2] = {0, 0};
2506
2507                 for_each_online_node(nid)
2508                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2509                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2510
2511                                 recent_rotated[0] +=
2512                                         mz->reclaim_stat.recent_rotated[0];
2513                                 recent_rotated[1] +=
2514                                         mz->reclaim_stat.recent_rotated[1];
2515                                 recent_scanned[0] +=
2516                                         mz->reclaim_stat.recent_scanned[0];
2517                                 recent_scanned[1] +=
2518                                         mz->reclaim_stat.recent_scanned[1];
2519                         }
2520                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2521                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2522                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2523                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2524         }
2525 #endif
2526
2527         return 0;
2528 }
2529
2530 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2531 {
2532         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2533
2534         return get_swappiness(memcg);
2535 }
2536
2537 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2538                                        u64 val)
2539 {
2540         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2541         struct mem_cgroup *parent;
2542
2543         if (val > 100)
2544                 return -EINVAL;
2545
2546         if (cgrp->parent == NULL)
2547                 return -EINVAL;
2548
2549         parent = mem_cgroup_from_cont(cgrp->parent);
2550
2551         cgroup_lock();
2552
2553         /* If under hierarchy, only empty-root can set this value */
2554         if ((parent->use_hierarchy) ||
2555             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2556                 cgroup_unlock();
2557                 return -EINVAL;
2558         }
2559
2560         spin_lock(&memcg->reclaim_param_lock);
2561         memcg->swappiness = val;
2562         spin_unlock(&memcg->reclaim_param_lock);
2563
2564         cgroup_unlock();
2565
2566         return 0;
2567 }
2568
2569
2570 static struct cftype mem_cgroup_files[] = {
2571         {
2572                 .name = "usage_in_bytes",
2573                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2574                 .read_u64 = mem_cgroup_read,
2575         },
2576         {
2577                 .name = "max_usage_in_bytes",
2578                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2579                 .trigger = mem_cgroup_reset,
2580                 .read_u64 = mem_cgroup_read,
2581         },
2582         {
2583                 .name = "limit_in_bytes",
2584                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2585                 .write_string = mem_cgroup_write,
2586                 .read_u64 = mem_cgroup_read,
2587         },
2588         {
2589                 .name = "soft_limit_in_bytes",
2590                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2591                 .write_string = mem_cgroup_write,
2592                 .read_u64 = mem_cgroup_read,
2593         },
2594         {
2595                 .name = "failcnt",
2596                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2597                 .trigger = mem_cgroup_reset,
2598                 .read_u64 = mem_cgroup_read,
2599         },
2600         {
2601                 .name = "stat",
2602                 .read_map = mem_control_stat_show,
2603         },
2604         {
2605                 .name = "force_empty",
2606                 .trigger = mem_cgroup_force_empty_write,
2607         },
2608         {
2609                 .name = "use_hierarchy",
2610                 .write_u64 = mem_cgroup_hierarchy_write,
2611                 .read_u64 = mem_cgroup_hierarchy_read,
2612         },
2613         {
2614                 .name = "swappiness",
2615                 .read_u64 = mem_cgroup_swappiness_read,
2616                 .write_u64 = mem_cgroup_swappiness_write,
2617         },
2618 };
2619
2620 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2621 static struct cftype memsw_cgroup_files[] = {
2622         {
2623                 .name = "memsw.usage_in_bytes",
2624                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2625                 .read_u64 = mem_cgroup_read,
2626         },
2627         {
2628                 .name = "memsw.max_usage_in_bytes",
2629                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2630                 .trigger = mem_cgroup_reset,
2631                 .read_u64 = mem_cgroup_read,
2632         },
2633         {
2634                 .name = "memsw.limit_in_bytes",
2635                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2636                 .write_string = mem_cgroup_write,
2637                 .read_u64 = mem_cgroup_read,
2638         },
2639         {
2640                 .name = "memsw.failcnt",
2641                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2642                 .trigger = mem_cgroup_reset,
2643                 .read_u64 = mem_cgroup_read,
2644         },
2645 };
2646
2647 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2648 {
2649         if (!do_swap_account)
2650                 return 0;
2651         return cgroup_add_files(cont, ss, memsw_cgroup_files,
2652                                 ARRAY_SIZE(memsw_cgroup_files));
2653 };
2654 #else
2655 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2656 {
2657         return 0;
2658 }
2659 #endif
2660
2661 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2662 {
2663         struct mem_cgroup_per_node *pn;
2664         struct mem_cgroup_per_zone *mz;
2665         enum lru_list l;
2666         int zone, tmp = node;
2667         /*
2668          * This routine is called against possible nodes.
2669          * But it's BUG to call kmalloc() against offline node.
2670          *
2671          * TODO: this routine can waste much memory for nodes which will
2672          *       never be onlined. It's better to use memory hotplug callback
2673          *       function.
2674          */
2675         if (!node_state(node, N_NORMAL_MEMORY))
2676                 tmp = -1;
2677         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2678         if (!pn)
2679                 return 1;
2680
2681         mem->info.nodeinfo[node] = pn;
2682         memset(pn, 0, sizeof(*pn));
2683
2684         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2685                 mz = &pn->zoneinfo[zone];
2686                 for_each_lru(l)
2687                         INIT_LIST_HEAD(&mz->lists[l]);
2688                 mz->usage_in_excess = 0;
2689         }
2690         return 0;
2691 }
2692
2693 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2694 {
2695         kfree(mem->info.nodeinfo[node]);
2696 }
2697
2698 static int mem_cgroup_size(void)
2699 {
2700         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2701         return sizeof(struct mem_cgroup) + cpustat_size;
2702 }
2703
2704 static struct mem_cgroup *mem_cgroup_alloc(void)
2705 {
2706         struct mem_cgroup *mem;
2707         int size = mem_cgroup_size();
2708
2709         if (size < PAGE_SIZE)
2710                 mem = kmalloc(size, GFP_KERNEL);
2711         else
2712                 mem = vmalloc(size);
2713
2714         if (mem)
2715                 memset(mem, 0, size);
2716         return mem;
2717 }
2718
2719 /*
2720  * At destroying mem_cgroup, references from swap_cgroup can remain.
2721  * (scanning all at force_empty is too costly...)
2722  *
2723  * Instead of clearing all references at force_empty, we remember
2724  * the number of reference from swap_cgroup and free mem_cgroup when
2725  * it goes down to 0.
2726  *
2727  * Removal of cgroup itself succeeds regardless of refs from swap.
2728  */
2729
2730 static void __mem_cgroup_free(struct mem_cgroup *mem)
2731 {
2732         int node;
2733
2734         mem_cgroup_remove_from_trees(mem);
2735         free_css_id(&mem_cgroup_subsys, &mem->css);
2736
2737         for_each_node_state(node, N_POSSIBLE)
2738                 free_mem_cgroup_per_zone_info(mem, node);
2739
2740         if (mem_cgroup_size() < PAGE_SIZE)
2741                 kfree(mem);
2742         else
2743                 vfree(mem);
2744 }
2745
2746 static void mem_cgroup_get(struct mem_cgroup *mem)
2747 {
2748         atomic_inc(&mem->refcnt);
2749 }
2750
2751 static void mem_cgroup_put(struct mem_cgroup *mem)
2752 {
2753         if (atomic_dec_and_test(&mem->refcnt)) {
2754                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2755                 __mem_cgroup_free(mem);
2756                 if (parent)
2757                         mem_cgroup_put(parent);
2758         }
2759 }
2760
2761 /*
2762  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2763  */
2764 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2765 {
2766         if (!mem->res.parent)
2767                 return NULL;
2768         return mem_cgroup_from_res_counter(mem->res.parent, res);
2769 }
2770
2771 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2772 static void __init enable_swap_cgroup(void)
2773 {
2774         if (!mem_cgroup_disabled() && really_do_swap_account)
2775                 do_swap_account = 1;
2776 }
2777 #else
2778 static void __init enable_swap_cgroup(void)
2779 {
2780 }
2781 #endif
2782
2783 static int mem_cgroup_soft_limit_tree_init(void)
2784 {
2785         struct mem_cgroup_tree_per_node *rtpn;
2786         struct mem_cgroup_tree_per_zone *rtpz;
2787         int tmp, node, zone;
2788
2789         for_each_node_state(node, N_POSSIBLE) {
2790                 tmp = node;
2791                 if (!node_state(node, N_NORMAL_MEMORY))
2792                         tmp = -1;
2793                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
2794                 if (!rtpn)
2795                         return 1;
2796
2797                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2798
2799                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2800                         rtpz = &rtpn->rb_tree_per_zone[zone];
2801                         rtpz->rb_root = RB_ROOT;
2802                         spin_lock_init(&rtpz->lock);
2803                 }
2804         }
2805         return 0;
2806 }
2807
2808 static struct cgroup_subsys_state * __ref
2809 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2810 {
2811         struct mem_cgroup *mem, *parent;
2812         long error = -ENOMEM;
2813         int node;
2814
2815         mem = mem_cgroup_alloc();
2816         if (!mem)
2817                 return ERR_PTR(error);
2818
2819         for_each_node_state(node, N_POSSIBLE)
2820                 if (alloc_mem_cgroup_per_zone_info(mem, node))
2821                         goto free_out;
2822
2823         /* root ? */
2824         if (cont->parent == NULL) {
2825                 enable_swap_cgroup();
2826                 parent = NULL;
2827                 root_mem_cgroup = mem;
2828                 if (mem_cgroup_soft_limit_tree_init())
2829                         goto free_out;
2830
2831         } else {
2832                 parent = mem_cgroup_from_cont(cont->parent);
2833                 mem->use_hierarchy = parent->use_hierarchy;
2834         }
2835
2836         if (parent && parent->use_hierarchy) {
2837                 res_counter_init(&mem->res, &parent->res);
2838                 res_counter_init(&mem->memsw, &parent->memsw);
2839                 /*
2840                  * We increment refcnt of the parent to ensure that we can
2841                  * safely access it on res_counter_charge/uncharge.
2842                  * This refcnt will be decremented when freeing this
2843                  * mem_cgroup(see mem_cgroup_put).
2844                  */
2845                 mem_cgroup_get(parent);
2846         } else {
2847                 res_counter_init(&mem->res, NULL);
2848                 res_counter_init(&mem->memsw, NULL);
2849         }
2850         mem->last_scanned_child = 0;
2851         spin_lock_init(&mem->reclaim_param_lock);
2852
2853         if (parent)
2854                 mem->swappiness = get_swappiness(parent);
2855         atomic_set(&mem->refcnt, 1);
2856         return &mem->css;
2857 free_out:
2858         __mem_cgroup_free(mem);
2859         root_mem_cgroup = NULL;
2860         return ERR_PTR(error);
2861 }
2862
2863 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2864                                         struct cgroup *cont)
2865 {
2866         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2867
2868         return mem_cgroup_force_empty(mem, false);
2869 }
2870
2871 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2872                                 struct cgroup *cont)
2873 {
2874         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2875
2876         mem_cgroup_put(mem);
2877 }
2878
2879 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2880                                 struct cgroup *cont)
2881 {
2882         int ret;
2883
2884         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2885                                 ARRAY_SIZE(mem_cgroup_files));
2886
2887         if (!ret)
2888                 ret = register_memsw_files(cont, ss);
2889         return ret;
2890 }
2891
2892 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2893                                 struct cgroup *cont,
2894                                 struct cgroup *old_cont,
2895                                 struct task_struct *p,
2896                                 bool threadgroup)
2897 {
2898         mutex_lock(&memcg_tasklist);
2899         /*
2900          * FIXME: It's better to move charges of this process from old
2901          * memcg to new memcg. But it's just on TODO-List now.
2902          */
2903         mutex_unlock(&memcg_tasklist);
2904 }
2905
2906 struct cgroup_subsys mem_cgroup_subsys = {
2907         .name = "memory",
2908         .subsys_id = mem_cgroup_subsys_id,
2909         .create = mem_cgroup_create,
2910         .pre_destroy = mem_cgroup_pre_destroy,
2911         .destroy = mem_cgroup_destroy,
2912         .populate = mem_cgroup_populate,
2913         .attach = mem_cgroup_move_task,
2914         .early_init = 0,
2915         .use_id = 1,
2916 };
2917
2918 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2919
2920 static int __init disable_swap_account(char *s)
2921 {
2922         really_do_swap_account = 0;
2923         return 1;
2924 }
2925 __setup("noswapaccount", disable_swap_account);
2926 #endif