memcg: use css_tryget in memcg
[safe/jmp/linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES      5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account         (0)
52 #endif
53
54 static DEFINE_MUTEX(memcg_tasklist);    /* can be hold under cgroup_mutex */
55
56 /*
57  * Statistics for memory cgroup.
58  */
59 enum mem_cgroup_stat_index {
60         /*
61          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62          */
63         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
64         MEM_CGROUP_STAT_RSS,       /* # of pages charged as rss */
65         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
66         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
67
68         MEM_CGROUP_STAT_NSTATS,
69 };
70
71 struct mem_cgroup_stat_cpu {
72         s64 count[MEM_CGROUP_STAT_NSTATS];
73 } ____cacheline_aligned_in_smp;
74
75 struct mem_cgroup_stat {
76         struct mem_cgroup_stat_cpu cpustat[0];
77 };
78
79 /*
80  * For accounting under irq disable, no need for increment preempt count.
81  */
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83                 enum mem_cgroup_stat_index idx, int val)
84 {
85         stat->count[idx] += val;
86 }
87
88 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89                 enum mem_cgroup_stat_index idx)
90 {
91         int cpu;
92         s64 ret = 0;
93         for_each_possible_cpu(cpu)
94                 ret += stat->cpustat[cpu].count[idx];
95         return ret;
96 }
97
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102         /*
103          * spin_lock to protect the per cgroup LRU
104          */
105         struct list_head        lists[NR_LRU_LISTS];
106         unsigned long           count[NR_LRU_LISTS];
107
108         struct zone_reclaim_stat reclaim_stat;
109 };
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
112
113 struct mem_cgroup_per_node {
114         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115 };
116
117 struct mem_cgroup_lru_info {
118         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119 };
120
121 /*
122  * The memory controller data structure. The memory controller controls both
123  * page cache and RSS per cgroup. We would eventually like to provide
124  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125  * to help the administrator determine what knobs to tune.
126  *
127  * TODO: Add a water mark for the memory controller. Reclaim will begin when
128  * we hit the water mark. May be even add a low water mark, such that
129  * no reclaim occurs from a cgroup at it's low water mark, this is
130  * a feature that will be implemented much later in the future.
131  */
132 struct mem_cgroup {
133         struct cgroup_subsys_state css;
134         /*
135          * the counter to account for memory usage
136          */
137         struct res_counter res;
138         /*
139          * the counter to account for mem+swap usage.
140          */
141         struct res_counter memsw;
142         /*
143          * Per cgroup active and inactive list, similar to the
144          * per zone LRU lists.
145          */
146         struct mem_cgroup_lru_info info;
147
148         /*
149           protect against reclaim related member.
150         */
151         spinlock_t reclaim_param_lock;
152
153         int     prev_priority;  /* for recording reclaim priority */
154
155         /*
156          * While reclaiming in a hiearchy, we cache the last child we
157          * reclaimed from. Protected by cgroup_lock()
158          */
159         struct mem_cgroup *last_scanned_child;
160         /*
161          * Should the accounting and control be hierarchical, per subtree?
162          */
163         bool use_hierarchy;
164         unsigned long   last_oom_jiffies;
165         atomic_t        refcnt;
166
167         unsigned int    swappiness;
168
169         /*
170          * statistics. This must be placed at the end of memcg.
171          */
172         struct mem_cgroup_stat stat;
173 };
174
175 enum charge_type {
176         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177         MEM_CGROUP_CHARGE_TYPE_MAPPED,
178         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
179         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
180         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181         NR_CHARGE_TYPE,
182 };
183
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE      (1UL << PCG_CACHE)
186 #define PCGF_USED       (1UL << PCG_USED)
187 #define PCGF_LOCK       (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191         PCGF_USED | PCGF_LOCK, /* Anon */
192         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193         0, /* FORCE */
194 };
195
196 /* for encoding cft->private value on file */
197 #define _MEM                    (0)
198 #define _MEMSWAP                (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
202
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
205
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207                                          struct page_cgroup *pc,
208                                          bool charge)
209 {
210         int val = (charge)? 1 : -1;
211         struct mem_cgroup_stat *stat = &mem->stat;
212         struct mem_cgroup_stat_cpu *cpustat;
213         int cpu = get_cpu();
214
215         cpustat = &stat->cpustat[cpu];
216         if (PageCgroupCache(pc))
217                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218         else
219                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221         if (charge)
222                 __mem_cgroup_stat_add_safe(cpustat,
223                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224         else
225                 __mem_cgroup_stat_add_safe(cpustat,
226                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227         put_cpu();
228 }
229
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232 {
233         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234 }
235
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
238 {
239         struct mem_cgroup *mem = pc->mem_cgroup;
240         int nid = page_cgroup_nid(pc);
241         int zid = page_cgroup_zid(pc);
242
243         if (!mem)
244                 return NULL;
245
246         return mem_cgroup_zoneinfo(mem, nid, zid);
247 }
248
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250                                         enum lru_list idx)
251 {
252         int nid, zid;
253         struct mem_cgroup_per_zone *mz;
254         u64 total = 0;
255
256         for_each_online_node(nid)
257                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
259                         total += MEM_CGROUP_ZSTAT(mz, idx);
260                 }
261         return total;
262 }
263
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265 {
266         return container_of(cgroup_subsys_state(cont,
267                                 mem_cgroup_subsys_id), struct mem_cgroup,
268                                 css);
269 }
270
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272 {
273         /*
274          * mm_update_next_owner() may clear mm->owner to NULL
275          * if it races with swapoff, page migration, etc.
276          * So this can be called with p == NULL.
277          */
278         if (unlikely(!p))
279                 return NULL;
280
281         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282                                 struct mem_cgroup, css);
283 }
284
285 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286 {
287         struct mem_cgroup *mem = NULL;
288         /*
289          * Because we have no locks, mm->owner's may be being moved to other
290          * cgroup. We use css_tryget() here even if this looks
291          * pessimistic (rather than adding locks here).
292          */
293         rcu_read_lock();
294         do {
295                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296                 if (unlikely(!mem))
297                         break;
298         } while (!css_tryget(&mem->css));
299         rcu_read_unlock();
300         return mem;
301 }
302
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304 {
305         if (!mem)
306                 return true;
307         return css_is_removed(&mem->css);
308 }
309
310 /*
311  * Following LRU functions are allowed to be used without PCG_LOCK.
312  * Operations are called by routine of global LRU independently from memcg.
313  * What we have to take care of here is validness of pc->mem_cgroup.
314  *
315  * Changes to pc->mem_cgroup happens when
316  * 1. charge
317  * 2. moving account
318  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319  * It is added to LRU before charge.
320  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321  * When moving account, the page is not on LRU. It's isolated.
322  */
323
324 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325 {
326         struct page_cgroup *pc;
327         struct mem_cgroup *mem;
328         struct mem_cgroup_per_zone *mz;
329
330         if (mem_cgroup_disabled())
331                 return;
332         pc = lookup_page_cgroup(page);
333         /* can happen while we handle swapcache. */
334         if (list_empty(&pc->lru))
335                 return;
336         mz = page_cgroup_zoneinfo(pc);
337         mem = pc->mem_cgroup;
338         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
339         list_del_init(&pc->lru);
340         return;
341 }
342
343 void mem_cgroup_del_lru(struct page *page)
344 {
345         mem_cgroup_del_lru_list(page, page_lru(page));
346 }
347
348 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
349 {
350         struct mem_cgroup_per_zone *mz;
351         struct page_cgroup *pc;
352
353         if (mem_cgroup_disabled())
354                 return;
355
356         pc = lookup_page_cgroup(page);
357         smp_rmb();
358         /* unused page is not rotated. */
359         if (!PageCgroupUsed(pc))
360                 return;
361         mz = page_cgroup_zoneinfo(pc);
362         list_move(&pc->lru, &mz->lists[lru]);
363 }
364
365 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
366 {
367         struct page_cgroup *pc;
368         struct mem_cgroup_per_zone *mz;
369
370         if (mem_cgroup_disabled())
371                 return;
372         pc = lookup_page_cgroup(page);
373         /* barrier to sync with "charge" */
374         smp_rmb();
375         if (!PageCgroupUsed(pc))
376                 return;
377
378         mz = page_cgroup_zoneinfo(pc);
379         MEM_CGROUP_ZSTAT(mz, lru) += 1;
380         list_add(&pc->lru, &mz->lists[lru]);
381 }
382 /*
383  * To add swapcache into LRU. Be careful to all this function.
384  * zone->lru_lock shouldn't be held and irq must not be disabled.
385  */
386 static void mem_cgroup_lru_fixup(struct page *page)
387 {
388         if (!isolate_lru_page(page))
389                 putback_lru_page(page);
390 }
391
392 void mem_cgroup_move_lists(struct page *page,
393                            enum lru_list from, enum lru_list to)
394 {
395         if (mem_cgroup_disabled())
396                 return;
397         mem_cgroup_del_lru_list(page, from);
398         mem_cgroup_add_lru_list(page, to);
399 }
400
401 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
402 {
403         int ret;
404
405         task_lock(task);
406         ret = task->mm && mm_match_cgroup(task->mm, mem);
407         task_unlock(task);
408         return ret;
409 }
410
411 /*
412  * Calculate mapped_ratio under memory controller. This will be used in
413  * vmscan.c for deteremining we have to reclaim mapped pages.
414  */
415 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
416 {
417         long total, rss;
418
419         /*
420          * usage is recorded in bytes. But, here, we assume the number of
421          * physical pages can be represented by "long" on any arch.
422          */
423         total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
424         rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
425         return (int)((rss * 100L) / total);
426 }
427
428 /*
429  * prev_priority control...this will be used in memory reclaim path.
430  */
431 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
432 {
433         int prev_priority;
434
435         spin_lock(&mem->reclaim_param_lock);
436         prev_priority = mem->prev_priority;
437         spin_unlock(&mem->reclaim_param_lock);
438
439         return prev_priority;
440 }
441
442 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
443 {
444         spin_lock(&mem->reclaim_param_lock);
445         if (priority < mem->prev_priority)
446                 mem->prev_priority = priority;
447         spin_unlock(&mem->reclaim_param_lock);
448 }
449
450 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
451 {
452         spin_lock(&mem->reclaim_param_lock);
453         mem->prev_priority = priority;
454         spin_unlock(&mem->reclaim_param_lock);
455 }
456
457 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
458 {
459         unsigned long active;
460         unsigned long inactive;
461         unsigned long gb;
462         unsigned long inactive_ratio;
463
464         inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
465         active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
466
467         gb = (inactive + active) >> (30 - PAGE_SHIFT);
468         if (gb)
469                 inactive_ratio = int_sqrt(10 * gb);
470         else
471                 inactive_ratio = 1;
472
473         if (present_pages) {
474                 present_pages[0] = inactive;
475                 present_pages[1] = active;
476         }
477
478         return inactive_ratio;
479 }
480
481 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
482 {
483         unsigned long active;
484         unsigned long inactive;
485         unsigned long present_pages[2];
486         unsigned long inactive_ratio;
487
488         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
489
490         inactive = present_pages[0];
491         active = present_pages[1];
492
493         if (inactive * inactive_ratio < active)
494                 return 1;
495
496         return 0;
497 }
498
499 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
500                                        struct zone *zone,
501                                        enum lru_list lru)
502 {
503         int nid = zone->zone_pgdat->node_id;
504         int zid = zone_idx(zone);
505         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
506
507         return MEM_CGROUP_ZSTAT(mz, lru);
508 }
509
510 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
511                                                       struct zone *zone)
512 {
513         int nid = zone->zone_pgdat->node_id;
514         int zid = zone_idx(zone);
515         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
516
517         return &mz->reclaim_stat;
518 }
519
520 struct zone_reclaim_stat *
521 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
522 {
523         struct page_cgroup *pc;
524         struct mem_cgroup_per_zone *mz;
525
526         if (mem_cgroup_disabled())
527                 return NULL;
528
529         pc = lookup_page_cgroup(page);
530         mz = page_cgroup_zoneinfo(pc);
531         if (!mz)
532                 return NULL;
533
534         return &mz->reclaim_stat;
535 }
536
537 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
538                                         struct list_head *dst,
539                                         unsigned long *scanned, int order,
540                                         int mode, struct zone *z,
541                                         struct mem_cgroup *mem_cont,
542                                         int active, int file)
543 {
544         unsigned long nr_taken = 0;
545         struct page *page;
546         unsigned long scan;
547         LIST_HEAD(pc_list);
548         struct list_head *src;
549         struct page_cgroup *pc, *tmp;
550         int nid = z->zone_pgdat->node_id;
551         int zid = zone_idx(z);
552         struct mem_cgroup_per_zone *mz;
553         int lru = LRU_FILE * !!file + !!active;
554
555         BUG_ON(!mem_cont);
556         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
557         src = &mz->lists[lru];
558
559         scan = 0;
560         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
561                 if (scan >= nr_to_scan)
562                         break;
563
564                 page = pc->page;
565                 if (unlikely(!PageCgroupUsed(pc)))
566                         continue;
567                 if (unlikely(!PageLRU(page)))
568                         continue;
569
570                 scan++;
571                 if (__isolate_lru_page(page, mode, file) == 0) {
572                         list_move(&page->lru, dst);
573                         nr_taken++;
574                 }
575         }
576
577         *scanned = scan;
578         return nr_taken;
579 }
580
581 #define mem_cgroup_from_res_counter(counter, member)    \
582         container_of(counter, struct mem_cgroup, member)
583
584 /*
585  * This routine finds the DFS walk successor. This routine should be
586  * called with cgroup_mutex held
587  */
588 static struct mem_cgroup *
589 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
590 {
591         struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
592
593         curr_cgroup = curr->css.cgroup;
594         root_cgroup = root_mem->css.cgroup;
595
596         if (!list_empty(&curr_cgroup->children)) {
597                 /*
598                  * Walk down to children
599                  */
600                 mem_cgroup_put(curr);
601                 cgroup = list_entry(curr_cgroup->children.next,
602                                                 struct cgroup, sibling);
603                 curr = mem_cgroup_from_cont(cgroup);
604                 mem_cgroup_get(curr);
605                 goto done;
606         }
607
608 visit_parent:
609         if (curr_cgroup == root_cgroup) {
610                 mem_cgroup_put(curr);
611                 curr = root_mem;
612                 mem_cgroup_get(curr);
613                 goto done;
614         }
615
616         /*
617          * Goto next sibling
618          */
619         if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
620                 mem_cgroup_put(curr);
621                 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
622                                                 sibling);
623                 curr = mem_cgroup_from_cont(cgroup);
624                 mem_cgroup_get(curr);
625                 goto done;
626         }
627
628         /*
629          * Go up to next parent and next parent's sibling if need be
630          */
631         curr_cgroup = curr_cgroup->parent;
632         goto visit_parent;
633
634 done:
635         root_mem->last_scanned_child = curr;
636         return curr;
637 }
638
639 /*
640  * Visit the first child (need not be the first child as per the ordering
641  * of the cgroup list, since we track last_scanned_child) of @mem and use
642  * that to reclaim free pages from.
643  */
644 static struct mem_cgroup *
645 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
646 {
647         struct cgroup *cgroup;
648         struct mem_cgroup *ret;
649         bool obsolete;
650
651         obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
652
653         /*
654          * Scan all children under the mem_cgroup mem
655          */
656         cgroup_lock();
657         if (list_empty(&root_mem->css.cgroup->children)) {
658                 ret = root_mem;
659                 goto done;
660         }
661
662         if (!root_mem->last_scanned_child || obsolete) {
663
664                 if (obsolete && root_mem->last_scanned_child)
665                         mem_cgroup_put(root_mem->last_scanned_child);
666
667                 cgroup = list_first_entry(&root_mem->css.cgroup->children,
668                                 struct cgroup, sibling);
669                 ret = mem_cgroup_from_cont(cgroup);
670                 mem_cgroup_get(ret);
671         } else
672                 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
673                                                 root_mem);
674
675 done:
676         root_mem->last_scanned_child = ret;
677         cgroup_unlock();
678         return ret;
679 }
680
681 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
682 {
683         if (do_swap_account) {
684                 if (res_counter_check_under_limit(&mem->res) &&
685                         res_counter_check_under_limit(&mem->memsw))
686                         return true;
687         } else
688                 if (res_counter_check_under_limit(&mem->res))
689                         return true;
690         return false;
691 }
692
693 static unsigned int get_swappiness(struct mem_cgroup *memcg)
694 {
695         struct cgroup *cgrp = memcg->css.cgroup;
696         unsigned int swappiness;
697
698         /* root ? */
699         if (cgrp->parent == NULL)
700                 return vm_swappiness;
701
702         spin_lock(&memcg->reclaim_param_lock);
703         swappiness = memcg->swappiness;
704         spin_unlock(&memcg->reclaim_param_lock);
705
706         return swappiness;
707 }
708
709 /*
710  * Dance down the hierarchy if needed to reclaim memory. We remember the
711  * last child we reclaimed from, so that we don't end up penalizing
712  * one child extensively based on its position in the children list.
713  *
714  * root_mem is the original ancestor that we've been reclaim from.
715  */
716 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
717                                                 gfp_t gfp_mask, bool noswap)
718 {
719         struct mem_cgroup *next_mem;
720         int ret = 0;
721
722         /*
723          * Reclaim unconditionally and don't check for return value.
724          * We need to reclaim in the current group and down the tree.
725          * One might think about checking for children before reclaiming,
726          * but there might be left over accounting, even after children
727          * have left.
728          */
729         ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
730                                            get_swappiness(root_mem));
731         if (mem_cgroup_check_under_limit(root_mem))
732                 return 0;
733         if (!root_mem->use_hierarchy)
734                 return ret;
735
736         next_mem = mem_cgroup_get_first_node(root_mem);
737
738         while (next_mem != root_mem) {
739                 if (mem_cgroup_is_obsolete(next_mem)) {
740                         mem_cgroup_put(next_mem);
741                         cgroup_lock();
742                         next_mem = mem_cgroup_get_first_node(root_mem);
743                         cgroup_unlock();
744                         continue;
745                 }
746                 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
747                                                    get_swappiness(next_mem));
748                 if (mem_cgroup_check_under_limit(root_mem))
749                         return 0;
750                 cgroup_lock();
751                 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
752                 cgroup_unlock();
753         }
754         return ret;
755 }
756
757 bool mem_cgroup_oom_called(struct task_struct *task)
758 {
759         bool ret = false;
760         struct mem_cgroup *mem;
761         struct mm_struct *mm;
762
763         rcu_read_lock();
764         mm = task->mm;
765         if (!mm)
766                 mm = &init_mm;
767         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
768         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
769                 ret = true;
770         rcu_read_unlock();
771         return ret;
772 }
773 /*
774  * Unlike exported interface, "oom" parameter is added. if oom==true,
775  * oom-killer can be invoked.
776  */
777 static int __mem_cgroup_try_charge(struct mm_struct *mm,
778                         gfp_t gfp_mask, struct mem_cgroup **memcg,
779                         bool oom)
780 {
781         struct mem_cgroup *mem, *mem_over_limit;
782         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
783         struct res_counter *fail_res;
784
785         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
786                 /* Don't account this! */
787                 *memcg = NULL;
788                 return 0;
789         }
790
791         /*
792          * We always charge the cgroup the mm_struct belongs to.
793          * The mm_struct's mem_cgroup changes on task migration if the
794          * thread group leader migrates. It's possible that mm is not
795          * set, if so charge the init_mm (happens for pagecache usage).
796          */
797         mem = *memcg;
798         if (likely(!mem)) {
799                 mem = try_get_mem_cgroup_from_mm(mm);
800                 *memcg = mem;
801         } else {
802                 css_get(&mem->css);
803         }
804         if (unlikely(!mem))
805                 return 0;
806
807         VM_BUG_ON(mem_cgroup_is_obsolete(mem));
808
809         while (1) {
810                 int ret;
811                 bool noswap = false;
812
813                 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
814                 if (likely(!ret)) {
815                         if (!do_swap_account)
816                                 break;
817                         ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
818                                                         &fail_res);
819                         if (likely(!ret))
820                                 break;
821                         /* mem+swap counter fails */
822                         res_counter_uncharge(&mem->res, PAGE_SIZE);
823                         noswap = true;
824                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
825                                                                         memsw);
826                 } else
827                         /* mem counter fails */
828                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
829                                                                         res);
830
831                 if (!(gfp_mask & __GFP_WAIT))
832                         goto nomem;
833
834                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
835                                                         noswap);
836
837                 /*
838                  * try_to_free_mem_cgroup_pages() might not give us a full
839                  * picture of reclaim. Some pages are reclaimed and might be
840                  * moved to swap cache or just unmapped from the cgroup.
841                  * Check the limit again to see if the reclaim reduced the
842                  * current usage of the cgroup before giving up
843                  *
844                  */
845                 if (mem_cgroup_check_under_limit(mem_over_limit))
846                         continue;
847
848                 if (!nr_retries--) {
849                         if (oom) {
850                                 mutex_lock(&memcg_tasklist);
851                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
852                                 mutex_unlock(&memcg_tasklist);
853                                 mem_over_limit->last_oom_jiffies = jiffies;
854                         }
855                         goto nomem;
856                 }
857         }
858         return 0;
859 nomem:
860         css_put(&mem->css);
861         return -ENOMEM;
862 }
863
864 /*
865  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
866  * USED state. If already USED, uncharge and return.
867  */
868
869 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
870                                      struct page_cgroup *pc,
871                                      enum charge_type ctype)
872 {
873         /* try_charge() can return NULL to *memcg, taking care of it. */
874         if (!mem)
875                 return;
876
877         lock_page_cgroup(pc);
878         if (unlikely(PageCgroupUsed(pc))) {
879                 unlock_page_cgroup(pc);
880                 res_counter_uncharge(&mem->res, PAGE_SIZE);
881                 if (do_swap_account)
882                         res_counter_uncharge(&mem->memsw, PAGE_SIZE);
883                 css_put(&mem->css);
884                 return;
885         }
886         pc->mem_cgroup = mem;
887         smp_wmb();
888         pc->flags = pcg_default_flags[ctype];
889
890         mem_cgroup_charge_statistics(mem, pc, true);
891
892         unlock_page_cgroup(pc);
893 }
894
895 /**
896  * mem_cgroup_move_account - move account of the page
897  * @pc: page_cgroup of the page.
898  * @from: mem_cgroup which the page is moved from.
899  * @to: mem_cgroup which the page is moved to. @from != @to.
900  *
901  * The caller must confirm following.
902  * - page is not on LRU (isolate_page() is useful.)
903  *
904  * returns 0 at success,
905  * returns -EBUSY when lock is busy or "pc" is unstable.
906  *
907  * This function does "uncharge" from old cgroup but doesn't do "charge" to
908  * new cgroup. It should be done by a caller.
909  */
910
911 static int mem_cgroup_move_account(struct page_cgroup *pc,
912         struct mem_cgroup *from, struct mem_cgroup *to)
913 {
914         struct mem_cgroup_per_zone *from_mz, *to_mz;
915         int nid, zid;
916         int ret = -EBUSY;
917
918         VM_BUG_ON(from == to);
919         VM_BUG_ON(PageLRU(pc->page));
920
921         nid = page_cgroup_nid(pc);
922         zid = page_cgroup_zid(pc);
923         from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
924         to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
925
926         if (!trylock_page_cgroup(pc))
927                 return ret;
928
929         if (!PageCgroupUsed(pc))
930                 goto out;
931
932         if (pc->mem_cgroup != from)
933                 goto out;
934
935         css_put(&from->css);
936         res_counter_uncharge(&from->res, PAGE_SIZE);
937         mem_cgroup_charge_statistics(from, pc, false);
938         if (do_swap_account)
939                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
940         pc->mem_cgroup = to;
941         mem_cgroup_charge_statistics(to, pc, true);
942         css_get(&to->css);
943         ret = 0;
944 out:
945         unlock_page_cgroup(pc);
946         return ret;
947 }
948
949 /*
950  * move charges to its parent.
951  */
952
953 static int mem_cgroup_move_parent(struct page_cgroup *pc,
954                                   struct mem_cgroup *child,
955                                   gfp_t gfp_mask)
956 {
957         struct page *page = pc->page;
958         struct cgroup *cg = child->css.cgroup;
959         struct cgroup *pcg = cg->parent;
960         struct mem_cgroup *parent;
961         int ret;
962
963         /* Is ROOT ? */
964         if (!pcg)
965                 return -EINVAL;
966
967
968         parent = mem_cgroup_from_cont(pcg);
969
970
971         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
972         if (ret || !parent)
973                 return ret;
974
975         if (!get_page_unless_zero(page))
976                 return -EBUSY;
977
978         ret = isolate_lru_page(page);
979
980         if (ret)
981                 goto cancel;
982
983         ret = mem_cgroup_move_account(pc, child, parent);
984
985         /* drop extra refcnt by try_charge() (move_account increment one) */
986         css_put(&parent->css);
987         putback_lru_page(page);
988         if (!ret) {
989                 put_page(page);
990                 return 0;
991         }
992         /* uncharge if move fails */
993 cancel:
994         res_counter_uncharge(&parent->res, PAGE_SIZE);
995         if (do_swap_account)
996                 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
997         put_page(page);
998         return ret;
999 }
1000
1001 /*
1002  * Charge the memory controller for page usage.
1003  * Return
1004  * 0 if the charge was successful
1005  * < 0 if the cgroup is over its limit
1006  */
1007 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1008                                 gfp_t gfp_mask, enum charge_type ctype,
1009                                 struct mem_cgroup *memcg)
1010 {
1011         struct mem_cgroup *mem;
1012         struct page_cgroup *pc;
1013         int ret;
1014
1015         pc = lookup_page_cgroup(page);
1016         /* can happen at boot */
1017         if (unlikely(!pc))
1018                 return 0;
1019         prefetchw(pc);
1020
1021         mem = memcg;
1022         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1023         if (ret || !mem)
1024                 return ret;
1025
1026         __mem_cgroup_commit_charge(mem, pc, ctype);
1027         return 0;
1028 }
1029
1030 int mem_cgroup_newpage_charge(struct page *page,
1031                               struct mm_struct *mm, gfp_t gfp_mask)
1032 {
1033         if (mem_cgroup_disabled())
1034                 return 0;
1035         if (PageCompound(page))
1036                 return 0;
1037         /*
1038          * If already mapped, we don't have to account.
1039          * If page cache, page->mapping has address_space.
1040          * But page->mapping may have out-of-use anon_vma pointer,
1041          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1042          * is NULL.
1043          */
1044         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1045                 return 0;
1046         if (unlikely(!mm))
1047                 mm = &init_mm;
1048         return mem_cgroup_charge_common(page, mm, gfp_mask,
1049                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1050 }
1051
1052 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1053                                 gfp_t gfp_mask)
1054 {
1055         if (mem_cgroup_disabled())
1056                 return 0;
1057         if (PageCompound(page))
1058                 return 0;
1059         /*
1060          * Corner case handling. This is called from add_to_page_cache()
1061          * in usual. But some FS (shmem) precharges this page before calling it
1062          * and call add_to_page_cache() with GFP_NOWAIT.
1063          *
1064          * For GFP_NOWAIT case, the page may be pre-charged before calling
1065          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1066          * charge twice. (It works but has to pay a bit larger cost.)
1067          */
1068         if (!(gfp_mask & __GFP_WAIT)) {
1069                 struct page_cgroup *pc;
1070
1071
1072                 pc = lookup_page_cgroup(page);
1073                 if (!pc)
1074                         return 0;
1075                 lock_page_cgroup(pc);
1076                 if (PageCgroupUsed(pc)) {
1077                         unlock_page_cgroup(pc);
1078                         return 0;
1079                 }
1080                 unlock_page_cgroup(pc);
1081         }
1082
1083         if (unlikely(!mm))
1084                 mm = &init_mm;
1085
1086         if (page_is_file_cache(page))
1087                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1088                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1089         else
1090                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1091                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1092 }
1093
1094 /*
1095  * While swap-in, try_charge -> commit or cancel, the page is locked.
1096  * And when try_charge() successfully returns, one refcnt to memcg without
1097  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1098  * "commit()" or removed by "cancel()"
1099  */
1100 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1101                                  struct page *page,
1102                                  gfp_t mask, struct mem_cgroup **ptr)
1103 {
1104         struct mem_cgroup *mem;
1105         swp_entry_t     ent;
1106         int ret;
1107
1108         if (mem_cgroup_disabled())
1109                 return 0;
1110
1111         if (!do_swap_account)
1112                 goto charge_cur_mm;
1113
1114         /*
1115          * A racing thread's fault, or swapoff, may have already updated
1116          * the pte, and even removed page from swap cache: return success
1117          * to go on to do_swap_page()'s pte_same() test, which should fail.
1118          */
1119         if (!PageSwapCache(page))
1120                 return 0;
1121
1122         ent.val = page_private(page);
1123
1124         mem = lookup_swap_cgroup(ent);
1125         if (!mem)
1126                 goto charge_cur_mm;
1127         if (!css_tryget(&mem->css))
1128                 goto charge_cur_mm;
1129         *ptr = mem;
1130         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1131         /* drop extra refcnt from tryget */
1132         css_put(&mem->css);
1133         return ret;
1134 charge_cur_mm:
1135         if (unlikely(!mm))
1136                 mm = &init_mm;
1137         return __mem_cgroup_try_charge(mm, mask, ptr, true);
1138 }
1139
1140 #ifdef CONFIG_SWAP
1141
1142 int mem_cgroup_cache_charge_swapin(struct page *page,
1143                         struct mm_struct *mm, gfp_t mask, bool locked)
1144 {
1145         int ret = 0;
1146
1147         if (mem_cgroup_disabled())
1148                 return 0;
1149         if (unlikely(!mm))
1150                 mm = &init_mm;
1151         if (!locked)
1152                 lock_page(page);
1153         /*
1154          * If not locked, the page can be dropped from SwapCache until
1155          * we reach here.
1156          */
1157         if (PageSwapCache(page)) {
1158                 struct mem_cgroup *mem = NULL;
1159                 swp_entry_t ent;
1160
1161                 ent.val = page_private(page);
1162                 if (do_swap_account) {
1163                         mem = lookup_swap_cgroup(ent);
1164                         if (mem) {
1165                                 if (css_tryget(&mem->css))
1166                                         mm = NULL; /* charge to recorded */
1167                                 else
1168                                         mem = NULL; /* charge to current */
1169                         }
1170                 }
1171                 ret = mem_cgroup_charge_common(page, mm, mask,
1172                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1173                 /* drop extra refcnt from tryget */
1174                 if (mem)
1175                         css_put(&mem->css);
1176
1177                 if (!ret && do_swap_account) {
1178                         /* avoid double counting */
1179                         mem = swap_cgroup_record(ent, NULL);
1180                         if (mem) {
1181                                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1182                                 mem_cgroup_put(mem);
1183                         }
1184                 }
1185         }
1186         if (!locked)
1187                 unlock_page(page);
1188         /* add this page(page_cgroup) to the LRU we want. */
1189         mem_cgroup_lru_fixup(page);
1190
1191         return ret;
1192 }
1193 #endif
1194
1195 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1196 {
1197         struct page_cgroup *pc;
1198
1199         if (mem_cgroup_disabled())
1200                 return;
1201         if (!ptr)
1202                 return;
1203         pc = lookup_page_cgroup(page);
1204         __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1205         /*
1206          * Now swap is on-memory. This means this page may be
1207          * counted both as mem and swap....double count.
1208          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1209          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1210          * may call delete_from_swap_cache() before reach here.
1211          */
1212         if (do_swap_account && PageSwapCache(page)) {
1213                 swp_entry_t ent = {.val = page_private(page)};
1214                 struct mem_cgroup *memcg;
1215                 memcg = swap_cgroup_record(ent, NULL);
1216                 if (memcg) {
1217                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1218                         mem_cgroup_put(memcg);
1219                 }
1220
1221         }
1222         /* add this page(page_cgroup) to the LRU we want. */
1223         mem_cgroup_lru_fixup(page);
1224 }
1225
1226 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1227 {
1228         if (mem_cgroup_disabled())
1229                 return;
1230         if (!mem)
1231                 return;
1232         res_counter_uncharge(&mem->res, PAGE_SIZE);
1233         if (do_swap_account)
1234                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1235         css_put(&mem->css);
1236 }
1237
1238
1239 /*
1240  * uncharge if !page_mapped(page)
1241  */
1242 static struct mem_cgroup *
1243 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1244 {
1245         struct page_cgroup *pc;
1246         struct mem_cgroup *mem = NULL;
1247         struct mem_cgroup_per_zone *mz;
1248
1249         if (mem_cgroup_disabled())
1250                 return NULL;
1251
1252         if (PageSwapCache(page))
1253                 return NULL;
1254
1255         /*
1256          * Check if our page_cgroup is valid
1257          */
1258         pc = lookup_page_cgroup(page);
1259         if (unlikely(!pc || !PageCgroupUsed(pc)))
1260                 return NULL;
1261
1262         lock_page_cgroup(pc);
1263
1264         mem = pc->mem_cgroup;
1265
1266         if (!PageCgroupUsed(pc))
1267                 goto unlock_out;
1268
1269         switch (ctype) {
1270         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1271                 if (page_mapped(page))
1272                         goto unlock_out;
1273                 break;
1274         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1275                 if (!PageAnon(page)) {  /* Shared memory */
1276                         if (page->mapping && !page_is_file_cache(page))
1277                                 goto unlock_out;
1278                 } else if (page_mapped(page)) /* Anon */
1279                                 goto unlock_out;
1280                 break;
1281         default:
1282                 break;
1283         }
1284
1285         res_counter_uncharge(&mem->res, PAGE_SIZE);
1286         if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1287                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1288
1289         mem_cgroup_charge_statistics(mem, pc, false);
1290         ClearPageCgroupUsed(pc);
1291
1292         mz = page_cgroup_zoneinfo(pc);
1293         unlock_page_cgroup(pc);
1294
1295         /* at swapout, this memcg will be accessed to record to swap */
1296         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1297                 css_put(&mem->css);
1298
1299         return mem;
1300
1301 unlock_out:
1302         unlock_page_cgroup(pc);
1303         return NULL;
1304 }
1305
1306 void mem_cgroup_uncharge_page(struct page *page)
1307 {
1308         /* early check. */
1309         if (page_mapped(page))
1310                 return;
1311         if (page->mapping && !PageAnon(page))
1312                 return;
1313         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1314 }
1315
1316 void mem_cgroup_uncharge_cache_page(struct page *page)
1317 {
1318         VM_BUG_ON(page_mapped(page));
1319         VM_BUG_ON(page->mapping);
1320         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1321 }
1322
1323 /*
1324  * called from __delete_from_swap_cache() and drop "page" account.
1325  * memcg information is recorded to swap_cgroup of "ent"
1326  */
1327 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1328 {
1329         struct mem_cgroup *memcg;
1330
1331         memcg = __mem_cgroup_uncharge_common(page,
1332                                         MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1333         /* record memcg information */
1334         if (do_swap_account && memcg) {
1335                 swap_cgroup_record(ent, memcg);
1336                 mem_cgroup_get(memcg);
1337         }
1338         if (memcg)
1339                 css_put(&memcg->css);
1340 }
1341
1342 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1343 /*
1344  * called from swap_entry_free(). remove record in swap_cgroup and
1345  * uncharge "memsw" account.
1346  */
1347 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1348 {
1349         struct mem_cgroup *memcg;
1350
1351         if (!do_swap_account)
1352                 return;
1353
1354         memcg = swap_cgroup_record(ent, NULL);
1355         if (memcg) {
1356                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1357                 mem_cgroup_put(memcg);
1358         }
1359 }
1360 #endif
1361
1362 /*
1363  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1364  * page belongs to.
1365  */
1366 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1367 {
1368         struct page_cgroup *pc;
1369         struct mem_cgroup *mem = NULL;
1370         int ret = 0;
1371
1372         if (mem_cgroup_disabled())
1373                 return 0;
1374
1375         pc = lookup_page_cgroup(page);
1376         lock_page_cgroup(pc);
1377         if (PageCgroupUsed(pc)) {
1378                 mem = pc->mem_cgroup;
1379                 css_get(&mem->css);
1380         }
1381         unlock_page_cgroup(pc);
1382
1383         if (mem) {
1384                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1385                 css_put(&mem->css);
1386         }
1387         *ptr = mem;
1388         return ret;
1389 }
1390
1391 /* remove redundant charge if migration failed*/
1392 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1393                 struct page *oldpage, struct page *newpage)
1394 {
1395         struct page *target, *unused;
1396         struct page_cgroup *pc;
1397         enum charge_type ctype;
1398
1399         if (!mem)
1400                 return;
1401
1402         /* at migration success, oldpage->mapping is NULL. */
1403         if (oldpage->mapping) {
1404                 target = oldpage;
1405                 unused = NULL;
1406         } else {
1407                 target = newpage;
1408                 unused = oldpage;
1409         }
1410
1411         if (PageAnon(target))
1412                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1413         else if (page_is_file_cache(target))
1414                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1415         else
1416                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1417
1418         /* unused page is not on radix-tree now. */
1419         if (unused)
1420                 __mem_cgroup_uncharge_common(unused, ctype);
1421
1422         pc = lookup_page_cgroup(target);
1423         /*
1424          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1425          * So, double-counting is effectively avoided.
1426          */
1427         __mem_cgroup_commit_charge(mem, pc, ctype);
1428
1429         /*
1430          * Both of oldpage and newpage are still under lock_page().
1431          * Then, we don't have to care about race in radix-tree.
1432          * But we have to be careful that this page is unmapped or not.
1433          *
1434          * There is a case for !page_mapped(). At the start of
1435          * migration, oldpage was mapped. But now, it's zapped.
1436          * But we know *target* page is not freed/reused under us.
1437          * mem_cgroup_uncharge_page() does all necessary checks.
1438          */
1439         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1440                 mem_cgroup_uncharge_page(target);
1441 }
1442
1443 /*
1444  * A call to try to shrink memory usage under specified resource controller.
1445  * This is typically used for page reclaiming for shmem for reducing side
1446  * effect of page allocation from shmem, which is used by some mem_cgroup.
1447  */
1448 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1449 {
1450         struct mem_cgroup *mem;
1451         int progress = 0;
1452         int retry = MEM_CGROUP_RECLAIM_RETRIES;
1453
1454         if (mem_cgroup_disabled())
1455                 return 0;
1456         if (!mm)
1457                 return 0;
1458
1459         mem = try_get_mem_cgroup_from_mm(mm);
1460         if (unlikely(!mem))
1461                 return 0;
1462
1463         do {
1464                 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1465                 progress += mem_cgroup_check_under_limit(mem);
1466         } while (!progress && --retry);
1467
1468         css_put(&mem->css);
1469         if (!retry)
1470                 return -ENOMEM;
1471         return 0;
1472 }
1473
1474 static DEFINE_MUTEX(set_limit_mutex);
1475
1476 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1477                                 unsigned long long val)
1478 {
1479
1480         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1481         int progress;
1482         u64 memswlimit;
1483         int ret = 0;
1484
1485         while (retry_count) {
1486                 if (signal_pending(current)) {
1487                         ret = -EINTR;
1488                         break;
1489                 }
1490                 /*
1491                  * Rather than hide all in some function, I do this in
1492                  * open coded manner. You see what this really does.
1493                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1494                  */
1495                 mutex_lock(&set_limit_mutex);
1496                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1497                 if (memswlimit < val) {
1498                         ret = -EINVAL;
1499                         mutex_unlock(&set_limit_mutex);
1500                         break;
1501                 }
1502                 ret = res_counter_set_limit(&memcg->res, val);
1503                 mutex_unlock(&set_limit_mutex);
1504
1505                 if (!ret)
1506                         break;
1507
1508                 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1509                                                            false);
1510                 if (!progress)                  retry_count--;
1511         }
1512
1513         return ret;
1514 }
1515
1516 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1517                                 unsigned long long val)
1518 {
1519         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1520         u64 memlimit, oldusage, curusage;
1521         int ret;
1522
1523         if (!do_swap_account)
1524                 return -EINVAL;
1525
1526         while (retry_count) {
1527                 if (signal_pending(current)) {
1528                         ret = -EINTR;
1529                         break;
1530                 }
1531                 /*
1532                  * Rather than hide all in some function, I do this in
1533                  * open coded manner. You see what this really does.
1534                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1535                  */
1536                 mutex_lock(&set_limit_mutex);
1537                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1538                 if (memlimit > val) {
1539                         ret = -EINVAL;
1540                         mutex_unlock(&set_limit_mutex);
1541                         break;
1542                 }
1543                 ret = res_counter_set_limit(&memcg->memsw, val);
1544                 mutex_unlock(&set_limit_mutex);
1545
1546                 if (!ret)
1547                         break;
1548
1549                 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1550                 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1551                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1552                 if (curusage >= oldusage)
1553                         retry_count--;
1554         }
1555         return ret;
1556 }
1557
1558 /*
1559  * This routine traverse page_cgroup in given list and drop them all.
1560  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1561  */
1562 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1563                                 int node, int zid, enum lru_list lru)
1564 {
1565         struct zone *zone;
1566         struct mem_cgroup_per_zone *mz;
1567         struct page_cgroup *pc, *busy;
1568         unsigned long flags, loop;
1569         struct list_head *list;
1570         int ret = 0;
1571
1572         zone = &NODE_DATA(node)->node_zones[zid];
1573         mz = mem_cgroup_zoneinfo(mem, node, zid);
1574         list = &mz->lists[lru];
1575
1576         loop = MEM_CGROUP_ZSTAT(mz, lru);
1577         /* give some margin against EBUSY etc...*/
1578         loop += 256;
1579         busy = NULL;
1580         while (loop--) {
1581                 ret = 0;
1582                 spin_lock_irqsave(&zone->lru_lock, flags);
1583                 if (list_empty(list)) {
1584                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1585                         break;
1586                 }
1587                 pc = list_entry(list->prev, struct page_cgroup, lru);
1588                 if (busy == pc) {
1589                         list_move(&pc->lru, list);
1590                         busy = 0;
1591                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1592                         continue;
1593                 }
1594                 spin_unlock_irqrestore(&zone->lru_lock, flags);
1595
1596                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1597                 if (ret == -ENOMEM)
1598                         break;
1599
1600                 if (ret == -EBUSY || ret == -EINVAL) {
1601                         /* found lock contention or "pc" is obsolete. */
1602                         busy = pc;
1603                         cond_resched();
1604                 } else
1605                         busy = NULL;
1606         }
1607
1608         if (!ret && !list_empty(list))
1609                 return -EBUSY;
1610         return ret;
1611 }
1612
1613 /*
1614  * make mem_cgroup's charge to be 0 if there is no task.
1615  * This enables deleting this mem_cgroup.
1616  */
1617 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1618 {
1619         int ret;
1620         int node, zid, shrink;
1621         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1622         struct cgroup *cgrp = mem->css.cgroup;
1623
1624         css_get(&mem->css);
1625
1626         shrink = 0;
1627         /* should free all ? */
1628         if (free_all)
1629                 goto try_to_free;
1630 move_account:
1631         while (mem->res.usage > 0) {
1632                 ret = -EBUSY;
1633                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1634                         goto out;
1635                 ret = -EINTR;
1636                 if (signal_pending(current))
1637                         goto out;
1638                 /* This is for making all *used* pages to be on LRU. */
1639                 lru_add_drain_all();
1640                 ret = 0;
1641                 for_each_node_state(node, N_POSSIBLE) {
1642                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1643                                 enum lru_list l;
1644                                 for_each_lru(l) {
1645                                         ret = mem_cgroup_force_empty_list(mem,
1646                                                         node, zid, l);
1647                                         if (ret)
1648                                                 break;
1649                                 }
1650                         }
1651                         if (ret)
1652                                 break;
1653                 }
1654                 /* it seems parent cgroup doesn't have enough mem */
1655                 if (ret == -ENOMEM)
1656                         goto try_to_free;
1657                 cond_resched();
1658         }
1659         ret = 0;
1660 out:
1661         css_put(&mem->css);
1662         return ret;
1663
1664 try_to_free:
1665         /* returns EBUSY if there is a task or if we come here twice. */
1666         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1667                 ret = -EBUSY;
1668                 goto out;
1669         }
1670         /* we call try-to-free pages for make this cgroup empty */
1671         lru_add_drain_all();
1672         /* try to free all pages in this cgroup */
1673         shrink = 1;
1674         while (nr_retries && mem->res.usage > 0) {
1675                 int progress;
1676
1677                 if (signal_pending(current)) {
1678                         ret = -EINTR;
1679                         goto out;
1680                 }
1681                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1682                                                 false, get_swappiness(mem));
1683                 if (!progress) {
1684                         nr_retries--;
1685                         /* maybe some writeback is necessary */
1686                         congestion_wait(WRITE, HZ/10);
1687                 }
1688
1689         }
1690         lru_add_drain();
1691         /* try move_account...there may be some *locked* pages. */
1692         if (mem->res.usage)
1693                 goto move_account;
1694         ret = 0;
1695         goto out;
1696 }
1697
1698 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1699 {
1700         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1701 }
1702
1703
1704 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1705 {
1706         return mem_cgroup_from_cont(cont)->use_hierarchy;
1707 }
1708
1709 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1710                                         u64 val)
1711 {
1712         int retval = 0;
1713         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1714         struct cgroup *parent = cont->parent;
1715         struct mem_cgroup *parent_mem = NULL;
1716
1717         if (parent)
1718                 parent_mem = mem_cgroup_from_cont(parent);
1719
1720         cgroup_lock();
1721         /*
1722          * If parent's use_hiearchy is set, we can't make any modifications
1723          * in the child subtrees. If it is unset, then the change can
1724          * occur, provided the current cgroup has no children.
1725          *
1726          * For the root cgroup, parent_mem is NULL, we allow value to be
1727          * set if there are no children.
1728          */
1729         if ((!parent_mem || !parent_mem->use_hierarchy) &&
1730                                 (val == 1 || val == 0)) {
1731                 if (list_empty(&cont->children))
1732                         mem->use_hierarchy = val;
1733                 else
1734                         retval = -EBUSY;
1735         } else
1736                 retval = -EINVAL;
1737         cgroup_unlock();
1738
1739         return retval;
1740 }
1741
1742 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1743 {
1744         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1745         u64 val = 0;
1746         int type, name;
1747
1748         type = MEMFILE_TYPE(cft->private);
1749         name = MEMFILE_ATTR(cft->private);
1750         switch (type) {
1751         case _MEM:
1752                 val = res_counter_read_u64(&mem->res, name);
1753                 break;
1754         case _MEMSWAP:
1755                 if (do_swap_account)
1756                         val = res_counter_read_u64(&mem->memsw, name);
1757                 break;
1758         default:
1759                 BUG();
1760                 break;
1761         }
1762         return val;
1763 }
1764 /*
1765  * The user of this function is...
1766  * RES_LIMIT.
1767  */
1768 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1769                             const char *buffer)
1770 {
1771         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1772         int type, name;
1773         unsigned long long val;
1774         int ret;
1775
1776         type = MEMFILE_TYPE(cft->private);
1777         name = MEMFILE_ATTR(cft->private);
1778         switch (name) {
1779         case RES_LIMIT:
1780                 /* This function does all necessary parse...reuse it */
1781                 ret = res_counter_memparse_write_strategy(buffer, &val);
1782                 if (ret)
1783                         break;
1784                 if (type == _MEM)
1785                         ret = mem_cgroup_resize_limit(memcg, val);
1786                 else
1787                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
1788                 break;
1789         default:
1790                 ret = -EINVAL; /* should be BUG() ? */
1791                 break;
1792         }
1793         return ret;
1794 }
1795
1796 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1797                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1798 {
1799         struct cgroup *cgroup;
1800         unsigned long long min_limit, min_memsw_limit, tmp;
1801
1802         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1803         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804         cgroup = memcg->css.cgroup;
1805         if (!memcg->use_hierarchy)
1806                 goto out;
1807
1808         while (cgroup->parent) {
1809                 cgroup = cgroup->parent;
1810                 memcg = mem_cgroup_from_cont(cgroup);
1811                 if (!memcg->use_hierarchy)
1812                         break;
1813                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1814                 min_limit = min(min_limit, tmp);
1815                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1816                 min_memsw_limit = min(min_memsw_limit, tmp);
1817         }
1818 out:
1819         *mem_limit = min_limit;
1820         *memsw_limit = min_memsw_limit;
1821         return;
1822 }
1823
1824 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1825 {
1826         struct mem_cgroup *mem;
1827         int type, name;
1828
1829         mem = mem_cgroup_from_cont(cont);
1830         type = MEMFILE_TYPE(event);
1831         name = MEMFILE_ATTR(event);
1832         switch (name) {
1833         case RES_MAX_USAGE:
1834                 if (type == _MEM)
1835                         res_counter_reset_max(&mem->res);
1836                 else
1837                         res_counter_reset_max(&mem->memsw);
1838                 break;
1839         case RES_FAILCNT:
1840                 if (type == _MEM)
1841                         res_counter_reset_failcnt(&mem->res);
1842                 else
1843                         res_counter_reset_failcnt(&mem->memsw);
1844                 break;
1845         }
1846         return 0;
1847 }
1848
1849 static const struct mem_cgroup_stat_desc {
1850         const char *msg;
1851         u64 unit;
1852 } mem_cgroup_stat_desc[] = {
1853         [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1854         [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1855         [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1856         [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1857 };
1858
1859 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1860                                  struct cgroup_map_cb *cb)
1861 {
1862         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1863         struct mem_cgroup_stat *stat = &mem_cont->stat;
1864         int i;
1865
1866         for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1867                 s64 val;
1868
1869                 val = mem_cgroup_read_stat(stat, i);
1870                 val *= mem_cgroup_stat_desc[i].unit;
1871                 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1872         }
1873         /* showing # of active pages */
1874         {
1875                 unsigned long active_anon, inactive_anon;
1876                 unsigned long active_file, inactive_file;
1877                 unsigned long unevictable;
1878
1879                 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1880                                                 LRU_INACTIVE_ANON);
1881                 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1882                                                 LRU_ACTIVE_ANON);
1883                 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1884                                                 LRU_INACTIVE_FILE);
1885                 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1886                                                 LRU_ACTIVE_FILE);
1887                 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1888                                                         LRU_UNEVICTABLE);
1889
1890                 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1891                 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1892                 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1893                 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1894                 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1895
1896         }
1897         {
1898                 unsigned long long limit, memsw_limit;
1899                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1900                 cb->fill(cb, "hierarchical_memory_limit", limit);
1901                 if (do_swap_account)
1902                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1903         }
1904
1905 #ifdef CONFIG_DEBUG_VM
1906         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1907
1908         {
1909                 int nid, zid;
1910                 struct mem_cgroup_per_zone *mz;
1911                 unsigned long recent_rotated[2] = {0, 0};
1912                 unsigned long recent_scanned[2] = {0, 0};
1913
1914                 for_each_online_node(nid)
1915                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1916                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1917
1918                                 recent_rotated[0] +=
1919                                         mz->reclaim_stat.recent_rotated[0];
1920                                 recent_rotated[1] +=
1921                                         mz->reclaim_stat.recent_rotated[1];
1922                                 recent_scanned[0] +=
1923                                         mz->reclaim_stat.recent_scanned[0];
1924                                 recent_scanned[1] +=
1925                                         mz->reclaim_stat.recent_scanned[1];
1926                         }
1927                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1928                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1929                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1930                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1931         }
1932 #endif
1933
1934         return 0;
1935 }
1936
1937 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1938 {
1939         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1940
1941         return get_swappiness(memcg);
1942 }
1943
1944 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1945                                        u64 val)
1946 {
1947         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1948         struct mem_cgroup *parent;
1949         if (val > 100)
1950                 return -EINVAL;
1951
1952         if (cgrp->parent == NULL)
1953                 return -EINVAL;
1954
1955         parent = mem_cgroup_from_cont(cgrp->parent);
1956         /* If under hierarchy, only empty-root can set this value */
1957         if ((parent->use_hierarchy) ||
1958             (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1959                 return -EINVAL;
1960
1961         spin_lock(&memcg->reclaim_param_lock);
1962         memcg->swappiness = val;
1963         spin_unlock(&memcg->reclaim_param_lock);
1964
1965         return 0;
1966 }
1967
1968
1969 static struct cftype mem_cgroup_files[] = {
1970         {
1971                 .name = "usage_in_bytes",
1972                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1973                 .read_u64 = mem_cgroup_read,
1974         },
1975         {
1976                 .name = "max_usage_in_bytes",
1977                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1978                 .trigger = mem_cgroup_reset,
1979                 .read_u64 = mem_cgroup_read,
1980         },
1981         {
1982                 .name = "limit_in_bytes",
1983                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1984                 .write_string = mem_cgroup_write,
1985                 .read_u64 = mem_cgroup_read,
1986         },
1987         {
1988                 .name = "failcnt",
1989                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1990                 .trigger = mem_cgroup_reset,
1991                 .read_u64 = mem_cgroup_read,
1992         },
1993         {
1994                 .name = "stat",
1995                 .read_map = mem_control_stat_show,
1996         },
1997         {
1998                 .name = "force_empty",
1999                 .trigger = mem_cgroup_force_empty_write,
2000         },
2001         {
2002                 .name = "use_hierarchy",
2003                 .write_u64 = mem_cgroup_hierarchy_write,
2004                 .read_u64 = mem_cgroup_hierarchy_read,
2005         },
2006         {
2007                 .name = "swappiness",
2008                 .read_u64 = mem_cgroup_swappiness_read,
2009                 .write_u64 = mem_cgroup_swappiness_write,
2010         },
2011 };
2012
2013 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2014 static struct cftype memsw_cgroup_files[] = {
2015         {
2016                 .name = "memsw.usage_in_bytes",
2017                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2018                 .read_u64 = mem_cgroup_read,
2019         },
2020         {
2021                 .name = "memsw.max_usage_in_bytes",
2022                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2023                 .trigger = mem_cgroup_reset,
2024                 .read_u64 = mem_cgroup_read,
2025         },
2026         {
2027                 .name = "memsw.limit_in_bytes",
2028                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2029                 .write_string = mem_cgroup_write,
2030                 .read_u64 = mem_cgroup_read,
2031         },
2032         {
2033                 .name = "memsw.failcnt",
2034                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2035                 .trigger = mem_cgroup_reset,
2036                 .read_u64 = mem_cgroup_read,
2037         },
2038 };
2039
2040 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2041 {
2042         if (!do_swap_account)
2043                 return 0;
2044         return cgroup_add_files(cont, ss, memsw_cgroup_files,
2045                                 ARRAY_SIZE(memsw_cgroup_files));
2046 };
2047 #else
2048 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2049 {
2050         return 0;
2051 }
2052 #endif
2053
2054 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2055 {
2056         struct mem_cgroup_per_node *pn;
2057         struct mem_cgroup_per_zone *mz;
2058         enum lru_list l;
2059         int zone, tmp = node;
2060         /*
2061          * This routine is called against possible nodes.
2062          * But it's BUG to call kmalloc() against offline node.
2063          *
2064          * TODO: this routine can waste much memory for nodes which will
2065          *       never be onlined. It's better to use memory hotplug callback
2066          *       function.
2067          */
2068         if (!node_state(node, N_NORMAL_MEMORY))
2069                 tmp = -1;
2070         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2071         if (!pn)
2072                 return 1;
2073
2074         mem->info.nodeinfo[node] = pn;
2075         memset(pn, 0, sizeof(*pn));
2076
2077         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2078                 mz = &pn->zoneinfo[zone];
2079                 for_each_lru(l)
2080                         INIT_LIST_HEAD(&mz->lists[l]);
2081         }
2082         return 0;
2083 }
2084
2085 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2086 {
2087         kfree(mem->info.nodeinfo[node]);
2088 }
2089
2090 static int mem_cgroup_size(void)
2091 {
2092         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2093         return sizeof(struct mem_cgroup) + cpustat_size;
2094 }
2095
2096 static struct mem_cgroup *mem_cgroup_alloc(void)
2097 {
2098         struct mem_cgroup *mem;
2099         int size = mem_cgroup_size();
2100
2101         if (size < PAGE_SIZE)
2102                 mem = kmalloc(size, GFP_KERNEL);
2103         else
2104                 mem = vmalloc(size);
2105
2106         if (mem)
2107                 memset(mem, 0, size);
2108         return mem;
2109 }
2110
2111 /*
2112  * At destroying mem_cgroup, references from swap_cgroup can remain.
2113  * (scanning all at force_empty is too costly...)
2114  *
2115  * Instead of clearing all references at force_empty, we remember
2116  * the number of reference from swap_cgroup and free mem_cgroup when
2117  * it goes down to 0.
2118  *
2119  * Removal of cgroup itself succeeds regardless of refs from swap.
2120  */
2121
2122 static void __mem_cgroup_free(struct mem_cgroup *mem)
2123 {
2124         int node;
2125
2126         for_each_node_state(node, N_POSSIBLE)
2127                 free_mem_cgroup_per_zone_info(mem, node);
2128
2129         if (mem_cgroup_size() < PAGE_SIZE)
2130                 kfree(mem);
2131         else
2132                 vfree(mem);
2133 }
2134
2135 static void mem_cgroup_get(struct mem_cgroup *mem)
2136 {
2137         atomic_inc(&mem->refcnt);
2138 }
2139
2140 static void mem_cgroup_put(struct mem_cgroup *mem)
2141 {
2142         if (atomic_dec_and_test(&mem->refcnt))
2143                 __mem_cgroup_free(mem);
2144 }
2145
2146
2147 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2148 static void __init enable_swap_cgroup(void)
2149 {
2150         if (!mem_cgroup_disabled() && really_do_swap_account)
2151                 do_swap_account = 1;
2152 }
2153 #else
2154 static void __init enable_swap_cgroup(void)
2155 {
2156 }
2157 #endif
2158
2159 static struct cgroup_subsys_state *
2160 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2161 {
2162         struct mem_cgroup *mem, *parent;
2163         int node;
2164
2165         mem = mem_cgroup_alloc();
2166         if (!mem)
2167                 return ERR_PTR(-ENOMEM);
2168
2169         for_each_node_state(node, N_POSSIBLE)
2170                 if (alloc_mem_cgroup_per_zone_info(mem, node))
2171                         goto free_out;
2172         /* root ? */
2173         if (cont->parent == NULL) {
2174                 enable_swap_cgroup();
2175                 parent = NULL;
2176         } else {
2177                 parent = mem_cgroup_from_cont(cont->parent);
2178                 mem->use_hierarchy = parent->use_hierarchy;
2179         }
2180
2181         if (parent && parent->use_hierarchy) {
2182                 res_counter_init(&mem->res, &parent->res);
2183                 res_counter_init(&mem->memsw, &parent->memsw);
2184         } else {
2185                 res_counter_init(&mem->res, NULL);
2186                 res_counter_init(&mem->memsw, NULL);
2187         }
2188         mem->last_scanned_child = NULL;
2189         spin_lock_init(&mem->reclaim_param_lock);
2190
2191         if (parent)
2192                 mem->swappiness = get_swappiness(parent);
2193         atomic_set(&mem->refcnt, 1);
2194         return &mem->css;
2195 free_out:
2196         __mem_cgroup_free(mem);
2197         return ERR_PTR(-ENOMEM);
2198 }
2199
2200 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2201                                         struct cgroup *cont)
2202 {
2203         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2204         mem_cgroup_force_empty(mem, false);
2205 }
2206
2207 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2208                                 struct cgroup *cont)
2209 {
2210         mem_cgroup_put(mem_cgroup_from_cont(cont));
2211 }
2212
2213 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2214                                 struct cgroup *cont)
2215 {
2216         int ret;
2217
2218         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2219                                 ARRAY_SIZE(mem_cgroup_files));
2220
2221         if (!ret)
2222                 ret = register_memsw_files(cont, ss);
2223         return ret;
2224 }
2225
2226 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2227                                 struct cgroup *cont,
2228                                 struct cgroup *old_cont,
2229                                 struct task_struct *p)
2230 {
2231         mutex_lock(&memcg_tasklist);
2232         /*
2233          * FIXME: It's better to move charges of this process from old
2234          * memcg to new memcg. But it's just on TODO-List now.
2235          */
2236         mutex_unlock(&memcg_tasklist);
2237 }
2238
2239 struct cgroup_subsys mem_cgroup_subsys = {
2240         .name = "memory",
2241         .subsys_id = mem_cgroup_subsys_id,
2242         .create = mem_cgroup_create,
2243         .pre_destroy = mem_cgroup_pre_destroy,
2244         .destroy = mem_cgroup_destroy,
2245         .populate = mem_cgroup_populate,
2246         .attach = mem_cgroup_move_task,
2247         .early_init = 0,
2248 };
2249
2250 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2251
2252 static int __init disable_swap_account(char *s)
2253 {
2254         really_do_swap_account = 0;
2255         return 1;
2256 }
2257 __setup("noswapaccount", disable_swap_account);
2258 #endif