e93bd63462f01b682903af309f7b73c9efc94bbf
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <asm/page.h>
15 #include <asm/pgtable.h>
16
17 #include <linux/hugetlb.h>
18
19 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
20 static unsigned long nr_huge_pages, free_huge_pages;
21 unsigned long max_huge_pages;
22 static struct list_head hugepage_freelists[MAX_NUMNODES];
23 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
24 static unsigned int free_huge_pages_node[MAX_NUMNODES];
25
26 /*
27  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
28  */
29 static DEFINE_SPINLOCK(hugetlb_lock);
30
31 static void enqueue_huge_page(struct page *page)
32 {
33         int nid = page_to_nid(page);
34         list_add(&page->lru, &hugepage_freelists[nid]);
35         free_huge_pages++;
36         free_huge_pages_node[nid]++;
37 }
38
39 static struct page *dequeue_huge_page(void)
40 {
41         int nid = numa_node_id();
42         struct page *page = NULL;
43         struct zonelist *zonelist = NODE_DATA(nid)->node_zonelists;
44         struct zone **z;
45
46         for (z = zonelist->zones; *z; z++) {
47                 nid = (*z)->zone_pgdat->node_id;
48                 if (!list_empty(&hugepage_freelists[nid]))
49                         break;
50         }
51
52         if (*z) {
53                 page = list_entry(hugepage_freelists[nid].next,
54                                   struct page, lru);
55                 list_del(&page->lru);
56                 free_huge_pages--;
57                 free_huge_pages_node[nid]--;
58         }
59         return page;
60 }
61
62 static struct page *alloc_fresh_huge_page(void)
63 {
64         static int nid = 0;
65         struct page *page;
66         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
67                                         HUGETLB_PAGE_ORDER);
68         nid = (nid + 1) % num_online_nodes();
69         if (page) {
70                 spin_lock(&hugetlb_lock);
71                 nr_huge_pages++;
72                 nr_huge_pages_node[page_to_nid(page)]++;
73                 spin_unlock(&hugetlb_lock);
74         }
75         return page;
76 }
77
78 void free_huge_page(struct page *page)
79 {
80         BUG_ON(page_count(page));
81
82         INIT_LIST_HEAD(&page->lru);
83         page[1].mapping = NULL;
84
85         spin_lock(&hugetlb_lock);
86         enqueue_huge_page(page);
87         spin_unlock(&hugetlb_lock);
88 }
89
90 struct page *alloc_huge_page(void)
91 {
92         struct page *page;
93         int i;
94
95         spin_lock(&hugetlb_lock);
96         page = dequeue_huge_page();
97         if (!page) {
98                 spin_unlock(&hugetlb_lock);
99                 return NULL;
100         }
101         spin_unlock(&hugetlb_lock);
102         set_page_count(page, 1);
103         page[1].mapping = (void *)free_huge_page;
104         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
105                 clear_highpage(&page[i]);
106         return page;
107 }
108
109 static int __init hugetlb_init(void)
110 {
111         unsigned long i;
112         struct page *page;
113
114         if (HPAGE_SHIFT == 0)
115                 return 0;
116
117         for (i = 0; i < MAX_NUMNODES; ++i)
118                 INIT_LIST_HEAD(&hugepage_freelists[i]);
119
120         for (i = 0; i < max_huge_pages; ++i) {
121                 page = alloc_fresh_huge_page();
122                 if (!page)
123                         break;
124                 spin_lock(&hugetlb_lock);
125                 enqueue_huge_page(page);
126                 spin_unlock(&hugetlb_lock);
127         }
128         max_huge_pages = free_huge_pages = nr_huge_pages = i;
129         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
130         return 0;
131 }
132 module_init(hugetlb_init);
133
134 static int __init hugetlb_setup(char *s)
135 {
136         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
137                 max_huge_pages = 0;
138         return 1;
139 }
140 __setup("hugepages=", hugetlb_setup);
141
142 #ifdef CONFIG_SYSCTL
143 static void update_and_free_page(struct page *page)
144 {
145         int i;
146         nr_huge_pages--;
147         nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
148         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
149                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
150                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
151                                 1 << PG_private | 1<< PG_writeback);
152                 set_page_count(&page[i], 0);
153         }
154         set_page_count(page, 1);
155         __free_pages(page, HUGETLB_PAGE_ORDER);
156 }
157
158 #ifdef CONFIG_HIGHMEM
159 static void try_to_free_low(unsigned long count)
160 {
161         int i, nid;
162         for (i = 0; i < MAX_NUMNODES; ++i) {
163                 struct page *page, *next;
164                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
165                         if (PageHighMem(page))
166                                 continue;
167                         list_del(&page->lru);
168                         update_and_free_page(page);
169                         nid = page_zone(page)->zone_pgdat->node_id;
170                         free_huge_pages--;
171                         free_huge_pages_node[nid]--;
172                         if (count >= nr_huge_pages)
173                                 return;
174                 }
175         }
176 }
177 #else
178 static inline void try_to_free_low(unsigned long count)
179 {
180 }
181 #endif
182
183 static unsigned long set_max_huge_pages(unsigned long count)
184 {
185         while (count > nr_huge_pages) {
186                 struct page *page = alloc_fresh_huge_page();
187                 if (!page)
188                         return nr_huge_pages;
189                 spin_lock(&hugetlb_lock);
190                 enqueue_huge_page(page);
191                 spin_unlock(&hugetlb_lock);
192         }
193         if (count >= nr_huge_pages)
194                 return nr_huge_pages;
195
196         spin_lock(&hugetlb_lock);
197         try_to_free_low(count);
198         while (count < nr_huge_pages) {
199                 struct page *page = dequeue_huge_page();
200                 if (!page)
201                         break;
202                 update_and_free_page(page);
203         }
204         spin_unlock(&hugetlb_lock);
205         return nr_huge_pages;
206 }
207
208 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
209                            struct file *file, void __user *buffer,
210                            size_t *length, loff_t *ppos)
211 {
212         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
213         max_huge_pages = set_max_huge_pages(max_huge_pages);
214         return 0;
215 }
216 #endif /* CONFIG_SYSCTL */
217
218 int hugetlb_report_meminfo(char *buf)
219 {
220         return sprintf(buf,
221                         "HugePages_Total: %5lu\n"
222                         "HugePages_Free:  %5lu\n"
223                         "Hugepagesize:    %5lu kB\n",
224                         nr_huge_pages,
225                         free_huge_pages,
226                         HPAGE_SIZE/1024);
227 }
228
229 int hugetlb_report_node_meminfo(int nid, char *buf)
230 {
231         return sprintf(buf,
232                 "Node %d HugePages_Total: %5u\n"
233                 "Node %d HugePages_Free:  %5u\n",
234                 nid, nr_huge_pages_node[nid],
235                 nid, free_huge_pages_node[nid]);
236 }
237
238 int is_hugepage_mem_enough(size_t size)
239 {
240         return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
241 }
242
243 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
244 unsigned long hugetlb_total_pages(void)
245 {
246         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
247 }
248
249 /*
250  * We cannot handle pagefaults against hugetlb pages at all.  They cause
251  * handle_mm_fault() to try to instantiate regular-sized pages in the
252  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
253  * this far.
254  */
255 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
256                                 unsigned long address, int *unused)
257 {
258         BUG();
259         return NULL;
260 }
261
262 struct vm_operations_struct hugetlb_vm_ops = {
263         .nopage = hugetlb_nopage,
264 };
265
266 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
267                                 int writable)
268 {
269         pte_t entry;
270
271         if (writable) {
272                 entry =
273                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
274         } else {
275                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
276         }
277         entry = pte_mkyoung(entry);
278         entry = pte_mkhuge(entry);
279
280         return entry;
281 }
282
283 static void set_huge_ptep_writable(struct vm_area_struct *vma,
284                                    unsigned long address, pte_t *ptep)
285 {
286         pte_t entry;
287
288         entry = pte_mkwrite(pte_mkdirty(*ptep));
289         ptep_set_access_flags(vma, address, ptep, entry, 1);
290         update_mmu_cache(vma, address, entry);
291         lazy_mmu_prot_update(entry);
292 }
293
294
295 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
296                             struct vm_area_struct *vma)
297 {
298         pte_t *src_pte, *dst_pte, entry;
299         struct page *ptepage;
300         unsigned long addr;
301         int cow;
302
303         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
304
305         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
306                 src_pte = huge_pte_offset(src, addr);
307                 if (!src_pte)
308                         continue;
309                 dst_pte = huge_pte_alloc(dst, addr);
310                 if (!dst_pte)
311                         goto nomem;
312                 spin_lock(&dst->page_table_lock);
313                 spin_lock(&src->page_table_lock);
314                 if (!pte_none(*src_pte)) {
315                         if (cow)
316                                 ptep_set_wrprotect(src, addr, src_pte);
317                         entry = *src_pte;
318                         ptepage = pte_page(entry);
319                         get_page(ptepage);
320                         add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
321                         set_huge_pte_at(dst, addr, dst_pte, entry);
322                 }
323                 spin_unlock(&src->page_table_lock);
324                 spin_unlock(&dst->page_table_lock);
325         }
326         return 0;
327
328 nomem:
329         return -ENOMEM;
330 }
331
332 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
333                           unsigned long end)
334 {
335         struct mm_struct *mm = vma->vm_mm;
336         unsigned long address;
337         pte_t *ptep;
338         pte_t pte;
339         struct page *page;
340
341         WARN_ON(!is_vm_hugetlb_page(vma));
342         BUG_ON(start & ~HPAGE_MASK);
343         BUG_ON(end & ~HPAGE_MASK);
344
345         spin_lock(&mm->page_table_lock);
346
347         /* Update high watermark before we lower rss */
348         update_hiwater_rss(mm);
349
350         for (address = start; address < end; address += HPAGE_SIZE) {
351                 ptep = huge_pte_offset(mm, address);
352                 if (!ptep)
353                         continue;
354
355                 pte = huge_ptep_get_and_clear(mm, address, ptep);
356                 if (pte_none(pte))
357                         continue;
358
359                 page = pte_page(pte);
360                 put_page(page);
361                 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
362         }
363
364         spin_unlock(&mm->page_table_lock);
365         flush_tlb_range(vma, start, end);
366 }
367
368 static struct page *find_or_alloc_huge_page(struct address_space *mapping,
369                                 unsigned long idx, int shared)
370 {
371         struct page *page;
372         int err;
373
374 retry:
375         page = find_lock_page(mapping, idx);
376         if (page)
377                 goto out;
378
379         if (hugetlb_get_quota(mapping))
380                 goto out;
381         page = alloc_huge_page();
382         if (!page) {
383                 hugetlb_put_quota(mapping);
384                 goto out;
385         }
386
387         if (shared) {
388                 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
389                 if (err) {
390                         put_page(page);
391                         hugetlb_put_quota(mapping);
392                         if (err == -EEXIST)
393                                 goto retry;
394                         page = NULL;
395                 }
396         } else {
397                 /* Caller expects a locked page */
398                 lock_page(page);
399         }
400 out:
401         return page;
402 }
403
404 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
405                         unsigned long address, pte_t *ptep, pte_t pte)
406 {
407         struct page *old_page, *new_page;
408         int i, avoidcopy;
409
410         old_page = pte_page(pte);
411
412         /* If no-one else is actually using this page, avoid the copy
413          * and just make the page writable */
414         avoidcopy = (page_count(old_page) == 1);
415         if (avoidcopy) {
416                 set_huge_ptep_writable(vma, address, ptep);
417                 return VM_FAULT_MINOR;
418         }
419
420         page_cache_get(old_page);
421         new_page = alloc_huge_page();
422
423         if (!new_page) {
424                 page_cache_release(old_page);
425
426                 /* Logically this is OOM, not a SIGBUS, but an OOM
427                  * could cause the kernel to go killing other
428                  * processes which won't help the hugepage situation
429                  * at all (?) */
430                 return VM_FAULT_SIGBUS;
431         }
432
433         spin_unlock(&mm->page_table_lock);
434         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
435                 copy_user_highpage(new_page + i, old_page + i,
436                                    address + i*PAGE_SIZE);
437         spin_lock(&mm->page_table_lock);
438
439         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
440         if (likely(pte_same(*ptep, pte))) {
441                 /* Break COW */
442                 set_huge_pte_at(mm, address, ptep,
443                                 make_huge_pte(vma, new_page, 1));
444                 /* Make the old page be freed below */
445                 new_page = old_page;
446         }
447         page_cache_release(new_page);
448         page_cache_release(old_page);
449         return VM_FAULT_MINOR;
450 }
451
452 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
453                         unsigned long address, pte_t *ptep, int write_access)
454 {
455         int ret = VM_FAULT_SIGBUS;
456         unsigned long idx;
457         unsigned long size;
458         struct page *page;
459         struct address_space *mapping;
460         pte_t new_pte;
461
462         mapping = vma->vm_file->f_mapping;
463         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
464                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
465
466         /*
467          * Use page lock to guard against racing truncation
468          * before we get page_table_lock.
469          */
470         page = find_or_alloc_huge_page(mapping, idx,
471                         vma->vm_flags & VM_SHARED);
472         if (!page)
473                 goto out;
474
475         BUG_ON(!PageLocked(page));
476
477         spin_lock(&mm->page_table_lock);
478         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
479         if (idx >= size)
480                 goto backout;
481
482         ret = VM_FAULT_MINOR;
483         if (!pte_none(*ptep))
484                 goto backout;
485
486         add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
487         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
488                                 && (vma->vm_flags & VM_SHARED)));
489         set_huge_pte_at(mm, address, ptep, new_pte);
490
491         if (write_access && !(vma->vm_flags & VM_SHARED)) {
492                 /* Optimization, do the COW without a second fault */
493                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
494         }
495
496         spin_unlock(&mm->page_table_lock);
497         unlock_page(page);
498 out:
499         return ret;
500
501 backout:
502         spin_unlock(&mm->page_table_lock);
503         hugetlb_put_quota(mapping);
504         unlock_page(page);
505         put_page(page);
506         goto out;
507 }
508
509 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
510                         unsigned long address, int write_access)
511 {
512         pte_t *ptep;
513         pte_t entry;
514         int ret;
515
516         ptep = huge_pte_alloc(mm, address);
517         if (!ptep)
518                 return VM_FAULT_OOM;
519
520         entry = *ptep;
521         if (pte_none(entry))
522                 return hugetlb_no_page(mm, vma, address, ptep, write_access);
523
524         ret = VM_FAULT_MINOR;
525
526         spin_lock(&mm->page_table_lock);
527         /* Check for a racing update before calling hugetlb_cow */
528         if (likely(pte_same(entry, *ptep)))
529                 if (write_access && !pte_write(entry))
530                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
531         spin_unlock(&mm->page_table_lock);
532
533         return ret;
534 }
535
536 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
537                         struct page **pages, struct vm_area_struct **vmas,
538                         unsigned long *position, int *length, int i)
539 {
540         unsigned long vpfn, vaddr = *position;
541         int remainder = *length;
542
543         vpfn = vaddr/PAGE_SIZE;
544         spin_lock(&mm->page_table_lock);
545         while (vaddr < vma->vm_end && remainder) {
546                 pte_t *pte;
547                 struct page *page;
548
549                 /*
550                  * Some archs (sparc64, sh*) have multiple pte_ts to
551                  * each hugepage.  We have to make * sure we get the
552                  * first, for the page indexing below to work.
553                  */
554                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
555
556                 if (!pte || pte_none(*pte)) {
557                         int ret;
558
559                         spin_unlock(&mm->page_table_lock);
560                         ret = hugetlb_fault(mm, vma, vaddr, 0);
561                         spin_lock(&mm->page_table_lock);
562                         if (ret == VM_FAULT_MINOR)
563                                 continue;
564
565                         remainder = 0;
566                         if (!i)
567                                 i = -EFAULT;
568                         break;
569                 }
570
571                 if (pages) {
572                         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
573                         get_page(page);
574                         pages[i] = page;
575                 }
576
577                 if (vmas)
578                         vmas[i] = vma;
579
580                 vaddr += PAGE_SIZE;
581                 ++vpfn;
582                 --remainder;
583                 ++i;
584         }
585         spin_unlock(&mm->page_table_lock);
586         *length = remainder;
587         *position = vaddr;
588
589         return i;
590 }