93ea46a0fba46017c9ac1d87a66310c7d0a91fec
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40  */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 static void clear_huge_page(struct page *page, unsigned long addr)
44 {
45         int i;
46
47         might_sleep();
48         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49                 cond_resched();
50                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51         }
52 }
53
54 static void copy_huge_page(struct page *dst, struct page *src,
55                            unsigned long addr, struct vm_area_struct *vma)
56 {
57         int i;
58
59         might_sleep();
60         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61                 cond_resched();
62                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63         }
64 }
65
66 static void enqueue_huge_page(struct page *page)
67 {
68         int nid = page_to_nid(page);
69         list_add(&page->lru, &hugepage_freelists[nid]);
70         free_huge_pages++;
71         free_huge_pages_node[nid]++;
72 }
73
74 static struct page *dequeue_huge_page(void)
75 {
76         int nid;
77         struct page *page = NULL;
78
79         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80                 if (!list_empty(&hugepage_freelists[nid])) {
81                         page = list_entry(hugepage_freelists[nid].next,
82                                           struct page, lru);
83                         list_del(&page->lru);
84                         free_huge_pages--;
85                         free_huge_pages_node[nid]--;
86                         break;
87                 }
88         }
89         return page;
90 }
91
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93                                 unsigned long address)
94 {
95         int nid;
96         struct page *page = NULL;
97         struct mempolicy *mpol;
98         nodemask_t *nodemask;
99         struct zonelist *zonelist = huge_zonelist(vma, address,
100                                         htlb_alloc_mask, &mpol, &nodemask);
101         struct zone *zone;
102         struct zoneref *z;
103
104         for_each_zone_zonelist_nodemask(zone, z, zonelist,
105                                                 MAX_NR_ZONES - 1, nodemask) {
106                 nid = zone_to_nid(zone);
107                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108                     !list_empty(&hugepage_freelists[nid])) {
109                         page = list_entry(hugepage_freelists[nid].next,
110                                           struct page, lru);
111                         list_del(&page->lru);
112                         free_huge_pages--;
113                         free_huge_pages_node[nid]--;
114                         if (vma && vma->vm_flags & VM_MAYSHARE)
115                                 resv_huge_pages--;
116                         break;
117                 }
118         }
119         mpol_free(mpol);        /* unref if mpol !NULL */
120         return page;
121 }
122
123 static void update_and_free_page(struct page *page)
124 {
125         int i;
126         nr_huge_pages--;
127         nr_huge_pages_node[page_to_nid(page)]--;
128         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131                                 1 << PG_private | 1<< PG_writeback);
132         }
133         set_compound_page_dtor(page, NULL);
134         set_page_refcounted(page);
135         __free_pages(page, HUGETLB_PAGE_ORDER);
136 }
137
138 static void free_huge_page(struct page *page)
139 {
140         int nid = page_to_nid(page);
141         struct address_space *mapping;
142
143         mapping = (struct address_space *) page_private(page);
144         set_page_private(page, 0);
145         BUG_ON(page_count(page));
146         INIT_LIST_HEAD(&page->lru);
147
148         spin_lock(&hugetlb_lock);
149         if (surplus_huge_pages_node[nid]) {
150                 update_and_free_page(page);
151                 surplus_huge_pages--;
152                 surplus_huge_pages_node[nid]--;
153         } else {
154                 enqueue_huge_page(page);
155         }
156         spin_unlock(&hugetlb_lock);
157         if (mapping)
158                 hugetlb_put_quota(mapping, 1);
159 }
160
161 /*
162  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
163  * balanced by operating on them in a round-robin fashion.
164  * Returns 1 if an adjustment was made.
165  */
166 static int adjust_pool_surplus(int delta)
167 {
168         static int prev_nid;
169         int nid = prev_nid;
170         int ret = 0;
171
172         VM_BUG_ON(delta != -1 && delta != 1);
173         do {
174                 nid = next_node(nid, node_online_map);
175                 if (nid == MAX_NUMNODES)
176                         nid = first_node(node_online_map);
177
178                 /* To shrink on this node, there must be a surplus page */
179                 if (delta < 0 && !surplus_huge_pages_node[nid])
180                         continue;
181                 /* Surplus cannot exceed the total number of pages */
182                 if (delta > 0 && surplus_huge_pages_node[nid] >=
183                                                 nr_huge_pages_node[nid])
184                         continue;
185
186                 surplus_huge_pages += delta;
187                 surplus_huge_pages_node[nid] += delta;
188                 ret = 1;
189                 break;
190         } while (nid != prev_nid);
191
192         prev_nid = nid;
193         return ret;
194 }
195
196 static struct page *alloc_fresh_huge_page_node(int nid)
197 {
198         struct page *page;
199
200         page = alloc_pages_node(nid,
201                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
202                 HUGETLB_PAGE_ORDER);
203         if (page) {
204                 set_compound_page_dtor(page, free_huge_page);
205                 spin_lock(&hugetlb_lock);
206                 nr_huge_pages++;
207                 nr_huge_pages_node[nid]++;
208                 spin_unlock(&hugetlb_lock);
209                 put_page(page); /* free it into the hugepage allocator */
210         }
211
212         return page;
213 }
214
215 static int alloc_fresh_huge_page(void)
216 {
217         struct page *page;
218         int start_nid;
219         int next_nid;
220         int ret = 0;
221
222         start_nid = hugetlb_next_nid;
223
224         do {
225                 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
226                 if (page)
227                         ret = 1;
228                 /*
229                  * Use a helper variable to find the next node and then
230                  * copy it back to hugetlb_next_nid afterwards:
231                  * otherwise there's a window in which a racer might
232                  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
233                  * But we don't need to use a spin_lock here: it really
234                  * doesn't matter if occasionally a racer chooses the
235                  * same nid as we do.  Move nid forward in the mask even
236                  * if we just successfully allocated a hugepage so that
237                  * the next caller gets hugepages on the next node.
238                  */
239                 next_nid = next_node(hugetlb_next_nid, node_online_map);
240                 if (next_nid == MAX_NUMNODES)
241                         next_nid = first_node(node_online_map);
242                 hugetlb_next_nid = next_nid;
243         } while (!page && hugetlb_next_nid != start_nid);
244
245         return ret;
246 }
247
248 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
249                                                 unsigned long address)
250 {
251         struct page *page;
252         unsigned int nid;
253
254         /*
255          * Assume we will successfully allocate the surplus page to
256          * prevent racing processes from causing the surplus to exceed
257          * overcommit
258          *
259          * This however introduces a different race, where a process B
260          * tries to grow the static hugepage pool while alloc_pages() is
261          * called by process A. B will only examine the per-node
262          * counters in determining if surplus huge pages can be
263          * converted to normal huge pages in adjust_pool_surplus(). A
264          * won't be able to increment the per-node counter, until the
265          * lock is dropped by B, but B doesn't drop hugetlb_lock until
266          * no more huge pages can be converted from surplus to normal
267          * state (and doesn't try to convert again). Thus, we have a
268          * case where a surplus huge page exists, the pool is grown, and
269          * the surplus huge page still exists after, even though it
270          * should just have been converted to a normal huge page. This
271          * does not leak memory, though, as the hugepage will be freed
272          * once it is out of use. It also does not allow the counters to
273          * go out of whack in adjust_pool_surplus() as we don't modify
274          * the node values until we've gotten the hugepage and only the
275          * per-node value is checked there.
276          */
277         spin_lock(&hugetlb_lock);
278         if (surplus_huge_pages >= nr_overcommit_huge_pages) {
279                 spin_unlock(&hugetlb_lock);
280                 return NULL;
281         } else {
282                 nr_huge_pages++;
283                 surplus_huge_pages++;
284         }
285         spin_unlock(&hugetlb_lock);
286
287         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
288                                         HUGETLB_PAGE_ORDER);
289
290         spin_lock(&hugetlb_lock);
291         if (page) {
292                 /*
293                  * This page is now managed by the hugetlb allocator and has
294                  * no users -- drop the buddy allocator's reference.
295                  */
296                 put_page_testzero(page);
297                 VM_BUG_ON(page_count(page));
298                 nid = page_to_nid(page);
299                 set_compound_page_dtor(page, free_huge_page);
300                 /*
301                  * We incremented the global counters already
302                  */
303                 nr_huge_pages_node[nid]++;
304                 surplus_huge_pages_node[nid]++;
305         } else {
306                 nr_huge_pages--;
307                 surplus_huge_pages--;
308         }
309         spin_unlock(&hugetlb_lock);
310
311         return page;
312 }
313
314 /*
315  * Increase the hugetlb pool such that it can accomodate a reservation
316  * of size 'delta'.
317  */
318 static int gather_surplus_pages(int delta)
319 {
320         struct list_head surplus_list;
321         struct page *page, *tmp;
322         int ret, i;
323         int needed, allocated;
324
325         needed = (resv_huge_pages + delta) - free_huge_pages;
326         if (needed <= 0) {
327                 resv_huge_pages += delta;
328                 return 0;
329         }
330
331         allocated = 0;
332         INIT_LIST_HEAD(&surplus_list);
333
334         ret = -ENOMEM;
335 retry:
336         spin_unlock(&hugetlb_lock);
337         for (i = 0; i < needed; i++) {
338                 page = alloc_buddy_huge_page(NULL, 0);
339                 if (!page) {
340                         /*
341                          * We were not able to allocate enough pages to
342                          * satisfy the entire reservation so we free what
343                          * we've allocated so far.
344                          */
345                         spin_lock(&hugetlb_lock);
346                         needed = 0;
347                         goto free;
348                 }
349
350                 list_add(&page->lru, &surplus_list);
351         }
352         allocated += needed;
353
354         /*
355          * After retaking hugetlb_lock, we need to recalculate 'needed'
356          * because either resv_huge_pages or free_huge_pages may have changed.
357          */
358         spin_lock(&hugetlb_lock);
359         needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
360         if (needed > 0)
361                 goto retry;
362
363         /*
364          * The surplus_list now contains _at_least_ the number of extra pages
365          * needed to accomodate the reservation.  Add the appropriate number
366          * of pages to the hugetlb pool and free the extras back to the buddy
367          * allocator.  Commit the entire reservation here to prevent another
368          * process from stealing the pages as they are added to the pool but
369          * before they are reserved.
370          */
371         needed += allocated;
372         resv_huge_pages += delta;
373         ret = 0;
374 free:
375         /* Free the needed pages to the hugetlb pool */
376         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
377                 if ((--needed) < 0)
378                         break;
379                 list_del(&page->lru);
380                 enqueue_huge_page(page);
381         }
382
383         /* Free unnecessary surplus pages to the buddy allocator */
384         if (!list_empty(&surplus_list)) {
385                 spin_unlock(&hugetlb_lock);
386                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
387                         list_del(&page->lru);
388                         /*
389                          * The page has a reference count of zero already, so
390                          * call free_huge_page directly instead of using
391                          * put_page.  This must be done with hugetlb_lock
392                          * unlocked which is safe because free_huge_page takes
393                          * hugetlb_lock before deciding how to free the page.
394                          */
395                         free_huge_page(page);
396                 }
397                 spin_lock(&hugetlb_lock);
398         }
399
400         return ret;
401 }
402
403 /*
404  * When releasing a hugetlb pool reservation, any surplus pages that were
405  * allocated to satisfy the reservation must be explicitly freed if they were
406  * never used.
407  */
408 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
409 {
410         static int nid = -1;
411         struct page *page;
412         unsigned long nr_pages;
413
414         /*
415          * We want to release as many surplus pages as possible, spread
416          * evenly across all nodes. Iterate across all nodes until we
417          * can no longer free unreserved surplus pages. This occurs when
418          * the nodes with surplus pages have no free pages.
419          */
420         unsigned long remaining_iterations = num_online_nodes();
421
422         /* Uncommit the reservation */
423         resv_huge_pages -= unused_resv_pages;
424
425         nr_pages = min(unused_resv_pages, surplus_huge_pages);
426
427         while (remaining_iterations-- && nr_pages) {
428                 nid = next_node(nid, node_online_map);
429                 if (nid == MAX_NUMNODES)
430                         nid = first_node(node_online_map);
431
432                 if (!surplus_huge_pages_node[nid])
433                         continue;
434
435                 if (!list_empty(&hugepage_freelists[nid])) {
436                         page = list_entry(hugepage_freelists[nid].next,
437                                           struct page, lru);
438                         list_del(&page->lru);
439                         update_and_free_page(page);
440                         free_huge_pages--;
441                         free_huge_pages_node[nid]--;
442                         surplus_huge_pages--;
443                         surplus_huge_pages_node[nid]--;
444                         nr_pages--;
445                         remaining_iterations = num_online_nodes();
446                 }
447         }
448 }
449
450
451 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
452                                                 unsigned long addr)
453 {
454         struct page *page;
455
456         spin_lock(&hugetlb_lock);
457         page = dequeue_huge_page_vma(vma, addr);
458         spin_unlock(&hugetlb_lock);
459         return page ? page : ERR_PTR(-VM_FAULT_OOM);
460 }
461
462 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
463                                                 unsigned long addr)
464 {
465         struct page *page = NULL;
466
467         if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
468                 return ERR_PTR(-VM_FAULT_SIGBUS);
469
470         spin_lock(&hugetlb_lock);
471         if (free_huge_pages > resv_huge_pages)
472                 page = dequeue_huge_page_vma(vma, addr);
473         spin_unlock(&hugetlb_lock);
474         if (!page) {
475                 page = alloc_buddy_huge_page(vma, addr);
476                 if (!page) {
477                         hugetlb_put_quota(vma->vm_file->f_mapping, 1);
478                         return ERR_PTR(-VM_FAULT_OOM);
479                 }
480         }
481         return page;
482 }
483
484 static struct page *alloc_huge_page(struct vm_area_struct *vma,
485                                     unsigned long addr)
486 {
487         struct page *page;
488         struct address_space *mapping = vma->vm_file->f_mapping;
489
490         if (vma->vm_flags & VM_MAYSHARE)
491                 page = alloc_huge_page_shared(vma, addr);
492         else
493                 page = alloc_huge_page_private(vma, addr);
494
495         if (!IS_ERR(page)) {
496                 set_page_refcounted(page);
497                 set_page_private(page, (unsigned long) mapping);
498         }
499         return page;
500 }
501
502 static int __init hugetlb_init(void)
503 {
504         unsigned long i;
505
506         if (HPAGE_SHIFT == 0)
507                 return 0;
508
509         for (i = 0; i < MAX_NUMNODES; ++i)
510                 INIT_LIST_HEAD(&hugepage_freelists[i]);
511
512         hugetlb_next_nid = first_node(node_online_map);
513
514         for (i = 0; i < max_huge_pages; ++i) {
515                 if (!alloc_fresh_huge_page())
516                         break;
517         }
518         max_huge_pages = free_huge_pages = nr_huge_pages = i;
519         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
520         return 0;
521 }
522 module_init(hugetlb_init);
523
524 static int __init hugetlb_setup(char *s)
525 {
526         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
527                 max_huge_pages = 0;
528         return 1;
529 }
530 __setup("hugepages=", hugetlb_setup);
531
532 static unsigned int cpuset_mems_nr(unsigned int *array)
533 {
534         int node;
535         unsigned int nr = 0;
536
537         for_each_node_mask(node, cpuset_current_mems_allowed)
538                 nr += array[node];
539
540         return nr;
541 }
542
543 #ifdef CONFIG_SYSCTL
544 #ifdef CONFIG_HIGHMEM
545 static void try_to_free_low(unsigned long count)
546 {
547         int i;
548
549         for (i = 0; i < MAX_NUMNODES; ++i) {
550                 struct page *page, *next;
551                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
552                         if (count >= nr_huge_pages)
553                                 return;
554                         if (PageHighMem(page))
555                                 continue;
556                         list_del(&page->lru);
557                         update_and_free_page(page);
558                         free_huge_pages--;
559                         free_huge_pages_node[page_to_nid(page)]--;
560                 }
561         }
562 }
563 #else
564 static inline void try_to_free_low(unsigned long count)
565 {
566 }
567 #endif
568
569 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
570 static unsigned long set_max_huge_pages(unsigned long count)
571 {
572         unsigned long min_count, ret;
573
574         /*
575          * Increase the pool size
576          * First take pages out of surplus state.  Then make up the
577          * remaining difference by allocating fresh huge pages.
578          *
579          * We might race with alloc_buddy_huge_page() here and be unable
580          * to convert a surplus huge page to a normal huge page. That is
581          * not critical, though, it just means the overall size of the
582          * pool might be one hugepage larger than it needs to be, but
583          * within all the constraints specified by the sysctls.
584          */
585         spin_lock(&hugetlb_lock);
586         while (surplus_huge_pages && count > persistent_huge_pages) {
587                 if (!adjust_pool_surplus(-1))
588                         break;
589         }
590
591         while (count > persistent_huge_pages) {
592                 int ret;
593                 /*
594                  * If this allocation races such that we no longer need the
595                  * page, free_huge_page will handle it by freeing the page
596                  * and reducing the surplus.
597                  */
598                 spin_unlock(&hugetlb_lock);
599                 ret = alloc_fresh_huge_page();
600                 spin_lock(&hugetlb_lock);
601                 if (!ret)
602                         goto out;
603
604         }
605
606         /*
607          * Decrease the pool size
608          * First return free pages to the buddy allocator (being careful
609          * to keep enough around to satisfy reservations).  Then place
610          * pages into surplus state as needed so the pool will shrink
611          * to the desired size as pages become free.
612          *
613          * By placing pages into the surplus state independent of the
614          * overcommit value, we are allowing the surplus pool size to
615          * exceed overcommit. There are few sane options here. Since
616          * alloc_buddy_huge_page() is checking the global counter,
617          * though, we'll note that we're not allowed to exceed surplus
618          * and won't grow the pool anywhere else. Not until one of the
619          * sysctls are changed, or the surplus pages go out of use.
620          */
621         min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
622         min_count = max(count, min_count);
623         try_to_free_low(min_count);
624         while (min_count < persistent_huge_pages) {
625                 struct page *page = dequeue_huge_page();
626                 if (!page)
627                         break;
628                 update_and_free_page(page);
629         }
630         while (count < persistent_huge_pages) {
631                 if (!adjust_pool_surplus(1))
632                         break;
633         }
634 out:
635         ret = persistent_huge_pages;
636         spin_unlock(&hugetlb_lock);
637         return ret;
638 }
639
640 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
641                            struct file *file, void __user *buffer,
642                            size_t *length, loff_t *ppos)
643 {
644         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
645         max_huge_pages = set_max_huge_pages(max_huge_pages);
646         return 0;
647 }
648
649 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
650                         struct file *file, void __user *buffer,
651                         size_t *length, loff_t *ppos)
652 {
653         proc_dointvec(table, write, file, buffer, length, ppos);
654         if (hugepages_treat_as_movable)
655                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
656         else
657                 htlb_alloc_mask = GFP_HIGHUSER;
658         return 0;
659 }
660
661 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
662                         struct file *file, void __user *buffer,
663                         size_t *length, loff_t *ppos)
664 {
665         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
666         spin_lock(&hugetlb_lock);
667         nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
668         spin_unlock(&hugetlb_lock);
669         return 0;
670 }
671
672 #endif /* CONFIG_SYSCTL */
673
674 int hugetlb_report_meminfo(char *buf)
675 {
676         return sprintf(buf,
677                         "HugePages_Total: %5lu\n"
678                         "HugePages_Free:  %5lu\n"
679                         "HugePages_Rsvd:  %5lu\n"
680                         "HugePages_Surp:  %5lu\n"
681                         "Hugepagesize:    %5lu kB\n",
682                         nr_huge_pages,
683                         free_huge_pages,
684                         resv_huge_pages,
685                         surplus_huge_pages,
686                         HPAGE_SIZE/1024);
687 }
688
689 int hugetlb_report_node_meminfo(int nid, char *buf)
690 {
691         return sprintf(buf,
692                 "Node %d HugePages_Total: %5u\n"
693                 "Node %d HugePages_Free:  %5u\n"
694                 "Node %d HugePages_Surp:  %5u\n",
695                 nid, nr_huge_pages_node[nid],
696                 nid, free_huge_pages_node[nid],
697                 nid, surplus_huge_pages_node[nid]);
698 }
699
700 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
701 unsigned long hugetlb_total_pages(void)
702 {
703         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
704 }
705
706 /*
707  * We cannot handle pagefaults against hugetlb pages at all.  They cause
708  * handle_mm_fault() to try to instantiate regular-sized pages in the
709  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
710  * this far.
711  */
712 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
713 {
714         BUG();
715         return 0;
716 }
717
718 struct vm_operations_struct hugetlb_vm_ops = {
719         .fault = hugetlb_vm_op_fault,
720 };
721
722 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
723                                 int writable)
724 {
725         pte_t entry;
726
727         if (writable) {
728                 entry =
729                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
730         } else {
731                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
732         }
733         entry = pte_mkyoung(entry);
734         entry = pte_mkhuge(entry);
735
736         return entry;
737 }
738
739 static void set_huge_ptep_writable(struct vm_area_struct *vma,
740                                    unsigned long address, pte_t *ptep)
741 {
742         pte_t entry;
743
744         entry = pte_mkwrite(pte_mkdirty(*ptep));
745         if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
746                 update_mmu_cache(vma, address, entry);
747         }
748 }
749
750
751 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
752                             struct vm_area_struct *vma)
753 {
754         pte_t *src_pte, *dst_pte, entry;
755         struct page *ptepage;
756         unsigned long addr;
757         int cow;
758
759         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
760
761         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
762                 src_pte = huge_pte_offset(src, addr);
763                 if (!src_pte)
764                         continue;
765                 dst_pte = huge_pte_alloc(dst, addr);
766                 if (!dst_pte)
767                         goto nomem;
768
769                 /* If the pagetables are shared don't copy or take references */
770                 if (dst_pte == src_pte)
771                         continue;
772
773                 spin_lock(&dst->page_table_lock);
774                 spin_lock(&src->page_table_lock);
775                 if (!pte_none(*src_pte)) {
776                         if (cow)
777                                 ptep_set_wrprotect(src, addr, src_pte);
778                         entry = *src_pte;
779                         ptepage = pte_page(entry);
780                         get_page(ptepage);
781                         set_huge_pte_at(dst, addr, dst_pte, entry);
782                 }
783                 spin_unlock(&src->page_table_lock);
784                 spin_unlock(&dst->page_table_lock);
785         }
786         return 0;
787
788 nomem:
789         return -ENOMEM;
790 }
791
792 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
793                             unsigned long end)
794 {
795         struct mm_struct *mm = vma->vm_mm;
796         unsigned long address;
797         pte_t *ptep;
798         pte_t pte;
799         struct page *page;
800         struct page *tmp;
801         /*
802          * A page gathering list, protected by per file i_mmap_lock. The
803          * lock is used to avoid list corruption from multiple unmapping
804          * of the same page since we are using page->lru.
805          */
806         LIST_HEAD(page_list);
807
808         WARN_ON(!is_vm_hugetlb_page(vma));
809         BUG_ON(start & ~HPAGE_MASK);
810         BUG_ON(end & ~HPAGE_MASK);
811
812         spin_lock(&mm->page_table_lock);
813         for (address = start; address < end; address += HPAGE_SIZE) {
814                 ptep = huge_pte_offset(mm, address);
815                 if (!ptep)
816                         continue;
817
818                 if (huge_pmd_unshare(mm, &address, ptep))
819                         continue;
820
821                 pte = huge_ptep_get_and_clear(mm, address, ptep);
822                 if (pte_none(pte))
823                         continue;
824
825                 page = pte_page(pte);
826                 if (pte_dirty(pte))
827                         set_page_dirty(page);
828                 list_add(&page->lru, &page_list);
829         }
830         spin_unlock(&mm->page_table_lock);
831         flush_tlb_range(vma, start, end);
832         list_for_each_entry_safe(page, tmp, &page_list, lru) {
833                 list_del(&page->lru);
834                 put_page(page);
835         }
836 }
837
838 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
839                           unsigned long end)
840 {
841         /*
842          * It is undesirable to test vma->vm_file as it should be non-null
843          * for valid hugetlb area. However, vm_file will be NULL in the error
844          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
845          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
846          * to clean up. Since no pte has actually been setup, it is safe to
847          * do nothing in this case.
848          */
849         if (vma->vm_file) {
850                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
851                 __unmap_hugepage_range(vma, start, end);
852                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
853         }
854 }
855
856 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
857                         unsigned long address, pte_t *ptep, pte_t pte)
858 {
859         struct page *old_page, *new_page;
860         int avoidcopy;
861
862         old_page = pte_page(pte);
863
864         /* If no-one else is actually using this page, avoid the copy
865          * and just make the page writable */
866         avoidcopy = (page_count(old_page) == 1);
867         if (avoidcopy) {
868                 set_huge_ptep_writable(vma, address, ptep);
869                 return 0;
870         }
871
872         page_cache_get(old_page);
873         new_page = alloc_huge_page(vma, address);
874
875         if (IS_ERR(new_page)) {
876                 page_cache_release(old_page);
877                 return -PTR_ERR(new_page);
878         }
879
880         spin_unlock(&mm->page_table_lock);
881         copy_huge_page(new_page, old_page, address, vma);
882         __SetPageUptodate(new_page);
883         spin_lock(&mm->page_table_lock);
884
885         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
886         if (likely(pte_same(*ptep, pte))) {
887                 /* Break COW */
888                 set_huge_pte_at(mm, address, ptep,
889                                 make_huge_pte(vma, new_page, 1));
890                 /* Make the old page be freed below */
891                 new_page = old_page;
892         }
893         page_cache_release(new_page);
894         page_cache_release(old_page);
895         return 0;
896 }
897
898 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
899                         unsigned long address, pte_t *ptep, int write_access)
900 {
901         int ret = VM_FAULT_SIGBUS;
902         unsigned long idx;
903         unsigned long size;
904         struct page *page;
905         struct address_space *mapping;
906         pte_t new_pte;
907
908         mapping = vma->vm_file->f_mapping;
909         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
910                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
911
912         /*
913          * Use page lock to guard against racing truncation
914          * before we get page_table_lock.
915          */
916 retry:
917         page = find_lock_page(mapping, idx);
918         if (!page) {
919                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
920                 if (idx >= size)
921                         goto out;
922                 page = alloc_huge_page(vma, address);
923                 if (IS_ERR(page)) {
924                         ret = -PTR_ERR(page);
925                         goto out;
926                 }
927                 clear_huge_page(page, address);
928                 __SetPageUptodate(page);
929
930                 if (vma->vm_flags & VM_SHARED) {
931                         int err;
932                         struct inode *inode = mapping->host;
933
934                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
935                         if (err) {
936                                 put_page(page);
937                                 if (err == -EEXIST)
938                                         goto retry;
939                                 goto out;
940                         }
941
942                         spin_lock(&inode->i_lock);
943                         inode->i_blocks += BLOCKS_PER_HUGEPAGE;
944                         spin_unlock(&inode->i_lock);
945                 } else
946                         lock_page(page);
947         }
948
949         spin_lock(&mm->page_table_lock);
950         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
951         if (idx >= size)
952                 goto backout;
953
954         ret = 0;
955         if (!pte_none(*ptep))
956                 goto backout;
957
958         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
959                                 && (vma->vm_flags & VM_SHARED)));
960         set_huge_pte_at(mm, address, ptep, new_pte);
961
962         if (write_access && !(vma->vm_flags & VM_SHARED)) {
963                 /* Optimization, do the COW without a second fault */
964                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
965         }
966
967         spin_unlock(&mm->page_table_lock);
968         unlock_page(page);
969 out:
970         return ret;
971
972 backout:
973         spin_unlock(&mm->page_table_lock);
974         unlock_page(page);
975         put_page(page);
976         goto out;
977 }
978
979 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
980                         unsigned long address, int write_access)
981 {
982         pte_t *ptep;
983         pte_t entry;
984         int ret;
985         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
986
987         ptep = huge_pte_alloc(mm, address);
988         if (!ptep)
989                 return VM_FAULT_OOM;
990
991         /*
992          * Serialize hugepage allocation and instantiation, so that we don't
993          * get spurious allocation failures if two CPUs race to instantiate
994          * the same page in the page cache.
995          */
996         mutex_lock(&hugetlb_instantiation_mutex);
997         entry = *ptep;
998         if (pte_none(entry)) {
999                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1000                 mutex_unlock(&hugetlb_instantiation_mutex);
1001                 return ret;
1002         }
1003
1004         ret = 0;
1005
1006         spin_lock(&mm->page_table_lock);
1007         /* Check for a racing update before calling hugetlb_cow */
1008         if (likely(pte_same(entry, *ptep)))
1009                 if (write_access && !pte_write(entry))
1010                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
1011         spin_unlock(&mm->page_table_lock);
1012         mutex_unlock(&hugetlb_instantiation_mutex);
1013
1014         return ret;
1015 }
1016
1017 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1018                         struct page **pages, struct vm_area_struct **vmas,
1019                         unsigned long *position, int *length, int i,
1020                         int write)
1021 {
1022         unsigned long pfn_offset;
1023         unsigned long vaddr = *position;
1024         int remainder = *length;
1025
1026         spin_lock(&mm->page_table_lock);
1027         while (vaddr < vma->vm_end && remainder) {
1028                 pte_t *pte;
1029                 struct page *page;
1030
1031                 /*
1032                  * Some archs (sparc64, sh*) have multiple pte_ts to
1033                  * each hugepage.  We have to make * sure we get the
1034                  * first, for the page indexing below to work.
1035                  */
1036                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1037
1038                 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1039                         int ret;
1040
1041                         spin_unlock(&mm->page_table_lock);
1042                         ret = hugetlb_fault(mm, vma, vaddr, write);
1043                         spin_lock(&mm->page_table_lock);
1044                         if (!(ret & VM_FAULT_ERROR))
1045                                 continue;
1046
1047                         remainder = 0;
1048                         if (!i)
1049                                 i = -EFAULT;
1050                         break;
1051                 }
1052
1053                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1054                 page = pte_page(*pte);
1055 same_page:
1056                 if (pages) {
1057                         get_page(page);
1058                         pages[i] = page + pfn_offset;
1059                 }
1060
1061                 if (vmas)
1062                         vmas[i] = vma;
1063
1064                 vaddr += PAGE_SIZE;
1065                 ++pfn_offset;
1066                 --remainder;
1067                 ++i;
1068                 if (vaddr < vma->vm_end && remainder &&
1069                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1070                         /*
1071                          * We use pfn_offset to avoid touching the pageframes
1072                          * of this compound page.
1073                          */
1074                         goto same_page;
1075                 }
1076         }
1077         spin_unlock(&mm->page_table_lock);
1078         *length = remainder;
1079         *position = vaddr;
1080
1081         return i;
1082 }
1083
1084 void hugetlb_change_protection(struct vm_area_struct *vma,
1085                 unsigned long address, unsigned long end, pgprot_t newprot)
1086 {
1087         struct mm_struct *mm = vma->vm_mm;
1088         unsigned long start = address;
1089         pte_t *ptep;
1090         pte_t pte;
1091
1092         BUG_ON(address >= end);
1093         flush_cache_range(vma, address, end);
1094
1095         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1096         spin_lock(&mm->page_table_lock);
1097         for (; address < end; address += HPAGE_SIZE) {
1098                 ptep = huge_pte_offset(mm, address);
1099                 if (!ptep)
1100                         continue;
1101                 if (huge_pmd_unshare(mm, &address, ptep))
1102                         continue;
1103                 if (!pte_none(*ptep)) {
1104                         pte = huge_ptep_get_and_clear(mm, address, ptep);
1105                         pte = pte_mkhuge(pte_modify(pte, newprot));
1106                         set_huge_pte_at(mm, address, ptep, pte);
1107                 }
1108         }
1109         spin_unlock(&mm->page_table_lock);
1110         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1111
1112         flush_tlb_range(vma, start, end);
1113 }
1114
1115 struct file_region {
1116         struct list_head link;
1117         long from;
1118         long to;
1119 };
1120
1121 static long region_add(struct list_head *head, long f, long t)
1122 {
1123         struct file_region *rg, *nrg, *trg;
1124
1125         /* Locate the region we are either in or before. */
1126         list_for_each_entry(rg, head, link)
1127                 if (f <= rg->to)
1128                         break;
1129
1130         /* Round our left edge to the current segment if it encloses us. */
1131         if (f > rg->from)
1132                 f = rg->from;
1133
1134         /* Check for and consume any regions we now overlap with. */
1135         nrg = rg;
1136         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1137                 if (&rg->link == head)
1138                         break;
1139                 if (rg->from > t)
1140                         break;
1141
1142                 /* If this area reaches higher then extend our area to
1143                  * include it completely.  If this is not the first area
1144                  * which we intend to reuse, free it. */
1145                 if (rg->to > t)
1146                         t = rg->to;
1147                 if (rg != nrg) {
1148                         list_del(&rg->link);
1149                         kfree(rg);
1150                 }
1151         }
1152         nrg->from = f;
1153         nrg->to = t;
1154         return 0;
1155 }
1156
1157 static long region_chg(struct list_head *head, long f, long t)
1158 {
1159         struct file_region *rg, *nrg;
1160         long chg = 0;
1161
1162         /* Locate the region we are before or in. */
1163         list_for_each_entry(rg, head, link)
1164                 if (f <= rg->to)
1165                         break;
1166
1167         /* If we are below the current region then a new region is required.
1168          * Subtle, allocate a new region at the position but make it zero
1169          * size such that we can guarantee to record the reservation. */
1170         if (&rg->link == head || t < rg->from) {
1171                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1172                 if (!nrg)
1173                         return -ENOMEM;
1174                 nrg->from = f;
1175                 nrg->to   = f;
1176                 INIT_LIST_HEAD(&nrg->link);
1177                 list_add(&nrg->link, rg->link.prev);
1178
1179                 return t - f;
1180         }
1181
1182         /* Round our left edge to the current segment if it encloses us. */
1183         if (f > rg->from)
1184                 f = rg->from;
1185         chg = t - f;
1186
1187         /* Check for and consume any regions we now overlap with. */
1188         list_for_each_entry(rg, rg->link.prev, link) {
1189                 if (&rg->link == head)
1190                         break;
1191                 if (rg->from > t)
1192                         return chg;
1193
1194                 /* We overlap with this area, if it extends futher than
1195                  * us then we must extend ourselves.  Account for its
1196                  * existing reservation. */
1197                 if (rg->to > t) {
1198                         chg += rg->to - t;
1199                         t = rg->to;
1200                 }
1201                 chg -= rg->to - rg->from;
1202         }
1203         return chg;
1204 }
1205
1206 static long region_truncate(struct list_head *head, long end)
1207 {
1208         struct file_region *rg, *trg;
1209         long chg = 0;
1210
1211         /* Locate the region we are either in or before. */
1212         list_for_each_entry(rg, head, link)
1213                 if (end <= rg->to)
1214                         break;
1215         if (&rg->link == head)
1216                 return 0;
1217
1218         /* If we are in the middle of a region then adjust it. */
1219         if (end > rg->from) {
1220                 chg = rg->to - end;
1221                 rg->to = end;
1222                 rg = list_entry(rg->link.next, typeof(*rg), link);
1223         }
1224
1225         /* Drop any remaining regions. */
1226         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1227                 if (&rg->link == head)
1228                         break;
1229                 chg += rg->to - rg->from;
1230                 list_del(&rg->link);
1231                 kfree(rg);
1232         }
1233         return chg;
1234 }
1235
1236 static int hugetlb_acct_memory(long delta)
1237 {
1238         int ret = -ENOMEM;
1239
1240         spin_lock(&hugetlb_lock);
1241         /*
1242          * When cpuset is configured, it breaks the strict hugetlb page
1243          * reservation as the accounting is done on a global variable. Such
1244          * reservation is completely rubbish in the presence of cpuset because
1245          * the reservation is not checked against page availability for the
1246          * current cpuset. Application can still potentially OOM'ed by kernel
1247          * with lack of free htlb page in cpuset that the task is in.
1248          * Attempt to enforce strict accounting with cpuset is almost
1249          * impossible (or too ugly) because cpuset is too fluid that
1250          * task or memory node can be dynamically moved between cpusets.
1251          *
1252          * The change of semantics for shared hugetlb mapping with cpuset is
1253          * undesirable. However, in order to preserve some of the semantics,
1254          * we fall back to check against current free page availability as
1255          * a best attempt and hopefully to minimize the impact of changing
1256          * semantics that cpuset has.
1257          */
1258         if (delta > 0) {
1259                 if (gather_surplus_pages(delta) < 0)
1260                         goto out;
1261
1262                 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1263                         return_unused_surplus_pages(delta);
1264                         goto out;
1265                 }
1266         }
1267
1268         ret = 0;
1269         if (delta < 0)
1270                 return_unused_surplus_pages((unsigned long) -delta);
1271
1272 out:
1273         spin_unlock(&hugetlb_lock);
1274         return ret;
1275 }
1276
1277 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1278 {
1279         long ret, chg;
1280
1281         chg = region_chg(&inode->i_mapping->private_list, from, to);
1282         if (chg < 0)
1283                 return chg;
1284
1285         if (hugetlb_get_quota(inode->i_mapping, chg))
1286                 return -ENOSPC;
1287         ret = hugetlb_acct_memory(chg);
1288         if (ret < 0) {
1289                 hugetlb_put_quota(inode->i_mapping, chg);
1290                 return ret;
1291         }
1292         region_add(&inode->i_mapping->private_list, from, to);
1293         return 0;
1294 }
1295
1296 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1297 {
1298         long chg = region_truncate(&inode->i_mapping->private_list, offset);
1299
1300         spin_lock(&inode->i_lock);
1301         inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1302         spin_unlock(&inode->i_lock);
1303
1304         hugetlb_put_quota(inode->i_mapping, (chg - freed));
1305         hugetlb_acct_memory(-(chg - freed));
1306 }