knfsd: nfsd4: fix enc_stateid_sz for nfsd callbacks
[safe/jmp/linux-2.6] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45         loff_t offset, unsigned long nr_segs);
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock               (vmtruncate)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->i_mutex                   (generic_file_buffered_write)
79  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock                 (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
103  *    ->inode_lock              (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock             (proc_pid_lookup)
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123         BUG_ON(page_mapped(page));
124 }
125
126 void remove_from_page_cache(struct page *page)
127 {
128         struct address_space *mapping = page->mapping;
129
130         BUG_ON(!PageLocked(page));
131
132         write_lock_irq(&mapping->tree_lock);
133         __remove_from_page_cache(page);
134         write_unlock_irq(&mapping->tree_lock);
135 }
136
137 static int sync_page(void *word)
138 {
139         struct address_space *mapping;
140         struct page *page;
141
142         page = container_of((unsigned long *)word, struct page, flags);
143
144         /*
145          * page_mapping() is being called without PG_locked held.
146          * Some knowledge of the state and use of the page is used to
147          * reduce the requirements down to a memory barrier.
148          * The danger here is of a stale page_mapping() return value
149          * indicating a struct address_space different from the one it's
150          * associated with when it is associated with one.
151          * After smp_mb(), it's either the correct page_mapping() for
152          * the page, or an old page_mapping() and the page's own
153          * page_mapping() has gone NULL.
154          * The ->sync_page() address_space operation must tolerate
155          * page_mapping() going NULL. By an amazing coincidence,
156          * this comes about because none of the users of the page
157          * in the ->sync_page() methods make essential use of the
158          * page_mapping(), merely passing the page down to the backing
159          * device's unplug functions when it's non-NULL, which in turn
160          * ignore it for all cases but swap, where only page_private(page) is
161          * of interest. When page_mapping() does go NULL, the entire
162          * call stack gracefully ignores the page and returns.
163          * -- wli
164          */
165         smp_mb();
166         mapping = page_mapping(page);
167         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168                 mapping->a_ops->sync_page(page);
169         io_schedule();
170         return 0;
171 }
172
173 /**
174  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175  * @mapping:    address space structure to write
176  * @start:      offset in bytes where the range starts
177  * @end:        offset in bytes where the range ends (inclusive)
178  * @sync_mode:  enable synchronous operation
179  *
180  * Start writeback against all of a mapping's dirty pages that lie
181  * within the byte offsets <start, end> inclusive.
182  *
183  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184  * opposed to a regular memory cleansing writeback.  The difference between
185  * these two operations is that if a dirty page/buffer is encountered, it must
186  * be waited upon, and not just skipped over.
187  */
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189                                 loff_t end, int sync_mode)
190 {
191         int ret;
192         struct writeback_control wbc = {
193                 .sync_mode = sync_mode,
194                 .nr_to_write = mapping->nrpages * 2,
195                 .range_start = start,
196                 .range_end = end,
197         };
198
199         if (!mapping_cap_writeback_dirty(mapping))
200                 return 0;
201
202         ret = do_writepages(mapping, &wbc);
203         return ret;
204 }
205
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207         int sync_mode)
208 {
209         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210 }
211
212 int filemap_fdatawrite(struct address_space *mapping)
213 {
214         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 }
216 EXPORT_SYMBOL(filemap_fdatawrite);
217
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219                                 loff_t end)
220 {
221         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222 }
223
224 /**
225  * filemap_flush - mostly a non-blocking flush
226  * @mapping:    target address_space
227  *
228  * This is a mostly non-blocking flush.  Not suitable for data-integrity
229  * purposes - I/O may not be started against all dirty pages.
230  */
231 int filemap_flush(struct address_space *mapping)
232 {
233         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 }
235 EXPORT_SYMBOL(filemap_flush);
236
237 /**
238  * wait_on_page_writeback_range - wait for writeback to complete
239  * @mapping:    target address_space
240  * @start:      beginning page index
241  * @end:        ending page index
242  *
243  * Wait for writeback to complete against pages indexed by start->end
244  * inclusive
245  */
246 int wait_on_page_writeback_range(struct address_space *mapping,
247                                 pgoff_t start, pgoff_t end)
248 {
249         struct pagevec pvec;
250         int nr_pages;
251         int ret = 0;
252         pgoff_t index;
253
254         if (end < start)
255                 return 0;
256
257         pagevec_init(&pvec, 0);
258         index = start;
259         while ((index <= end) &&
260                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261                         PAGECACHE_TAG_WRITEBACK,
262                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263                 unsigned i;
264
265                 for (i = 0; i < nr_pages; i++) {
266                         struct page *page = pvec.pages[i];
267
268                         /* until radix tree lookup accepts end_index */
269                         if (page->index > end)
270                                 continue;
271
272                         wait_on_page_writeback(page);
273                         if (PageError(page))
274                                 ret = -EIO;
275                 }
276                 pagevec_release(&pvec);
277                 cond_resched();
278         }
279
280         /* Check for outstanding write errors */
281         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282                 ret = -ENOSPC;
283         if (test_and_clear_bit(AS_EIO, &mapping->flags))
284                 ret = -EIO;
285
286         return ret;
287 }
288
289 /**
290  * sync_page_range - write and wait on all pages in the passed range
291  * @inode:      target inode
292  * @mapping:    target address_space
293  * @pos:        beginning offset in pages to write
294  * @count:      number of bytes to write
295  *
296  * Write and wait upon all the pages in the passed range.  This is a "data
297  * integrity" operation.  It waits upon in-flight writeout before starting and
298  * waiting upon new writeout.  If there was an IO error, return it.
299  *
300  * We need to re-take i_mutex during the generic_osync_inode list walk because
301  * it is otherwise livelockable.
302  */
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304                         loff_t pos, loff_t count)
305 {
306         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308         int ret;
309
310         if (!mapping_cap_writeback_dirty(mapping) || !count)
311                 return 0;
312         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313         if (ret == 0) {
314                 mutex_lock(&inode->i_mutex);
315                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316                 mutex_unlock(&inode->i_mutex);
317         }
318         if (ret == 0)
319                 ret = wait_on_page_writeback_range(mapping, start, end);
320         return ret;
321 }
322 EXPORT_SYMBOL(sync_page_range);
323
324 /**
325  * sync_page_range_nolock
326  * @inode:      target inode
327  * @mapping:    target address_space
328  * @pos:        beginning offset in pages to write
329  * @count:      number of bytes to write
330  *
331  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332  * as it forces O_SYNC writers to different parts of the same file
333  * to be serialised right until io completion.
334  */
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336                            loff_t pos, loff_t count)
337 {
338         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340         int ret;
341
342         if (!mapping_cap_writeback_dirty(mapping) || !count)
343                 return 0;
344         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345         if (ret == 0)
346                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347         if (ret == 0)
348                 ret = wait_on_page_writeback_range(mapping, start, end);
349         return ret;
350 }
351 EXPORT_SYMBOL(sync_page_range_nolock);
352
353 /**
354  * filemap_fdatawait - wait for all under-writeback pages to complete
355  * @mapping: address space structure to wait for
356  *
357  * Walk the list of under-writeback pages of the given address space
358  * and wait for all of them.
359  */
360 int filemap_fdatawait(struct address_space *mapping)
361 {
362         loff_t i_size = i_size_read(mapping->host);
363
364         if (i_size == 0)
365                 return 0;
366
367         return wait_on_page_writeback_range(mapping, 0,
368                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 }
370 EXPORT_SYMBOL(filemap_fdatawait);
371
372 int filemap_write_and_wait(struct address_space *mapping)
373 {
374         int err = 0;
375
376         if (mapping->nrpages) {
377                 err = filemap_fdatawrite(mapping);
378                 /*
379                  * Even if the above returned error, the pages may be
380                  * written partially (e.g. -ENOSPC), so we wait for it.
381                  * But the -EIO is special case, it may indicate the worst
382                  * thing (e.g. bug) happened, so we avoid waiting for it.
383                  */
384                 if (err != -EIO) {
385                         int err2 = filemap_fdatawait(mapping);
386                         if (!err)
387                                 err = err2;
388                 }
389         }
390         return err;
391 }
392 EXPORT_SYMBOL(filemap_write_and_wait);
393
394 /**
395  * filemap_write_and_wait_range - write out & wait on a file range
396  * @mapping:    the address_space for the pages
397  * @lstart:     offset in bytes where the range starts
398  * @lend:       offset in bytes where the range ends (inclusive)
399  *
400  * Write out and wait upon file offsets lstart->lend, inclusive.
401  *
402  * Note that `lend' is inclusive (describes the last byte to be written) so
403  * that this function can be used to write to the very end-of-file (end = -1).
404  */
405 int filemap_write_and_wait_range(struct address_space *mapping,
406                                  loff_t lstart, loff_t lend)
407 {
408         int err = 0;
409
410         if (mapping->nrpages) {
411                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412                                                  WB_SYNC_ALL);
413                 /* See comment of filemap_write_and_wait() */
414                 if (err != -EIO) {
415                         int err2 = wait_on_page_writeback_range(mapping,
416                                                 lstart >> PAGE_CACHE_SHIFT,
417                                                 lend >> PAGE_CACHE_SHIFT);
418                         if (!err)
419                                 err = err2;
420                 }
421         }
422         return err;
423 }
424
425 /**
426  * add_to_page_cache - add newly allocated pagecache pages
427  * @page:       page to add
428  * @mapping:    the page's address_space
429  * @offset:     page index
430  * @gfp_mask:   page allocation mode
431  *
432  * This function is used to add newly allocated pagecache pages;
433  * the page is new, so we can just run SetPageLocked() against it.
434  * The other page state flags were set by rmqueue().
435  *
436  * This function does not add the page to the LRU.  The caller must do that.
437  */
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439                 pgoff_t offset, gfp_t gfp_mask)
440 {
441         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443         if (error == 0) {
444                 write_lock_irq(&mapping->tree_lock);
445                 error = radix_tree_insert(&mapping->page_tree, offset, page);
446                 if (!error) {
447                         page_cache_get(page);
448                         SetPageLocked(page);
449                         page->mapping = mapping;
450                         page->index = offset;
451                         mapping->nrpages++;
452                         __inc_zone_page_state(page, NR_FILE_PAGES);
453                 }
454                 write_unlock_irq(&mapping->tree_lock);
455                 radix_tree_preload_end();
456         }
457         return error;
458 }
459 EXPORT_SYMBOL(add_to_page_cache);
460
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462                                 pgoff_t offset, gfp_t gfp_mask)
463 {
464         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465         if (ret == 0)
466                 lru_cache_add(page);
467         return ret;
468 }
469
470 #ifdef CONFIG_NUMA
471 struct page *__page_cache_alloc(gfp_t gfp)
472 {
473         if (cpuset_do_page_mem_spread()) {
474                 int n = cpuset_mem_spread_node();
475                 return alloc_pages_node(n, gfp, 0);
476         }
477         return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481
482 static int __sleep_on_page_lock(void *word)
483 {
484         io_schedule();
485         return 0;
486 }
487
488 /*
489  * In order to wait for pages to become available there must be
490  * waitqueues associated with pages. By using a hash table of
491  * waitqueues where the bucket discipline is to maintain all
492  * waiters on the same queue and wake all when any of the pages
493  * become available, and for the woken contexts to check to be
494  * sure the appropriate page became available, this saves space
495  * at a cost of "thundering herd" phenomena during rare hash
496  * collisions.
497  */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500         const struct zone *zone = page_zone(page);
501
502         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 {
512         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514         if (test_bit(bit_nr, &page->flags))
515                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516                                                         TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519
520 /**
521  * unlock_page - unlock a locked page
522  * @page: the page
523  *
524  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526  * mechananism between PageLocked pages and PageWriteback pages is shared.
527  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528  *
529  * The first mb is necessary to safely close the critical section opened by the
530  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532  * parallel wait_on_page_locked()).
533  */
534 void fastcall unlock_page(struct page *page)
535 {
536         smp_mb__before_clear_bit();
537         if (!TestClearPageLocked(page))
538                 BUG();
539         smp_mb__after_clear_bit(); 
540         wake_up_page(page, PG_locked);
541 }
542 EXPORT_SYMBOL(unlock_page);
543
544 /**
545  * end_page_writeback - end writeback against a page
546  * @page: the page
547  */
548 void end_page_writeback(struct page *page)
549 {
550         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551                 if (!test_clear_page_writeback(page))
552                         BUG();
553         }
554         smp_mb__after_clear_bit();
555         wake_up_page(page, PG_writeback);
556 }
557 EXPORT_SYMBOL(end_page_writeback);
558
559 /**
560  * __lock_page - get a lock on the page, assuming we need to sleep to get it
561  * @page: the page to lock
562  *
563  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
564  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
565  * chances are that on the second loop, the block layer's plug list is empty,
566  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567  */
568 void fastcall __lock_page(struct page *page)
569 {
570         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573                                                         TASK_UNINTERRUPTIBLE);
574 }
575 EXPORT_SYMBOL(__lock_page);
576
577 /*
578  * Variant of lock_page that does not require the caller to hold a reference
579  * on the page's mapping.
580  */
581 void fastcall __lock_page_nosync(struct page *page)
582 {
583         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585                                                         TASK_UNINTERRUPTIBLE);
586 }
587
588 /**
589  * find_get_page - find and get a page reference
590  * @mapping: the address_space to search
591  * @offset: the page index
592  *
593  * Is there a pagecache struct page at the given (mapping, offset) tuple?
594  * If yes, increment its refcount and return it; if no, return NULL.
595  */
596 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597 {
598         struct page *page;
599
600         read_lock_irq(&mapping->tree_lock);
601         page = radix_tree_lookup(&mapping->page_tree, offset);
602         if (page)
603                 page_cache_get(page);
604         read_unlock_irq(&mapping->tree_lock);
605         return page;
606 }
607 EXPORT_SYMBOL(find_get_page);
608
609 /**
610  * find_lock_page - locate, pin and lock a pagecache page
611  * @mapping: the address_space to search
612  * @offset: the page index
613  *
614  * Locates the desired pagecache page, locks it, increments its reference
615  * count and returns its address.
616  *
617  * Returns zero if the page was not present. find_lock_page() may sleep.
618  */
619 struct page *find_lock_page(struct address_space *mapping,
620                                 unsigned long offset)
621 {
622         struct page *page;
623
624         read_lock_irq(&mapping->tree_lock);
625 repeat:
626         page = radix_tree_lookup(&mapping->page_tree, offset);
627         if (page) {
628                 page_cache_get(page);
629                 if (TestSetPageLocked(page)) {
630                         read_unlock_irq(&mapping->tree_lock);
631                         __lock_page(page);
632                         read_lock_irq(&mapping->tree_lock);
633
634                         /* Has the page been truncated while we slept? */
635                         if (unlikely(page->mapping != mapping ||
636                                      page->index != offset)) {
637                                 unlock_page(page);
638                                 page_cache_release(page);
639                                 goto repeat;
640                         }
641                 }
642         }
643         read_unlock_irq(&mapping->tree_lock);
644         return page;
645 }
646 EXPORT_SYMBOL(find_lock_page);
647
648 /**
649  * find_or_create_page - locate or add a pagecache page
650  * @mapping: the page's address_space
651  * @index: the page's index into the mapping
652  * @gfp_mask: page allocation mode
653  *
654  * Locates a page in the pagecache.  If the page is not present, a new page
655  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656  * LRU list.  The returned page is locked and has its reference count
657  * incremented.
658  *
659  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660  * allocation!
661  *
662  * find_or_create_page() returns the desired page's address, or zero on
663  * memory exhaustion.
664  */
665 struct page *find_or_create_page(struct address_space *mapping,
666                 unsigned long index, gfp_t gfp_mask)
667 {
668         struct page *page, *cached_page = NULL;
669         int err;
670 repeat:
671         page = find_lock_page(mapping, index);
672         if (!page) {
673                 if (!cached_page) {
674                         cached_page =
675                                 __page_cache_alloc(gfp_mask);
676                         if (!cached_page)
677                                 return NULL;
678                 }
679                 err = add_to_page_cache_lru(cached_page, mapping,
680                                         index, gfp_mask);
681                 if (!err) {
682                         page = cached_page;
683                         cached_page = NULL;
684                 } else if (err == -EEXIST)
685                         goto repeat;
686         }
687         if (cached_page)
688                 page_cache_release(cached_page);
689         return page;
690 }
691 EXPORT_SYMBOL(find_or_create_page);
692
693 /**
694  * find_get_pages - gang pagecache lookup
695  * @mapping:    The address_space to search
696  * @start:      The starting page index
697  * @nr_pages:   The maximum number of pages
698  * @pages:      Where the resulting pages are placed
699  *
700  * find_get_pages() will search for and return a group of up to
701  * @nr_pages pages in the mapping.  The pages are placed at @pages.
702  * find_get_pages() takes a reference against the returned pages.
703  *
704  * The search returns a group of mapping-contiguous pages with ascending
705  * indexes.  There may be holes in the indices due to not-present pages.
706  *
707  * find_get_pages() returns the number of pages which were found.
708  */
709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710                             unsigned int nr_pages, struct page **pages)
711 {
712         unsigned int i;
713         unsigned int ret;
714
715         read_lock_irq(&mapping->tree_lock);
716         ret = radix_tree_gang_lookup(&mapping->page_tree,
717                                 (void **)pages, start, nr_pages);
718         for (i = 0; i < ret; i++)
719                 page_cache_get(pages[i]);
720         read_unlock_irq(&mapping->tree_lock);
721         return ret;
722 }
723
724 /**
725  * find_get_pages_contig - gang contiguous pagecache lookup
726  * @mapping:    The address_space to search
727  * @index:      The starting page index
728  * @nr_pages:   The maximum number of pages
729  * @pages:      Where the resulting pages are placed
730  *
731  * find_get_pages_contig() works exactly like find_get_pages(), except
732  * that the returned number of pages are guaranteed to be contiguous.
733  *
734  * find_get_pages_contig() returns the number of pages which were found.
735  */
736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737                                unsigned int nr_pages, struct page **pages)
738 {
739         unsigned int i;
740         unsigned int ret;
741
742         read_lock_irq(&mapping->tree_lock);
743         ret = radix_tree_gang_lookup(&mapping->page_tree,
744                                 (void **)pages, index, nr_pages);
745         for (i = 0; i < ret; i++) {
746                 if (pages[i]->mapping == NULL || pages[i]->index != index)
747                         break;
748
749                 page_cache_get(pages[i]);
750                 index++;
751         }
752         read_unlock_irq(&mapping->tree_lock);
753         return i;
754 }
755 EXPORT_SYMBOL(find_get_pages_contig);
756
757 /**
758  * find_get_pages_tag - find and return pages that match @tag
759  * @mapping:    the address_space to search
760  * @index:      the starting page index
761  * @tag:        the tag index
762  * @nr_pages:   the maximum number of pages
763  * @pages:      where the resulting pages are placed
764  *
765  * Like find_get_pages, except we only return pages which are tagged with
766  * @tag.   We update @index to index the next page for the traversal.
767  */
768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769                         int tag, unsigned int nr_pages, struct page **pages)
770 {
771         unsigned int i;
772         unsigned int ret;
773
774         read_lock_irq(&mapping->tree_lock);
775         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776                                 (void **)pages, *index, nr_pages, tag);
777         for (i = 0; i < ret; i++)
778                 page_cache_get(pages[i]);
779         if (ret)
780                 *index = pages[ret - 1]->index + 1;
781         read_unlock_irq(&mapping->tree_lock);
782         return ret;
783 }
784 EXPORT_SYMBOL(find_get_pages_tag);
785
786 /**
787  * grab_cache_page_nowait - returns locked page at given index in given cache
788  * @mapping: target address_space
789  * @index: the page index
790  *
791  * Same as grab_cache_page(), but do not wait if the page is unavailable.
792  * This is intended for speculative data generators, where the data can
793  * be regenerated if the page couldn't be grabbed.  This routine should
794  * be safe to call while holding the lock for another page.
795  *
796  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797  * and deadlock against the caller's locked page.
798  */
799 struct page *
800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
801 {
802         struct page *page = find_get_page(mapping, index);
803
804         if (page) {
805                 if (!TestSetPageLocked(page))
806                         return page;
807                 page_cache_release(page);
808                 return NULL;
809         }
810         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811         if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
812                 page_cache_release(page);
813                 page = NULL;
814         }
815         return page;
816 }
817 EXPORT_SYMBOL(grab_cache_page_nowait);
818
819 /*
820  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821  * a _large_ part of the i/o request. Imagine the worst scenario:
822  *
823  *      ---R__________________________________________B__________
824  *         ^ reading here                             ^ bad block(assume 4k)
825  *
826  * read(R) => miss => readahead(R...B) => media error => frustrating retries
827  * => failing the whole request => read(R) => read(R+1) =>
828  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831  *
832  * It is going insane. Fix it by quickly scaling down the readahead size.
833  */
834 static void shrink_readahead_size_eio(struct file *filp,
835                                         struct file_ra_state *ra)
836 {
837         if (!ra->ra_pages)
838                 return;
839
840         ra->ra_pages /= 4;
841 }
842
843 /**
844  * do_generic_mapping_read - generic file read routine
845  * @mapping:    address_space to be read
846  * @_ra:        file's readahead state
847  * @filp:       the file to read
848  * @ppos:       current file position
849  * @desc:       read_descriptor
850  * @actor:      read method
851  *
852  * This is a generic file read routine, and uses the
853  * mapping->a_ops->readpage() function for the actual low-level stuff.
854  *
855  * This is really ugly. But the goto's actually try to clarify some
856  * of the logic when it comes to error handling etc.
857  *
858  * Note the struct file* is only passed for the use of readpage.
859  * It may be NULL.
860  */
861 void do_generic_mapping_read(struct address_space *mapping,
862                              struct file_ra_state *_ra,
863                              struct file *filp,
864                              loff_t *ppos,
865                              read_descriptor_t *desc,
866                              read_actor_t actor)
867 {
868         struct inode *inode = mapping->host;
869         unsigned long index;
870         unsigned long offset;
871         unsigned long last_index;
872         unsigned long next_index;
873         unsigned long prev_index;
874         unsigned int prev_offset;
875         struct page *cached_page;
876         int error;
877         struct file_ra_state ra = *_ra;
878
879         cached_page = NULL;
880         index = *ppos >> PAGE_CACHE_SHIFT;
881         next_index = index;
882         prev_index = ra.prev_index;
883         prev_offset = ra.prev_offset;
884         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885         offset = *ppos & ~PAGE_CACHE_MASK;
886
887         for (;;) {
888                 struct page *page;
889                 unsigned long end_index;
890                 loff_t isize;
891                 unsigned long nr, ret;
892
893                 cond_resched();
894                 if (index == next_index)
895                         next_index = page_cache_readahead(mapping, &ra, filp,
896                                         index, last_index - index);
897
898 find_page:
899                 page = find_get_page(mapping, index);
900                 if (unlikely(page == NULL)) {
901                         handle_ra_miss(mapping, &ra, index);
902                         goto no_cached_page;
903                 }
904                 if (!PageUptodate(page))
905                         goto page_not_up_to_date;
906 page_ok:
907                 /*
908                  * i_size must be checked after we know the page is Uptodate.
909                  *
910                  * Checking i_size after the check allows us to calculate
911                  * the correct value for "nr", which means the zero-filled
912                  * part of the page is not copied back to userspace (unless
913                  * another truncate extends the file - this is desired though).
914                  */
915
916                 isize = i_size_read(inode);
917                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
918                 if (unlikely(!isize || index > end_index)) {
919                         page_cache_release(page);
920                         goto out;
921                 }
922
923                 /* nr is the maximum number of bytes to copy from this page */
924                 nr = PAGE_CACHE_SIZE;
925                 if (index == end_index) {
926                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
927                         if (nr <= offset) {
928                                 page_cache_release(page);
929                                 goto out;
930                         }
931                 }
932                 nr = nr - offset;
933
934                 /* If users can be writing to this page using arbitrary
935                  * virtual addresses, take care about potential aliasing
936                  * before reading the page on the kernel side.
937                  */
938                 if (mapping_writably_mapped(mapping))
939                         flush_dcache_page(page);
940
941                 /*
942                  * When a sequential read accesses a page several times,
943                  * only mark it as accessed the first time.
944                  */
945                 if (prev_index != index || offset != prev_offset)
946                         mark_page_accessed(page);
947                 prev_index = index;
948
949                 /*
950                  * Ok, we have the page, and it's up-to-date, so
951                  * now we can copy it to user space...
952                  *
953                  * The actor routine returns how many bytes were actually used..
954                  * NOTE! This may not be the same as how much of a user buffer
955                  * we filled up (we may be padding etc), so we can only update
956                  * "pos" here (the actor routine has to update the user buffer
957                  * pointers and the remaining count).
958                  */
959                 ret = actor(desc, page, offset, nr);
960                 offset += ret;
961                 index += offset >> PAGE_CACHE_SHIFT;
962                 offset &= ~PAGE_CACHE_MASK;
963                 prev_offset = offset;
964                 ra.prev_offset = offset;
965
966                 page_cache_release(page);
967                 if (ret == nr && desc->count)
968                         continue;
969                 goto out;
970
971 page_not_up_to_date:
972                 /* Get exclusive access to the page ... */
973                 lock_page(page);
974
975                 /* Did it get truncated before we got the lock? */
976                 if (!page->mapping) {
977                         unlock_page(page);
978                         page_cache_release(page);
979                         continue;
980                 }
981
982                 /* Did somebody else fill it already? */
983                 if (PageUptodate(page)) {
984                         unlock_page(page);
985                         goto page_ok;
986                 }
987
988 readpage:
989                 /* Start the actual read. The read will unlock the page. */
990                 error = mapping->a_ops->readpage(filp, page);
991
992                 if (unlikely(error)) {
993                         if (error == AOP_TRUNCATED_PAGE) {
994                                 page_cache_release(page);
995                                 goto find_page;
996                         }
997                         goto readpage_error;
998                 }
999
1000                 if (!PageUptodate(page)) {
1001                         lock_page(page);
1002                         if (!PageUptodate(page)) {
1003                                 if (page->mapping == NULL) {
1004                                         /*
1005                                          * invalidate_inode_pages got it
1006                                          */
1007                                         unlock_page(page);
1008                                         page_cache_release(page);
1009                                         goto find_page;
1010                                 }
1011                                 unlock_page(page);
1012                                 error = -EIO;
1013                                 shrink_readahead_size_eio(filp, &ra);
1014                                 goto readpage_error;
1015                         }
1016                         unlock_page(page);
1017                 }
1018
1019                 goto page_ok;
1020
1021 readpage_error:
1022                 /* UHHUH! A synchronous read error occurred. Report it */
1023                 desc->error = error;
1024                 page_cache_release(page);
1025                 goto out;
1026
1027 no_cached_page:
1028                 /*
1029                  * Ok, it wasn't cached, so we need to create a new
1030                  * page..
1031                  */
1032                 if (!cached_page) {
1033                         cached_page = page_cache_alloc_cold(mapping);
1034                         if (!cached_page) {
1035                                 desc->error = -ENOMEM;
1036                                 goto out;
1037                         }
1038                 }
1039                 error = add_to_page_cache_lru(cached_page, mapping,
1040                                                 index, GFP_KERNEL);
1041                 if (error) {
1042                         if (error == -EEXIST)
1043                                 goto find_page;
1044                         desc->error = error;
1045                         goto out;
1046                 }
1047                 page = cached_page;
1048                 cached_page = NULL;
1049                 goto readpage;
1050         }
1051
1052 out:
1053         *_ra = ra;
1054
1055         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1056         if (cached_page)
1057                 page_cache_release(cached_page);
1058         if (filp)
1059                 file_accessed(filp);
1060 }
1061 EXPORT_SYMBOL(do_generic_mapping_read);
1062
1063 int file_read_actor(read_descriptor_t *desc, struct page *page,
1064                         unsigned long offset, unsigned long size)
1065 {
1066         char *kaddr;
1067         unsigned long left, count = desc->count;
1068
1069         if (size > count)
1070                 size = count;
1071
1072         /*
1073          * Faults on the destination of a read are common, so do it before
1074          * taking the kmap.
1075          */
1076         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1077                 kaddr = kmap_atomic(page, KM_USER0);
1078                 left = __copy_to_user_inatomic(desc->arg.buf,
1079                                                 kaddr + offset, size);
1080                 kunmap_atomic(kaddr, KM_USER0);
1081                 if (left == 0)
1082                         goto success;
1083         }
1084
1085         /* Do it the slow way */
1086         kaddr = kmap(page);
1087         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1088         kunmap(page);
1089
1090         if (left) {
1091                 size -= left;
1092                 desc->error = -EFAULT;
1093         }
1094 success:
1095         desc->count = count - size;
1096         desc->written += size;
1097         desc->arg.buf += size;
1098         return size;
1099 }
1100
1101 /*
1102  * Performs necessary checks before doing a write
1103  * @iov:        io vector request
1104  * @nr_segs:    number of segments in the iovec
1105  * @count:      number of bytes to write
1106  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1107  *
1108  * Adjust number of segments and amount of bytes to write (nr_segs should be
1109  * properly initialized first). Returns appropriate error code that caller
1110  * should return or zero in case that write should be allowed.
1111  */
1112 int generic_segment_checks(const struct iovec *iov,
1113                         unsigned long *nr_segs, size_t *count, int access_flags)
1114 {
1115         unsigned long   seg;
1116         size_t cnt = 0;
1117         for (seg = 0; seg < *nr_segs; seg++) {
1118                 const struct iovec *iv = &iov[seg];
1119
1120                 /*
1121                  * If any segment has a negative length, or the cumulative
1122                  * length ever wraps negative then return -EINVAL.
1123                  */
1124                 cnt += iv->iov_len;
1125                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1126                         return -EINVAL;
1127                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1128                         continue;
1129                 if (seg == 0)
1130                         return -EFAULT;
1131                 *nr_segs = seg;
1132                 cnt -= iv->iov_len;     /* This segment is no good */
1133                 break;
1134         }
1135         *count = cnt;
1136         return 0;
1137 }
1138 EXPORT_SYMBOL(generic_segment_checks);
1139
1140 /**
1141  * generic_file_aio_read - generic filesystem read routine
1142  * @iocb:       kernel I/O control block
1143  * @iov:        io vector request
1144  * @nr_segs:    number of segments in the iovec
1145  * @pos:        current file position
1146  *
1147  * This is the "read()" routine for all filesystems
1148  * that can use the page cache directly.
1149  */
1150 ssize_t
1151 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1152                 unsigned long nr_segs, loff_t pos)
1153 {
1154         struct file *filp = iocb->ki_filp;
1155         ssize_t retval;
1156         unsigned long seg;
1157         size_t count;
1158         loff_t *ppos = &iocb->ki_pos;
1159
1160         count = 0;
1161         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1162         if (retval)
1163                 return retval;
1164
1165         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1166         if (filp->f_flags & O_DIRECT) {
1167                 loff_t size;
1168                 struct address_space *mapping;
1169                 struct inode *inode;
1170
1171                 mapping = filp->f_mapping;
1172                 inode = mapping->host;
1173                 retval = 0;
1174                 if (!count)
1175                         goto out; /* skip atime */
1176                 size = i_size_read(inode);
1177                 if (pos < size) {
1178                         retval = generic_file_direct_IO(READ, iocb,
1179                                                 iov, pos, nr_segs);
1180                         if (retval > 0)
1181                                 *ppos = pos + retval;
1182                 }
1183                 if (likely(retval != 0)) {
1184                         file_accessed(filp);
1185                         goto out;
1186                 }
1187         }
1188
1189         retval = 0;
1190         if (count) {
1191                 for (seg = 0; seg < nr_segs; seg++) {
1192                         read_descriptor_t desc;
1193
1194                         desc.written = 0;
1195                         desc.arg.buf = iov[seg].iov_base;
1196                         desc.count = iov[seg].iov_len;
1197                         if (desc.count == 0)
1198                                 continue;
1199                         desc.error = 0;
1200                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1201                         retval += desc.written;
1202                         if (desc.error) {
1203                                 retval = retval ?: desc.error;
1204                                 break;
1205                         }
1206                         if (desc.count > 0)
1207                                 break;
1208                 }
1209         }
1210 out:
1211         return retval;
1212 }
1213 EXPORT_SYMBOL(generic_file_aio_read);
1214
1215 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1216 {
1217         ssize_t written;
1218         unsigned long count = desc->count;
1219         struct file *file = desc->arg.data;
1220
1221         if (size > count)
1222                 size = count;
1223
1224         written = file->f_op->sendpage(file, page, offset,
1225                                        size, &file->f_pos, size<count);
1226         if (written < 0) {
1227                 desc->error = written;
1228                 written = 0;
1229         }
1230         desc->count = count - written;
1231         desc->written += written;
1232         return written;
1233 }
1234
1235 static ssize_t
1236 do_readahead(struct address_space *mapping, struct file *filp,
1237              unsigned long index, unsigned long nr)
1238 {
1239         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1240                 return -EINVAL;
1241
1242         force_page_cache_readahead(mapping, filp, index,
1243                                         max_sane_readahead(nr));
1244         return 0;
1245 }
1246
1247 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1248 {
1249         ssize_t ret;
1250         struct file *file;
1251
1252         ret = -EBADF;
1253         file = fget(fd);
1254         if (file) {
1255                 if (file->f_mode & FMODE_READ) {
1256                         struct address_space *mapping = file->f_mapping;
1257                         unsigned long start = offset >> PAGE_CACHE_SHIFT;
1258                         unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1259                         unsigned long len = end - start + 1;
1260                         ret = do_readahead(mapping, file, start, len);
1261                 }
1262                 fput(file);
1263         }
1264         return ret;
1265 }
1266
1267 #ifdef CONFIG_MMU
1268 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1269 /**
1270  * page_cache_read - adds requested page to the page cache if not already there
1271  * @file:       file to read
1272  * @offset:     page index
1273  *
1274  * This adds the requested page to the page cache if it isn't already there,
1275  * and schedules an I/O to read in its contents from disk.
1276  */
1277 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1278 {
1279         struct address_space *mapping = file->f_mapping;
1280         struct page *page; 
1281         int ret;
1282
1283         do {
1284                 page = page_cache_alloc_cold(mapping);
1285                 if (!page)
1286                         return -ENOMEM;
1287
1288                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1289                 if (ret == 0)
1290                         ret = mapping->a_ops->readpage(file, page);
1291                 else if (ret == -EEXIST)
1292                         ret = 0; /* losing race to add is OK */
1293
1294                 page_cache_release(page);
1295
1296         } while (ret == AOP_TRUNCATED_PAGE);
1297                 
1298         return ret;
1299 }
1300
1301 #define MMAP_LOTSAMISS  (100)
1302
1303 /**
1304  * filemap_nopage - read in file data for page fault handling
1305  * @area:       the applicable vm_area
1306  * @address:    target address to read in
1307  * @type:       returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1308  *
1309  * filemap_nopage() is invoked via the vma operations vector for a
1310  * mapped memory region to read in file data during a page fault.
1311  *
1312  * The goto's are kind of ugly, but this streamlines the normal case of having
1313  * it in the page cache, and handles the special cases reasonably without
1314  * having a lot of duplicated code.
1315  */
1316 struct page *filemap_nopage(struct vm_area_struct *area,
1317                                 unsigned long address, int *type)
1318 {
1319         int error;
1320         struct file *file = area->vm_file;
1321         struct address_space *mapping = file->f_mapping;
1322         struct file_ra_state *ra = &file->f_ra;
1323         struct inode *inode = mapping->host;
1324         struct page *page;
1325         unsigned long size, pgoff;
1326         int did_readaround = 0, majmin = VM_FAULT_MINOR;
1327
1328         pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1329
1330 retry_all:
1331         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1332         if (pgoff >= size)
1333                 goto outside_data_content;
1334
1335         /* If we don't want any read-ahead, don't bother */
1336         if (VM_RandomReadHint(area))
1337                 goto no_cached_page;
1338
1339         /*
1340          * The readahead code wants to be told about each and every page
1341          * so it can build and shrink its windows appropriately
1342          *
1343          * For sequential accesses, we use the generic readahead logic.
1344          */
1345         if (VM_SequentialReadHint(area))
1346                 page_cache_readahead(mapping, ra, file, pgoff, 1);
1347
1348         /*
1349          * Do we have something in the page cache already?
1350          */
1351 retry_find:
1352         page = find_get_page(mapping, pgoff);
1353         if (!page) {
1354                 unsigned long ra_pages;
1355
1356                 if (VM_SequentialReadHint(area)) {
1357                         handle_ra_miss(mapping, ra, pgoff);
1358                         goto no_cached_page;
1359                 }
1360                 ra->mmap_miss++;
1361
1362                 /*
1363                  * Do we miss much more than hit in this file? If so,
1364                  * stop bothering with read-ahead. It will only hurt.
1365                  */
1366                 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1367                         goto no_cached_page;
1368
1369                 /*
1370                  * To keep the pgmajfault counter straight, we need to
1371                  * check did_readaround, as this is an inner loop.
1372                  */
1373                 if (!did_readaround) {
1374                         majmin = VM_FAULT_MAJOR;
1375                         count_vm_event(PGMAJFAULT);
1376                 }
1377                 did_readaround = 1;
1378                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1379                 if (ra_pages) {
1380                         pgoff_t start = 0;
1381
1382                         if (pgoff > ra_pages / 2)
1383                                 start = pgoff - ra_pages / 2;
1384                         do_page_cache_readahead(mapping, file, start, ra_pages);
1385                 }
1386                 page = find_get_page(mapping, pgoff);
1387                 if (!page)
1388                         goto no_cached_page;
1389         }
1390
1391         if (!did_readaround)
1392                 ra->mmap_hit++;
1393
1394         /*
1395          * Ok, found a page in the page cache, now we need to check
1396          * that it's up-to-date.
1397          */
1398         if (!PageUptodate(page))
1399                 goto page_not_uptodate;
1400
1401 success:
1402         /*
1403          * Found the page and have a reference on it.
1404          */
1405         mark_page_accessed(page);
1406         if (type)
1407                 *type = majmin;
1408         return page;
1409
1410 outside_data_content:
1411         /*
1412          * An external ptracer can access pages that normally aren't
1413          * accessible..
1414          */
1415         if (area->vm_mm == current->mm)
1416                 return NOPAGE_SIGBUS;
1417         /* Fall through to the non-read-ahead case */
1418 no_cached_page:
1419         /*
1420          * We're only likely to ever get here if MADV_RANDOM is in
1421          * effect.
1422          */
1423         error = page_cache_read(file, pgoff);
1424
1425         /*
1426          * The page we want has now been added to the page cache.
1427          * In the unlikely event that someone removed it in the
1428          * meantime, we'll just come back here and read it again.
1429          */
1430         if (error >= 0)
1431                 goto retry_find;
1432
1433         /*
1434          * An error return from page_cache_read can result if the
1435          * system is low on memory, or a problem occurs while trying
1436          * to schedule I/O.
1437          */
1438         if (error == -ENOMEM)
1439                 return NOPAGE_OOM;
1440         return NOPAGE_SIGBUS;
1441
1442 page_not_uptodate:
1443         if (!did_readaround) {
1444                 majmin = VM_FAULT_MAJOR;
1445                 count_vm_event(PGMAJFAULT);
1446         }
1447
1448         /*
1449          * Umm, take care of errors if the page isn't up-to-date.
1450          * Try to re-read it _once_. We do this synchronously,
1451          * because there really aren't any performance issues here
1452          * and we need to check for errors.
1453          */
1454         lock_page(page);
1455
1456         /* Somebody truncated the page on us? */
1457         if (!page->mapping) {
1458                 unlock_page(page);
1459                 page_cache_release(page);
1460                 goto retry_all;
1461         }
1462
1463         /* Somebody else successfully read it in? */
1464         if (PageUptodate(page)) {
1465                 unlock_page(page);
1466                 goto success;
1467         }
1468         ClearPageError(page);
1469         error = mapping->a_ops->readpage(file, page);
1470         if (!error) {
1471                 wait_on_page_locked(page);
1472                 if (PageUptodate(page))
1473                         goto success;
1474         } else if (error == AOP_TRUNCATED_PAGE) {
1475                 page_cache_release(page);
1476                 goto retry_find;
1477         }
1478
1479         /*
1480          * Things didn't work out. Return zero to tell the
1481          * mm layer so, possibly freeing the page cache page first.
1482          */
1483         shrink_readahead_size_eio(file, ra);
1484         page_cache_release(page);
1485         return NOPAGE_SIGBUS;
1486 }
1487 EXPORT_SYMBOL(filemap_nopage);
1488
1489 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1490                                         int nonblock)
1491 {
1492         struct address_space *mapping = file->f_mapping;
1493         struct page *page;
1494         int error;
1495
1496         /*
1497          * Do we have something in the page cache already?
1498          */
1499 retry_find:
1500         page = find_get_page(mapping, pgoff);
1501         if (!page) {
1502                 if (nonblock)
1503                         return NULL;
1504                 goto no_cached_page;
1505         }
1506
1507         /*
1508          * Ok, found a page in the page cache, now we need to check
1509          * that it's up-to-date.
1510          */
1511         if (!PageUptodate(page)) {
1512                 if (nonblock) {
1513                         page_cache_release(page);
1514                         return NULL;
1515                 }
1516                 goto page_not_uptodate;
1517         }
1518
1519 success:
1520         /*
1521          * Found the page and have a reference on it.
1522          */
1523         mark_page_accessed(page);
1524         return page;
1525
1526 no_cached_page:
1527         error = page_cache_read(file, pgoff);
1528
1529         /*
1530          * The page we want has now been added to the page cache.
1531          * In the unlikely event that someone removed it in the
1532          * meantime, we'll just come back here and read it again.
1533          */
1534         if (error >= 0)
1535                 goto retry_find;
1536
1537         /*
1538          * An error return from page_cache_read can result if the
1539          * system is low on memory, or a problem occurs while trying
1540          * to schedule I/O.
1541          */
1542         return NULL;
1543
1544 page_not_uptodate:
1545         lock_page(page);
1546
1547         /* Did it get truncated while we waited for it? */
1548         if (!page->mapping) {
1549                 unlock_page(page);
1550                 goto err;
1551         }
1552
1553         /* Did somebody else get it up-to-date? */
1554         if (PageUptodate(page)) {
1555                 unlock_page(page);
1556                 goto success;
1557         }
1558
1559         error = mapping->a_ops->readpage(file, page);
1560         if (!error) {
1561                 wait_on_page_locked(page);
1562                 if (PageUptodate(page))
1563                         goto success;
1564         } else if (error == AOP_TRUNCATED_PAGE) {
1565                 page_cache_release(page);
1566                 goto retry_find;
1567         }
1568
1569         /*
1570          * Umm, take care of errors if the page isn't up-to-date.
1571          * Try to re-read it _once_. We do this synchronously,
1572          * because there really aren't any performance issues here
1573          * and we need to check for errors.
1574          */
1575         lock_page(page);
1576
1577         /* Somebody truncated the page on us? */
1578         if (!page->mapping) {
1579                 unlock_page(page);
1580                 goto err;
1581         }
1582         /* Somebody else successfully read it in? */
1583         if (PageUptodate(page)) {
1584                 unlock_page(page);
1585                 goto success;
1586         }
1587
1588         ClearPageError(page);
1589         error = mapping->a_ops->readpage(file, page);
1590         if (!error) {
1591                 wait_on_page_locked(page);
1592                 if (PageUptodate(page))
1593                         goto success;
1594         } else if (error == AOP_TRUNCATED_PAGE) {
1595                 page_cache_release(page);
1596                 goto retry_find;
1597         }
1598
1599         /*
1600          * Things didn't work out. Return zero to tell the
1601          * mm layer so, possibly freeing the page cache page first.
1602          */
1603 err:
1604         page_cache_release(page);
1605
1606         return NULL;
1607 }
1608
1609 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1610                 unsigned long len, pgprot_t prot, unsigned long pgoff,
1611                 int nonblock)
1612 {
1613         struct file *file = vma->vm_file;
1614         struct address_space *mapping = file->f_mapping;
1615         struct inode *inode = mapping->host;
1616         unsigned long size;
1617         struct mm_struct *mm = vma->vm_mm;
1618         struct page *page;
1619         int err;
1620
1621         if (!nonblock)
1622                 force_page_cache_readahead(mapping, vma->vm_file,
1623                                         pgoff, len >> PAGE_CACHE_SHIFT);
1624
1625 repeat:
1626         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1627         if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1628                 return -EINVAL;
1629
1630         page = filemap_getpage(file, pgoff, nonblock);
1631
1632         /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1633          * done in shmem_populate calling shmem_getpage */
1634         if (!page && !nonblock)
1635                 return -ENOMEM;
1636
1637         if (page) {
1638                 err = install_page(mm, vma, addr, page, prot);
1639                 if (err) {
1640                         page_cache_release(page);
1641                         return err;
1642                 }
1643         } else if (vma->vm_flags & VM_NONLINEAR) {
1644                 /* No page was found just because we can't read it in now (being
1645                  * here implies nonblock != 0), but the page may exist, so set
1646                  * the PTE to fault it in later. */
1647                 err = install_file_pte(mm, vma, addr, pgoff, prot);
1648                 if (err)
1649                         return err;
1650         }
1651
1652         len -= PAGE_SIZE;
1653         addr += PAGE_SIZE;
1654         pgoff++;
1655         if (len)
1656                 goto repeat;
1657
1658         return 0;
1659 }
1660 EXPORT_SYMBOL(filemap_populate);
1661
1662 struct vm_operations_struct generic_file_vm_ops = {
1663         .nopage         = filemap_nopage,
1664         .populate       = filemap_populate,
1665 };
1666
1667 /* This is used for a general mmap of a disk file */
1668
1669 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1670 {
1671         struct address_space *mapping = file->f_mapping;
1672
1673         if (!mapping->a_ops->readpage)
1674                 return -ENOEXEC;
1675         file_accessed(file);
1676         vma->vm_ops = &generic_file_vm_ops;
1677         return 0;
1678 }
1679
1680 /*
1681  * This is for filesystems which do not implement ->writepage.
1682  */
1683 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1684 {
1685         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1686                 return -EINVAL;
1687         return generic_file_mmap(file, vma);
1688 }
1689 #else
1690 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1691 {
1692         return -ENOSYS;
1693 }
1694 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1695 {
1696         return -ENOSYS;
1697 }
1698 #endif /* CONFIG_MMU */
1699
1700 EXPORT_SYMBOL(generic_file_mmap);
1701 EXPORT_SYMBOL(generic_file_readonly_mmap);
1702
1703 static struct page *__read_cache_page(struct address_space *mapping,
1704                                 unsigned long index,
1705                                 int (*filler)(void *,struct page*),
1706                                 void *data)
1707 {
1708         struct page *page, *cached_page = NULL;
1709         int err;
1710 repeat:
1711         page = find_get_page(mapping, index);
1712         if (!page) {
1713                 if (!cached_page) {
1714                         cached_page = page_cache_alloc_cold(mapping);
1715                         if (!cached_page)
1716                                 return ERR_PTR(-ENOMEM);
1717                 }
1718                 err = add_to_page_cache_lru(cached_page, mapping,
1719                                         index, GFP_KERNEL);
1720                 if (err == -EEXIST)
1721                         goto repeat;
1722                 if (err < 0) {
1723                         /* Presumably ENOMEM for radix tree node */
1724                         page_cache_release(cached_page);
1725                         return ERR_PTR(err);
1726                 }
1727                 page = cached_page;
1728                 cached_page = NULL;
1729                 err = filler(data, page);
1730                 if (err < 0) {
1731                         page_cache_release(page);
1732                         page = ERR_PTR(err);
1733                 }
1734         }
1735         if (cached_page)
1736                 page_cache_release(cached_page);
1737         return page;
1738 }
1739
1740 /*
1741  * Same as read_cache_page, but don't wait for page to become unlocked
1742  * after submitting it to the filler.
1743  */
1744 struct page *read_cache_page_async(struct address_space *mapping,
1745                                 unsigned long index,
1746                                 int (*filler)(void *,struct page*),
1747                                 void *data)
1748 {
1749         struct page *page;
1750         int err;
1751
1752 retry:
1753         page = __read_cache_page(mapping, index, filler, data);
1754         if (IS_ERR(page))
1755                 return page;
1756         if (PageUptodate(page))
1757                 goto out;
1758
1759         lock_page(page);
1760         if (!page->mapping) {
1761                 unlock_page(page);
1762                 page_cache_release(page);
1763                 goto retry;
1764         }
1765         if (PageUptodate(page)) {
1766                 unlock_page(page);
1767                 goto out;
1768         }
1769         err = filler(data, page);
1770         if (err < 0) {
1771                 page_cache_release(page);
1772                 return ERR_PTR(err);
1773         }
1774 out:
1775         mark_page_accessed(page);
1776         return page;
1777 }
1778 EXPORT_SYMBOL(read_cache_page_async);
1779
1780 /**
1781  * read_cache_page - read into page cache, fill it if needed
1782  * @mapping:    the page's address_space
1783  * @index:      the page index
1784  * @filler:     function to perform the read
1785  * @data:       destination for read data
1786  *
1787  * Read into the page cache. If a page already exists, and PageUptodate() is
1788  * not set, try to fill the page then wait for it to become unlocked.
1789  *
1790  * If the page does not get brought uptodate, return -EIO.
1791  */
1792 struct page *read_cache_page(struct address_space *mapping,
1793                                 unsigned long index,
1794                                 int (*filler)(void *,struct page*),
1795                                 void *data)
1796 {
1797         struct page *page;
1798
1799         page = read_cache_page_async(mapping, index, filler, data);
1800         if (IS_ERR(page))
1801                 goto out;
1802         wait_on_page_locked(page);
1803         if (!PageUptodate(page)) {
1804                 page_cache_release(page);
1805                 page = ERR_PTR(-EIO);
1806         }
1807  out:
1808         return page;
1809 }
1810 EXPORT_SYMBOL(read_cache_page);
1811
1812 /*
1813  * If the page was newly created, increment its refcount and add it to the
1814  * caller's lru-buffering pagevec.  This function is specifically for
1815  * generic_file_write().
1816  */
1817 static inline struct page *
1818 __grab_cache_page(struct address_space *mapping, unsigned long index,
1819                         struct page **cached_page, struct pagevec *lru_pvec)
1820 {
1821         int err;
1822         struct page *page;
1823 repeat:
1824         page = find_lock_page(mapping, index);
1825         if (!page) {
1826                 if (!*cached_page) {
1827                         *cached_page = page_cache_alloc(mapping);
1828                         if (!*cached_page)
1829                                 return NULL;
1830                 }
1831                 err = add_to_page_cache(*cached_page, mapping,
1832                                         index, GFP_KERNEL);
1833                 if (err == -EEXIST)
1834                         goto repeat;
1835                 if (err == 0) {
1836                         page = *cached_page;
1837                         page_cache_get(page);
1838                         if (!pagevec_add(lru_pvec, page))
1839                                 __pagevec_lru_add(lru_pvec);
1840                         *cached_page = NULL;
1841                 }
1842         }
1843         return page;
1844 }
1845
1846 /*
1847  * The logic we want is
1848  *
1849  *      if suid or (sgid and xgrp)
1850  *              remove privs
1851  */
1852 int should_remove_suid(struct dentry *dentry)
1853 {
1854         mode_t mode = dentry->d_inode->i_mode;
1855         int kill = 0;
1856
1857         /* suid always must be killed */
1858         if (unlikely(mode & S_ISUID))
1859                 kill = ATTR_KILL_SUID;
1860
1861         /*
1862          * sgid without any exec bits is just a mandatory locking mark; leave
1863          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1864          */
1865         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866                 kill |= ATTR_KILL_SGID;
1867
1868         if (unlikely(kill && !capable(CAP_FSETID)))
1869                 return kill;
1870
1871         return 0;
1872 }
1873 EXPORT_SYMBOL(should_remove_suid);
1874
1875 int __remove_suid(struct dentry *dentry, int kill)
1876 {
1877         struct iattr newattrs;
1878
1879         newattrs.ia_valid = ATTR_FORCE | kill;
1880         return notify_change(dentry, &newattrs);
1881 }
1882
1883 int remove_suid(struct dentry *dentry)
1884 {
1885         int kill = should_remove_suid(dentry);
1886
1887         if (unlikely(kill))
1888                 return __remove_suid(dentry, kill);
1889
1890         return 0;
1891 }
1892 EXPORT_SYMBOL(remove_suid);
1893
1894 size_t
1895 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1896                         const struct iovec *iov, size_t base, size_t bytes)
1897 {
1898         size_t copied = 0, left = 0;
1899
1900         while (bytes) {
1901                 char __user *buf = iov->iov_base + base;
1902                 int copy = min(bytes, iov->iov_len - base);
1903
1904                 base = 0;
1905                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1906                 copied += copy;
1907                 bytes -= copy;
1908                 vaddr += copy;
1909                 iov++;
1910
1911                 if (unlikely(left))
1912                         break;
1913         }
1914         return copied - left;
1915 }
1916
1917 /*
1918  * Performs necessary checks before doing a write
1919  *
1920  * Can adjust writing position or amount of bytes to write.
1921  * Returns appropriate error code that caller should return or
1922  * zero in case that write should be allowed.
1923  */
1924 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1925 {
1926         struct inode *inode = file->f_mapping->host;
1927         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1928
1929         if (unlikely(*pos < 0))
1930                 return -EINVAL;
1931
1932         if (!isblk) {
1933                 /* FIXME: this is for backwards compatibility with 2.4 */
1934                 if (file->f_flags & O_APPEND)
1935                         *pos = i_size_read(inode);
1936
1937                 if (limit != RLIM_INFINITY) {
1938                         if (*pos >= limit) {
1939                                 send_sig(SIGXFSZ, current, 0);
1940                                 return -EFBIG;
1941                         }
1942                         if (*count > limit - (typeof(limit))*pos) {
1943                                 *count = limit - (typeof(limit))*pos;
1944                         }
1945                 }
1946         }
1947
1948         /*
1949          * LFS rule
1950          */
1951         if (unlikely(*pos + *count > MAX_NON_LFS &&
1952                                 !(file->f_flags & O_LARGEFILE))) {
1953                 if (*pos >= MAX_NON_LFS) {
1954                         return -EFBIG;
1955                 }
1956                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1957                         *count = MAX_NON_LFS - (unsigned long)*pos;
1958                 }
1959         }
1960
1961         /*
1962          * Are we about to exceed the fs block limit ?
1963          *
1964          * If we have written data it becomes a short write.  If we have
1965          * exceeded without writing data we send a signal and return EFBIG.
1966          * Linus frestrict idea will clean these up nicely..
1967          */
1968         if (likely(!isblk)) {
1969                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1970                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1971                                 return -EFBIG;
1972                         }
1973                         /* zero-length writes at ->s_maxbytes are OK */
1974                 }
1975
1976                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1977                         *count = inode->i_sb->s_maxbytes - *pos;
1978         } else {
1979 #ifdef CONFIG_BLOCK
1980                 loff_t isize;
1981                 if (bdev_read_only(I_BDEV(inode)))
1982                         return -EPERM;
1983                 isize = i_size_read(inode);
1984                 if (*pos >= isize) {
1985                         if (*count || *pos > isize)
1986                                 return -ENOSPC;
1987                 }
1988
1989                 if (*pos + *count > isize)
1990                         *count = isize - *pos;
1991 #else
1992                 return -EPERM;
1993 #endif
1994         }
1995         return 0;
1996 }
1997 EXPORT_SYMBOL(generic_write_checks);
1998
1999 ssize_t
2000 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2001                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2002                 size_t count, size_t ocount)
2003 {
2004         struct file     *file = iocb->ki_filp;
2005         struct address_space *mapping = file->f_mapping;
2006         struct inode    *inode = mapping->host;
2007         ssize_t         written;
2008
2009         if (count != ocount)
2010                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2011
2012         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2013         if (written > 0) {
2014                 loff_t end = pos + written;
2015                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2016                         i_size_write(inode,  end);
2017                         mark_inode_dirty(inode);
2018                 }
2019                 *ppos = end;
2020         }
2021
2022         /*
2023          * Sync the fs metadata but not the minor inode changes and
2024          * of course not the data as we did direct DMA for the IO.
2025          * i_mutex is held, which protects generic_osync_inode() from
2026          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2027          */
2028         if ((written >= 0 || written == -EIOCBQUEUED) &&
2029             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2030                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2031                 if (err < 0)
2032                         written = err;
2033         }
2034         return written;
2035 }
2036 EXPORT_SYMBOL(generic_file_direct_write);
2037
2038 ssize_t
2039 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2040                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2041                 size_t count, ssize_t written)
2042 {
2043         struct file *file = iocb->ki_filp;
2044         struct address_space * mapping = file->f_mapping;
2045         const struct address_space_operations *a_ops = mapping->a_ops;
2046         struct inode    *inode = mapping->host;
2047         long            status = 0;
2048         struct page     *page;
2049         struct page     *cached_page = NULL;
2050         size_t          bytes;
2051         struct pagevec  lru_pvec;
2052         const struct iovec *cur_iov = iov; /* current iovec */
2053         size_t          iov_base = 0;      /* offset in the current iovec */
2054         char __user     *buf;
2055
2056         pagevec_init(&lru_pvec, 0);
2057
2058         /*
2059          * handle partial DIO write.  Adjust cur_iov if needed.
2060          */
2061         if (likely(nr_segs == 1))
2062                 buf = iov->iov_base + written;
2063         else {
2064                 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2065                 buf = cur_iov->iov_base + iov_base;
2066         }
2067
2068         do {
2069                 unsigned long index;
2070                 unsigned long offset;
2071                 size_t copied;
2072
2073                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2074                 index = pos >> PAGE_CACHE_SHIFT;
2075                 bytes = PAGE_CACHE_SIZE - offset;
2076
2077                 /* Limit the size of the copy to the caller's write size */
2078                 bytes = min(bytes, count);
2079
2080                 /* We only need to worry about prefaulting when writes are from
2081                  * user-space.  NFSd uses vfs_writev with several non-aligned
2082                  * segments in the vector, and limiting to one segment a time is
2083                  * a noticeable performance for re-write
2084                  */
2085                 if (!segment_eq(get_fs(), KERNEL_DS)) {
2086                         /*
2087                          * Limit the size of the copy to that of the current
2088                          * segment, because fault_in_pages_readable() doesn't
2089                          * know how to walk segments.
2090                          */
2091                         bytes = min(bytes, cur_iov->iov_len - iov_base);
2092
2093                         /*
2094                          * Bring in the user page that we will copy from
2095                          * _first_.  Otherwise there's a nasty deadlock on
2096                          * copying from the same page as we're writing to,
2097                          * without it being marked up-to-date.
2098                          */
2099                         fault_in_pages_readable(buf, bytes);
2100                 }
2101                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2102                 if (!page) {
2103                         status = -ENOMEM;
2104                         break;
2105                 }
2106
2107                 if (unlikely(bytes == 0)) {
2108                         status = 0;
2109                         copied = 0;
2110                         goto zero_length_segment;
2111                 }
2112
2113                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2114                 if (unlikely(status)) {
2115                         loff_t isize = i_size_read(inode);
2116
2117                         if (status != AOP_TRUNCATED_PAGE)
2118                                 unlock_page(page);
2119                         page_cache_release(page);
2120                         if (status == AOP_TRUNCATED_PAGE)
2121                                 continue;
2122                         /*
2123                          * prepare_write() may have instantiated a few blocks
2124                          * outside i_size.  Trim these off again.
2125                          */
2126                         if (pos + bytes > isize)
2127                                 vmtruncate(inode, isize);
2128                         break;
2129                 }
2130                 if (likely(nr_segs == 1))
2131                         copied = filemap_copy_from_user(page, offset,
2132                                                         buf, bytes);
2133                 else
2134                         copied = filemap_copy_from_user_iovec(page, offset,
2135                                                 cur_iov, iov_base, bytes);
2136                 flush_dcache_page(page);
2137                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2138                 if (status == AOP_TRUNCATED_PAGE) {
2139                         page_cache_release(page);
2140                         continue;
2141                 }
2142 zero_length_segment:
2143                 if (likely(copied >= 0)) {
2144                         if (!status)
2145                                 status = copied;
2146
2147                         if (status >= 0) {
2148                                 written += status;
2149                                 count -= status;
2150                                 pos += status;
2151                                 buf += status;
2152                                 if (unlikely(nr_segs > 1)) {
2153                                         filemap_set_next_iovec(&cur_iov,
2154                                                         &iov_base, status);
2155                                         if (count)
2156                                                 buf = cur_iov->iov_base +
2157                                                         iov_base;
2158                                 } else {
2159                                         iov_base += status;
2160                                 }
2161                         }
2162                 }
2163                 if (unlikely(copied != bytes))
2164                         if (status >= 0)
2165                                 status = -EFAULT;
2166                 unlock_page(page);
2167                 mark_page_accessed(page);
2168                 page_cache_release(page);
2169                 if (status < 0)
2170                         break;
2171                 balance_dirty_pages_ratelimited(mapping);
2172                 cond_resched();
2173         } while (count);
2174         *ppos = pos;
2175
2176         if (cached_page)
2177                 page_cache_release(cached_page);
2178
2179         /*
2180          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2181          */
2182         if (likely(status >= 0)) {
2183                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2184                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2185                                 status = generic_osync_inode(inode, mapping,
2186                                                 OSYNC_METADATA|OSYNC_DATA);
2187                 }
2188         }
2189         
2190         /*
2191          * If we get here for O_DIRECT writes then we must have fallen through
2192          * to buffered writes (block instantiation inside i_size).  So we sync
2193          * the file data here, to try to honour O_DIRECT expectations.
2194          */
2195         if (unlikely(file->f_flags & O_DIRECT) && written)
2196                 status = filemap_write_and_wait(mapping);
2197
2198         pagevec_lru_add(&lru_pvec);
2199         return written ? written : status;
2200 }
2201 EXPORT_SYMBOL(generic_file_buffered_write);
2202
2203 static ssize_t
2204 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2205                                 unsigned long nr_segs, loff_t *ppos)
2206 {
2207         struct file *file = iocb->ki_filp;
2208         struct address_space * mapping = file->f_mapping;
2209         size_t ocount;          /* original count */
2210         size_t count;           /* after file limit checks */
2211         struct inode    *inode = mapping->host;
2212         loff_t          pos;
2213         ssize_t         written;
2214         ssize_t         err;
2215
2216         ocount = 0;
2217         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2218         if (err)
2219                 return err;
2220
2221         count = ocount;
2222         pos = *ppos;
2223
2224         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2225
2226         /* We can write back this queue in page reclaim */
2227         current->backing_dev_info = mapping->backing_dev_info;
2228         written = 0;
2229
2230         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2231         if (err)
2232                 goto out;
2233
2234         if (count == 0)
2235                 goto out;
2236
2237         err = remove_suid(file->f_path.dentry);
2238         if (err)
2239                 goto out;
2240
2241         file_update_time(file);
2242
2243         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2244         if (unlikely(file->f_flags & O_DIRECT)) {
2245                 loff_t endbyte;
2246                 ssize_t written_buffered;
2247
2248                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2249                                                         ppos, count, ocount);
2250                 if (written < 0 || written == count)
2251                         goto out;
2252                 /*
2253                  * direct-io write to a hole: fall through to buffered I/O
2254                  * for completing the rest of the request.
2255                  */
2256                 pos += written;
2257                 count -= written;
2258                 written_buffered = generic_file_buffered_write(iocb, iov,
2259                                                 nr_segs, pos, ppos, count,
2260                                                 written);
2261                 /*
2262                  * If generic_file_buffered_write() retuned a synchronous error
2263                  * then we want to return the number of bytes which were
2264                  * direct-written, or the error code if that was zero.  Note
2265                  * that this differs from normal direct-io semantics, which
2266                  * will return -EFOO even if some bytes were written.
2267                  */
2268                 if (written_buffered < 0) {
2269                         err = written_buffered;
2270                         goto out;
2271                 }
2272
2273                 /*
2274                  * We need to ensure that the page cache pages are written to
2275                  * disk and invalidated to preserve the expected O_DIRECT
2276                  * semantics.
2277                  */
2278                 endbyte = pos + written_buffered - written - 1;
2279                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2280                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2281                                             SYNC_FILE_RANGE_WRITE|
2282                                             SYNC_FILE_RANGE_WAIT_AFTER);
2283                 if (err == 0) {
2284                         written = written_buffered;
2285                         invalidate_mapping_pages(mapping,
2286                                                  pos >> PAGE_CACHE_SHIFT,
2287                                                  endbyte >> PAGE_CACHE_SHIFT);
2288                 } else {
2289                         /*
2290                          * We don't know how much we wrote, so just return
2291                          * the number of bytes which were direct-written
2292                          */
2293                 }
2294         } else {
2295                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2296                                 pos, ppos, count, written);
2297         }
2298 out:
2299         current->backing_dev_info = NULL;
2300         return written ? written : err;
2301 }
2302
2303 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2304                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2305 {
2306         struct file *file = iocb->ki_filp;
2307         struct address_space *mapping = file->f_mapping;
2308         struct inode *inode = mapping->host;
2309         ssize_t ret;
2310
2311         BUG_ON(iocb->ki_pos != pos);
2312
2313         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2314                         &iocb->ki_pos);
2315
2316         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2317                 ssize_t err;
2318
2319                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2320                 if (err < 0)
2321                         ret = err;
2322         }
2323         return ret;
2324 }
2325 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2326
2327 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2328                 unsigned long nr_segs, loff_t pos)
2329 {
2330         struct file *file = iocb->ki_filp;
2331         struct address_space *mapping = file->f_mapping;
2332         struct inode *inode = mapping->host;
2333         ssize_t ret;
2334
2335         BUG_ON(iocb->ki_pos != pos);
2336
2337         mutex_lock(&inode->i_mutex);
2338         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2339                         &iocb->ki_pos);
2340         mutex_unlock(&inode->i_mutex);
2341
2342         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2343                 ssize_t err;
2344
2345                 err = sync_page_range(inode, mapping, pos, ret);
2346                 if (err < 0)
2347                         ret = err;
2348         }
2349         return ret;
2350 }
2351 EXPORT_SYMBOL(generic_file_aio_write);
2352
2353 /*
2354  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2355  * went wrong during pagecache shootdown.
2356  */
2357 static ssize_t
2358 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2359         loff_t offset, unsigned long nr_segs)
2360 {
2361         struct file *file = iocb->ki_filp;
2362         struct address_space *mapping = file->f_mapping;
2363         ssize_t retval;
2364         size_t write_len;
2365         pgoff_t end = 0; /* silence gcc */
2366
2367         /*
2368          * If it's a write, unmap all mmappings of the file up-front.  This
2369          * will cause any pte dirty bits to be propagated into the pageframes
2370          * for the subsequent filemap_write_and_wait().
2371          */
2372         if (rw == WRITE) {
2373                 write_len = iov_length(iov, nr_segs);
2374                 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2375                 if (mapping_mapped(mapping))
2376                         unmap_mapping_range(mapping, offset, write_len, 0);
2377         }
2378
2379         retval = filemap_write_and_wait(mapping);
2380         if (retval)
2381                 goto out;
2382
2383         /*
2384          * After a write we want buffered reads to be sure to go to disk to get
2385          * the new data.  We invalidate clean cached page from the region we're
2386          * about to write.  We do this *before* the write so that we can return
2387          * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2388          */
2389         if (rw == WRITE && mapping->nrpages) {
2390                 retval = invalidate_inode_pages2_range(mapping,
2391                                         offset >> PAGE_CACHE_SHIFT, end);
2392                 if (retval)
2393                         goto out;
2394         }
2395
2396         retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2397         if (retval)
2398                 goto out;
2399
2400         /*
2401          * Finally, try again to invalidate clean pages which might have been
2402          * faulted in by get_user_pages() if the source of the write was an
2403          * mmap()ed region of the file we're writing.  That's a pretty crazy
2404          * thing to do, so we don't support it 100%.  If this invalidation
2405          * fails and we have -EIOCBQUEUED we ignore the failure.
2406          */
2407         if (rw == WRITE && mapping->nrpages) {
2408                 int err = invalidate_inode_pages2_range(mapping,
2409                                               offset >> PAGE_CACHE_SHIFT, end);
2410                 if (err && retval >= 0)
2411                         retval = err;
2412         }
2413 out:
2414         return retval;
2415 }
2416
2417 /**
2418  * try_to_release_page() - release old fs-specific metadata on a page
2419  *
2420  * @page: the page which the kernel is trying to free
2421  * @gfp_mask: memory allocation flags (and I/O mode)
2422  *
2423  * The address_space is to try to release any data against the page
2424  * (presumably at page->private).  If the release was successful, return `1'.
2425  * Otherwise return zero.
2426  *
2427  * The @gfp_mask argument specifies whether I/O may be performed to release
2428  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2429  *
2430  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2431  */
2432 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2433 {
2434         struct address_space * const mapping = page->mapping;
2435
2436         BUG_ON(!PageLocked(page));
2437         if (PageWriteback(page))
2438                 return 0;
2439
2440         if (mapping && mapping->a_ops->releasepage)
2441                 return mapping->a_ops->releasepage(page, gfp_mask);
2442         return try_to_free_buffers(page);
2443 }
2444
2445 EXPORT_SYMBOL(try_to_release_page);