ring-buffer: add reader lock
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /* Up this if you want to test the TIME_EXTENTS and normalization */
22 #define DEBUG_SHIFT 0
23
24 /* FIXME!!! */
25 u64 ring_buffer_time_stamp(int cpu)
26 {
27         /* shift to debug/test normalization and TIME_EXTENTS */
28         return sched_clock() << DEBUG_SHIFT;
29 }
30
31 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
32 {
33         /* Just stupid testing the normalize function and deltas */
34         *ts >>= DEBUG_SHIFT;
35 }
36
37 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
38 #define RB_ALIGNMENT_SHIFT      2
39 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
40 #define RB_MAX_SMALL_DATA       28
41
42 enum {
43         RB_LEN_TIME_EXTEND = 8,
44         RB_LEN_TIME_STAMP = 16,
45 };
46
47 /* inline for ring buffer fast paths */
48 static inline unsigned
49 rb_event_length(struct ring_buffer_event *event)
50 {
51         unsigned length;
52
53         switch (event->type) {
54         case RINGBUF_TYPE_PADDING:
55                 /* undefined */
56                 return -1;
57
58         case RINGBUF_TYPE_TIME_EXTEND:
59                 return RB_LEN_TIME_EXTEND;
60
61         case RINGBUF_TYPE_TIME_STAMP:
62                 return RB_LEN_TIME_STAMP;
63
64         case RINGBUF_TYPE_DATA:
65                 if (event->len)
66                         length = event->len << RB_ALIGNMENT_SHIFT;
67                 else
68                         length = event->array[0];
69                 return length + RB_EVNT_HDR_SIZE;
70         default:
71                 BUG();
72         }
73         /* not hit */
74         return 0;
75 }
76
77 /**
78  * ring_buffer_event_length - return the length of the event
79  * @event: the event to get the length of
80  */
81 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
82 {
83         return rb_event_length(event);
84 }
85
86 /* inline for ring buffer fast paths */
87 static inline void *
88 rb_event_data(struct ring_buffer_event *event)
89 {
90         BUG_ON(event->type != RINGBUF_TYPE_DATA);
91         /* If length is in len field, then array[0] has the data */
92         if (event->len)
93                 return (void *)&event->array[0];
94         /* Otherwise length is in array[0] and array[1] has the data */
95         return (void *)&event->array[1];
96 }
97
98 /**
99  * ring_buffer_event_data - return the data of the event
100  * @event: the event to get the data from
101  */
102 void *ring_buffer_event_data(struct ring_buffer_event *event)
103 {
104         return rb_event_data(event);
105 }
106
107 #define for_each_buffer_cpu(buffer, cpu)                \
108         for_each_cpu_mask(cpu, buffer->cpumask)
109
110 #define TS_SHIFT        27
111 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
112 #define TS_DELTA_TEST   (~TS_MASK)
113
114 /*
115  * This hack stolen from mm/slob.c.
116  * We can store per page timing information in the page frame of the page.
117  * Thanks to Peter Zijlstra for suggesting this idea.
118  */
119 struct buffer_page {
120         u64              time_stamp;    /* page time stamp */
121         local_t          write;         /* index for next write */
122         local_t          commit;        /* write commited index */
123         unsigned         read;          /* index for next read */
124         struct list_head list;          /* list of free pages */
125         void *page;                     /* Actual data page */
126 };
127
128 /*
129  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
130  * this issue out.
131  */
132 static inline void free_buffer_page(struct buffer_page *bpage)
133 {
134         if (bpage->page)
135                 free_page((unsigned long)bpage->page);
136         kfree(bpage);
137 }
138
139 /*
140  * We need to fit the time_stamp delta into 27 bits.
141  */
142 static inline int test_time_stamp(u64 delta)
143 {
144         if (delta & TS_DELTA_TEST)
145                 return 1;
146         return 0;
147 }
148
149 #define BUF_PAGE_SIZE PAGE_SIZE
150
151 /*
152  * head_page == tail_page && head == tail then buffer is empty.
153  */
154 struct ring_buffer_per_cpu {
155         int                             cpu;
156         struct ring_buffer              *buffer;
157         spinlock_t                      reader_lock; /* serialize readers */
158         raw_spinlock_t                  lock;
159         struct lock_class_key           lock_key;
160         struct list_head                pages;
161         struct buffer_page              *head_page;     /* read from head */
162         struct buffer_page              *tail_page;     /* write to tail */
163         struct buffer_page              *commit_page;   /* commited pages */
164         struct buffer_page              *reader_page;
165         unsigned long                   overrun;
166         unsigned long                   entries;
167         u64                             write_stamp;
168         u64                             read_stamp;
169         atomic_t                        record_disabled;
170 };
171
172 struct ring_buffer {
173         unsigned long                   size;
174         unsigned                        pages;
175         unsigned                        flags;
176         int                             cpus;
177         cpumask_t                       cpumask;
178         atomic_t                        record_disabled;
179
180         struct mutex                    mutex;
181
182         struct ring_buffer_per_cpu      **buffers;
183 };
184
185 struct ring_buffer_iter {
186         struct ring_buffer_per_cpu      *cpu_buffer;
187         unsigned long                   head;
188         struct buffer_page              *head_page;
189         u64                             read_stamp;
190 };
191
192 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
193 #define RB_WARN_ON(buffer, cond)                                \
194         do {                                                    \
195                 if (unlikely(cond)) {                           \
196                         atomic_inc(&buffer->record_disabled);   \
197                         WARN_ON(1);                             \
198                 }                                               \
199         } while (0)
200
201 #define RB_WARN_ON_RET(buffer, cond)                            \
202         do {                                                    \
203                 if (unlikely(cond)) {                           \
204                         atomic_inc(&buffer->record_disabled);   \
205                         WARN_ON(1);                             \
206                         return;                                 \
207                 }                                               \
208         } while (0)
209
210 #define RB_WARN_ON_RET_INT(buffer, cond)                        \
211         do {                                                    \
212                 if (unlikely(cond)) {                           \
213                         atomic_inc(&buffer->record_disabled);   \
214                         WARN_ON(1);                             \
215                         return -1;                              \
216                 }                                               \
217         } while (0)
218
219 #define RB_WARN_ON_RET_NULL(buffer, cond)                       \
220         do {                                                    \
221                 if (unlikely(cond)) {                           \
222                         atomic_inc(&buffer->record_disabled);   \
223                         WARN_ON(1);                             \
224                         return NULL;                            \
225                 }                                               \
226         } while (0)
227
228 #define RB_WARN_ON_ONCE(buffer, cond)                           \
229         do {                                                    \
230                 static int once;                                \
231                 if (unlikely(cond) && !once) {                  \
232                         once++;                                 \
233                         atomic_inc(&buffer->record_disabled);   \
234                         WARN_ON(1);                             \
235                 }                                               \
236         } while (0)
237
238 /* buffer must be ring_buffer not per_cpu */
239 #define RB_WARN_ON_UNLOCK(buffer, cond)                         \
240         do {                                                    \
241                 if (unlikely(cond)) {                           \
242                         mutex_unlock(&buffer->mutex);           \
243                         atomic_inc(&buffer->record_disabled);   \
244                         WARN_ON(1);                             \
245                         return -1;                              \
246                 }                                               \
247         } while (0)
248
249 /**
250  * check_pages - integrity check of buffer pages
251  * @cpu_buffer: CPU buffer with pages to test
252  *
253  * As a safty measure we check to make sure the data pages have not
254  * been corrupted.
255  */
256 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
257 {
258         struct list_head *head = &cpu_buffer->pages;
259         struct buffer_page *page, *tmp;
260
261         RB_WARN_ON_RET_INT(cpu_buffer, head->next->prev != head);
262         RB_WARN_ON_RET_INT(cpu_buffer, head->prev->next != head);
263
264         list_for_each_entry_safe(page, tmp, head, list) {
265                 RB_WARN_ON_RET_INT(cpu_buffer,
266                                page->list.next->prev != &page->list);
267                 RB_WARN_ON_RET_INT(cpu_buffer,
268                                page->list.prev->next != &page->list);
269         }
270
271         return 0;
272 }
273
274 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
275                              unsigned nr_pages)
276 {
277         struct list_head *head = &cpu_buffer->pages;
278         struct buffer_page *page, *tmp;
279         unsigned long addr;
280         LIST_HEAD(pages);
281         unsigned i;
282
283         for (i = 0; i < nr_pages; i++) {
284                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
285                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
286                 if (!page)
287                         goto free_pages;
288                 list_add(&page->list, &pages);
289
290                 addr = __get_free_page(GFP_KERNEL);
291                 if (!addr)
292                         goto free_pages;
293                 page->page = (void *)addr;
294         }
295
296         list_splice(&pages, head);
297
298         rb_check_pages(cpu_buffer);
299
300         return 0;
301
302  free_pages:
303         list_for_each_entry_safe(page, tmp, &pages, list) {
304                 list_del_init(&page->list);
305                 free_buffer_page(page);
306         }
307         return -ENOMEM;
308 }
309
310 static struct ring_buffer_per_cpu *
311 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
312 {
313         struct ring_buffer_per_cpu *cpu_buffer;
314         struct buffer_page *page;
315         unsigned long addr;
316         int ret;
317
318         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
319                                   GFP_KERNEL, cpu_to_node(cpu));
320         if (!cpu_buffer)
321                 return NULL;
322
323         cpu_buffer->cpu = cpu;
324         cpu_buffer->buffer = buffer;
325         spin_lock_init(&cpu_buffer->reader_lock);
326         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
327         INIT_LIST_HEAD(&cpu_buffer->pages);
328
329         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
330                             GFP_KERNEL, cpu_to_node(cpu));
331         if (!page)
332                 goto fail_free_buffer;
333
334         cpu_buffer->reader_page = page;
335         addr = __get_free_page(GFP_KERNEL);
336         if (!addr)
337                 goto fail_free_reader;
338         page->page = (void *)addr;
339
340         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
341
342         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
343         if (ret < 0)
344                 goto fail_free_reader;
345
346         cpu_buffer->head_page
347                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
348         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
349
350         return cpu_buffer;
351
352  fail_free_reader:
353         free_buffer_page(cpu_buffer->reader_page);
354
355  fail_free_buffer:
356         kfree(cpu_buffer);
357         return NULL;
358 }
359
360 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
361 {
362         struct list_head *head = &cpu_buffer->pages;
363         struct buffer_page *page, *tmp;
364
365         list_del_init(&cpu_buffer->reader_page->list);
366         free_buffer_page(cpu_buffer->reader_page);
367
368         list_for_each_entry_safe(page, tmp, head, list) {
369                 list_del_init(&page->list);
370                 free_buffer_page(page);
371         }
372         kfree(cpu_buffer);
373 }
374
375 /*
376  * Causes compile errors if the struct buffer_page gets bigger
377  * than the struct page.
378  */
379 extern int ring_buffer_page_too_big(void);
380
381 /**
382  * ring_buffer_alloc - allocate a new ring_buffer
383  * @size: the size in bytes that is needed.
384  * @flags: attributes to set for the ring buffer.
385  *
386  * Currently the only flag that is available is the RB_FL_OVERWRITE
387  * flag. This flag means that the buffer will overwrite old data
388  * when the buffer wraps. If this flag is not set, the buffer will
389  * drop data when the tail hits the head.
390  */
391 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
392 {
393         struct ring_buffer *buffer;
394         int bsize;
395         int cpu;
396
397         /* Paranoid! Optimizes out when all is well */
398         if (sizeof(struct buffer_page) > sizeof(struct page))
399                 ring_buffer_page_too_big();
400
401
402         /* keep it in its own cache line */
403         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
404                          GFP_KERNEL);
405         if (!buffer)
406                 return NULL;
407
408         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
409         buffer->flags = flags;
410
411         /* need at least two pages */
412         if (buffer->pages == 1)
413                 buffer->pages++;
414
415         buffer->cpumask = cpu_possible_map;
416         buffer->cpus = nr_cpu_ids;
417
418         bsize = sizeof(void *) * nr_cpu_ids;
419         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
420                                   GFP_KERNEL);
421         if (!buffer->buffers)
422                 goto fail_free_buffer;
423
424         for_each_buffer_cpu(buffer, cpu) {
425                 buffer->buffers[cpu] =
426                         rb_allocate_cpu_buffer(buffer, cpu);
427                 if (!buffer->buffers[cpu])
428                         goto fail_free_buffers;
429         }
430
431         mutex_init(&buffer->mutex);
432
433         return buffer;
434
435  fail_free_buffers:
436         for_each_buffer_cpu(buffer, cpu) {
437                 if (buffer->buffers[cpu])
438                         rb_free_cpu_buffer(buffer->buffers[cpu]);
439         }
440         kfree(buffer->buffers);
441
442  fail_free_buffer:
443         kfree(buffer);
444         return NULL;
445 }
446
447 /**
448  * ring_buffer_free - free a ring buffer.
449  * @buffer: the buffer to free.
450  */
451 void
452 ring_buffer_free(struct ring_buffer *buffer)
453 {
454         int cpu;
455
456         for_each_buffer_cpu(buffer, cpu)
457                 rb_free_cpu_buffer(buffer->buffers[cpu]);
458
459         kfree(buffer);
460 }
461
462 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
463
464 static void
465 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
466 {
467         struct buffer_page *page;
468         struct list_head *p;
469         unsigned i;
470
471         atomic_inc(&cpu_buffer->record_disabled);
472         synchronize_sched();
473
474         for (i = 0; i < nr_pages; i++) {
475                 RB_WARN_ON_RET(cpu_buffer, list_empty(&cpu_buffer->pages));
476                 p = cpu_buffer->pages.next;
477                 page = list_entry(p, struct buffer_page, list);
478                 list_del_init(&page->list);
479                 free_buffer_page(page);
480         }
481         RB_WARN_ON_RET(cpu_buffer, list_empty(&cpu_buffer->pages));
482
483         rb_reset_cpu(cpu_buffer);
484
485         rb_check_pages(cpu_buffer);
486
487         atomic_dec(&cpu_buffer->record_disabled);
488
489 }
490
491 static void
492 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
493                 struct list_head *pages, unsigned nr_pages)
494 {
495         struct buffer_page *page;
496         struct list_head *p;
497         unsigned i;
498
499         atomic_inc(&cpu_buffer->record_disabled);
500         synchronize_sched();
501
502         for (i = 0; i < nr_pages; i++) {
503                 RB_WARN_ON_RET(cpu_buffer, list_empty(pages));
504                 p = pages->next;
505                 page = list_entry(p, struct buffer_page, list);
506                 list_del_init(&page->list);
507                 list_add_tail(&page->list, &cpu_buffer->pages);
508         }
509         rb_reset_cpu(cpu_buffer);
510
511         rb_check_pages(cpu_buffer);
512
513         atomic_dec(&cpu_buffer->record_disabled);
514 }
515
516 /**
517  * ring_buffer_resize - resize the ring buffer
518  * @buffer: the buffer to resize.
519  * @size: the new size.
520  *
521  * The tracer is responsible for making sure that the buffer is
522  * not being used while changing the size.
523  * Note: We may be able to change the above requirement by using
524  *  RCU synchronizations.
525  *
526  * Minimum size is 2 * BUF_PAGE_SIZE.
527  *
528  * Returns -1 on failure.
529  */
530 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
531 {
532         struct ring_buffer_per_cpu *cpu_buffer;
533         unsigned nr_pages, rm_pages, new_pages;
534         struct buffer_page *page, *tmp;
535         unsigned long buffer_size;
536         unsigned long addr;
537         LIST_HEAD(pages);
538         int i, cpu;
539
540         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
541         size *= BUF_PAGE_SIZE;
542         buffer_size = buffer->pages * BUF_PAGE_SIZE;
543
544         /* we need a minimum of two pages */
545         if (size < BUF_PAGE_SIZE * 2)
546                 size = BUF_PAGE_SIZE * 2;
547
548         if (size == buffer_size)
549                 return size;
550
551         mutex_lock(&buffer->mutex);
552
553         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
554
555         if (size < buffer_size) {
556
557                 /* easy case, just free pages */
558                 RB_WARN_ON_UNLOCK(buffer, nr_pages >= buffer->pages);
559
560                 rm_pages = buffer->pages - nr_pages;
561
562                 for_each_buffer_cpu(buffer, cpu) {
563                         cpu_buffer = buffer->buffers[cpu];
564                         rb_remove_pages(cpu_buffer, rm_pages);
565                 }
566                 goto out;
567         }
568
569         /*
570          * This is a bit more difficult. We only want to add pages
571          * when we can allocate enough for all CPUs. We do this
572          * by allocating all the pages and storing them on a local
573          * link list. If we succeed in our allocation, then we
574          * add these pages to the cpu_buffers. Otherwise we just free
575          * them all and return -ENOMEM;
576          */
577         RB_WARN_ON_UNLOCK(buffer, nr_pages <= buffer->pages);
578
579         new_pages = nr_pages - buffer->pages;
580
581         for_each_buffer_cpu(buffer, cpu) {
582                 for (i = 0; i < new_pages; i++) {
583                         page = kzalloc_node(ALIGN(sizeof(*page),
584                                                   cache_line_size()),
585                                             GFP_KERNEL, cpu_to_node(cpu));
586                         if (!page)
587                                 goto free_pages;
588                         list_add(&page->list, &pages);
589                         addr = __get_free_page(GFP_KERNEL);
590                         if (!addr)
591                                 goto free_pages;
592                         page->page = (void *)addr;
593                 }
594         }
595
596         for_each_buffer_cpu(buffer, cpu) {
597                 cpu_buffer = buffer->buffers[cpu];
598                 rb_insert_pages(cpu_buffer, &pages, new_pages);
599         }
600
601         RB_WARN_ON_UNLOCK(buffer, !list_empty(&pages));
602
603  out:
604         buffer->pages = nr_pages;
605         mutex_unlock(&buffer->mutex);
606
607         return size;
608
609  free_pages:
610         list_for_each_entry_safe(page, tmp, &pages, list) {
611                 list_del_init(&page->list);
612                 free_buffer_page(page);
613         }
614         return -ENOMEM;
615 }
616
617 static inline int rb_null_event(struct ring_buffer_event *event)
618 {
619         return event->type == RINGBUF_TYPE_PADDING;
620 }
621
622 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
623 {
624         return page->page + index;
625 }
626
627 static inline struct ring_buffer_event *
628 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
629 {
630         return __rb_page_index(cpu_buffer->reader_page,
631                                cpu_buffer->reader_page->read);
632 }
633
634 static inline struct ring_buffer_event *
635 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
636 {
637         return __rb_page_index(cpu_buffer->head_page,
638                                cpu_buffer->head_page->read);
639 }
640
641 static inline struct ring_buffer_event *
642 rb_iter_head_event(struct ring_buffer_iter *iter)
643 {
644         return __rb_page_index(iter->head_page, iter->head);
645 }
646
647 static inline unsigned rb_page_write(struct buffer_page *bpage)
648 {
649         return local_read(&bpage->write);
650 }
651
652 static inline unsigned rb_page_commit(struct buffer_page *bpage)
653 {
654         return local_read(&bpage->commit);
655 }
656
657 /* Size is determined by what has been commited */
658 static inline unsigned rb_page_size(struct buffer_page *bpage)
659 {
660         return rb_page_commit(bpage);
661 }
662
663 static inline unsigned
664 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
665 {
666         return rb_page_commit(cpu_buffer->commit_page);
667 }
668
669 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
670 {
671         return rb_page_commit(cpu_buffer->head_page);
672 }
673
674 /*
675  * When the tail hits the head and the buffer is in overwrite mode,
676  * the head jumps to the next page and all content on the previous
677  * page is discarded. But before doing so, we update the overrun
678  * variable of the buffer.
679  */
680 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
681 {
682         struct ring_buffer_event *event;
683         unsigned long head;
684
685         for (head = 0; head < rb_head_size(cpu_buffer);
686              head += rb_event_length(event)) {
687
688                 event = __rb_page_index(cpu_buffer->head_page, head);
689                 RB_WARN_ON_RET(cpu_buffer, rb_null_event(event));
690                 /* Only count data entries */
691                 if (event->type != RINGBUF_TYPE_DATA)
692                         continue;
693                 cpu_buffer->overrun++;
694                 cpu_buffer->entries--;
695         }
696 }
697
698 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
699                                struct buffer_page **page)
700 {
701         struct list_head *p = (*page)->list.next;
702
703         if (p == &cpu_buffer->pages)
704                 p = p->next;
705
706         *page = list_entry(p, struct buffer_page, list);
707 }
708
709 static inline unsigned
710 rb_event_index(struct ring_buffer_event *event)
711 {
712         unsigned long addr = (unsigned long)event;
713
714         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
715 }
716
717 static inline int
718 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
719              struct ring_buffer_event *event)
720 {
721         unsigned long addr = (unsigned long)event;
722         unsigned long index;
723
724         index = rb_event_index(event);
725         addr &= PAGE_MASK;
726
727         return cpu_buffer->commit_page->page == (void *)addr &&
728                 rb_commit_index(cpu_buffer) == index;
729 }
730
731 static inline void
732 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
733                     struct ring_buffer_event *event)
734 {
735         unsigned long addr = (unsigned long)event;
736         unsigned long index;
737
738         index = rb_event_index(event);
739         addr &= PAGE_MASK;
740
741         while (cpu_buffer->commit_page->page != (void *)addr) {
742                 RB_WARN_ON(cpu_buffer,
743                            cpu_buffer->commit_page == cpu_buffer->tail_page);
744                 cpu_buffer->commit_page->commit =
745                         cpu_buffer->commit_page->write;
746                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
747                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
748         }
749
750         /* Now set the commit to the event's index */
751         local_set(&cpu_buffer->commit_page->commit, index);
752 }
753
754 static inline void
755 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
756 {
757         /*
758          * We only race with interrupts and NMIs on this CPU.
759          * If we own the commit event, then we can commit
760          * all others that interrupted us, since the interruptions
761          * are in stack format (they finish before they come
762          * back to us). This allows us to do a simple loop to
763          * assign the commit to the tail.
764          */
765         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
766                 cpu_buffer->commit_page->commit =
767                         cpu_buffer->commit_page->write;
768                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
769                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
770                 /* add barrier to keep gcc from optimizing too much */
771                 barrier();
772         }
773         while (rb_commit_index(cpu_buffer) !=
774                rb_page_write(cpu_buffer->commit_page)) {
775                 cpu_buffer->commit_page->commit =
776                         cpu_buffer->commit_page->write;
777                 barrier();
778         }
779 }
780
781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
782 {
783         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
784         cpu_buffer->reader_page->read = 0;
785 }
786
787 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
788 {
789         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
790
791         /*
792          * The iterator could be on the reader page (it starts there).
793          * But the head could have moved, since the reader was
794          * found. Check for this case and assign the iterator
795          * to the head page instead of next.
796          */
797         if (iter->head_page == cpu_buffer->reader_page)
798                 iter->head_page = cpu_buffer->head_page;
799         else
800                 rb_inc_page(cpu_buffer, &iter->head_page);
801
802         iter->read_stamp = iter->head_page->time_stamp;
803         iter->head = 0;
804 }
805
806 /**
807  * ring_buffer_update_event - update event type and data
808  * @event: the even to update
809  * @type: the type of event
810  * @length: the size of the event field in the ring buffer
811  *
812  * Update the type and data fields of the event. The length
813  * is the actual size that is written to the ring buffer,
814  * and with this, we can determine what to place into the
815  * data field.
816  */
817 static inline void
818 rb_update_event(struct ring_buffer_event *event,
819                          unsigned type, unsigned length)
820 {
821         event->type = type;
822
823         switch (type) {
824
825         case RINGBUF_TYPE_PADDING:
826                 break;
827
828         case RINGBUF_TYPE_TIME_EXTEND:
829                 event->len =
830                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
831                         >> RB_ALIGNMENT_SHIFT;
832                 break;
833
834         case RINGBUF_TYPE_TIME_STAMP:
835                 event->len =
836                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
837                         >> RB_ALIGNMENT_SHIFT;
838                 break;
839
840         case RINGBUF_TYPE_DATA:
841                 length -= RB_EVNT_HDR_SIZE;
842                 if (length > RB_MAX_SMALL_DATA) {
843                         event->len = 0;
844                         event->array[0] = length;
845                 } else
846                         event->len =
847                                 (length + (RB_ALIGNMENT-1))
848                                 >> RB_ALIGNMENT_SHIFT;
849                 break;
850         default:
851                 BUG();
852         }
853 }
854
855 static inline unsigned rb_calculate_event_length(unsigned length)
856 {
857         struct ring_buffer_event event; /* Used only for sizeof array */
858
859         /* zero length can cause confusions */
860         if (!length)
861                 length = 1;
862
863         if (length > RB_MAX_SMALL_DATA)
864                 length += sizeof(event.array[0]);
865
866         length += RB_EVNT_HDR_SIZE;
867         length = ALIGN(length, RB_ALIGNMENT);
868
869         return length;
870 }
871
872 static struct ring_buffer_event *
873 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
874                   unsigned type, unsigned long length, u64 *ts)
875 {
876         struct buffer_page *tail_page, *head_page, *reader_page;
877         unsigned long tail, write;
878         struct ring_buffer *buffer = cpu_buffer->buffer;
879         struct ring_buffer_event *event;
880         unsigned long flags;
881
882         tail_page = cpu_buffer->tail_page;
883         write = local_add_return(length, &tail_page->write);
884         tail = write - length;
885
886         /* See if we shot pass the end of this buffer page */
887         if (write > BUF_PAGE_SIZE) {
888                 struct buffer_page *next_page = tail_page;
889
890                 local_irq_save(flags);
891                 __raw_spin_lock(&cpu_buffer->lock);
892
893                 rb_inc_page(cpu_buffer, &next_page);
894
895                 head_page = cpu_buffer->head_page;
896                 reader_page = cpu_buffer->reader_page;
897
898                 /* we grabbed the lock before incrementing */
899                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
900
901                 /*
902                  * If for some reason, we had an interrupt storm that made
903                  * it all the way around the buffer, bail, and warn
904                  * about it.
905                  */
906                 if (unlikely(next_page == cpu_buffer->commit_page)) {
907                         WARN_ON_ONCE(1);
908                         goto out_unlock;
909                 }
910
911                 if (next_page == head_page) {
912                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
913                                 /* reset write */
914                                 if (tail <= BUF_PAGE_SIZE)
915                                         local_set(&tail_page->write, tail);
916                                 goto out_unlock;
917                         }
918
919                         /* tail_page has not moved yet? */
920                         if (tail_page == cpu_buffer->tail_page) {
921                                 /* count overflows */
922                                 rb_update_overflow(cpu_buffer);
923
924                                 rb_inc_page(cpu_buffer, &head_page);
925                                 cpu_buffer->head_page = head_page;
926                                 cpu_buffer->head_page->read = 0;
927                         }
928                 }
929
930                 /*
931                  * If the tail page is still the same as what we think
932                  * it is, then it is up to us to update the tail
933                  * pointer.
934                  */
935                 if (tail_page == cpu_buffer->tail_page) {
936                         local_set(&next_page->write, 0);
937                         local_set(&next_page->commit, 0);
938                         cpu_buffer->tail_page = next_page;
939
940                         /* reread the time stamp */
941                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
942                         cpu_buffer->tail_page->time_stamp = *ts;
943                 }
944
945                 /*
946                  * The actual tail page has moved forward.
947                  */
948                 if (tail < BUF_PAGE_SIZE) {
949                         /* Mark the rest of the page with padding */
950                         event = __rb_page_index(tail_page, tail);
951                         event->type = RINGBUF_TYPE_PADDING;
952                 }
953
954                 if (tail <= BUF_PAGE_SIZE)
955                         /* Set the write back to the previous setting */
956                         local_set(&tail_page->write, tail);
957
958                 /*
959                  * If this was a commit entry that failed,
960                  * increment that too
961                  */
962                 if (tail_page == cpu_buffer->commit_page &&
963                     tail == rb_commit_index(cpu_buffer)) {
964                         rb_set_commit_to_write(cpu_buffer);
965                 }
966
967                 __raw_spin_unlock(&cpu_buffer->lock);
968                 local_irq_restore(flags);
969
970                 /* fail and let the caller try again */
971                 return ERR_PTR(-EAGAIN);
972         }
973
974         /* We reserved something on the buffer */
975
976         RB_WARN_ON_RET_NULL(cpu_buffer, write > BUF_PAGE_SIZE);
977
978         event = __rb_page_index(tail_page, tail);
979         rb_update_event(event, type, length);
980
981         /*
982          * If this is a commit and the tail is zero, then update
983          * this page's time stamp.
984          */
985         if (!tail && rb_is_commit(cpu_buffer, event))
986                 cpu_buffer->commit_page->time_stamp = *ts;
987
988         return event;
989
990  out_unlock:
991         __raw_spin_unlock(&cpu_buffer->lock);
992         local_irq_restore(flags);
993         return NULL;
994 }
995
996 static int
997 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
998                   u64 *ts, u64 *delta)
999 {
1000         struct ring_buffer_event *event;
1001         static int once;
1002         int ret;
1003
1004         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1005                 printk(KERN_WARNING "Delta way too big! %llu"
1006                        " ts=%llu write stamp = %llu\n",
1007                        (unsigned long long)*delta,
1008                        (unsigned long long)*ts,
1009                        (unsigned long long)cpu_buffer->write_stamp);
1010                 WARN_ON(1);
1011         }
1012
1013         /*
1014          * The delta is too big, we to add a
1015          * new timestamp.
1016          */
1017         event = __rb_reserve_next(cpu_buffer,
1018                                   RINGBUF_TYPE_TIME_EXTEND,
1019                                   RB_LEN_TIME_EXTEND,
1020                                   ts);
1021         if (!event)
1022                 return -EBUSY;
1023
1024         if (PTR_ERR(event) == -EAGAIN)
1025                 return -EAGAIN;
1026
1027         /* Only a commited time event can update the write stamp */
1028         if (rb_is_commit(cpu_buffer, event)) {
1029                 /*
1030                  * If this is the first on the page, then we need to
1031                  * update the page itself, and just put in a zero.
1032                  */
1033                 if (rb_event_index(event)) {
1034                         event->time_delta = *delta & TS_MASK;
1035                         event->array[0] = *delta >> TS_SHIFT;
1036                 } else {
1037                         cpu_buffer->commit_page->time_stamp = *ts;
1038                         event->time_delta = 0;
1039                         event->array[0] = 0;
1040                 }
1041                 cpu_buffer->write_stamp = *ts;
1042                 /* let the caller know this was the commit */
1043                 ret = 1;
1044         } else {
1045                 /* Darn, this is just wasted space */
1046                 event->time_delta = 0;
1047                 event->array[0] = 0;
1048                 ret = 0;
1049         }
1050
1051         *delta = 0;
1052
1053         return ret;
1054 }
1055
1056 static struct ring_buffer_event *
1057 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1058                       unsigned type, unsigned long length)
1059 {
1060         struct ring_buffer_event *event;
1061         u64 ts, delta;
1062         int commit = 0;
1063         int nr_loops = 0;
1064
1065  again:
1066         /*
1067          * We allow for interrupts to reenter here and do a trace.
1068          * If one does, it will cause this original code to loop
1069          * back here. Even with heavy interrupts happening, this
1070          * should only happen a few times in a row. If this happens
1071          * 1000 times in a row, there must be either an interrupt
1072          * storm or we have something buggy.
1073          * Bail!
1074          */
1075         if (unlikely(++nr_loops > 1000)) {
1076                 RB_WARN_ON(cpu_buffer, 1);
1077                 return NULL;
1078         }
1079
1080         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1081
1082         /*
1083          * Only the first commit can update the timestamp.
1084          * Yes there is a race here. If an interrupt comes in
1085          * just after the conditional and it traces too, then it
1086          * will also check the deltas. More than one timestamp may
1087          * also be made. But only the entry that did the actual
1088          * commit will be something other than zero.
1089          */
1090         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1091             rb_page_write(cpu_buffer->tail_page) ==
1092             rb_commit_index(cpu_buffer)) {
1093
1094                 delta = ts - cpu_buffer->write_stamp;
1095
1096                 /* make sure this delta is calculated here */
1097                 barrier();
1098
1099                 /* Did the write stamp get updated already? */
1100                 if (unlikely(ts < cpu_buffer->write_stamp))
1101                         delta = 0;
1102
1103                 if (test_time_stamp(delta)) {
1104
1105                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1106
1107                         if (commit == -EBUSY)
1108                                 return NULL;
1109
1110                         if (commit == -EAGAIN)
1111                                 goto again;
1112
1113                         RB_WARN_ON(cpu_buffer, commit < 0);
1114                 }
1115         } else
1116                 /* Non commits have zero deltas */
1117                 delta = 0;
1118
1119         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1120         if (PTR_ERR(event) == -EAGAIN)
1121                 goto again;
1122
1123         if (!event) {
1124                 if (unlikely(commit))
1125                         /*
1126                          * Ouch! We needed a timestamp and it was commited. But
1127                          * we didn't get our event reserved.
1128                          */
1129                         rb_set_commit_to_write(cpu_buffer);
1130                 return NULL;
1131         }
1132
1133         /*
1134          * If the timestamp was commited, make the commit our entry
1135          * now so that we will update it when needed.
1136          */
1137         if (commit)
1138                 rb_set_commit_event(cpu_buffer, event);
1139         else if (!rb_is_commit(cpu_buffer, event))
1140                 delta = 0;
1141
1142         event->time_delta = delta;
1143
1144         return event;
1145 }
1146
1147 static DEFINE_PER_CPU(int, rb_need_resched);
1148
1149 /**
1150  * ring_buffer_lock_reserve - reserve a part of the buffer
1151  * @buffer: the ring buffer to reserve from
1152  * @length: the length of the data to reserve (excluding event header)
1153  * @flags: a pointer to save the interrupt flags
1154  *
1155  * Returns a reseverd event on the ring buffer to copy directly to.
1156  * The user of this interface will need to get the body to write into
1157  * and can use the ring_buffer_event_data() interface.
1158  *
1159  * The length is the length of the data needed, not the event length
1160  * which also includes the event header.
1161  *
1162  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1163  * If NULL is returned, then nothing has been allocated or locked.
1164  */
1165 struct ring_buffer_event *
1166 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1167                          unsigned long length,
1168                          unsigned long *flags)
1169 {
1170         struct ring_buffer_per_cpu *cpu_buffer;
1171         struct ring_buffer_event *event;
1172         int cpu, resched;
1173
1174         if (atomic_read(&buffer->record_disabled))
1175                 return NULL;
1176
1177         /* If we are tracing schedule, we don't want to recurse */
1178         resched = ftrace_preempt_disable();
1179
1180         cpu = raw_smp_processor_id();
1181
1182         if (!cpu_isset(cpu, buffer->cpumask))
1183                 goto out;
1184
1185         cpu_buffer = buffer->buffers[cpu];
1186
1187         if (atomic_read(&cpu_buffer->record_disabled))
1188                 goto out;
1189
1190         length = rb_calculate_event_length(length);
1191         if (length > BUF_PAGE_SIZE)
1192                 goto out;
1193
1194         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1195         if (!event)
1196                 goto out;
1197
1198         /*
1199          * Need to store resched state on this cpu.
1200          * Only the first needs to.
1201          */
1202
1203         if (preempt_count() == 1)
1204                 per_cpu(rb_need_resched, cpu) = resched;
1205
1206         return event;
1207
1208  out:
1209         ftrace_preempt_enable(resched);
1210         return NULL;
1211 }
1212
1213 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1214                       struct ring_buffer_event *event)
1215 {
1216         cpu_buffer->entries++;
1217
1218         /* Only process further if we own the commit */
1219         if (!rb_is_commit(cpu_buffer, event))
1220                 return;
1221
1222         cpu_buffer->write_stamp += event->time_delta;
1223
1224         rb_set_commit_to_write(cpu_buffer);
1225 }
1226
1227 /**
1228  * ring_buffer_unlock_commit - commit a reserved
1229  * @buffer: The buffer to commit to
1230  * @event: The event pointer to commit.
1231  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1232  *
1233  * This commits the data to the ring buffer, and releases any locks held.
1234  *
1235  * Must be paired with ring_buffer_lock_reserve.
1236  */
1237 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1238                               struct ring_buffer_event *event,
1239                               unsigned long flags)
1240 {
1241         struct ring_buffer_per_cpu *cpu_buffer;
1242         int cpu = raw_smp_processor_id();
1243
1244         cpu_buffer = buffer->buffers[cpu];
1245
1246         rb_commit(cpu_buffer, event);
1247
1248         /*
1249          * Only the last preempt count needs to restore preemption.
1250          */
1251         if (preempt_count() == 1)
1252                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1253         else
1254                 preempt_enable_no_resched_notrace();
1255
1256         return 0;
1257 }
1258
1259 /**
1260  * ring_buffer_write - write data to the buffer without reserving
1261  * @buffer: The ring buffer to write to.
1262  * @length: The length of the data being written (excluding the event header)
1263  * @data: The data to write to the buffer.
1264  *
1265  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1266  * one function. If you already have the data to write to the buffer, it
1267  * may be easier to simply call this function.
1268  *
1269  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1270  * and not the length of the event which would hold the header.
1271  */
1272 int ring_buffer_write(struct ring_buffer *buffer,
1273                         unsigned long length,
1274                         void *data)
1275 {
1276         struct ring_buffer_per_cpu *cpu_buffer;
1277         struct ring_buffer_event *event;
1278         unsigned long event_length;
1279         void *body;
1280         int ret = -EBUSY;
1281         int cpu, resched;
1282
1283         if (atomic_read(&buffer->record_disabled))
1284                 return -EBUSY;
1285
1286         resched = ftrace_preempt_disable();
1287
1288         cpu = raw_smp_processor_id();
1289
1290         if (!cpu_isset(cpu, buffer->cpumask))
1291                 goto out;
1292
1293         cpu_buffer = buffer->buffers[cpu];
1294
1295         if (atomic_read(&cpu_buffer->record_disabled))
1296                 goto out;
1297
1298         event_length = rb_calculate_event_length(length);
1299         event = rb_reserve_next_event(cpu_buffer,
1300                                       RINGBUF_TYPE_DATA, event_length);
1301         if (!event)
1302                 goto out;
1303
1304         body = rb_event_data(event);
1305
1306         memcpy(body, data, length);
1307
1308         rb_commit(cpu_buffer, event);
1309
1310         ret = 0;
1311  out:
1312         ftrace_preempt_enable(resched);
1313
1314         return ret;
1315 }
1316
1317 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1318 {
1319         struct buffer_page *reader = cpu_buffer->reader_page;
1320         struct buffer_page *head = cpu_buffer->head_page;
1321         struct buffer_page *commit = cpu_buffer->commit_page;
1322
1323         return reader->read == rb_page_commit(reader) &&
1324                 (commit == reader ||
1325                  (commit == head &&
1326                   head->read == rb_page_commit(commit)));
1327 }
1328
1329 /**
1330  * ring_buffer_record_disable - stop all writes into the buffer
1331  * @buffer: The ring buffer to stop writes to.
1332  *
1333  * This prevents all writes to the buffer. Any attempt to write
1334  * to the buffer after this will fail and return NULL.
1335  *
1336  * The caller should call synchronize_sched() after this.
1337  */
1338 void ring_buffer_record_disable(struct ring_buffer *buffer)
1339 {
1340         atomic_inc(&buffer->record_disabled);
1341 }
1342
1343 /**
1344  * ring_buffer_record_enable - enable writes to the buffer
1345  * @buffer: The ring buffer to enable writes
1346  *
1347  * Note, multiple disables will need the same number of enables
1348  * to truely enable the writing (much like preempt_disable).
1349  */
1350 void ring_buffer_record_enable(struct ring_buffer *buffer)
1351 {
1352         atomic_dec(&buffer->record_disabled);
1353 }
1354
1355 /**
1356  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1357  * @buffer: The ring buffer to stop writes to.
1358  * @cpu: The CPU buffer to stop
1359  *
1360  * This prevents all writes to the buffer. Any attempt to write
1361  * to the buffer after this will fail and return NULL.
1362  *
1363  * The caller should call synchronize_sched() after this.
1364  */
1365 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1366 {
1367         struct ring_buffer_per_cpu *cpu_buffer;
1368
1369         if (!cpu_isset(cpu, buffer->cpumask))
1370                 return;
1371
1372         cpu_buffer = buffer->buffers[cpu];
1373         atomic_inc(&cpu_buffer->record_disabled);
1374 }
1375
1376 /**
1377  * ring_buffer_record_enable_cpu - enable writes to the buffer
1378  * @buffer: The ring buffer to enable writes
1379  * @cpu: The CPU to enable.
1380  *
1381  * Note, multiple disables will need the same number of enables
1382  * to truely enable the writing (much like preempt_disable).
1383  */
1384 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1385 {
1386         struct ring_buffer_per_cpu *cpu_buffer;
1387
1388         if (!cpu_isset(cpu, buffer->cpumask))
1389                 return;
1390
1391         cpu_buffer = buffer->buffers[cpu];
1392         atomic_dec(&cpu_buffer->record_disabled);
1393 }
1394
1395 /**
1396  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1397  * @buffer: The ring buffer
1398  * @cpu: The per CPU buffer to get the entries from.
1399  */
1400 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1401 {
1402         struct ring_buffer_per_cpu *cpu_buffer;
1403
1404         if (!cpu_isset(cpu, buffer->cpumask))
1405                 return 0;
1406
1407         cpu_buffer = buffer->buffers[cpu];
1408         return cpu_buffer->entries;
1409 }
1410
1411 /**
1412  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1413  * @buffer: The ring buffer
1414  * @cpu: The per CPU buffer to get the number of overruns from
1415  */
1416 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1417 {
1418         struct ring_buffer_per_cpu *cpu_buffer;
1419
1420         if (!cpu_isset(cpu, buffer->cpumask))
1421                 return 0;
1422
1423         cpu_buffer = buffer->buffers[cpu];
1424         return cpu_buffer->overrun;
1425 }
1426
1427 /**
1428  * ring_buffer_entries - get the number of entries in a buffer
1429  * @buffer: The ring buffer
1430  *
1431  * Returns the total number of entries in the ring buffer
1432  * (all CPU entries)
1433  */
1434 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1435 {
1436         struct ring_buffer_per_cpu *cpu_buffer;
1437         unsigned long entries = 0;
1438         int cpu;
1439
1440         /* if you care about this being correct, lock the buffer */
1441         for_each_buffer_cpu(buffer, cpu) {
1442                 cpu_buffer = buffer->buffers[cpu];
1443                 entries += cpu_buffer->entries;
1444         }
1445
1446         return entries;
1447 }
1448
1449 /**
1450  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1451  * @buffer: The ring buffer
1452  *
1453  * Returns the total number of overruns in the ring buffer
1454  * (all CPU entries)
1455  */
1456 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1457 {
1458         struct ring_buffer_per_cpu *cpu_buffer;
1459         unsigned long overruns = 0;
1460         int cpu;
1461
1462         /* if you care about this being correct, lock the buffer */
1463         for_each_buffer_cpu(buffer, cpu) {
1464                 cpu_buffer = buffer->buffers[cpu];
1465                 overruns += cpu_buffer->overrun;
1466         }
1467
1468         return overruns;
1469 }
1470
1471 /**
1472  * ring_buffer_iter_reset - reset an iterator
1473  * @iter: The iterator to reset
1474  *
1475  * Resets the iterator, so that it will start from the beginning
1476  * again.
1477  */
1478 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1479 {
1480         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1481         unsigned long flags;
1482
1483         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1484
1485         /* Iterator usage is expected to have record disabled */
1486         if (list_empty(&cpu_buffer->reader_page->list)) {
1487                 iter->head_page = cpu_buffer->head_page;
1488                 iter->head = cpu_buffer->head_page->read;
1489         } else {
1490                 iter->head_page = cpu_buffer->reader_page;
1491                 iter->head = cpu_buffer->reader_page->read;
1492         }
1493         if (iter->head)
1494                 iter->read_stamp = cpu_buffer->read_stamp;
1495         else
1496                 iter->read_stamp = iter->head_page->time_stamp;
1497
1498         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1499 }
1500
1501 /**
1502  * ring_buffer_iter_empty - check if an iterator has no more to read
1503  * @iter: The iterator to check
1504  */
1505 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1506 {
1507         struct ring_buffer_per_cpu *cpu_buffer;
1508
1509         cpu_buffer = iter->cpu_buffer;
1510
1511         return iter->head_page == cpu_buffer->commit_page &&
1512                 iter->head == rb_commit_index(cpu_buffer);
1513 }
1514
1515 static void
1516 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1517                      struct ring_buffer_event *event)
1518 {
1519         u64 delta;
1520
1521         switch (event->type) {
1522         case RINGBUF_TYPE_PADDING:
1523                 return;
1524
1525         case RINGBUF_TYPE_TIME_EXTEND:
1526                 delta = event->array[0];
1527                 delta <<= TS_SHIFT;
1528                 delta += event->time_delta;
1529                 cpu_buffer->read_stamp += delta;
1530                 return;
1531
1532         case RINGBUF_TYPE_TIME_STAMP:
1533                 /* FIXME: not implemented */
1534                 return;
1535
1536         case RINGBUF_TYPE_DATA:
1537                 cpu_buffer->read_stamp += event->time_delta;
1538                 return;
1539
1540         default:
1541                 BUG();
1542         }
1543         return;
1544 }
1545
1546 static void
1547 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1548                           struct ring_buffer_event *event)
1549 {
1550         u64 delta;
1551
1552         switch (event->type) {
1553         case RINGBUF_TYPE_PADDING:
1554                 return;
1555
1556         case RINGBUF_TYPE_TIME_EXTEND:
1557                 delta = event->array[0];
1558                 delta <<= TS_SHIFT;
1559                 delta += event->time_delta;
1560                 iter->read_stamp += delta;
1561                 return;
1562
1563         case RINGBUF_TYPE_TIME_STAMP:
1564                 /* FIXME: not implemented */
1565                 return;
1566
1567         case RINGBUF_TYPE_DATA:
1568                 iter->read_stamp += event->time_delta;
1569                 return;
1570
1571         default:
1572                 BUG();
1573         }
1574         return;
1575 }
1576
1577 static struct buffer_page *
1578 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1579 {
1580         struct buffer_page *reader = NULL;
1581         unsigned long flags;
1582         int nr_loops = 0;
1583
1584         local_irq_save(flags);
1585         __raw_spin_lock(&cpu_buffer->lock);
1586
1587  again:
1588         /*
1589          * This should normally only loop twice. But because the
1590          * start of the reader inserts an empty page, it causes
1591          * a case where we will loop three times. There should be no
1592          * reason to loop four times (that I know of).
1593          */
1594         if (unlikely(++nr_loops > 3)) {
1595                 RB_WARN_ON(cpu_buffer, 1);
1596                 reader = NULL;
1597                 goto out;
1598         }
1599
1600         reader = cpu_buffer->reader_page;
1601
1602         /* If there's more to read, return this page */
1603         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1604                 goto out;
1605
1606         /* Never should we have an index greater than the size */
1607         RB_WARN_ON(cpu_buffer,
1608                    cpu_buffer->reader_page->read > rb_page_size(reader));
1609
1610         /* check if we caught up to the tail */
1611         reader = NULL;
1612         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1613                 goto out;
1614
1615         /*
1616          * Splice the empty reader page into the list around the head.
1617          * Reset the reader page to size zero.
1618          */
1619
1620         reader = cpu_buffer->head_page;
1621         cpu_buffer->reader_page->list.next = reader->list.next;
1622         cpu_buffer->reader_page->list.prev = reader->list.prev;
1623
1624         local_set(&cpu_buffer->reader_page->write, 0);
1625         local_set(&cpu_buffer->reader_page->commit, 0);
1626
1627         /* Make the reader page now replace the head */
1628         reader->list.prev->next = &cpu_buffer->reader_page->list;
1629         reader->list.next->prev = &cpu_buffer->reader_page->list;
1630
1631         /*
1632          * If the tail is on the reader, then we must set the head
1633          * to the inserted page, otherwise we set it one before.
1634          */
1635         cpu_buffer->head_page = cpu_buffer->reader_page;
1636
1637         if (cpu_buffer->commit_page != reader)
1638                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1639
1640         /* Finally update the reader page to the new head */
1641         cpu_buffer->reader_page = reader;
1642         rb_reset_reader_page(cpu_buffer);
1643
1644         goto again;
1645
1646  out:
1647         __raw_spin_unlock(&cpu_buffer->lock);
1648         local_irq_restore(flags);
1649
1650         return reader;
1651 }
1652
1653 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1654 {
1655         struct ring_buffer_event *event;
1656         struct buffer_page *reader;
1657         unsigned length;
1658
1659         reader = rb_get_reader_page(cpu_buffer);
1660
1661         /* This function should not be called when buffer is empty */
1662         RB_WARN_ON_RET(cpu_buffer, !reader);
1663
1664         event = rb_reader_event(cpu_buffer);
1665
1666         if (event->type == RINGBUF_TYPE_DATA)
1667                 cpu_buffer->entries--;
1668
1669         rb_update_read_stamp(cpu_buffer, event);
1670
1671         length = rb_event_length(event);
1672         cpu_buffer->reader_page->read += length;
1673 }
1674
1675 static void rb_advance_iter(struct ring_buffer_iter *iter)
1676 {
1677         struct ring_buffer *buffer;
1678         struct ring_buffer_per_cpu *cpu_buffer;
1679         struct ring_buffer_event *event;
1680         unsigned length;
1681
1682         cpu_buffer = iter->cpu_buffer;
1683         buffer = cpu_buffer->buffer;
1684
1685         /*
1686          * Check if we are at the end of the buffer.
1687          */
1688         if (iter->head >= rb_page_size(iter->head_page)) {
1689                 RB_WARN_ON_RET(buffer,
1690                                iter->head_page == cpu_buffer->commit_page);
1691                 rb_inc_iter(iter);
1692                 return;
1693         }
1694
1695         event = rb_iter_head_event(iter);
1696
1697         length = rb_event_length(event);
1698
1699         /*
1700          * This should not be called to advance the header if we are
1701          * at the tail of the buffer.
1702          */
1703         RB_WARN_ON_RET(cpu_buffer,
1704                        (iter->head_page == cpu_buffer->commit_page) &&
1705                        (iter->head + length > rb_commit_index(cpu_buffer)));
1706
1707         rb_update_iter_read_stamp(iter, event);
1708
1709         iter->head += length;
1710
1711         /* check for end of page padding */
1712         if ((iter->head >= rb_page_size(iter->head_page)) &&
1713             (iter->head_page != cpu_buffer->commit_page))
1714                 rb_advance_iter(iter);
1715 }
1716
1717 static struct ring_buffer_event *
1718 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1719 {
1720         struct ring_buffer_per_cpu *cpu_buffer;
1721         struct ring_buffer_event *event;
1722         struct buffer_page *reader;
1723         int nr_loops = 0;
1724
1725         if (!cpu_isset(cpu, buffer->cpumask))
1726                 return NULL;
1727
1728         cpu_buffer = buffer->buffers[cpu];
1729
1730  again:
1731         /*
1732          * We repeat when a timestamp is encountered. It is possible
1733          * to get multiple timestamps from an interrupt entering just
1734          * as one timestamp is about to be written. The max times
1735          * that this can happen is the number of nested interrupts we
1736          * can have.  Nesting 10 deep of interrupts is clearly
1737          * an anomaly.
1738          */
1739         if (unlikely(++nr_loops > 10)) {
1740                 RB_WARN_ON(cpu_buffer, 1);
1741                 return NULL;
1742         }
1743
1744         reader = rb_get_reader_page(cpu_buffer);
1745         if (!reader)
1746                 return NULL;
1747
1748         event = rb_reader_event(cpu_buffer);
1749
1750         switch (event->type) {
1751         case RINGBUF_TYPE_PADDING:
1752                 RB_WARN_ON(cpu_buffer, 1);
1753                 rb_advance_reader(cpu_buffer);
1754                 return NULL;
1755
1756         case RINGBUF_TYPE_TIME_EXTEND:
1757                 /* Internal data, OK to advance */
1758                 rb_advance_reader(cpu_buffer);
1759                 goto again;
1760
1761         case RINGBUF_TYPE_TIME_STAMP:
1762                 /* FIXME: not implemented */
1763                 rb_advance_reader(cpu_buffer);
1764                 goto again;
1765
1766         case RINGBUF_TYPE_DATA:
1767                 if (ts) {
1768                         *ts = cpu_buffer->read_stamp + event->time_delta;
1769                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1770                 }
1771                 return event;
1772
1773         default:
1774                 BUG();
1775         }
1776
1777         return NULL;
1778 }
1779
1780 static struct ring_buffer_event *
1781 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1782 {
1783         struct ring_buffer *buffer;
1784         struct ring_buffer_per_cpu *cpu_buffer;
1785         struct ring_buffer_event *event;
1786         int nr_loops = 0;
1787
1788         if (ring_buffer_iter_empty(iter))
1789                 return NULL;
1790
1791         cpu_buffer = iter->cpu_buffer;
1792         buffer = cpu_buffer->buffer;
1793
1794  again:
1795         /*
1796          * We repeat when a timestamp is encountered. It is possible
1797          * to get multiple timestamps from an interrupt entering just
1798          * as one timestamp is about to be written. The max times
1799          * that this can happen is the number of nested interrupts we
1800          * can have. Nesting 10 deep of interrupts is clearly
1801          * an anomaly.
1802          */
1803         if (unlikely(++nr_loops > 10)) {
1804                 RB_WARN_ON(cpu_buffer, 1);
1805                 return NULL;
1806         }
1807
1808         if (rb_per_cpu_empty(cpu_buffer))
1809                 return NULL;
1810
1811         event = rb_iter_head_event(iter);
1812
1813         switch (event->type) {
1814         case RINGBUF_TYPE_PADDING:
1815                 rb_inc_iter(iter);
1816                 goto again;
1817
1818         case RINGBUF_TYPE_TIME_EXTEND:
1819                 /* Internal data, OK to advance */
1820                 rb_advance_iter(iter);
1821                 goto again;
1822
1823         case RINGBUF_TYPE_TIME_STAMP:
1824                 /* FIXME: not implemented */
1825                 rb_advance_iter(iter);
1826                 goto again;
1827
1828         case RINGBUF_TYPE_DATA:
1829                 if (ts) {
1830                         *ts = iter->read_stamp + event->time_delta;
1831                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1832                 }
1833                 return event;
1834
1835         default:
1836                 BUG();
1837         }
1838
1839         return NULL;
1840 }
1841
1842 /**
1843  * ring_buffer_peek - peek at the next event to be read
1844  * @buffer: The ring buffer to read
1845  * @cpu: The cpu to peak at
1846  * @ts: The timestamp counter of this event.
1847  *
1848  * This will return the event that will be read next, but does
1849  * not consume the data.
1850  */
1851 struct ring_buffer_event *
1852 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1853 {
1854         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1855         struct ring_buffer_event *event;
1856         unsigned long flags;
1857
1858         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1859         event = rb_buffer_peek(buffer, cpu, ts);
1860         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1861
1862         return event;
1863 }
1864
1865 /**
1866  * ring_buffer_iter_peek - peek at the next event to be read
1867  * @iter: The ring buffer iterator
1868  * @ts: The timestamp counter of this event.
1869  *
1870  * This will return the event that will be read next, but does
1871  * not increment the iterator.
1872  */
1873 struct ring_buffer_event *
1874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1875 {
1876         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1877         struct ring_buffer_event *event;
1878         unsigned long flags;
1879
1880         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1881         event = rb_iter_peek(iter, ts);
1882         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1883
1884         return event;
1885 }
1886
1887 /**
1888  * ring_buffer_consume - return an event and consume it
1889  * @buffer: The ring buffer to get the next event from
1890  *
1891  * Returns the next event in the ring buffer, and that event is consumed.
1892  * Meaning, that sequential reads will keep returning a different event,
1893  * and eventually empty the ring buffer if the producer is slower.
1894  */
1895 struct ring_buffer_event *
1896 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1897 {
1898         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1899         struct ring_buffer_event *event;
1900         unsigned long flags;
1901
1902         if (!cpu_isset(cpu, buffer->cpumask))
1903                 return NULL;
1904
1905         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1906
1907         event = rb_buffer_peek(buffer, cpu, ts);
1908         if (!event)
1909                 goto out;
1910
1911         rb_advance_reader(cpu_buffer);
1912
1913  out:
1914         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1915
1916         return event;
1917 }
1918
1919 /**
1920  * ring_buffer_read_start - start a non consuming read of the buffer
1921  * @buffer: The ring buffer to read from
1922  * @cpu: The cpu buffer to iterate over
1923  *
1924  * This starts up an iteration through the buffer. It also disables
1925  * the recording to the buffer until the reading is finished.
1926  * This prevents the reading from being corrupted. This is not
1927  * a consuming read, so a producer is not expected.
1928  *
1929  * Must be paired with ring_buffer_finish.
1930  */
1931 struct ring_buffer_iter *
1932 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1933 {
1934         struct ring_buffer_per_cpu *cpu_buffer;
1935         struct ring_buffer_iter *iter;
1936         unsigned long flags;
1937
1938         if (!cpu_isset(cpu, buffer->cpumask))
1939                 return NULL;
1940
1941         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1942         if (!iter)
1943                 return NULL;
1944
1945         cpu_buffer = buffer->buffers[cpu];
1946
1947         iter->cpu_buffer = cpu_buffer;
1948
1949         atomic_inc(&cpu_buffer->record_disabled);
1950         synchronize_sched();
1951
1952         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1953         __raw_spin_lock(&cpu_buffer->lock);
1954         ring_buffer_iter_reset(iter);
1955         __raw_spin_unlock(&cpu_buffer->lock);
1956         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1957
1958         return iter;
1959 }
1960
1961 /**
1962  * ring_buffer_finish - finish reading the iterator of the buffer
1963  * @iter: The iterator retrieved by ring_buffer_start
1964  *
1965  * This re-enables the recording to the buffer, and frees the
1966  * iterator.
1967  */
1968 void
1969 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1970 {
1971         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1972
1973         atomic_dec(&cpu_buffer->record_disabled);
1974         kfree(iter);
1975 }
1976
1977 /**
1978  * ring_buffer_read - read the next item in the ring buffer by the iterator
1979  * @iter: The ring buffer iterator
1980  * @ts: The time stamp of the event read.
1981  *
1982  * This reads the next event in the ring buffer and increments the iterator.
1983  */
1984 struct ring_buffer_event *
1985 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1986 {
1987         struct ring_buffer_event *event;
1988         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989         unsigned long flags;
1990
1991         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1992         event = rb_iter_peek(iter, ts);
1993         if (!event)
1994                 goto out;
1995
1996         rb_advance_iter(iter);
1997  out:
1998         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1999
2000         return event;
2001 }
2002
2003 /**
2004  * ring_buffer_size - return the size of the ring buffer (in bytes)
2005  * @buffer: The ring buffer.
2006  */
2007 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2008 {
2009         return BUF_PAGE_SIZE * buffer->pages;
2010 }
2011
2012 static void
2013 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2014 {
2015         cpu_buffer->head_page
2016                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2017         local_set(&cpu_buffer->head_page->write, 0);
2018         local_set(&cpu_buffer->head_page->commit, 0);
2019
2020         cpu_buffer->head_page->read = 0;
2021
2022         cpu_buffer->tail_page = cpu_buffer->head_page;
2023         cpu_buffer->commit_page = cpu_buffer->head_page;
2024
2025         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2026         local_set(&cpu_buffer->reader_page->write, 0);
2027         local_set(&cpu_buffer->reader_page->commit, 0);
2028         cpu_buffer->reader_page->read = 0;
2029
2030         cpu_buffer->overrun = 0;
2031         cpu_buffer->entries = 0;
2032 }
2033
2034 /**
2035  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2036  * @buffer: The ring buffer to reset a per cpu buffer of
2037  * @cpu: The CPU buffer to be reset
2038  */
2039 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2040 {
2041         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2042         unsigned long flags;
2043
2044         if (!cpu_isset(cpu, buffer->cpumask))
2045                 return;
2046
2047         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2048
2049         __raw_spin_lock(&cpu_buffer->lock);
2050
2051         rb_reset_cpu(cpu_buffer);
2052
2053         __raw_spin_unlock(&cpu_buffer->lock);
2054
2055         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2056 }
2057
2058 /**
2059  * ring_buffer_reset - reset a ring buffer
2060  * @buffer: The ring buffer to reset all cpu buffers
2061  */
2062 void ring_buffer_reset(struct ring_buffer *buffer)
2063 {
2064         int cpu;
2065
2066         for_each_buffer_cpu(buffer, cpu)
2067                 ring_buffer_reset_cpu(buffer, cpu);
2068 }
2069
2070 /**
2071  * rind_buffer_empty - is the ring buffer empty?
2072  * @buffer: The ring buffer to test
2073  */
2074 int ring_buffer_empty(struct ring_buffer *buffer)
2075 {
2076         struct ring_buffer_per_cpu *cpu_buffer;
2077         int cpu;
2078
2079         /* yes this is racy, but if you don't like the race, lock the buffer */
2080         for_each_buffer_cpu(buffer, cpu) {
2081                 cpu_buffer = buffer->buffers[cpu];
2082                 if (!rb_per_cpu_empty(cpu_buffer))
2083                         return 0;
2084         }
2085         return 1;
2086 }
2087
2088 /**
2089  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2090  * @buffer: The ring buffer
2091  * @cpu: The CPU buffer to test
2092  */
2093 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2094 {
2095         struct ring_buffer_per_cpu *cpu_buffer;
2096
2097         if (!cpu_isset(cpu, buffer->cpumask))
2098                 return 1;
2099
2100         cpu_buffer = buffer->buffers[cpu];
2101         return rb_per_cpu_empty(cpu_buffer);
2102 }
2103
2104 /**
2105  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2106  * @buffer_a: One buffer to swap with
2107  * @buffer_b: The other buffer to swap with
2108  *
2109  * This function is useful for tracers that want to take a "snapshot"
2110  * of a CPU buffer and has another back up buffer lying around.
2111  * it is expected that the tracer handles the cpu buffer not being
2112  * used at the moment.
2113  */
2114 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2115                          struct ring_buffer *buffer_b, int cpu)
2116 {
2117         struct ring_buffer_per_cpu *cpu_buffer_a;
2118         struct ring_buffer_per_cpu *cpu_buffer_b;
2119
2120         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2121             !cpu_isset(cpu, buffer_b->cpumask))
2122                 return -EINVAL;
2123
2124         /* At least make sure the two buffers are somewhat the same */
2125         if (buffer_a->size != buffer_b->size ||
2126             buffer_a->pages != buffer_b->pages)
2127                 return -EINVAL;
2128
2129         cpu_buffer_a = buffer_a->buffers[cpu];
2130         cpu_buffer_b = buffer_b->buffers[cpu];
2131
2132         /*
2133          * We can't do a synchronize_sched here because this
2134          * function can be called in atomic context.
2135          * Normally this will be called from the same CPU as cpu.
2136          * If not it's up to the caller to protect this.
2137          */
2138         atomic_inc(&cpu_buffer_a->record_disabled);
2139         atomic_inc(&cpu_buffer_b->record_disabled);
2140
2141         buffer_a->buffers[cpu] = cpu_buffer_b;
2142         buffer_b->buffers[cpu] = cpu_buffer_a;
2143
2144         cpu_buffer_b->buffer = buffer_a;
2145         cpu_buffer_a->buffer = buffer_b;
2146
2147         atomic_dec(&cpu_buffer_a->record_disabled);
2148         atomic_dec(&cpu_buffer_b->record_disabled);
2149
2150         return 0;
2151 }
2152