ring-buffer: replace most bug ons with warn on and disable buffer
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /* Up this if you want to test the TIME_EXTENTS and normalization */
22 #define DEBUG_SHIFT 0
23
24 /* FIXME!!! */
25 u64 ring_buffer_time_stamp(int cpu)
26 {
27         /* shift to debug/test normalization and TIME_EXTENTS */
28         return sched_clock() << DEBUG_SHIFT;
29 }
30
31 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
32 {
33         /* Just stupid testing the normalize function and deltas */
34         *ts >>= DEBUG_SHIFT;
35 }
36
37 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
38 #define RB_ALIGNMENT_SHIFT      2
39 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
40 #define RB_MAX_SMALL_DATA       28
41
42 enum {
43         RB_LEN_TIME_EXTEND = 8,
44         RB_LEN_TIME_STAMP = 16,
45 };
46
47 /* inline for ring buffer fast paths */
48 static inline unsigned
49 rb_event_length(struct ring_buffer_event *event)
50 {
51         unsigned length;
52
53         switch (event->type) {
54         case RINGBUF_TYPE_PADDING:
55                 /* undefined */
56                 return -1;
57
58         case RINGBUF_TYPE_TIME_EXTEND:
59                 return RB_LEN_TIME_EXTEND;
60
61         case RINGBUF_TYPE_TIME_STAMP:
62                 return RB_LEN_TIME_STAMP;
63
64         case RINGBUF_TYPE_DATA:
65                 if (event->len)
66                         length = event->len << RB_ALIGNMENT_SHIFT;
67                 else
68                         length = event->array[0];
69                 return length + RB_EVNT_HDR_SIZE;
70         default:
71                 BUG();
72         }
73         /* not hit */
74         return 0;
75 }
76
77 /**
78  * ring_buffer_event_length - return the length of the event
79  * @event: the event to get the length of
80  */
81 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
82 {
83         return rb_event_length(event);
84 }
85
86 /* inline for ring buffer fast paths */
87 static inline void *
88 rb_event_data(struct ring_buffer_event *event)
89 {
90         BUG_ON(event->type != RINGBUF_TYPE_DATA);
91         /* If length is in len field, then array[0] has the data */
92         if (event->len)
93                 return (void *)&event->array[0];
94         /* Otherwise length is in array[0] and array[1] has the data */
95         return (void *)&event->array[1];
96 }
97
98 /**
99  * ring_buffer_event_data - return the data of the event
100  * @event: the event to get the data from
101  */
102 void *ring_buffer_event_data(struct ring_buffer_event *event)
103 {
104         return rb_event_data(event);
105 }
106
107 #define for_each_buffer_cpu(buffer, cpu)                \
108         for_each_cpu_mask(cpu, buffer->cpumask)
109
110 #define TS_SHIFT        27
111 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
112 #define TS_DELTA_TEST   (~TS_MASK)
113
114 /*
115  * This hack stolen from mm/slob.c.
116  * We can store per page timing information in the page frame of the page.
117  * Thanks to Peter Zijlstra for suggesting this idea.
118  */
119 struct buffer_page {
120         u64              time_stamp;    /* page time stamp */
121         local_t          write;         /* index for next write */
122         local_t          commit;        /* write commited index */
123         unsigned         read;          /* index for next read */
124         struct list_head list;          /* list of free pages */
125         void *page;                     /* Actual data page */
126 };
127
128 /*
129  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
130  * this issue out.
131  */
132 static inline void free_buffer_page(struct buffer_page *bpage)
133 {
134         if (bpage->page)
135                 free_page((unsigned long)bpage->page);
136         kfree(bpage);
137 }
138
139 /*
140  * We need to fit the time_stamp delta into 27 bits.
141  */
142 static inline int test_time_stamp(u64 delta)
143 {
144         if (delta & TS_DELTA_TEST)
145                 return 1;
146         return 0;
147 }
148
149 #define BUF_PAGE_SIZE PAGE_SIZE
150
151 /*
152  * head_page == tail_page && head == tail then buffer is empty.
153  */
154 struct ring_buffer_per_cpu {
155         int                             cpu;
156         struct ring_buffer              *buffer;
157         raw_spinlock_t                  lock;
158         struct lock_class_key           lock_key;
159         struct list_head                pages;
160         struct buffer_page              *head_page;     /* read from head */
161         struct buffer_page              *tail_page;     /* write to tail */
162         struct buffer_page              *commit_page;   /* commited pages */
163         struct buffer_page              *reader_page;
164         unsigned long                   overrun;
165         unsigned long                   entries;
166         u64                             write_stamp;
167         u64                             read_stamp;
168         atomic_t                        record_disabled;
169 };
170
171 struct ring_buffer {
172         unsigned long                   size;
173         unsigned                        pages;
174         unsigned                        flags;
175         int                             cpus;
176         cpumask_t                       cpumask;
177         atomic_t                        record_disabled;
178
179         struct mutex                    mutex;
180
181         struct ring_buffer_per_cpu      **buffers;
182 };
183
184 struct ring_buffer_iter {
185         struct ring_buffer_per_cpu      *cpu_buffer;
186         unsigned long                   head;
187         struct buffer_page              *head_page;
188         u64                             read_stamp;
189 };
190
191 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
192 #define RB_WARN_ON(buffer, cond)                                \
193         do {                                                    \
194                 if (unlikely(cond)) {                           \
195                         atomic_inc(&buffer->record_disabled);   \
196                         WARN_ON(1);                             \
197                 }                                               \
198         } while (0)
199
200 #define RB_WARN_ON_RET(buffer, cond)                            \
201         do {                                                    \
202                 if (unlikely(cond)) {                           \
203                         atomic_inc(&buffer->record_disabled);   \
204                         WARN_ON(1);                             \
205                         return;                                 \
206                 }                                               \
207         } while (0)
208
209 #define RB_WARN_ON_RET_INT(buffer, cond)                        \
210         do {                                                    \
211                 if (unlikely(cond)) {                           \
212                         atomic_inc(&buffer->record_disabled);   \
213                         WARN_ON(1);                             \
214                         return -1;                              \
215                 }                                               \
216         } while (0)
217
218 #define RB_WARN_ON_RET_NULL(buffer, cond)                       \
219         do {                                                    \
220                 if (unlikely(cond)) {                           \
221                         atomic_inc(&buffer->record_disabled);   \
222                         WARN_ON(1);                             \
223                         return NULL;                            \
224                 }                                               \
225         } while (0)
226
227 #define RB_WARN_ON_ONCE(buffer, cond)                           \
228         do {                                                    \
229                 static int once;                                \
230                 if (unlikely(cond) && !once) {                  \
231                         once++;                                 \
232                         atomic_inc(&buffer->record_disabled);   \
233                         WARN_ON(1);                             \
234                 }                                               \
235         } while (0)
236
237 /* buffer must be ring_buffer not per_cpu */
238 #define RB_WARN_ON_UNLOCK(buffer, cond)                         \
239         do {                                                    \
240                 if (unlikely(cond)) {                           \
241                         mutex_unlock(&buffer->mutex);           \
242                         atomic_inc(&buffer->record_disabled);   \
243                         WARN_ON(1);                             \
244                         return -1;                              \
245                 }                                               \
246         } while (0)
247
248 /**
249  * check_pages - integrity check of buffer pages
250  * @cpu_buffer: CPU buffer with pages to test
251  *
252  * As a safty measure we check to make sure the data pages have not
253  * been corrupted.
254  */
255 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
256 {
257         struct list_head *head = &cpu_buffer->pages;
258         struct buffer_page *page, *tmp;
259
260         RB_WARN_ON_RET_INT(cpu_buffer, head->next->prev != head);
261         RB_WARN_ON_RET_INT(cpu_buffer, head->prev->next != head);
262
263         list_for_each_entry_safe(page, tmp, head, list) {
264                 RB_WARN_ON_RET_INT(cpu_buffer,
265                                page->list.next->prev != &page->list);
266                 RB_WARN_ON_RET_INT(cpu_buffer,
267                                page->list.prev->next != &page->list);
268         }
269
270         return 0;
271 }
272
273 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
274                              unsigned nr_pages)
275 {
276         struct list_head *head = &cpu_buffer->pages;
277         struct buffer_page *page, *tmp;
278         unsigned long addr;
279         LIST_HEAD(pages);
280         unsigned i;
281
282         for (i = 0; i < nr_pages; i++) {
283                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
284                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
285                 if (!page)
286                         goto free_pages;
287                 list_add(&page->list, &pages);
288
289                 addr = __get_free_page(GFP_KERNEL);
290                 if (!addr)
291                         goto free_pages;
292                 page->page = (void *)addr;
293         }
294
295         list_splice(&pages, head);
296
297         rb_check_pages(cpu_buffer);
298
299         return 0;
300
301  free_pages:
302         list_for_each_entry_safe(page, tmp, &pages, list) {
303                 list_del_init(&page->list);
304                 free_buffer_page(page);
305         }
306         return -ENOMEM;
307 }
308
309 static struct ring_buffer_per_cpu *
310 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
311 {
312         struct ring_buffer_per_cpu *cpu_buffer;
313         struct buffer_page *page;
314         unsigned long addr;
315         int ret;
316
317         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
318                                   GFP_KERNEL, cpu_to_node(cpu));
319         if (!cpu_buffer)
320                 return NULL;
321
322         cpu_buffer->cpu = cpu;
323         cpu_buffer->buffer = buffer;
324         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
325         INIT_LIST_HEAD(&cpu_buffer->pages);
326
327         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
328                             GFP_KERNEL, cpu_to_node(cpu));
329         if (!page)
330                 goto fail_free_buffer;
331
332         cpu_buffer->reader_page = page;
333         addr = __get_free_page(GFP_KERNEL);
334         if (!addr)
335                 goto fail_free_reader;
336         page->page = (void *)addr;
337
338         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
339
340         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
341         if (ret < 0)
342                 goto fail_free_reader;
343
344         cpu_buffer->head_page
345                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
346         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
347
348         return cpu_buffer;
349
350  fail_free_reader:
351         free_buffer_page(cpu_buffer->reader_page);
352
353  fail_free_buffer:
354         kfree(cpu_buffer);
355         return NULL;
356 }
357
358 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
359 {
360         struct list_head *head = &cpu_buffer->pages;
361         struct buffer_page *page, *tmp;
362
363         list_del_init(&cpu_buffer->reader_page->list);
364         free_buffer_page(cpu_buffer->reader_page);
365
366         list_for_each_entry_safe(page, tmp, head, list) {
367                 list_del_init(&page->list);
368                 free_buffer_page(page);
369         }
370         kfree(cpu_buffer);
371 }
372
373 /*
374  * Causes compile errors if the struct buffer_page gets bigger
375  * than the struct page.
376  */
377 extern int ring_buffer_page_too_big(void);
378
379 /**
380  * ring_buffer_alloc - allocate a new ring_buffer
381  * @size: the size in bytes that is needed.
382  * @flags: attributes to set for the ring buffer.
383  *
384  * Currently the only flag that is available is the RB_FL_OVERWRITE
385  * flag. This flag means that the buffer will overwrite old data
386  * when the buffer wraps. If this flag is not set, the buffer will
387  * drop data when the tail hits the head.
388  */
389 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
390 {
391         struct ring_buffer *buffer;
392         int bsize;
393         int cpu;
394
395         /* Paranoid! Optimizes out when all is well */
396         if (sizeof(struct buffer_page) > sizeof(struct page))
397                 ring_buffer_page_too_big();
398
399
400         /* keep it in its own cache line */
401         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
402                          GFP_KERNEL);
403         if (!buffer)
404                 return NULL;
405
406         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
407         buffer->flags = flags;
408
409         /* need at least two pages */
410         if (buffer->pages == 1)
411                 buffer->pages++;
412
413         buffer->cpumask = cpu_possible_map;
414         buffer->cpus = nr_cpu_ids;
415
416         bsize = sizeof(void *) * nr_cpu_ids;
417         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
418                                   GFP_KERNEL);
419         if (!buffer->buffers)
420                 goto fail_free_buffer;
421
422         for_each_buffer_cpu(buffer, cpu) {
423                 buffer->buffers[cpu] =
424                         rb_allocate_cpu_buffer(buffer, cpu);
425                 if (!buffer->buffers[cpu])
426                         goto fail_free_buffers;
427         }
428
429         mutex_init(&buffer->mutex);
430
431         return buffer;
432
433  fail_free_buffers:
434         for_each_buffer_cpu(buffer, cpu) {
435                 if (buffer->buffers[cpu])
436                         rb_free_cpu_buffer(buffer->buffers[cpu]);
437         }
438         kfree(buffer->buffers);
439
440  fail_free_buffer:
441         kfree(buffer);
442         return NULL;
443 }
444
445 /**
446  * ring_buffer_free - free a ring buffer.
447  * @buffer: the buffer to free.
448  */
449 void
450 ring_buffer_free(struct ring_buffer *buffer)
451 {
452         int cpu;
453
454         for_each_buffer_cpu(buffer, cpu)
455                 rb_free_cpu_buffer(buffer->buffers[cpu]);
456
457         kfree(buffer);
458 }
459
460 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
461
462 static void
463 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
464 {
465         struct buffer_page *page;
466         struct list_head *p;
467         unsigned i;
468
469         atomic_inc(&cpu_buffer->record_disabled);
470         synchronize_sched();
471
472         for (i = 0; i < nr_pages; i++) {
473                 RB_WARN_ON_RET(cpu_buffer, list_empty(&cpu_buffer->pages));
474                 p = cpu_buffer->pages.next;
475                 page = list_entry(p, struct buffer_page, list);
476                 list_del_init(&page->list);
477                 free_buffer_page(page);
478         }
479         RB_WARN_ON_RET(cpu_buffer, list_empty(&cpu_buffer->pages));
480
481         rb_reset_cpu(cpu_buffer);
482
483         rb_check_pages(cpu_buffer);
484
485         atomic_dec(&cpu_buffer->record_disabled);
486
487 }
488
489 static void
490 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
491                 struct list_head *pages, unsigned nr_pages)
492 {
493         struct buffer_page *page;
494         struct list_head *p;
495         unsigned i;
496
497         atomic_inc(&cpu_buffer->record_disabled);
498         synchronize_sched();
499
500         for (i = 0; i < nr_pages; i++) {
501                 RB_WARN_ON_RET(cpu_buffer, list_empty(pages));
502                 p = pages->next;
503                 page = list_entry(p, struct buffer_page, list);
504                 list_del_init(&page->list);
505                 list_add_tail(&page->list, &cpu_buffer->pages);
506         }
507         rb_reset_cpu(cpu_buffer);
508
509         rb_check_pages(cpu_buffer);
510
511         atomic_dec(&cpu_buffer->record_disabled);
512 }
513
514 /**
515  * ring_buffer_resize - resize the ring buffer
516  * @buffer: the buffer to resize.
517  * @size: the new size.
518  *
519  * The tracer is responsible for making sure that the buffer is
520  * not being used while changing the size.
521  * Note: We may be able to change the above requirement by using
522  *  RCU synchronizations.
523  *
524  * Minimum size is 2 * BUF_PAGE_SIZE.
525  *
526  * Returns -1 on failure.
527  */
528 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
529 {
530         struct ring_buffer_per_cpu *cpu_buffer;
531         unsigned nr_pages, rm_pages, new_pages;
532         struct buffer_page *page, *tmp;
533         unsigned long buffer_size;
534         unsigned long addr;
535         LIST_HEAD(pages);
536         int i, cpu;
537
538         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
539         size *= BUF_PAGE_SIZE;
540         buffer_size = buffer->pages * BUF_PAGE_SIZE;
541
542         /* we need a minimum of two pages */
543         if (size < BUF_PAGE_SIZE * 2)
544                 size = BUF_PAGE_SIZE * 2;
545
546         if (size == buffer_size)
547                 return size;
548
549         mutex_lock(&buffer->mutex);
550
551         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
552
553         if (size < buffer_size) {
554
555                 /* easy case, just free pages */
556                 RB_WARN_ON_UNLOCK(buffer, nr_pages >= buffer->pages);
557
558                 rm_pages = buffer->pages - nr_pages;
559
560                 for_each_buffer_cpu(buffer, cpu) {
561                         cpu_buffer = buffer->buffers[cpu];
562                         rb_remove_pages(cpu_buffer, rm_pages);
563                 }
564                 goto out;
565         }
566
567         /*
568          * This is a bit more difficult. We only want to add pages
569          * when we can allocate enough for all CPUs. We do this
570          * by allocating all the pages and storing them on a local
571          * link list. If we succeed in our allocation, then we
572          * add these pages to the cpu_buffers. Otherwise we just free
573          * them all and return -ENOMEM;
574          */
575         RB_WARN_ON_UNLOCK(buffer, nr_pages <= buffer->pages);
576
577         new_pages = nr_pages - buffer->pages;
578
579         for_each_buffer_cpu(buffer, cpu) {
580                 for (i = 0; i < new_pages; i++) {
581                         page = kzalloc_node(ALIGN(sizeof(*page),
582                                                   cache_line_size()),
583                                             GFP_KERNEL, cpu_to_node(cpu));
584                         if (!page)
585                                 goto free_pages;
586                         list_add(&page->list, &pages);
587                         addr = __get_free_page(GFP_KERNEL);
588                         if (!addr)
589                                 goto free_pages;
590                         page->page = (void *)addr;
591                 }
592         }
593
594         for_each_buffer_cpu(buffer, cpu) {
595                 cpu_buffer = buffer->buffers[cpu];
596                 rb_insert_pages(cpu_buffer, &pages, new_pages);
597         }
598
599         RB_WARN_ON_UNLOCK(buffer, !list_empty(&pages));
600
601  out:
602         buffer->pages = nr_pages;
603         mutex_unlock(&buffer->mutex);
604
605         return size;
606
607  free_pages:
608         list_for_each_entry_safe(page, tmp, &pages, list) {
609                 list_del_init(&page->list);
610                 free_buffer_page(page);
611         }
612         return -ENOMEM;
613 }
614
615 static inline int rb_null_event(struct ring_buffer_event *event)
616 {
617         return event->type == RINGBUF_TYPE_PADDING;
618 }
619
620 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
621 {
622         return page->page + index;
623 }
624
625 static inline struct ring_buffer_event *
626 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
627 {
628         return __rb_page_index(cpu_buffer->reader_page,
629                                cpu_buffer->reader_page->read);
630 }
631
632 static inline struct ring_buffer_event *
633 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
634 {
635         return __rb_page_index(cpu_buffer->head_page,
636                                cpu_buffer->head_page->read);
637 }
638
639 static inline struct ring_buffer_event *
640 rb_iter_head_event(struct ring_buffer_iter *iter)
641 {
642         return __rb_page_index(iter->head_page, iter->head);
643 }
644
645 static inline unsigned rb_page_write(struct buffer_page *bpage)
646 {
647         return local_read(&bpage->write);
648 }
649
650 static inline unsigned rb_page_commit(struct buffer_page *bpage)
651 {
652         return local_read(&bpage->commit);
653 }
654
655 /* Size is determined by what has been commited */
656 static inline unsigned rb_page_size(struct buffer_page *bpage)
657 {
658         return rb_page_commit(bpage);
659 }
660
661 static inline unsigned
662 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
663 {
664         return rb_page_commit(cpu_buffer->commit_page);
665 }
666
667 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
668 {
669         return rb_page_commit(cpu_buffer->head_page);
670 }
671
672 /*
673  * When the tail hits the head and the buffer is in overwrite mode,
674  * the head jumps to the next page and all content on the previous
675  * page is discarded. But before doing so, we update the overrun
676  * variable of the buffer.
677  */
678 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
679 {
680         struct ring_buffer_event *event;
681         unsigned long head;
682
683         for (head = 0; head < rb_head_size(cpu_buffer);
684              head += rb_event_length(event)) {
685
686                 event = __rb_page_index(cpu_buffer->head_page, head);
687                 RB_WARN_ON_RET(cpu_buffer, rb_null_event(event));
688                 /* Only count data entries */
689                 if (event->type != RINGBUF_TYPE_DATA)
690                         continue;
691                 cpu_buffer->overrun++;
692                 cpu_buffer->entries--;
693         }
694 }
695
696 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
697                                struct buffer_page **page)
698 {
699         struct list_head *p = (*page)->list.next;
700
701         if (p == &cpu_buffer->pages)
702                 p = p->next;
703
704         *page = list_entry(p, struct buffer_page, list);
705 }
706
707 static inline unsigned
708 rb_event_index(struct ring_buffer_event *event)
709 {
710         unsigned long addr = (unsigned long)event;
711
712         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
713 }
714
715 static inline int
716 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
717              struct ring_buffer_event *event)
718 {
719         unsigned long addr = (unsigned long)event;
720         unsigned long index;
721
722         index = rb_event_index(event);
723         addr &= PAGE_MASK;
724
725         return cpu_buffer->commit_page->page == (void *)addr &&
726                 rb_commit_index(cpu_buffer) == index;
727 }
728
729 static inline void
730 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
731                     struct ring_buffer_event *event)
732 {
733         unsigned long addr = (unsigned long)event;
734         unsigned long index;
735
736         index = rb_event_index(event);
737         addr &= PAGE_MASK;
738
739         while (cpu_buffer->commit_page->page != (void *)addr) {
740                 RB_WARN_ON(cpu_buffer,
741                            cpu_buffer->commit_page == cpu_buffer->tail_page);
742                 cpu_buffer->commit_page->commit =
743                         cpu_buffer->commit_page->write;
744                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
745                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
746         }
747
748         /* Now set the commit to the event's index */
749         local_set(&cpu_buffer->commit_page->commit, index);
750 }
751
752 static inline void
753 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
754 {
755         /*
756          * We only race with interrupts and NMIs on this CPU.
757          * If we own the commit event, then we can commit
758          * all others that interrupted us, since the interruptions
759          * are in stack format (they finish before they come
760          * back to us). This allows us to do a simple loop to
761          * assign the commit to the tail.
762          */
763         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
764                 cpu_buffer->commit_page->commit =
765                         cpu_buffer->commit_page->write;
766                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
767                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
768                 /* add barrier to keep gcc from optimizing too much */
769                 barrier();
770         }
771         while (rb_commit_index(cpu_buffer) !=
772                rb_page_write(cpu_buffer->commit_page)) {
773                 cpu_buffer->commit_page->commit =
774                         cpu_buffer->commit_page->write;
775                 barrier();
776         }
777 }
778
779 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
780 {
781         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
782         cpu_buffer->reader_page->read = 0;
783 }
784
785 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
786 {
787         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
788
789         /*
790          * The iterator could be on the reader page (it starts there).
791          * But the head could have moved, since the reader was
792          * found. Check for this case and assign the iterator
793          * to the head page instead of next.
794          */
795         if (iter->head_page == cpu_buffer->reader_page)
796                 iter->head_page = cpu_buffer->head_page;
797         else
798                 rb_inc_page(cpu_buffer, &iter->head_page);
799
800         iter->read_stamp = iter->head_page->time_stamp;
801         iter->head = 0;
802 }
803
804 /**
805  * ring_buffer_update_event - update event type and data
806  * @event: the even to update
807  * @type: the type of event
808  * @length: the size of the event field in the ring buffer
809  *
810  * Update the type and data fields of the event. The length
811  * is the actual size that is written to the ring buffer,
812  * and with this, we can determine what to place into the
813  * data field.
814  */
815 static inline void
816 rb_update_event(struct ring_buffer_event *event,
817                          unsigned type, unsigned length)
818 {
819         event->type = type;
820
821         switch (type) {
822
823         case RINGBUF_TYPE_PADDING:
824                 break;
825
826         case RINGBUF_TYPE_TIME_EXTEND:
827                 event->len =
828                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
829                         >> RB_ALIGNMENT_SHIFT;
830                 break;
831
832         case RINGBUF_TYPE_TIME_STAMP:
833                 event->len =
834                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
835                         >> RB_ALIGNMENT_SHIFT;
836                 break;
837
838         case RINGBUF_TYPE_DATA:
839                 length -= RB_EVNT_HDR_SIZE;
840                 if (length > RB_MAX_SMALL_DATA) {
841                         event->len = 0;
842                         event->array[0] = length;
843                 } else
844                         event->len =
845                                 (length + (RB_ALIGNMENT-1))
846                                 >> RB_ALIGNMENT_SHIFT;
847                 break;
848         default:
849                 BUG();
850         }
851 }
852
853 static inline unsigned rb_calculate_event_length(unsigned length)
854 {
855         struct ring_buffer_event event; /* Used only for sizeof array */
856
857         /* zero length can cause confusions */
858         if (!length)
859                 length = 1;
860
861         if (length > RB_MAX_SMALL_DATA)
862                 length += sizeof(event.array[0]);
863
864         length += RB_EVNT_HDR_SIZE;
865         length = ALIGN(length, RB_ALIGNMENT);
866
867         return length;
868 }
869
870 static struct ring_buffer_event *
871 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
872                   unsigned type, unsigned long length, u64 *ts)
873 {
874         struct buffer_page *tail_page, *head_page, *reader_page;
875         unsigned long tail, write;
876         struct ring_buffer *buffer = cpu_buffer->buffer;
877         struct ring_buffer_event *event;
878         unsigned long flags;
879
880         tail_page = cpu_buffer->tail_page;
881         write = local_add_return(length, &tail_page->write);
882         tail = write - length;
883
884         /* See if we shot pass the end of this buffer page */
885         if (write > BUF_PAGE_SIZE) {
886                 struct buffer_page *next_page = tail_page;
887
888                 local_irq_save(flags);
889                 __raw_spin_lock(&cpu_buffer->lock);
890
891                 rb_inc_page(cpu_buffer, &next_page);
892
893                 head_page = cpu_buffer->head_page;
894                 reader_page = cpu_buffer->reader_page;
895
896                 /* we grabbed the lock before incrementing */
897                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
898
899                 /*
900                  * If for some reason, we had an interrupt storm that made
901                  * it all the way around the buffer, bail, and warn
902                  * about it.
903                  */
904                 if (unlikely(next_page == cpu_buffer->commit_page)) {
905                         WARN_ON_ONCE(1);
906                         goto out_unlock;
907                 }
908
909                 if (next_page == head_page) {
910                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
911                                 /* reset write */
912                                 if (tail <= BUF_PAGE_SIZE)
913                                         local_set(&tail_page->write, tail);
914                                 goto out_unlock;
915                         }
916
917                         /* tail_page has not moved yet? */
918                         if (tail_page == cpu_buffer->tail_page) {
919                                 /* count overflows */
920                                 rb_update_overflow(cpu_buffer);
921
922                                 rb_inc_page(cpu_buffer, &head_page);
923                                 cpu_buffer->head_page = head_page;
924                                 cpu_buffer->head_page->read = 0;
925                         }
926                 }
927
928                 /*
929                  * If the tail page is still the same as what we think
930                  * it is, then it is up to us to update the tail
931                  * pointer.
932                  */
933                 if (tail_page == cpu_buffer->tail_page) {
934                         local_set(&next_page->write, 0);
935                         local_set(&next_page->commit, 0);
936                         cpu_buffer->tail_page = next_page;
937
938                         /* reread the time stamp */
939                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
940                         cpu_buffer->tail_page->time_stamp = *ts;
941                 }
942
943                 /*
944                  * The actual tail page has moved forward.
945                  */
946                 if (tail < BUF_PAGE_SIZE) {
947                         /* Mark the rest of the page with padding */
948                         event = __rb_page_index(tail_page, tail);
949                         event->type = RINGBUF_TYPE_PADDING;
950                 }
951
952                 if (tail <= BUF_PAGE_SIZE)
953                         /* Set the write back to the previous setting */
954                         local_set(&tail_page->write, tail);
955
956                 /*
957                  * If this was a commit entry that failed,
958                  * increment that too
959                  */
960                 if (tail_page == cpu_buffer->commit_page &&
961                     tail == rb_commit_index(cpu_buffer)) {
962                         rb_set_commit_to_write(cpu_buffer);
963                 }
964
965                 __raw_spin_unlock(&cpu_buffer->lock);
966                 local_irq_restore(flags);
967
968                 /* fail and let the caller try again */
969                 return ERR_PTR(-EAGAIN);
970         }
971
972         /* We reserved something on the buffer */
973
974         RB_WARN_ON_RET_NULL(cpu_buffer, write > BUF_PAGE_SIZE);
975
976         event = __rb_page_index(tail_page, tail);
977         rb_update_event(event, type, length);
978
979         /*
980          * If this is a commit and the tail is zero, then update
981          * this page's time stamp.
982          */
983         if (!tail && rb_is_commit(cpu_buffer, event))
984                 cpu_buffer->commit_page->time_stamp = *ts;
985
986         return event;
987
988  out_unlock:
989         __raw_spin_unlock(&cpu_buffer->lock);
990         local_irq_restore(flags);
991         return NULL;
992 }
993
994 static int
995 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
996                   u64 *ts, u64 *delta)
997 {
998         struct ring_buffer_event *event;
999         static int once;
1000         int ret;
1001
1002         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1003                 printk(KERN_WARNING "Delta way too big! %llu"
1004                        " ts=%llu write stamp = %llu\n",
1005                        (unsigned long long)*delta,
1006                        (unsigned long long)*ts,
1007                        (unsigned long long)cpu_buffer->write_stamp);
1008                 WARN_ON(1);
1009         }
1010
1011         /*
1012          * The delta is too big, we to add a
1013          * new timestamp.
1014          */
1015         event = __rb_reserve_next(cpu_buffer,
1016                                   RINGBUF_TYPE_TIME_EXTEND,
1017                                   RB_LEN_TIME_EXTEND,
1018                                   ts);
1019         if (!event)
1020                 return -EBUSY;
1021
1022         if (PTR_ERR(event) == -EAGAIN)
1023                 return -EAGAIN;
1024
1025         /* Only a commited time event can update the write stamp */
1026         if (rb_is_commit(cpu_buffer, event)) {
1027                 /*
1028                  * If this is the first on the page, then we need to
1029                  * update the page itself, and just put in a zero.
1030                  */
1031                 if (rb_event_index(event)) {
1032                         event->time_delta = *delta & TS_MASK;
1033                         event->array[0] = *delta >> TS_SHIFT;
1034                 } else {
1035                         cpu_buffer->commit_page->time_stamp = *ts;
1036                         event->time_delta = 0;
1037                         event->array[0] = 0;
1038                 }
1039                 cpu_buffer->write_stamp = *ts;
1040                 /* let the caller know this was the commit */
1041                 ret = 1;
1042         } else {
1043                 /* Darn, this is just wasted space */
1044                 event->time_delta = 0;
1045                 event->array[0] = 0;
1046                 ret = 0;
1047         }
1048
1049         *delta = 0;
1050
1051         return ret;
1052 }
1053
1054 static struct ring_buffer_event *
1055 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1056                       unsigned type, unsigned long length)
1057 {
1058         struct ring_buffer_event *event;
1059         u64 ts, delta;
1060         int commit = 0;
1061         int nr_loops = 0;
1062
1063  again:
1064         /*
1065          * We allow for interrupts to reenter here and do a trace.
1066          * If one does, it will cause this original code to loop
1067          * back here. Even with heavy interrupts happening, this
1068          * should only happen a few times in a row. If this happens
1069          * 1000 times in a row, there must be either an interrupt
1070          * storm or we have something buggy.
1071          * Bail!
1072          */
1073         if (unlikely(++nr_loops > 1000)) {
1074                 RB_WARN_ON(cpu_buffer, 1);
1075                 return NULL;
1076         }
1077
1078         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1079
1080         /*
1081          * Only the first commit can update the timestamp.
1082          * Yes there is a race here. If an interrupt comes in
1083          * just after the conditional and it traces too, then it
1084          * will also check the deltas. More than one timestamp may
1085          * also be made. But only the entry that did the actual
1086          * commit will be something other than zero.
1087          */
1088         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1089             rb_page_write(cpu_buffer->tail_page) ==
1090             rb_commit_index(cpu_buffer)) {
1091
1092                 delta = ts - cpu_buffer->write_stamp;
1093
1094                 /* make sure this delta is calculated here */
1095                 barrier();
1096
1097                 /* Did the write stamp get updated already? */
1098                 if (unlikely(ts < cpu_buffer->write_stamp))
1099                         delta = 0;
1100
1101                 if (test_time_stamp(delta)) {
1102
1103                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1104
1105                         if (commit == -EBUSY)
1106                                 return NULL;
1107
1108                         if (commit == -EAGAIN)
1109                                 goto again;
1110
1111                         RB_WARN_ON(cpu_buffer, commit < 0);
1112                 }
1113         } else
1114                 /* Non commits have zero deltas */
1115                 delta = 0;
1116
1117         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1118         if (PTR_ERR(event) == -EAGAIN)
1119                 goto again;
1120
1121         if (!event) {
1122                 if (unlikely(commit))
1123                         /*
1124                          * Ouch! We needed a timestamp and it was commited. But
1125                          * we didn't get our event reserved.
1126                          */
1127                         rb_set_commit_to_write(cpu_buffer);
1128                 return NULL;
1129         }
1130
1131         /*
1132          * If the timestamp was commited, make the commit our entry
1133          * now so that we will update it when needed.
1134          */
1135         if (commit)
1136                 rb_set_commit_event(cpu_buffer, event);
1137         else if (!rb_is_commit(cpu_buffer, event))
1138                 delta = 0;
1139
1140         event->time_delta = delta;
1141
1142         return event;
1143 }
1144
1145 static DEFINE_PER_CPU(int, rb_need_resched);
1146
1147 /**
1148  * ring_buffer_lock_reserve - reserve a part of the buffer
1149  * @buffer: the ring buffer to reserve from
1150  * @length: the length of the data to reserve (excluding event header)
1151  * @flags: a pointer to save the interrupt flags
1152  *
1153  * Returns a reseverd event on the ring buffer to copy directly to.
1154  * The user of this interface will need to get the body to write into
1155  * and can use the ring_buffer_event_data() interface.
1156  *
1157  * The length is the length of the data needed, not the event length
1158  * which also includes the event header.
1159  *
1160  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1161  * If NULL is returned, then nothing has been allocated or locked.
1162  */
1163 struct ring_buffer_event *
1164 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1165                          unsigned long length,
1166                          unsigned long *flags)
1167 {
1168         struct ring_buffer_per_cpu *cpu_buffer;
1169         struct ring_buffer_event *event;
1170         int cpu, resched;
1171
1172         if (atomic_read(&buffer->record_disabled))
1173                 return NULL;
1174
1175         /* If we are tracing schedule, we don't want to recurse */
1176         resched = ftrace_preempt_disable();
1177
1178         cpu = raw_smp_processor_id();
1179
1180         if (!cpu_isset(cpu, buffer->cpumask))
1181                 goto out;
1182
1183         cpu_buffer = buffer->buffers[cpu];
1184
1185         if (atomic_read(&cpu_buffer->record_disabled))
1186                 goto out;
1187
1188         length = rb_calculate_event_length(length);
1189         if (length > BUF_PAGE_SIZE)
1190                 goto out;
1191
1192         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1193         if (!event)
1194                 goto out;
1195
1196         /*
1197          * Need to store resched state on this cpu.
1198          * Only the first needs to.
1199          */
1200
1201         if (preempt_count() == 1)
1202                 per_cpu(rb_need_resched, cpu) = resched;
1203
1204         return event;
1205
1206  out:
1207         ftrace_preempt_enable(resched);
1208         return NULL;
1209 }
1210
1211 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1212                       struct ring_buffer_event *event)
1213 {
1214         cpu_buffer->entries++;
1215
1216         /* Only process further if we own the commit */
1217         if (!rb_is_commit(cpu_buffer, event))
1218                 return;
1219
1220         cpu_buffer->write_stamp += event->time_delta;
1221
1222         rb_set_commit_to_write(cpu_buffer);
1223 }
1224
1225 /**
1226  * ring_buffer_unlock_commit - commit a reserved
1227  * @buffer: The buffer to commit to
1228  * @event: The event pointer to commit.
1229  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1230  *
1231  * This commits the data to the ring buffer, and releases any locks held.
1232  *
1233  * Must be paired with ring_buffer_lock_reserve.
1234  */
1235 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1236                               struct ring_buffer_event *event,
1237                               unsigned long flags)
1238 {
1239         struct ring_buffer_per_cpu *cpu_buffer;
1240         int cpu = raw_smp_processor_id();
1241
1242         cpu_buffer = buffer->buffers[cpu];
1243
1244         rb_commit(cpu_buffer, event);
1245
1246         /*
1247          * Only the last preempt count needs to restore preemption.
1248          */
1249         if (preempt_count() == 1)
1250                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1251         else
1252                 preempt_enable_no_resched_notrace();
1253
1254         return 0;
1255 }
1256
1257 /**
1258  * ring_buffer_write - write data to the buffer without reserving
1259  * @buffer: The ring buffer to write to.
1260  * @length: The length of the data being written (excluding the event header)
1261  * @data: The data to write to the buffer.
1262  *
1263  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1264  * one function. If you already have the data to write to the buffer, it
1265  * may be easier to simply call this function.
1266  *
1267  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1268  * and not the length of the event which would hold the header.
1269  */
1270 int ring_buffer_write(struct ring_buffer *buffer,
1271                         unsigned long length,
1272                         void *data)
1273 {
1274         struct ring_buffer_per_cpu *cpu_buffer;
1275         struct ring_buffer_event *event;
1276         unsigned long event_length;
1277         void *body;
1278         int ret = -EBUSY;
1279         int cpu, resched;
1280
1281         if (atomic_read(&buffer->record_disabled))
1282                 return -EBUSY;
1283
1284         resched = ftrace_preempt_disable();
1285
1286         cpu = raw_smp_processor_id();
1287
1288         if (!cpu_isset(cpu, buffer->cpumask))
1289                 goto out;
1290
1291         cpu_buffer = buffer->buffers[cpu];
1292
1293         if (atomic_read(&cpu_buffer->record_disabled))
1294                 goto out;
1295
1296         event_length = rb_calculate_event_length(length);
1297         event = rb_reserve_next_event(cpu_buffer,
1298                                       RINGBUF_TYPE_DATA, event_length);
1299         if (!event)
1300                 goto out;
1301
1302         body = rb_event_data(event);
1303
1304         memcpy(body, data, length);
1305
1306         rb_commit(cpu_buffer, event);
1307
1308         ret = 0;
1309  out:
1310         ftrace_preempt_enable(resched);
1311
1312         return ret;
1313 }
1314
1315 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1316 {
1317         struct buffer_page *reader = cpu_buffer->reader_page;
1318         struct buffer_page *head = cpu_buffer->head_page;
1319         struct buffer_page *commit = cpu_buffer->commit_page;
1320
1321         return reader->read == rb_page_commit(reader) &&
1322                 (commit == reader ||
1323                  (commit == head &&
1324                   head->read == rb_page_commit(commit)));
1325 }
1326
1327 /**
1328  * ring_buffer_record_disable - stop all writes into the buffer
1329  * @buffer: The ring buffer to stop writes to.
1330  *
1331  * This prevents all writes to the buffer. Any attempt to write
1332  * to the buffer after this will fail and return NULL.
1333  *
1334  * The caller should call synchronize_sched() after this.
1335  */
1336 void ring_buffer_record_disable(struct ring_buffer *buffer)
1337 {
1338         atomic_inc(&buffer->record_disabled);
1339 }
1340
1341 /**
1342  * ring_buffer_record_enable - enable writes to the buffer
1343  * @buffer: The ring buffer to enable writes
1344  *
1345  * Note, multiple disables will need the same number of enables
1346  * to truely enable the writing (much like preempt_disable).
1347  */
1348 void ring_buffer_record_enable(struct ring_buffer *buffer)
1349 {
1350         atomic_dec(&buffer->record_disabled);
1351 }
1352
1353 /**
1354  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1355  * @buffer: The ring buffer to stop writes to.
1356  * @cpu: The CPU buffer to stop
1357  *
1358  * This prevents all writes to the buffer. Any attempt to write
1359  * to the buffer after this will fail and return NULL.
1360  *
1361  * The caller should call synchronize_sched() after this.
1362  */
1363 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1364 {
1365         struct ring_buffer_per_cpu *cpu_buffer;
1366
1367         if (!cpu_isset(cpu, buffer->cpumask))
1368                 return;
1369
1370         cpu_buffer = buffer->buffers[cpu];
1371         atomic_inc(&cpu_buffer->record_disabled);
1372 }
1373
1374 /**
1375  * ring_buffer_record_enable_cpu - enable writes to the buffer
1376  * @buffer: The ring buffer to enable writes
1377  * @cpu: The CPU to enable.
1378  *
1379  * Note, multiple disables will need the same number of enables
1380  * to truely enable the writing (much like preempt_disable).
1381  */
1382 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1383 {
1384         struct ring_buffer_per_cpu *cpu_buffer;
1385
1386         if (!cpu_isset(cpu, buffer->cpumask))
1387                 return;
1388
1389         cpu_buffer = buffer->buffers[cpu];
1390         atomic_dec(&cpu_buffer->record_disabled);
1391 }
1392
1393 /**
1394  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1395  * @buffer: The ring buffer
1396  * @cpu: The per CPU buffer to get the entries from.
1397  */
1398 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1399 {
1400         struct ring_buffer_per_cpu *cpu_buffer;
1401
1402         if (!cpu_isset(cpu, buffer->cpumask))
1403                 return 0;
1404
1405         cpu_buffer = buffer->buffers[cpu];
1406         return cpu_buffer->entries;
1407 }
1408
1409 /**
1410  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1411  * @buffer: The ring buffer
1412  * @cpu: The per CPU buffer to get the number of overruns from
1413  */
1414 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1415 {
1416         struct ring_buffer_per_cpu *cpu_buffer;
1417
1418         if (!cpu_isset(cpu, buffer->cpumask))
1419                 return 0;
1420
1421         cpu_buffer = buffer->buffers[cpu];
1422         return cpu_buffer->overrun;
1423 }
1424
1425 /**
1426  * ring_buffer_entries - get the number of entries in a buffer
1427  * @buffer: The ring buffer
1428  *
1429  * Returns the total number of entries in the ring buffer
1430  * (all CPU entries)
1431  */
1432 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1433 {
1434         struct ring_buffer_per_cpu *cpu_buffer;
1435         unsigned long entries = 0;
1436         int cpu;
1437
1438         /* if you care about this being correct, lock the buffer */
1439         for_each_buffer_cpu(buffer, cpu) {
1440                 cpu_buffer = buffer->buffers[cpu];
1441                 entries += cpu_buffer->entries;
1442         }
1443
1444         return entries;
1445 }
1446
1447 /**
1448  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1449  * @buffer: The ring buffer
1450  *
1451  * Returns the total number of overruns in the ring buffer
1452  * (all CPU entries)
1453  */
1454 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1455 {
1456         struct ring_buffer_per_cpu *cpu_buffer;
1457         unsigned long overruns = 0;
1458         int cpu;
1459
1460         /* if you care about this being correct, lock the buffer */
1461         for_each_buffer_cpu(buffer, cpu) {
1462                 cpu_buffer = buffer->buffers[cpu];
1463                 overruns += cpu_buffer->overrun;
1464         }
1465
1466         return overruns;
1467 }
1468
1469 /**
1470  * ring_buffer_iter_reset - reset an iterator
1471  * @iter: The iterator to reset
1472  *
1473  * Resets the iterator, so that it will start from the beginning
1474  * again.
1475  */
1476 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1477 {
1478         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1479
1480         /* Iterator usage is expected to have record disabled */
1481         if (list_empty(&cpu_buffer->reader_page->list)) {
1482                 iter->head_page = cpu_buffer->head_page;
1483                 iter->head = cpu_buffer->head_page->read;
1484         } else {
1485                 iter->head_page = cpu_buffer->reader_page;
1486                 iter->head = cpu_buffer->reader_page->read;
1487         }
1488         if (iter->head)
1489                 iter->read_stamp = cpu_buffer->read_stamp;
1490         else
1491                 iter->read_stamp = iter->head_page->time_stamp;
1492 }
1493
1494 /**
1495  * ring_buffer_iter_empty - check if an iterator has no more to read
1496  * @iter: The iterator to check
1497  */
1498 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1499 {
1500         struct ring_buffer_per_cpu *cpu_buffer;
1501
1502         cpu_buffer = iter->cpu_buffer;
1503
1504         return iter->head_page == cpu_buffer->commit_page &&
1505                 iter->head == rb_commit_index(cpu_buffer);
1506 }
1507
1508 static void
1509 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1510                      struct ring_buffer_event *event)
1511 {
1512         u64 delta;
1513
1514         switch (event->type) {
1515         case RINGBUF_TYPE_PADDING:
1516                 return;
1517
1518         case RINGBUF_TYPE_TIME_EXTEND:
1519                 delta = event->array[0];
1520                 delta <<= TS_SHIFT;
1521                 delta += event->time_delta;
1522                 cpu_buffer->read_stamp += delta;
1523                 return;
1524
1525         case RINGBUF_TYPE_TIME_STAMP:
1526                 /* FIXME: not implemented */
1527                 return;
1528
1529         case RINGBUF_TYPE_DATA:
1530                 cpu_buffer->read_stamp += event->time_delta;
1531                 return;
1532
1533         default:
1534                 BUG();
1535         }
1536         return;
1537 }
1538
1539 static void
1540 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1541                           struct ring_buffer_event *event)
1542 {
1543         u64 delta;
1544
1545         switch (event->type) {
1546         case RINGBUF_TYPE_PADDING:
1547                 return;
1548
1549         case RINGBUF_TYPE_TIME_EXTEND:
1550                 delta = event->array[0];
1551                 delta <<= TS_SHIFT;
1552                 delta += event->time_delta;
1553                 iter->read_stamp += delta;
1554                 return;
1555
1556         case RINGBUF_TYPE_TIME_STAMP:
1557                 /* FIXME: not implemented */
1558                 return;
1559
1560         case RINGBUF_TYPE_DATA:
1561                 iter->read_stamp += event->time_delta;
1562                 return;
1563
1564         default:
1565                 BUG();
1566         }
1567         return;
1568 }
1569
1570 static struct buffer_page *
1571 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1572 {
1573         struct buffer_page *reader = NULL;
1574         unsigned long flags;
1575         int nr_loops = 0;
1576
1577         local_irq_save(flags);
1578         __raw_spin_lock(&cpu_buffer->lock);
1579
1580  again:
1581         /*
1582          * This should normally only loop twice. But because the
1583          * start of the reader inserts an empty page, it causes
1584          * a case where we will loop three times. There should be no
1585          * reason to loop four times (that I know of).
1586          */
1587         if (unlikely(++nr_loops > 3)) {
1588                 RB_WARN_ON(cpu_buffer, 1);
1589                 reader = NULL;
1590                 goto out;
1591         }
1592
1593         reader = cpu_buffer->reader_page;
1594
1595         /* If there's more to read, return this page */
1596         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1597                 goto out;
1598
1599         /* Never should we have an index greater than the size */
1600         RB_WARN_ON(cpu_buffer,
1601                    cpu_buffer->reader_page->read > rb_page_size(reader));
1602
1603         /* check if we caught up to the tail */
1604         reader = NULL;
1605         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1606                 goto out;
1607
1608         /*
1609          * Splice the empty reader page into the list around the head.
1610          * Reset the reader page to size zero.
1611          */
1612
1613         reader = cpu_buffer->head_page;
1614         cpu_buffer->reader_page->list.next = reader->list.next;
1615         cpu_buffer->reader_page->list.prev = reader->list.prev;
1616
1617         local_set(&cpu_buffer->reader_page->write, 0);
1618         local_set(&cpu_buffer->reader_page->commit, 0);
1619
1620         /* Make the reader page now replace the head */
1621         reader->list.prev->next = &cpu_buffer->reader_page->list;
1622         reader->list.next->prev = &cpu_buffer->reader_page->list;
1623
1624         /*
1625          * If the tail is on the reader, then we must set the head
1626          * to the inserted page, otherwise we set it one before.
1627          */
1628         cpu_buffer->head_page = cpu_buffer->reader_page;
1629
1630         if (cpu_buffer->commit_page != reader)
1631                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1632
1633         /* Finally update the reader page to the new head */
1634         cpu_buffer->reader_page = reader;
1635         rb_reset_reader_page(cpu_buffer);
1636
1637         goto again;
1638
1639  out:
1640         __raw_spin_unlock(&cpu_buffer->lock);
1641         local_irq_restore(flags);
1642
1643         return reader;
1644 }
1645
1646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1647 {
1648         struct ring_buffer_event *event;
1649         struct buffer_page *reader;
1650         unsigned length;
1651
1652         reader = rb_get_reader_page(cpu_buffer);
1653
1654         /* This function should not be called when buffer is empty */
1655         RB_WARN_ON_RET(cpu_buffer, !reader);
1656
1657         event = rb_reader_event(cpu_buffer);
1658
1659         if (event->type == RINGBUF_TYPE_DATA)
1660                 cpu_buffer->entries--;
1661
1662         rb_update_read_stamp(cpu_buffer, event);
1663
1664         length = rb_event_length(event);
1665         cpu_buffer->reader_page->read += length;
1666 }
1667
1668 static void rb_advance_iter(struct ring_buffer_iter *iter)
1669 {
1670         struct ring_buffer *buffer;
1671         struct ring_buffer_per_cpu *cpu_buffer;
1672         struct ring_buffer_event *event;
1673         unsigned length;
1674
1675         cpu_buffer = iter->cpu_buffer;
1676         buffer = cpu_buffer->buffer;
1677
1678         /*
1679          * Check if we are at the end of the buffer.
1680          */
1681         if (iter->head >= rb_page_size(iter->head_page)) {
1682                 RB_WARN_ON_RET(buffer,
1683                                iter->head_page == cpu_buffer->commit_page);
1684                 rb_inc_iter(iter);
1685                 return;
1686         }
1687
1688         event = rb_iter_head_event(iter);
1689
1690         length = rb_event_length(event);
1691
1692         /*
1693          * This should not be called to advance the header if we are
1694          * at the tail of the buffer.
1695          */
1696         RB_WARN_ON_RET(cpu_buffer,
1697                        (iter->head_page == cpu_buffer->commit_page) &&
1698                        (iter->head + length > rb_commit_index(cpu_buffer)));
1699
1700         rb_update_iter_read_stamp(iter, event);
1701
1702         iter->head += length;
1703
1704         /* check for end of page padding */
1705         if ((iter->head >= rb_page_size(iter->head_page)) &&
1706             (iter->head_page != cpu_buffer->commit_page))
1707                 rb_advance_iter(iter);
1708 }
1709
1710 /**
1711  * ring_buffer_peek - peek at the next event to be read
1712  * @buffer: The ring buffer to read
1713  * @cpu: The cpu to peak at
1714  * @ts: The timestamp counter of this event.
1715  *
1716  * This will return the event that will be read next, but does
1717  * not consume the data.
1718  */
1719 struct ring_buffer_event *
1720 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1721 {
1722         struct ring_buffer_per_cpu *cpu_buffer;
1723         struct ring_buffer_event *event;
1724         struct buffer_page *reader;
1725         int nr_loops = 0;
1726
1727         if (!cpu_isset(cpu, buffer->cpumask))
1728                 return NULL;
1729
1730         cpu_buffer = buffer->buffers[cpu];
1731
1732  again:
1733         /*
1734          * We repeat when a timestamp is encountered. It is possible
1735          * to get multiple timestamps from an interrupt entering just
1736          * as one timestamp is about to be written. The max times
1737          * that this can happen is the number of nested interrupts we
1738          * can have.  Nesting 10 deep of interrupts is clearly
1739          * an anomaly.
1740          */
1741         if (unlikely(++nr_loops > 10)) {
1742                 RB_WARN_ON(cpu_buffer, 1);
1743                 return NULL;
1744         }
1745
1746         reader = rb_get_reader_page(cpu_buffer);
1747         if (!reader)
1748                 return NULL;
1749
1750         event = rb_reader_event(cpu_buffer);
1751
1752         switch (event->type) {
1753         case RINGBUF_TYPE_PADDING:
1754                 RB_WARN_ON(cpu_buffer, 1);
1755                 rb_advance_reader(cpu_buffer);
1756                 return NULL;
1757
1758         case RINGBUF_TYPE_TIME_EXTEND:
1759                 /* Internal data, OK to advance */
1760                 rb_advance_reader(cpu_buffer);
1761                 goto again;
1762
1763         case RINGBUF_TYPE_TIME_STAMP:
1764                 /* FIXME: not implemented */
1765                 rb_advance_reader(cpu_buffer);
1766                 goto again;
1767
1768         case RINGBUF_TYPE_DATA:
1769                 if (ts) {
1770                         *ts = cpu_buffer->read_stamp + event->time_delta;
1771                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1772                 }
1773                 return event;
1774
1775         default:
1776                 BUG();
1777         }
1778
1779         return NULL;
1780 }
1781
1782 /**
1783  * ring_buffer_iter_peek - peek at the next event to be read
1784  * @iter: The ring buffer iterator
1785  * @ts: The timestamp counter of this event.
1786  *
1787  * This will return the event that will be read next, but does
1788  * not increment the iterator.
1789  */
1790 struct ring_buffer_event *
1791 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1792 {
1793         struct ring_buffer *buffer;
1794         struct ring_buffer_per_cpu *cpu_buffer;
1795         struct ring_buffer_event *event;
1796         int nr_loops = 0;
1797
1798         if (ring_buffer_iter_empty(iter))
1799                 return NULL;
1800
1801         cpu_buffer = iter->cpu_buffer;
1802         buffer = cpu_buffer->buffer;
1803
1804  again:
1805         /*
1806          * We repeat when a timestamp is encountered. It is possible
1807          * to get multiple timestamps from an interrupt entering just
1808          * as one timestamp is about to be written. The max times
1809          * that this can happen is the number of nested interrupts we
1810          * can have. Nesting 10 deep of interrupts is clearly
1811          * an anomaly.
1812          */
1813         if (unlikely(++nr_loops > 10)) {
1814                 RB_WARN_ON(cpu_buffer, 1);
1815                 return NULL;
1816         }
1817
1818         if (rb_per_cpu_empty(cpu_buffer))
1819                 return NULL;
1820
1821         event = rb_iter_head_event(iter);
1822
1823         switch (event->type) {
1824         case RINGBUF_TYPE_PADDING:
1825                 rb_inc_iter(iter);
1826                 goto again;
1827
1828         case RINGBUF_TYPE_TIME_EXTEND:
1829                 /* Internal data, OK to advance */
1830                 rb_advance_iter(iter);
1831                 goto again;
1832
1833         case RINGBUF_TYPE_TIME_STAMP:
1834                 /* FIXME: not implemented */
1835                 rb_advance_iter(iter);
1836                 goto again;
1837
1838         case RINGBUF_TYPE_DATA:
1839                 if (ts) {
1840                         *ts = iter->read_stamp + event->time_delta;
1841                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1842                 }
1843                 return event;
1844
1845         default:
1846                 BUG();
1847         }
1848
1849         return NULL;
1850 }
1851
1852 /**
1853  * ring_buffer_consume - return an event and consume it
1854  * @buffer: The ring buffer to get the next event from
1855  *
1856  * Returns the next event in the ring buffer, and that event is consumed.
1857  * Meaning, that sequential reads will keep returning a different event,
1858  * and eventually empty the ring buffer if the producer is slower.
1859  */
1860 struct ring_buffer_event *
1861 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1862 {
1863         struct ring_buffer_per_cpu *cpu_buffer;
1864         struct ring_buffer_event *event;
1865
1866         if (!cpu_isset(cpu, buffer->cpumask))
1867                 return NULL;
1868
1869         event = ring_buffer_peek(buffer, cpu, ts);
1870         if (!event)
1871                 return NULL;
1872
1873         cpu_buffer = buffer->buffers[cpu];
1874         rb_advance_reader(cpu_buffer);
1875
1876         return event;
1877 }
1878
1879 /**
1880  * ring_buffer_read_start - start a non consuming read of the buffer
1881  * @buffer: The ring buffer to read from
1882  * @cpu: The cpu buffer to iterate over
1883  *
1884  * This starts up an iteration through the buffer. It also disables
1885  * the recording to the buffer until the reading is finished.
1886  * This prevents the reading from being corrupted. This is not
1887  * a consuming read, so a producer is not expected.
1888  *
1889  * Must be paired with ring_buffer_finish.
1890  */
1891 struct ring_buffer_iter *
1892 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1893 {
1894         struct ring_buffer_per_cpu *cpu_buffer;
1895         struct ring_buffer_iter *iter;
1896         unsigned long flags;
1897
1898         if (!cpu_isset(cpu, buffer->cpumask))
1899                 return NULL;
1900
1901         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1902         if (!iter)
1903                 return NULL;
1904
1905         cpu_buffer = buffer->buffers[cpu];
1906
1907         iter->cpu_buffer = cpu_buffer;
1908
1909         atomic_inc(&cpu_buffer->record_disabled);
1910         synchronize_sched();
1911
1912         local_irq_save(flags);
1913         __raw_spin_lock(&cpu_buffer->lock);
1914         ring_buffer_iter_reset(iter);
1915         __raw_spin_unlock(&cpu_buffer->lock);
1916         local_irq_restore(flags);
1917
1918         return iter;
1919 }
1920
1921 /**
1922  * ring_buffer_finish - finish reading the iterator of the buffer
1923  * @iter: The iterator retrieved by ring_buffer_start
1924  *
1925  * This re-enables the recording to the buffer, and frees the
1926  * iterator.
1927  */
1928 void
1929 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1930 {
1931         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1932
1933         atomic_dec(&cpu_buffer->record_disabled);
1934         kfree(iter);
1935 }
1936
1937 /**
1938  * ring_buffer_read - read the next item in the ring buffer by the iterator
1939  * @iter: The ring buffer iterator
1940  * @ts: The time stamp of the event read.
1941  *
1942  * This reads the next event in the ring buffer and increments the iterator.
1943  */
1944 struct ring_buffer_event *
1945 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1946 {
1947         struct ring_buffer_event *event;
1948
1949         event = ring_buffer_iter_peek(iter, ts);
1950         if (!event)
1951                 return NULL;
1952
1953         rb_advance_iter(iter);
1954
1955         return event;
1956 }
1957
1958 /**
1959  * ring_buffer_size - return the size of the ring buffer (in bytes)
1960  * @buffer: The ring buffer.
1961  */
1962 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1963 {
1964         return BUF_PAGE_SIZE * buffer->pages;
1965 }
1966
1967 static void
1968 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1969 {
1970         cpu_buffer->head_page
1971                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1972         local_set(&cpu_buffer->head_page->write, 0);
1973         local_set(&cpu_buffer->head_page->commit, 0);
1974
1975         cpu_buffer->head_page->read = 0;
1976
1977         cpu_buffer->tail_page = cpu_buffer->head_page;
1978         cpu_buffer->commit_page = cpu_buffer->head_page;
1979
1980         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1981         local_set(&cpu_buffer->reader_page->write, 0);
1982         local_set(&cpu_buffer->reader_page->commit, 0);
1983         cpu_buffer->reader_page->read = 0;
1984
1985         cpu_buffer->overrun = 0;
1986         cpu_buffer->entries = 0;
1987 }
1988
1989 /**
1990  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1991  * @buffer: The ring buffer to reset a per cpu buffer of
1992  * @cpu: The CPU buffer to be reset
1993  */
1994 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1995 {
1996         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1997         unsigned long flags;
1998
1999         if (!cpu_isset(cpu, buffer->cpumask))
2000                 return;
2001
2002         local_irq_save(flags);
2003         __raw_spin_lock(&cpu_buffer->lock);
2004
2005         rb_reset_cpu(cpu_buffer);
2006
2007         __raw_spin_unlock(&cpu_buffer->lock);
2008         local_irq_restore(flags);
2009 }
2010
2011 /**
2012  * ring_buffer_reset - reset a ring buffer
2013  * @buffer: The ring buffer to reset all cpu buffers
2014  */
2015 void ring_buffer_reset(struct ring_buffer *buffer)
2016 {
2017         int cpu;
2018
2019         for_each_buffer_cpu(buffer, cpu)
2020                 ring_buffer_reset_cpu(buffer, cpu);
2021 }
2022
2023 /**
2024  * rind_buffer_empty - is the ring buffer empty?
2025  * @buffer: The ring buffer to test
2026  */
2027 int ring_buffer_empty(struct ring_buffer *buffer)
2028 {
2029         struct ring_buffer_per_cpu *cpu_buffer;
2030         int cpu;
2031
2032         /* yes this is racy, but if you don't like the race, lock the buffer */
2033         for_each_buffer_cpu(buffer, cpu) {
2034                 cpu_buffer = buffer->buffers[cpu];
2035                 if (!rb_per_cpu_empty(cpu_buffer))
2036                         return 0;
2037         }
2038         return 1;
2039 }
2040
2041 /**
2042  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2043  * @buffer: The ring buffer
2044  * @cpu: The CPU buffer to test
2045  */
2046 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2047 {
2048         struct ring_buffer_per_cpu *cpu_buffer;
2049
2050         if (!cpu_isset(cpu, buffer->cpumask))
2051                 return 1;
2052
2053         cpu_buffer = buffer->buffers[cpu];
2054         return rb_per_cpu_empty(cpu_buffer);
2055 }
2056
2057 /**
2058  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2059  * @buffer_a: One buffer to swap with
2060  * @buffer_b: The other buffer to swap with
2061  *
2062  * This function is useful for tracers that want to take a "snapshot"
2063  * of a CPU buffer and has another back up buffer lying around.
2064  * it is expected that the tracer handles the cpu buffer not being
2065  * used at the moment.
2066  */
2067 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2068                          struct ring_buffer *buffer_b, int cpu)
2069 {
2070         struct ring_buffer_per_cpu *cpu_buffer_a;
2071         struct ring_buffer_per_cpu *cpu_buffer_b;
2072
2073         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2074             !cpu_isset(cpu, buffer_b->cpumask))
2075                 return -EINVAL;
2076
2077         /* At least make sure the two buffers are somewhat the same */
2078         if (buffer_a->size != buffer_b->size ||
2079             buffer_a->pages != buffer_b->pages)
2080                 return -EINVAL;
2081
2082         cpu_buffer_a = buffer_a->buffers[cpu];
2083         cpu_buffer_b = buffer_b->buffers[cpu];
2084
2085         /*
2086          * We can't do a synchronize_sched here because this
2087          * function can be called in atomic context.
2088          * Normally this will be called from the same CPU as cpu.
2089          * If not it's up to the caller to protect this.
2090          */
2091         atomic_inc(&cpu_buffer_a->record_disabled);
2092         atomic_inc(&cpu_buffer_b->record_disabled);
2093
2094         buffer_a->buffers[cpu] = cpu_buffer_b;
2095         buffer_b->buffers[cpu] = cpu_buffer_a;
2096
2097         cpu_buffer_b->buffer = buffer_a;
2098         cpu_buffer_a->buffer = buffer_b;
2099
2100         atomic_dec(&cpu_buffer_a->record_disabled);
2101         atomic_dec(&cpu_buffer_b->record_disabled);
2102
2103         return 0;
2104 }
2105