Merge branch 'tracing/urgent' into tracing/ftrace
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /* Up this if you want to test the TIME_EXTENTS and normalization */
22 #define DEBUG_SHIFT 0
23
24 /* FIXME!!! */
25 u64 ring_buffer_time_stamp(int cpu)
26 {
27         /* shift to debug/test normalization and TIME_EXTENTS */
28         return sched_clock() << DEBUG_SHIFT;
29 }
30
31 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
32 {
33         /* Just stupid testing the normalize function and deltas */
34         *ts >>= DEBUG_SHIFT;
35 }
36
37 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
38 #define RB_ALIGNMENT_SHIFT      2
39 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
40 #define RB_MAX_SMALL_DATA       28
41
42 enum {
43         RB_LEN_TIME_EXTEND = 8,
44         RB_LEN_TIME_STAMP = 16,
45 };
46
47 /* inline for ring buffer fast paths */
48 static inline unsigned
49 rb_event_length(struct ring_buffer_event *event)
50 {
51         unsigned length;
52
53         switch (event->type) {
54         case RINGBUF_TYPE_PADDING:
55                 /* undefined */
56                 return -1;
57
58         case RINGBUF_TYPE_TIME_EXTEND:
59                 return RB_LEN_TIME_EXTEND;
60
61         case RINGBUF_TYPE_TIME_STAMP:
62                 return RB_LEN_TIME_STAMP;
63
64         case RINGBUF_TYPE_DATA:
65                 if (event->len)
66                         length = event->len << RB_ALIGNMENT_SHIFT;
67                 else
68                         length = event->array[0];
69                 return length + RB_EVNT_HDR_SIZE;
70         default:
71                 BUG();
72         }
73         /* not hit */
74         return 0;
75 }
76
77 /**
78  * ring_buffer_event_length - return the length of the event
79  * @event: the event to get the length of
80  */
81 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
82 {
83         return rb_event_length(event);
84 }
85
86 /* inline for ring buffer fast paths */
87 static inline void *
88 rb_event_data(struct ring_buffer_event *event)
89 {
90         BUG_ON(event->type != RINGBUF_TYPE_DATA);
91         /* If length is in len field, then array[0] has the data */
92         if (event->len)
93                 return (void *)&event->array[0];
94         /* Otherwise length is in array[0] and array[1] has the data */
95         return (void *)&event->array[1];
96 }
97
98 /**
99  * ring_buffer_event_data - return the data of the event
100  * @event: the event to get the data from
101  */
102 void *ring_buffer_event_data(struct ring_buffer_event *event)
103 {
104         return rb_event_data(event);
105 }
106
107 #define for_each_buffer_cpu(buffer, cpu)                \
108         for_each_cpu_mask(cpu, buffer->cpumask)
109
110 #define TS_SHIFT        27
111 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
112 #define TS_DELTA_TEST   (~TS_MASK)
113
114 /*
115  * This hack stolen from mm/slob.c.
116  * We can store per page timing information in the page frame of the page.
117  * Thanks to Peter Zijlstra for suggesting this idea.
118  */
119 struct buffer_page {
120         u64              time_stamp;    /* page time stamp */
121         local_t          write;         /* index for next write */
122         local_t          commit;        /* write commited index */
123         unsigned         read;          /* index for next read */
124         struct list_head list;          /* list of free pages */
125         void *page;                     /* Actual data page */
126 };
127
128 /*
129  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
130  * this issue out.
131  */
132 static inline void free_buffer_page(struct buffer_page *bpage)
133 {
134         if (bpage->page)
135                 free_page((unsigned long)bpage->page);
136         kfree(bpage);
137 }
138
139 /*
140  * We need to fit the time_stamp delta into 27 bits.
141  */
142 static inline int test_time_stamp(u64 delta)
143 {
144         if (delta & TS_DELTA_TEST)
145                 return 1;
146         return 0;
147 }
148
149 #define BUF_PAGE_SIZE PAGE_SIZE
150
151 /*
152  * head_page == tail_page && head == tail then buffer is empty.
153  */
154 struct ring_buffer_per_cpu {
155         int                             cpu;
156         struct ring_buffer              *buffer;
157         raw_spinlock_t                  lock;
158         struct lock_class_key           lock_key;
159         struct list_head                pages;
160         struct buffer_page              *head_page;     /* read from head */
161         struct buffer_page              *tail_page;     /* write to tail */
162         struct buffer_page              *commit_page;   /* commited pages */
163         struct buffer_page              *reader_page;
164         unsigned long                   overrun;
165         unsigned long                   entries;
166         u64                             write_stamp;
167         u64                             read_stamp;
168         atomic_t                        record_disabled;
169 };
170
171 struct ring_buffer {
172         unsigned long                   size;
173         unsigned                        pages;
174         unsigned                        flags;
175         int                             cpus;
176         cpumask_t                       cpumask;
177         atomic_t                        record_disabled;
178
179         struct mutex                    mutex;
180
181         struct ring_buffer_per_cpu      **buffers;
182 };
183
184 struct ring_buffer_iter {
185         struct ring_buffer_per_cpu      *cpu_buffer;
186         unsigned long                   head;
187         struct buffer_page              *head_page;
188         u64                             read_stamp;
189 };
190
191 #define RB_WARN_ON(buffer, cond)                                \
192         do {                                                    \
193                 if (unlikely(cond)) {                           \
194                         atomic_inc(&buffer->record_disabled);   \
195                         WARN_ON(1);                             \
196                 }                                               \
197         } while (0)
198
199 #define RB_WARN_ON_RET(buffer, cond)                            \
200         do {                                                    \
201                 if (unlikely(cond)) {                           \
202                         atomic_inc(&buffer->record_disabled);   \
203                         WARN_ON(1);                             \
204                         return -1;                              \
205                 }                                               \
206         } while (0)
207
208 #define RB_WARN_ON_ONCE(buffer, cond)                           \
209         do {                                                    \
210                 static int once;                                \
211                 if (unlikely(cond) && !once) {                  \
212                         once++;                                 \
213                         atomic_inc(&buffer->record_disabled);   \
214                         WARN_ON(1);                             \
215                 }                                               \
216         } while (0)
217
218 /**
219  * check_pages - integrity check of buffer pages
220  * @cpu_buffer: CPU buffer with pages to test
221  *
222  * As a safty measure we check to make sure the data pages have not
223  * been corrupted.
224  */
225 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
226 {
227         struct list_head *head = &cpu_buffer->pages;
228         struct buffer_page *page, *tmp;
229
230         RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
231         RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
232
233         list_for_each_entry_safe(page, tmp, head, list) {
234                 RB_WARN_ON_RET(cpu_buffer,
235                                page->list.next->prev != &page->list);
236                 RB_WARN_ON_RET(cpu_buffer,
237                                page->list.prev->next != &page->list);
238         }
239
240         return 0;
241 }
242
243 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
244                              unsigned nr_pages)
245 {
246         struct list_head *head = &cpu_buffer->pages;
247         struct buffer_page *page, *tmp;
248         unsigned long addr;
249         LIST_HEAD(pages);
250         unsigned i;
251
252         for (i = 0; i < nr_pages; i++) {
253                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
254                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
255                 if (!page)
256                         goto free_pages;
257                 list_add(&page->list, &pages);
258
259                 addr = __get_free_page(GFP_KERNEL);
260                 if (!addr)
261                         goto free_pages;
262                 page->page = (void *)addr;
263         }
264
265         list_splice(&pages, head);
266
267         rb_check_pages(cpu_buffer);
268
269         return 0;
270
271  free_pages:
272         list_for_each_entry_safe(page, tmp, &pages, list) {
273                 list_del_init(&page->list);
274                 free_buffer_page(page);
275         }
276         return -ENOMEM;
277 }
278
279 static struct ring_buffer_per_cpu *
280 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
281 {
282         struct ring_buffer_per_cpu *cpu_buffer;
283         struct buffer_page *page;
284         unsigned long addr;
285         int ret;
286
287         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
288                                   GFP_KERNEL, cpu_to_node(cpu));
289         if (!cpu_buffer)
290                 return NULL;
291
292         cpu_buffer->cpu = cpu;
293         cpu_buffer->buffer = buffer;
294         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
295         INIT_LIST_HEAD(&cpu_buffer->pages);
296
297         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
298                             GFP_KERNEL, cpu_to_node(cpu));
299         if (!page)
300                 goto fail_free_buffer;
301
302         cpu_buffer->reader_page = page;
303         addr = __get_free_page(GFP_KERNEL);
304         if (!addr)
305                 goto fail_free_reader;
306         page->page = (void *)addr;
307
308         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
309
310         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
311         if (ret < 0)
312                 goto fail_free_reader;
313
314         cpu_buffer->head_page
315                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
316         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
317
318         return cpu_buffer;
319
320  fail_free_reader:
321         free_buffer_page(cpu_buffer->reader_page);
322
323  fail_free_buffer:
324         kfree(cpu_buffer);
325         return NULL;
326 }
327
328 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
329 {
330         struct list_head *head = &cpu_buffer->pages;
331         struct buffer_page *page, *tmp;
332
333         list_del_init(&cpu_buffer->reader_page->list);
334         free_buffer_page(cpu_buffer->reader_page);
335
336         list_for_each_entry_safe(page, tmp, head, list) {
337                 list_del_init(&page->list);
338                 free_buffer_page(page);
339         }
340         kfree(cpu_buffer);
341 }
342
343 /*
344  * Causes compile errors if the struct buffer_page gets bigger
345  * than the struct page.
346  */
347 extern int ring_buffer_page_too_big(void);
348
349 /**
350  * ring_buffer_alloc - allocate a new ring_buffer
351  * @size: the size in bytes that is needed.
352  * @flags: attributes to set for the ring buffer.
353  *
354  * Currently the only flag that is available is the RB_FL_OVERWRITE
355  * flag. This flag means that the buffer will overwrite old data
356  * when the buffer wraps. If this flag is not set, the buffer will
357  * drop data when the tail hits the head.
358  */
359 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
360 {
361         struct ring_buffer *buffer;
362         int bsize;
363         int cpu;
364
365         /* Paranoid! Optimizes out when all is well */
366         if (sizeof(struct buffer_page) > sizeof(struct page))
367                 ring_buffer_page_too_big();
368
369
370         /* keep it in its own cache line */
371         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
372                          GFP_KERNEL);
373         if (!buffer)
374                 return NULL;
375
376         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
377         buffer->flags = flags;
378
379         /* need at least two pages */
380         if (buffer->pages == 1)
381                 buffer->pages++;
382
383         buffer->cpumask = cpu_possible_map;
384         buffer->cpus = nr_cpu_ids;
385
386         bsize = sizeof(void *) * nr_cpu_ids;
387         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
388                                   GFP_KERNEL);
389         if (!buffer->buffers)
390                 goto fail_free_buffer;
391
392         for_each_buffer_cpu(buffer, cpu) {
393                 buffer->buffers[cpu] =
394                         rb_allocate_cpu_buffer(buffer, cpu);
395                 if (!buffer->buffers[cpu])
396                         goto fail_free_buffers;
397         }
398
399         mutex_init(&buffer->mutex);
400
401         return buffer;
402
403  fail_free_buffers:
404         for_each_buffer_cpu(buffer, cpu) {
405                 if (buffer->buffers[cpu])
406                         rb_free_cpu_buffer(buffer->buffers[cpu]);
407         }
408         kfree(buffer->buffers);
409
410  fail_free_buffer:
411         kfree(buffer);
412         return NULL;
413 }
414
415 /**
416  * ring_buffer_free - free a ring buffer.
417  * @buffer: the buffer to free.
418  */
419 void
420 ring_buffer_free(struct ring_buffer *buffer)
421 {
422         int cpu;
423
424         for_each_buffer_cpu(buffer, cpu)
425                 rb_free_cpu_buffer(buffer->buffers[cpu]);
426
427         kfree(buffer);
428 }
429
430 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
431
432 static void
433 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
434 {
435         struct buffer_page *page;
436         struct list_head *p;
437         unsigned i;
438
439         atomic_inc(&cpu_buffer->record_disabled);
440         synchronize_sched();
441
442         for (i = 0; i < nr_pages; i++) {
443                 BUG_ON(list_empty(&cpu_buffer->pages));
444                 p = cpu_buffer->pages.next;
445                 page = list_entry(p, struct buffer_page, list);
446                 list_del_init(&page->list);
447                 free_buffer_page(page);
448         }
449         BUG_ON(list_empty(&cpu_buffer->pages));
450
451         rb_reset_cpu(cpu_buffer);
452
453         rb_check_pages(cpu_buffer);
454
455         atomic_dec(&cpu_buffer->record_disabled);
456
457 }
458
459 static void
460 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
461                 struct list_head *pages, unsigned nr_pages)
462 {
463         struct buffer_page *page;
464         struct list_head *p;
465         unsigned i;
466
467         atomic_inc(&cpu_buffer->record_disabled);
468         synchronize_sched();
469
470         for (i = 0; i < nr_pages; i++) {
471                 BUG_ON(list_empty(pages));
472                 p = pages->next;
473                 page = list_entry(p, struct buffer_page, list);
474                 list_del_init(&page->list);
475                 list_add_tail(&page->list, &cpu_buffer->pages);
476         }
477         rb_reset_cpu(cpu_buffer);
478
479         rb_check_pages(cpu_buffer);
480
481         atomic_dec(&cpu_buffer->record_disabled);
482 }
483
484 /**
485  * ring_buffer_resize - resize the ring buffer
486  * @buffer: the buffer to resize.
487  * @size: the new size.
488  *
489  * The tracer is responsible for making sure that the buffer is
490  * not being used while changing the size.
491  * Note: We may be able to change the above requirement by using
492  *  RCU synchronizations.
493  *
494  * Minimum size is 2 * BUF_PAGE_SIZE.
495  *
496  * Returns -1 on failure.
497  */
498 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
499 {
500         struct ring_buffer_per_cpu *cpu_buffer;
501         unsigned nr_pages, rm_pages, new_pages;
502         struct buffer_page *page, *tmp;
503         unsigned long buffer_size;
504         unsigned long addr;
505         LIST_HEAD(pages);
506         int i, cpu;
507
508         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
509         size *= BUF_PAGE_SIZE;
510         buffer_size = buffer->pages * BUF_PAGE_SIZE;
511
512         /* we need a minimum of two pages */
513         if (size < BUF_PAGE_SIZE * 2)
514                 size = BUF_PAGE_SIZE * 2;
515
516         if (size == buffer_size)
517                 return size;
518
519         mutex_lock(&buffer->mutex);
520
521         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
522
523         if (size < buffer_size) {
524
525                 /* easy case, just free pages */
526                 BUG_ON(nr_pages >= buffer->pages);
527
528                 rm_pages = buffer->pages - nr_pages;
529
530                 for_each_buffer_cpu(buffer, cpu) {
531                         cpu_buffer = buffer->buffers[cpu];
532                         rb_remove_pages(cpu_buffer, rm_pages);
533                 }
534                 goto out;
535         }
536
537         /*
538          * This is a bit more difficult. We only want to add pages
539          * when we can allocate enough for all CPUs. We do this
540          * by allocating all the pages and storing them on a local
541          * link list. If we succeed in our allocation, then we
542          * add these pages to the cpu_buffers. Otherwise we just free
543          * them all and return -ENOMEM;
544          */
545         BUG_ON(nr_pages <= buffer->pages);
546         new_pages = nr_pages - buffer->pages;
547
548         for_each_buffer_cpu(buffer, cpu) {
549                 for (i = 0; i < new_pages; i++) {
550                         page = kzalloc_node(ALIGN(sizeof(*page),
551                                                   cache_line_size()),
552                                             GFP_KERNEL, cpu_to_node(cpu));
553                         if (!page)
554                                 goto free_pages;
555                         list_add(&page->list, &pages);
556                         addr = __get_free_page(GFP_KERNEL);
557                         if (!addr)
558                                 goto free_pages;
559                         page->page = (void *)addr;
560                 }
561         }
562
563         for_each_buffer_cpu(buffer, cpu) {
564                 cpu_buffer = buffer->buffers[cpu];
565                 rb_insert_pages(cpu_buffer, &pages, new_pages);
566         }
567
568         BUG_ON(!list_empty(&pages));
569
570  out:
571         buffer->pages = nr_pages;
572         mutex_unlock(&buffer->mutex);
573
574         return size;
575
576  free_pages:
577         list_for_each_entry_safe(page, tmp, &pages, list) {
578                 list_del_init(&page->list);
579                 free_buffer_page(page);
580         }
581         return -ENOMEM;
582 }
583
584 static inline int rb_null_event(struct ring_buffer_event *event)
585 {
586         return event->type == RINGBUF_TYPE_PADDING;
587 }
588
589 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
590 {
591         return page->page + index;
592 }
593
594 static inline struct ring_buffer_event *
595 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
596 {
597         return __rb_page_index(cpu_buffer->reader_page,
598                                cpu_buffer->reader_page->read);
599 }
600
601 static inline struct ring_buffer_event *
602 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
603 {
604         return __rb_page_index(cpu_buffer->head_page,
605                                cpu_buffer->head_page->read);
606 }
607
608 static inline struct ring_buffer_event *
609 rb_iter_head_event(struct ring_buffer_iter *iter)
610 {
611         return __rb_page_index(iter->head_page, iter->head);
612 }
613
614 static inline unsigned rb_page_write(struct buffer_page *bpage)
615 {
616         return local_read(&bpage->write);
617 }
618
619 static inline unsigned rb_page_commit(struct buffer_page *bpage)
620 {
621         return local_read(&bpage->commit);
622 }
623
624 /* Size is determined by what has been commited */
625 static inline unsigned rb_page_size(struct buffer_page *bpage)
626 {
627         return rb_page_commit(bpage);
628 }
629
630 static inline unsigned
631 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
632 {
633         return rb_page_commit(cpu_buffer->commit_page);
634 }
635
636 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
637 {
638         return rb_page_commit(cpu_buffer->head_page);
639 }
640
641 /*
642  * When the tail hits the head and the buffer is in overwrite mode,
643  * the head jumps to the next page and all content on the previous
644  * page is discarded. But before doing so, we update the overrun
645  * variable of the buffer.
646  */
647 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
648 {
649         struct ring_buffer_event *event;
650         unsigned long head;
651
652         for (head = 0; head < rb_head_size(cpu_buffer);
653              head += rb_event_length(event)) {
654
655                 event = __rb_page_index(cpu_buffer->head_page, head);
656                 BUG_ON(rb_null_event(event));
657                 /* Only count data entries */
658                 if (event->type != RINGBUF_TYPE_DATA)
659                         continue;
660                 cpu_buffer->overrun++;
661                 cpu_buffer->entries--;
662         }
663 }
664
665 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
666                                struct buffer_page **page)
667 {
668         struct list_head *p = (*page)->list.next;
669
670         if (p == &cpu_buffer->pages)
671                 p = p->next;
672
673         *page = list_entry(p, struct buffer_page, list);
674 }
675
676 static inline unsigned
677 rb_event_index(struct ring_buffer_event *event)
678 {
679         unsigned long addr = (unsigned long)event;
680
681         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
682 }
683
684 static inline int
685 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
686              struct ring_buffer_event *event)
687 {
688         unsigned long addr = (unsigned long)event;
689         unsigned long index;
690
691         index = rb_event_index(event);
692         addr &= PAGE_MASK;
693
694         return cpu_buffer->commit_page->page == (void *)addr &&
695                 rb_commit_index(cpu_buffer) == index;
696 }
697
698 static inline void
699 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
700                     struct ring_buffer_event *event)
701 {
702         unsigned long addr = (unsigned long)event;
703         unsigned long index;
704
705         index = rb_event_index(event);
706         addr &= PAGE_MASK;
707
708         while (cpu_buffer->commit_page->page != (void *)addr) {
709                 RB_WARN_ON(cpu_buffer,
710                            cpu_buffer->commit_page == cpu_buffer->tail_page);
711                 cpu_buffer->commit_page->commit =
712                         cpu_buffer->commit_page->write;
713                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
714                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
715         }
716
717         /* Now set the commit to the event's index */
718         local_set(&cpu_buffer->commit_page->commit, index);
719 }
720
721 static inline void
722 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
723 {
724         /*
725          * We only race with interrupts and NMIs on this CPU.
726          * If we own the commit event, then we can commit
727          * all others that interrupted us, since the interruptions
728          * are in stack format (they finish before they come
729          * back to us). This allows us to do a simple loop to
730          * assign the commit to the tail.
731          */
732         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
733                 cpu_buffer->commit_page->commit =
734                         cpu_buffer->commit_page->write;
735                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
736                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
737                 /* add barrier to keep gcc from optimizing too much */
738                 barrier();
739         }
740         while (rb_commit_index(cpu_buffer) !=
741                rb_page_write(cpu_buffer->commit_page)) {
742                 cpu_buffer->commit_page->commit =
743                         cpu_buffer->commit_page->write;
744                 barrier();
745         }
746 }
747
748 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
749 {
750         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
751         cpu_buffer->reader_page->read = 0;
752 }
753
754 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
755 {
756         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
757
758         /*
759          * The iterator could be on the reader page (it starts there).
760          * But the head could have moved, since the reader was
761          * found. Check for this case and assign the iterator
762          * to the head page instead of next.
763          */
764         if (iter->head_page == cpu_buffer->reader_page)
765                 iter->head_page = cpu_buffer->head_page;
766         else
767                 rb_inc_page(cpu_buffer, &iter->head_page);
768
769         iter->read_stamp = iter->head_page->time_stamp;
770         iter->head = 0;
771 }
772
773 /**
774  * ring_buffer_update_event - update event type and data
775  * @event: the even to update
776  * @type: the type of event
777  * @length: the size of the event field in the ring buffer
778  *
779  * Update the type and data fields of the event. The length
780  * is the actual size that is written to the ring buffer,
781  * and with this, we can determine what to place into the
782  * data field.
783  */
784 static inline void
785 rb_update_event(struct ring_buffer_event *event,
786                          unsigned type, unsigned length)
787 {
788         event->type = type;
789
790         switch (type) {
791
792         case RINGBUF_TYPE_PADDING:
793                 break;
794
795         case RINGBUF_TYPE_TIME_EXTEND:
796                 event->len =
797                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
798                         >> RB_ALIGNMENT_SHIFT;
799                 break;
800
801         case RINGBUF_TYPE_TIME_STAMP:
802                 event->len =
803                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
804                         >> RB_ALIGNMENT_SHIFT;
805                 break;
806
807         case RINGBUF_TYPE_DATA:
808                 length -= RB_EVNT_HDR_SIZE;
809                 if (length > RB_MAX_SMALL_DATA) {
810                         event->len = 0;
811                         event->array[0] = length;
812                 } else
813                         event->len =
814                                 (length + (RB_ALIGNMENT-1))
815                                 >> RB_ALIGNMENT_SHIFT;
816                 break;
817         default:
818                 BUG();
819         }
820 }
821
822 static inline unsigned rb_calculate_event_length(unsigned length)
823 {
824         struct ring_buffer_event event; /* Used only for sizeof array */
825
826         /* zero length can cause confusions */
827         if (!length)
828                 length = 1;
829
830         if (length > RB_MAX_SMALL_DATA)
831                 length += sizeof(event.array[0]);
832
833         length += RB_EVNT_HDR_SIZE;
834         length = ALIGN(length, RB_ALIGNMENT);
835
836         return length;
837 }
838
839 static struct ring_buffer_event *
840 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
841                   unsigned type, unsigned long length, u64 *ts)
842 {
843         struct buffer_page *tail_page, *head_page, *reader_page;
844         unsigned long tail, write;
845         struct ring_buffer *buffer = cpu_buffer->buffer;
846         struct ring_buffer_event *event;
847         unsigned long flags;
848
849         tail_page = cpu_buffer->tail_page;
850         write = local_add_return(length, &tail_page->write);
851         tail = write - length;
852
853         /* See if we shot pass the end of this buffer page */
854         if (write > BUF_PAGE_SIZE) {
855                 struct buffer_page *next_page = tail_page;
856
857                 local_irq_save(flags);
858                 __raw_spin_lock(&cpu_buffer->lock);
859
860                 rb_inc_page(cpu_buffer, &next_page);
861
862                 head_page = cpu_buffer->head_page;
863                 reader_page = cpu_buffer->reader_page;
864
865                 /* we grabbed the lock before incrementing */
866                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
867
868                 /*
869                  * If for some reason, we had an interrupt storm that made
870                  * it all the way around the buffer, bail, and warn
871                  * about it.
872                  */
873                 if (unlikely(next_page == cpu_buffer->commit_page)) {
874                         WARN_ON_ONCE(1);
875                         goto out_unlock;
876                 }
877
878                 if (next_page == head_page) {
879                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
880                                 /* reset write */
881                                 if (tail <= BUF_PAGE_SIZE)
882                                         local_set(&tail_page->write, tail);
883                                 goto out_unlock;
884                         }
885
886                         /* tail_page has not moved yet? */
887                         if (tail_page == cpu_buffer->tail_page) {
888                                 /* count overflows */
889                                 rb_update_overflow(cpu_buffer);
890
891                                 rb_inc_page(cpu_buffer, &head_page);
892                                 cpu_buffer->head_page = head_page;
893                                 cpu_buffer->head_page->read = 0;
894                         }
895                 }
896
897                 /*
898                  * If the tail page is still the same as what we think
899                  * it is, then it is up to us to update the tail
900                  * pointer.
901                  */
902                 if (tail_page == cpu_buffer->tail_page) {
903                         local_set(&next_page->write, 0);
904                         local_set(&next_page->commit, 0);
905                         cpu_buffer->tail_page = next_page;
906
907                         /* reread the time stamp */
908                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
909                         cpu_buffer->tail_page->time_stamp = *ts;
910                 }
911
912                 /*
913                  * The actual tail page has moved forward.
914                  */
915                 if (tail < BUF_PAGE_SIZE) {
916                         /* Mark the rest of the page with padding */
917                         event = __rb_page_index(tail_page, tail);
918                         event->type = RINGBUF_TYPE_PADDING;
919                 }
920
921                 if (tail <= BUF_PAGE_SIZE)
922                         /* Set the write back to the previous setting */
923                         local_set(&tail_page->write, tail);
924
925                 /*
926                  * If this was a commit entry that failed,
927                  * increment that too
928                  */
929                 if (tail_page == cpu_buffer->commit_page &&
930                     tail == rb_commit_index(cpu_buffer)) {
931                         rb_set_commit_to_write(cpu_buffer);
932                 }
933
934                 __raw_spin_unlock(&cpu_buffer->lock);
935                 local_irq_restore(flags);
936
937                 /* fail and let the caller try again */
938                 return ERR_PTR(-EAGAIN);
939         }
940
941         /* We reserved something on the buffer */
942
943         BUG_ON(write > BUF_PAGE_SIZE);
944
945         event = __rb_page_index(tail_page, tail);
946         rb_update_event(event, type, length);
947
948         /*
949          * If this is a commit and the tail is zero, then update
950          * this page's time stamp.
951          */
952         if (!tail && rb_is_commit(cpu_buffer, event))
953                 cpu_buffer->commit_page->time_stamp = *ts;
954
955         return event;
956
957  out_unlock:
958         __raw_spin_unlock(&cpu_buffer->lock);
959         local_irq_restore(flags);
960         return NULL;
961 }
962
963 static int
964 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
965                   u64 *ts, u64 *delta)
966 {
967         struct ring_buffer_event *event;
968         static int once;
969         int ret;
970
971         if (unlikely(*delta > (1ULL << 59) && !once++)) {
972                 printk(KERN_WARNING "Delta way too big! %llu"
973                        " ts=%llu write stamp = %llu\n",
974                        (unsigned long long)*delta,
975                        (unsigned long long)*ts,
976                        (unsigned long long)cpu_buffer->write_stamp);
977                 WARN_ON(1);
978         }
979
980         /*
981          * The delta is too big, we to add a
982          * new timestamp.
983          */
984         event = __rb_reserve_next(cpu_buffer,
985                                   RINGBUF_TYPE_TIME_EXTEND,
986                                   RB_LEN_TIME_EXTEND,
987                                   ts);
988         if (!event)
989                 return -EBUSY;
990
991         if (PTR_ERR(event) == -EAGAIN)
992                 return -EAGAIN;
993
994         /* Only a commited time event can update the write stamp */
995         if (rb_is_commit(cpu_buffer, event)) {
996                 /*
997                  * If this is the first on the page, then we need to
998                  * update the page itself, and just put in a zero.
999                  */
1000                 if (rb_event_index(event)) {
1001                         event->time_delta = *delta & TS_MASK;
1002                         event->array[0] = *delta >> TS_SHIFT;
1003                 } else {
1004                         cpu_buffer->commit_page->time_stamp = *ts;
1005                         event->time_delta = 0;
1006                         event->array[0] = 0;
1007                 }
1008                 cpu_buffer->write_stamp = *ts;
1009                 /* let the caller know this was the commit */
1010                 ret = 1;
1011         } else {
1012                 /* Darn, this is just wasted space */
1013                 event->time_delta = 0;
1014                 event->array[0] = 0;
1015                 ret = 0;
1016         }
1017
1018         *delta = 0;
1019
1020         return ret;
1021 }
1022
1023 static struct ring_buffer_event *
1024 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1025                       unsigned type, unsigned long length)
1026 {
1027         struct ring_buffer_event *event;
1028         u64 ts, delta;
1029         int commit = 0;
1030         int nr_loops = 0;
1031
1032  again:
1033         /*
1034          * We allow for interrupts to reenter here and do a trace.
1035          * If one does, it will cause this original code to loop
1036          * back here. Even with heavy interrupts happening, this
1037          * should only happen a few times in a row. If this happens
1038          * 1000 times in a row, there must be either an interrupt
1039          * storm or we have something buggy.
1040          * Bail!
1041          */
1042         if (unlikely(++nr_loops > 1000)) {
1043                 RB_WARN_ON(cpu_buffer, 1);
1044                 return NULL;
1045         }
1046
1047         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1048
1049         /*
1050          * Only the first commit can update the timestamp.
1051          * Yes there is a race here. If an interrupt comes in
1052          * just after the conditional and it traces too, then it
1053          * will also check the deltas. More than one timestamp may
1054          * also be made. But only the entry that did the actual
1055          * commit will be something other than zero.
1056          */
1057         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1058             rb_page_write(cpu_buffer->tail_page) ==
1059             rb_commit_index(cpu_buffer)) {
1060
1061                 delta = ts - cpu_buffer->write_stamp;
1062
1063                 /* make sure this delta is calculated here */
1064                 barrier();
1065
1066                 /* Did the write stamp get updated already? */
1067                 if (unlikely(ts < cpu_buffer->write_stamp))
1068                         delta = 0;
1069
1070                 if (test_time_stamp(delta)) {
1071
1072                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1073
1074                         if (commit == -EBUSY)
1075                                 return NULL;
1076
1077                         if (commit == -EAGAIN)
1078                                 goto again;
1079
1080                         RB_WARN_ON(cpu_buffer, commit < 0);
1081                 }
1082         } else
1083                 /* Non commits have zero deltas */
1084                 delta = 0;
1085
1086         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1087         if (PTR_ERR(event) == -EAGAIN)
1088                 goto again;
1089
1090         if (!event) {
1091                 if (unlikely(commit))
1092                         /*
1093                          * Ouch! We needed a timestamp and it was commited. But
1094                          * we didn't get our event reserved.
1095                          */
1096                         rb_set_commit_to_write(cpu_buffer);
1097                 return NULL;
1098         }
1099
1100         /*
1101          * If the timestamp was commited, make the commit our entry
1102          * now so that we will update it when needed.
1103          */
1104         if (commit)
1105                 rb_set_commit_event(cpu_buffer, event);
1106         else if (!rb_is_commit(cpu_buffer, event))
1107                 delta = 0;
1108
1109         event->time_delta = delta;
1110
1111         return event;
1112 }
1113
1114 static DEFINE_PER_CPU(int, rb_need_resched);
1115
1116 /**
1117  * ring_buffer_lock_reserve - reserve a part of the buffer
1118  * @buffer: the ring buffer to reserve from
1119  * @length: the length of the data to reserve (excluding event header)
1120  * @flags: a pointer to save the interrupt flags
1121  *
1122  * Returns a reseverd event on the ring buffer to copy directly to.
1123  * The user of this interface will need to get the body to write into
1124  * and can use the ring_buffer_event_data() interface.
1125  *
1126  * The length is the length of the data needed, not the event length
1127  * which also includes the event header.
1128  *
1129  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1130  * If NULL is returned, then nothing has been allocated or locked.
1131  */
1132 struct ring_buffer_event *
1133 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1134                          unsigned long length,
1135                          unsigned long *flags)
1136 {
1137         struct ring_buffer_per_cpu *cpu_buffer;
1138         struct ring_buffer_event *event;
1139         int cpu, resched;
1140
1141         if (atomic_read(&buffer->record_disabled))
1142                 return NULL;
1143
1144         /* If we are tracing schedule, we don't want to recurse */
1145         resched = ftrace_preempt_disable();
1146
1147         cpu = raw_smp_processor_id();
1148
1149         if (!cpu_isset(cpu, buffer->cpumask))
1150                 goto out;
1151
1152         cpu_buffer = buffer->buffers[cpu];
1153
1154         if (atomic_read(&cpu_buffer->record_disabled))
1155                 goto out;
1156
1157         length = rb_calculate_event_length(length);
1158         if (length > BUF_PAGE_SIZE)
1159                 goto out;
1160
1161         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1162         if (!event)
1163                 goto out;
1164
1165         /*
1166          * Need to store resched state on this cpu.
1167          * Only the first needs to.
1168          */
1169
1170         if (preempt_count() == 1)
1171                 per_cpu(rb_need_resched, cpu) = resched;
1172
1173         return event;
1174
1175  out:
1176         ftrace_preempt_enable(resched);
1177         return NULL;
1178 }
1179
1180 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1181                       struct ring_buffer_event *event)
1182 {
1183         cpu_buffer->entries++;
1184
1185         /* Only process further if we own the commit */
1186         if (!rb_is_commit(cpu_buffer, event))
1187                 return;
1188
1189         cpu_buffer->write_stamp += event->time_delta;
1190
1191         rb_set_commit_to_write(cpu_buffer);
1192 }
1193
1194 /**
1195  * ring_buffer_unlock_commit - commit a reserved
1196  * @buffer: The buffer to commit to
1197  * @event: The event pointer to commit.
1198  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1199  *
1200  * This commits the data to the ring buffer, and releases any locks held.
1201  *
1202  * Must be paired with ring_buffer_lock_reserve.
1203  */
1204 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1205                               struct ring_buffer_event *event,
1206                               unsigned long flags)
1207 {
1208         struct ring_buffer_per_cpu *cpu_buffer;
1209         int cpu = raw_smp_processor_id();
1210
1211         cpu_buffer = buffer->buffers[cpu];
1212
1213         rb_commit(cpu_buffer, event);
1214
1215         /*
1216          * Only the last preempt count needs to restore preemption.
1217          */
1218         if (preempt_count() == 1)
1219                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1220         else
1221                 preempt_enable_no_resched_notrace();
1222
1223         return 0;
1224 }
1225
1226 /**
1227  * ring_buffer_write - write data to the buffer without reserving
1228  * @buffer: The ring buffer to write to.
1229  * @length: The length of the data being written (excluding the event header)
1230  * @data: The data to write to the buffer.
1231  *
1232  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1233  * one function. If you already have the data to write to the buffer, it
1234  * may be easier to simply call this function.
1235  *
1236  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1237  * and not the length of the event which would hold the header.
1238  */
1239 int ring_buffer_write(struct ring_buffer *buffer,
1240                         unsigned long length,
1241                         void *data)
1242 {
1243         struct ring_buffer_per_cpu *cpu_buffer;
1244         struct ring_buffer_event *event;
1245         unsigned long event_length;
1246         void *body;
1247         int ret = -EBUSY;
1248         int cpu, resched;
1249
1250         if (atomic_read(&buffer->record_disabled))
1251                 return -EBUSY;
1252
1253         resched = ftrace_preempt_disable();
1254
1255         cpu = raw_smp_processor_id();
1256
1257         if (!cpu_isset(cpu, buffer->cpumask))
1258                 goto out;
1259
1260         cpu_buffer = buffer->buffers[cpu];
1261
1262         if (atomic_read(&cpu_buffer->record_disabled))
1263                 goto out;
1264
1265         event_length = rb_calculate_event_length(length);
1266         event = rb_reserve_next_event(cpu_buffer,
1267                                       RINGBUF_TYPE_DATA, event_length);
1268         if (!event)
1269                 goto out;
1270
1271         body = rb_event_data(event);
1272
1273         memcpy(body, data, length);
1274
1275         rb_commit(cpu_buffer, event);
1276
1277         ret = 0;
1278  out:
1279         ftrace_preempt_enable(resched);
1280
1281         return ret;
1282 }
1283
1284 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1285 {
1286         struct buffer_page *reader = cpu_buffer->reader_page;
1287         struct buffer_page *head = cpu_buffer->head_page;
1288         struct buffer_page *commit = cpu_buffer->commit_page;
1289
1290         return reader->read == rb_page_commit(reader) &&
1291                 (commit == reader ||
1292                  (commit == head &&
1293                   head->read == rb_page_commit(commit)));
1294 }
1295
1296 /**
1297  * ring_buffer_record_disable - stop all writes into the buffer
1298  * @buffer: The ring buffer to stop writes to.
1299  *
1300  * This prevents all writes to the buffer. Any attempt to write
1301  * to the buffer after this will fail and return NULL.
1302  *
1303  * The caller should call synchronize_sched() after this.
1304  */
1305 void ring_buffer_record_disable(struct ring_buffer *buffer)
1306 {
1307         atomic_inc(&buffer->record_disabled);
1308 }
1309
1310 /**
1311  * ring_buffer_record_enable - enable writes to the buffer
1312  * @buffer: The ring buffer to enable writes
1313  *
1314  * Note, multiple disables will need the same number of enables
1315  * to truely enable the writing (much like preempt_disable).
1316  */
1317 void ring_buffer_record_enable(struct ring_buffer *buffer)
1318 {
1319         atomic_dec(&buffer->record_disabled);
1320 }
1321
1322 /**
1323  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1324  * @buffer: The ring buffer to stop writes to.
1325  * @cpu: The CPU buffer to stop
1326  *
1327  * This prevents all writes to the buffer. Any attempt to write
1328  * to the buffer after this will fail and return NULL.
1329  *
1330  * The caller should call synchronize_sched() after this.
1331  */
1332 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1333 {
1334         struct ring_buffer_per_cpu *cpu_buffer;
1335
1336         if (!cpu_isset(cpu, buffer->cpumask))
1337                 return;
1338
1339         cpu_buffer = buffer->buffers[cpu];
1340         atomic_inc(&cpu_buffer->record_disabled);
1341 }
1342
1343 /**
1344  * ring_buffer_record_enable_cpu - enable writes to the buffer
1345  * @buffer: The ring buffer to enable writes
1346  * @cpu: The CPU to enable.
1347  *
1348  * Note, multiple disables will need the same number of enables
1349  * to truely enable the writing (much like preempt_disable).
1350  */
1351 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1352 {
1353         struct ring_buffer_per_cpu *cpu_buffer;
1354
1355         if (!cpu_isset(cpu, buffer->cpumask))
1356                 return;
1357
1358         cpu_buffer = buffer->buffers[cpu];
1359         atomic_dec(&cpu_buffer->record_disabled);
1360 }
1361
1362 /**
1363  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1364  * @buffer: The ring buffer
1365  * @cpu: The per CPU buffer to get the entries from.
1366  */
1367 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1368 {
1369         struct ring_buffer_per_cpu *cpu_buffer;
1370
1371         if (!cpu_isset(cpu, buffer->cpumask))
1372                 return 0;
1373
1374         cpu_buffer = buffer->buffers[cpu];
1375         return cpu_buffer->entries;
1376 }
1377
1378 /**
1379  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1380  * @buffer: The ring buffer
1381  * @cpu: The per CPU buffer to get the number of overruns from
1382  */
1383 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1384 {
1385         struct ring_buffer_per_cpu *cpu_buffer;
1386
1387         if (!cpu_isset(cpu, buffer->cpumask))
1388                 return 0;
1389
1390         cpu_buffer = buffer->buffers[cpu];
1391         return cpu_buffer->overrun;
1392 }
1393
1394 /**
1395  * ring_buffer_entries - get the number of entries in a buffer
1396  * @buffer: The ring buffer
1397  *
1398  * Returns the total number of entries in the ring buffer
1399  * (all CPU entries)
1400  */
1401 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1402 {
1403         struct ring_buffer_per_cpu *cpu_buffer;
1404         unsigned long entries = 0;
1405         int cpu;
1406
1407         /* if you care about this being correct, lock the buffer */
1408         for_each_buffer_cpu(buffer, cpu) {
1409                 cpu_buffer = buffer->buffers[cpu];
1410                 entries += cpu_buffer->entries;
1411         }
1412
1413         return entries;
1414 }
1415
1416 /**
1417  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1418  * @buffer: The ring buffer
1419  *
1420  * Returns the total number of overruns in the ring buffer
1421  * (all CPU entries)
1422  */
1423 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1424 {
1425         struct ring_buffer_per_cpu *cpu_buffer;
1426         unsigned long overruns = 0;
1427         int cpu;
1428
1429         /* if you care about this being correct, lock the buffer */
1430         for_each_buffer_cpu(buffer, cpu) {
1431                 cpu_buffer = buffer->buffers[cpu];
1432                 overruns += cpu_buffer->overrun;
1433         }
1434
1435         return overruns;
1436 }
1437
1438 /**
1439  * ring_buffer_iter_reset - reset an iterator
1440  * @iter: The iterator to reset
1441  *
1442  * Resets the iterator, so that it will start from the beginning
1443  * again.
1444  */
1445 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1446 {
1447         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1448
1449         /* Iterator usage is expected to have record disabled */
1450         if (list_empty(&cpu_buffer->reader_page->list)) {
1451                 iter->head_page = cpu_buffer->head_page;
1452                 iter->head = cpu_buffer->head_page->read;
1453         } else {
1454                 iter->head_page = cpu_buffer->reader_page;
1455                 iter->head = cpu_buffer->reader_page->read;
1456         }
1457         if (iter->head)
1458                 iter->read_stamp = cpu_buffer->read_stamp;
1459         else
1460                 iter->read_stamp = iter->head_page->time_stamp;
1461 }
1462
1463 /**
1464  * ring_buffer_iter_empty - check if an iterator has no more to read
1465  * @iter: The iterator to check
1466  */
1467 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1468 {
1469         struct ring_buffer_per_cpu *cpu_buffer;
1470
1471         cpu_buffer = iter->cpu_buffer;
1472
1473         return iter->head_page == cpu_buffer->commit_page &&
1474                 iter->head == rb_commit_index(cpu_buffer);
1475 }
1476
1477 static void
1478 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1479                      struct ring_buffer_event *event)
1480 {
1481         u64 delta;
1482
1483         switch (event->type) {
1484         case RINGBUF_TYPE_PADDING:
1485                 return;
1486
1487         case RINGBUF_TYPE_TIME_EXTEND:
1488                 delta = event->array[0];
1489                 delta <<= TS_SHIFT;
1490                 delta += event->time_delta;
1491                 cpu_buffer->read_stamp += delta;
1492                 return;
1493
1494         case RINGBUF_TYPE_TIME_STAMP:
1495                 /* FIXME: not implemented */
1496                 return;
1497
1498         case RINGBUF_TYPE_DATA:
1499                 cpu_buffer->read_stamp += event->time_delta;
1500                 return;
1501
1502         default:
1503                 BUG();
1504         }
1505         return;
1506 }
1507
1508 static void
1509 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1510                           struct ring_buffer_event *event)
1511 {
1512         u64 delta;
1513
1514         switch (event->type) {
1515         case RINGBUF_TYPE_PADDING:
1516                 return;
1517
1518         case RINGBUF_TYPE_TIME_EXTEND:
1519                 delta = event->array[0];
1520                 delta <<= TS_SHIFT;
1521                 delta += event->time_delta;
1522                 iter->read_stamp += delta;
1523                 return;
1524
1525         case RINGBUF_TYPE_TIME_STAMP:
1526                 /* FIXME: not implemented */
1527                 return;
1528
1529         case RINGBUF_TYPE_DATA:
1530                 iter->read_stamp += event->time_delta;
1531                 return;
1532
1533         default:
1534                 BUG();
1535         }
1536         return;
1537 }
1538
1539 static struct buffer_page *
1540 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1541 {
1542         struct buffer_page *reader = NULL;
1543         unsigned long flags;
1544         int nr_loops = 0;
1545
1546         local_irq_save(flags);
1547         __raw_spin_lock(&cpu_buffer->lock);
1548
1549  again:
1550         /*
1551          * This should normally only loop twice. But because the
1552          * start of the reader inserts an empty page, it causes
1553          * a case where we will loop three times. There should be no
1554          * reason to loop four times (that I know of).
1555          */
1556         if (unlikely(++nr_loops > 3)) {
1557                 RB_WARN_ON(cpu_buffer, 1);
1558                 reader = NULL;
1559                 goto out;
1560         }
1561
1562         reader = cpu_buffer->reader_page;
1563
1564         /* If there's more to read, return this page */
1565         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1566                 goto out;
1567
1568         /* Never should we have an index greater than the size */
1569         RB_WARN_ON(cpu_buffer,
1570                    cpu_buffer->reader_page->read > rb_page_size(reader));
1571
1572         /* check if we caught up to the tail */
1573         reader = NULL;
1574         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1575                 goto out;
1576
1577         /*
1578          * Splice the empty reader page into the list around the head.
1579          * Reset the reader page to size zero.
1580          */
1581
1582         reader = cpu_buffer->head_page;
1583         cpu_buffer->reader_page->list.next = reader->list.next;
1584         cpu_buffer->reader_page->list.prev = reader->list.prev;
1585
1586         local_set(&cpu_buffer->reader_page->write, 0);
1587         local_set(&cpu_buffer->reader_page->commit, 0);
1588
1589         /* Make the reader page now replace the head */
1590         reader->list.prev->next = &cpu_buffer->reader_page->list;
1591         reader->list.next->prev = &cpu_buffer->reader_page->list;
1592
1593         /*
1594          * If the tail is on the reader, then we must set the head
1595          * to the inserted page, otherwise we set it one before.
1596          */
1597         cpu_buffer->head_page = cpu_buffer->reader_page;
1598
1599         if (cpu_buffer->commit_page != reader)
1600                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1601
1602         /* Finally update the reader page to the new head */
1603         cpu_buffer->reader_page = reader;
1604         rb_reset_reader_page(cpu_buffer);
1605
1606         goto again;
1607
1608  out:
1609         __raw_spin_unlock(&cpu_buffer->lock);
1610         local_irq_restore(flags);
1611
1612         return reader;
1613 }
1614
1615 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1616 {
1617         struct ring_buffer_event *event;
1618         struct buffer_page *reader;
1619         unsigned length;
1620
1621         reader = rb_get_reader_page(cpu_buffer);
1622
1623         /* This function should not be called when buffer is empty */
1624         BUG_ON(!reader);
1625
1626         event = rb_reader_event(cpu_buffer);
1627
1628         if (event->type == RINGBUF_TYPE_DATA)
1629                 cpu_buffer->entries--;
1630
1631         rb_update_read_stamp(cpu_buffer, event);
1632
1633         length = rb_event_length(event);
1634         cpu_buffer->reader_page->read += length;
1635 }
1636
1637 static void rb_advance_iter(struct ring_buffer_iter *iter)
1638 {
1639         struct ring_buffer *buffer;
1640         struct ring_buffer_per_cpu *cpu_buffer;
1641         struct ring_buffer_event *event;
1642         unsigned length;
1643
1644         cpu_buffer = iter->cpu_buffer;
1645         buffer = cpu_buffer->buffer;
1646
1647         /*
1648          * Check if we are at the end of the buffer.
1649          */
1650         if (iter->head >= rb_page_size(iter->head_page)) {
1651                 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1652                 rb_inc_iter(iter);
1653                 return;
1654         }
1655
1656         event = rb_iter_head_event(iter);
1657
1658         length = rb_event_length(event);
1659
1660         /*
1661          * This should not be called to advance the header if we are
1662          * at the tail of the buffer.
1663          */
1664         BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1665                (iter->head + length > rb_commit_index(cpu_buffer)));
1666
1667         rb_update_iter_read_stamp(iter, event);
1668
1669         iter->head += length;
1670
1671         /* check for end of page padding */
1672         if ((iter->head >= rb_page_size(iter->head_page)) &&
1673             (iter->head_page != cpu_buffer->commit_page))
1674                 rb_advance_iter(iter);
1675 }
1676
1677 /**
1678  * ring_buffer_peek - peek at the next event to be read
1679  * @buffer: The ring buffer to read
1680  * @cpu: The cpu to peak at
1681  * @ts: The timestamp counter of this event.
1682  *
1683  * This will return the event that will be read next, but does
1684  * not consume the data.
1685  */
1686 struct ring_buffer_event *
1687 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1688 {
1689         struct ring_buffer_per_cpu *cpu_buffer;
1690         struct ring_buffer_event *event;
1691         struct buffer_page *reader;
1692         int nr_loops = 0;
1693
1694         if (!cpu_isset(cpu, buffer->cpumask))
1695                 return NULL;
1696
1697         cpu_buffer = buffer->buffers[cpu];
1698
1699  again:
1700         /*
1701          * We repeat when a timestamp is encountered. It is possible
1702          * to get multiple timestamps from an interrupt entering just
1703          * as one timestamp is about to be written. The max times
1704          * that this can happen is the number of nested interrupts we
1705          * can have.  Nesting 10 deep of interrupts is clearly
1706          * an anomaly.
1707          */
1708         if (unlikely(++nr_loops > 10)) {
1709                 RB_WARN_ON(cpu_buffer, 1);
1710                 return NULL;
1711         }
1712
1713         reader = rb_get_reader_page(cpu_buffer);
1714         if (!reader)
1715                 return NULL;
1716
1717         event = rb_reader_event(cpu_buffer);
1718
1719         switch (event->type) {
1720         case RINGBUF_TYPE_PADDING:
1721                 RB_WARN_ON(cpu_buffer, 1);
1722                 rb_advance_reader(cpu_buffer);
1723                 return NULL;
1724
1725         case RINGBUF_TYPE_TIME_EXTEND:
1726                 /* Internal data, OK to advance */
1727                 rb_advance_reader(cpu_buffer);
1728                 goto again;
1729
1730         case RINGBUF_TYPE_TIME_STAMP:
1731                 /* FIXME: not implemented */
1732                 rb_advance_reader(cpu_buffer);
1733                 goto again;
1734
1735         case RINGBUF_TYPE_DATA:
1736                 if (ts) {
1737                         *ts = cpu_buffer->read_stamp + event->time_delta;
1738                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1739                 }
1740                 return event;
1741
1742         default:
1743                 BUG();
1744         }
1745
1746         return NULL;
1747 }
1748
1749 /**
1750  * ring_buffer_iter_peek - peek at the next event to be read
1751  * @iter: The ring buffer iterator
1752  * @ts: The timestamp counter of this event.
1753  *
1754  * This will return the event that will be read next, but does
1755  * not increment the iterator.
1756  */
1757 struct ring_buffer_event *
1758 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1759 {
1760         struct ring_buffer *buffer;
1761         struct ring_buffer_per_cpu *cpu_buffer;
1762         struct ring_buffer_event *event;
1763         int nr_loops = 0;
1764
1765         if (ring_buffer_iter_empty(iter))
1766                 return NULL;
1767
1768         cpu_buffer = iter->cpu_buffer;
1769         buffer = cpu_buffer->buffer;
1770
1771  again:
1772         /*
1773          * We repeat when a timestamp is encountered. It is possible
1774          * to get multiple timestamps from an interrupt entering just
1775          * as one timestamp is about to be written. The max times
1776          * that this can happen is the number of nested interrupts we
1777          * can have. Nesting 10 deep of interrupts is clearly
1778          * an anomaly.
1779          */
1780         if (unlikely(++nr_loops > 10)) {
1781                 RB_WARN_ON(cpu_buffer, 1);
1782                 return NULL;
1783         }
1784
1785         if (rb_per_cpu_empty(cpu_buffer))
1786                 return NULL;
1787
1788         event = rb_iter_head_event(iter);
1789
1790         switch (event->type) {
1791         case RINGBUF_TYPE_PADDING:
1792                 rb_inc_iter(iter);
1793                 goto again;
1794
1795         case RINGBUF_TYPE_TIME_EXTEND:
1796                 /* Internal data, OK to advance */
1797                 rb_advance_iter(iter);
1798                 goto again;
1799
1800         case RINGBUF_TYPE_TIME_STAMP:
1801                 /* FIXME: not implemented */
1802                 rb_advance_iter(iter);
1803                 goto again;
1804
1805         case RINGBUF_TYPE_DATA:
1806                 if (ts) {
1807                         *ts = iter->read_stamp + event->time_delta;
1808                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1809                 }
1810                 return event;
1811
1812         default:
1813                 BUG();
1814         }
1815
1816         return NULL;
1817 }
1818
1819 /**
1820  * ring_buffer_consume - return an event and consume it
1821  * @buffer: The ring buffer to get the next event from
1822  *
1823  * Returns the next event in the ring buffer, and that event is consumed.
1824  * Meaning, that sequential reads will keep returning a different event,
1825  * and eventually empty the ring buffer if the producer is slower.
1826  */
1827 struct ring_buffer_event *
1828 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1829 {
1830         struct ring_buffer_per_cpu *cpu_buffer;
1831         struct ring_buffer_event *event;
1832
1833         if (!cpu_isset(cpu, buffer->cpumask))
1834                 return NULL;
1835
1836         event = ring_buffer_peek(buffer, cpu, ts);
1837         if (!event)
1838                 return NULL;
1839
1840         cpu_buffer = buffer->buffers[cpu];
1841         rb_advance_reader(cpu_buffer);
1842
1843         return event;
1844 }
1845
1846 /**
1847  * ring_buffer_read_start - start a non consuming read of the buffer
1848  * @buffer: The ring buffer to read from
1849  * @cpu: The cpu buffer to iterate over
1850  *
1851  * This starts up an iteration through the buffer. It also disables
1852  * the recording to the buffer until the reading is finished.
1853  * This prevents the reading from being corrupted. This is not
1854  * a consuming read, so a producer is not expected.
1855  *
1856  * Must be paired with ring_buffer_finish.
1857  */
1858 struct ring_buffer_iter *
1859 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1860 {
1861         struct ring_buffer_per_cpu *cpu_buffer;
1862         struct ring_buffer_iter *iter;
1863         unsigned long flags;
1864
1865         if (!cpu_isset(cpu, buffer->cpumask))
1866                 return NULL;
1867
1868         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1869         if (!iter)
1870                 return NULL;
1871
1872         cpu_buffer = buffer->buffers[cpu];
1873
1874         iter->cpu_buffer = cpu_buffer;
1875
1876         atomic_inc(&cpu_buffer->record_disabled);
1877         synchronize_sched();
1878
1879         local_irq_save(flags);
1880         __raw_spin_lock(&cpu_buffer->lock);
1881         ring_buffer_iter_reset(iter);
1882         __raw_spin_unlock(&cpu_buffer->lock);
1883         local_irq_restore(flags);
1884
1885         return iter;
1886 }
1887
1888 /**
1889  * ring_buffer_finish - finish reading the iterator of the buffer
1890  * @iter: The iterator retrieved by ring_buffer_start
1891  *
1892  * This re-enables the recording to the buffer, and frees the
1893  * iterator.
1894  */
1895 void
1896 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1897 {
1898         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1899
1900         atomic_dec(&cpu_buffer->record_disabled);
1901         kfree(iter);
1902 }
1903
1904 /**
1905  * ring_buffer_read - read the next item in the ring buffer by the iterator
1906  * @iter: The ring buffer iterator
1907  * @ts: The time stamp of the event read.
1908  *
1909  * This reads the next event in the ring buffer and increments the iterator.
1910  */
1911 struct ring_buffer_event *
1912 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1913 {
1914         struct ring_buffer_event *event;
1915
1916         event = ring_buffer_iter_peek(iter, ts);
1917         if (!event)
1918                 return NULL;
1919
1920         rb_advance_iter(iter);
1921
1922         return event;
1923 }
1924
1925 /**
1926  * ring_buffer_size - return the size of the ring buffer (in bytes)
1927  * @buffer: The ring buffer.
1928  */
1929 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1930 {
1931         return BUF_PAGE_SIZE * buffer->pages;
1932 }
1933
1934 static void
1935 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1936 {
1937         cpu_buffer->head_page
1938                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1939         local_set(&cpu_buffer->head_page->write, 0);
1940         local_set(&cpu_buffer->head_page->commit, 0);
1941
1942         cpu_buffer->head_page->read = 0;
1943
1944         cpu_buffer->tail_page = cpu_buffer->head_page;
1945         cpu_buffer->commit_page = cpu_buffer->head_page;
1946
1947         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1948         local_set(&cpu_buffer->reader_page->write, 0);
1949         local_set(&cpu_buffer->reader_page->commit, 0);
1950         cpu_buffer->reader_page->read = 0;
1951
1952         cpu_buffer->overrun = 0;
1953         cpu_buffer->entries = 0;
1954 }
1955
1956 /**
1957  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1958  * @buffer: The ring buffer to reset a per cpu buffer of
1959  * @cpu: The CPU buffer to be reset
1960  */
1961 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1962 {
1963         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1964         unsigned long flags;
1965
1966         if (!cpu_isset(cpu, buffer->cpumask))
1967                 return;
1968
1969         local_irq_save(flags);
1970         __raw_spin_lock(&cpu_buffer->lock);
1971
1972         rb_reset_cpu(cpu_buffer);
1973
1974         __raw_spin_unlock(&cpu_buffer->lock);
1975         local_irq_restore(flags);
1976 }
1977
1978 /**
1979  * ring_buffer_reset - reset a ring buffer
1980  * @buffer: The ring buffer to reset all cpu buffers
1981  */
1982 void ring_buffer_reset(struct ring_buffer *buffer)
1983 {
1984         int cpu;
1985
1986         for_each_buffer_cpu(buffer, cpu)
1987                 ring_buffer_reset_cpu(buffer, cpu);
1988 }
1989
1990 /**
1991  * rind_buffer_empty - is the ring buffer empty?
1992  * @buffer: The ring buffer to test
1993  */
1994 int ring_buffer_empty(struct ring_buffer *buffer)
1995 {
1996         struct ring_buffer_per_cpu *cpu_buffer;
1997         int cpu;
1998
1999         /* yes this is racy, but if you don't like the race, lock the buffer */
2000         for_each_buffer_cpu(buffer, cpu) {
2001                 cpu_buffer = buffer->buffers[cpu];
2002                 if (!rb_per_cpu_empty(cpu_buffer))
2003                         return 0;
2004         }
2005         return 1;
2006 }
2007
2008 /**
2009  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2010  * @buffer: The ring buffer
2011  * @cpu: The CPU buffer to test
2012  */
2013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2014 {
2015         struct ring_buffer_per_cpu *cpu_buffer;
2016
2017         if (!cpu_isset(cpu, buffer->cpumask))
2018                 return 1;
2019
2020         cpu_buffer = buffer->buffers[cpu];
2021         return rb_per_cpu_empty(cpu_buffer);
2022 }
2023
2024 /**
2025  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2026  * @buffer_a: One buffer to swap with
2027  * @buffer_b: The other buffer to swap with
2028  *
2029  * This function is useful for tracers that want to take a "snapshot"
2030  * of a CPU buffer and has another back up buffer lying around.
2031  * it is expected that the tracer handles the cpu buffer not being
2032  * used at the moment.
2033  */
2034 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2035                          struct ring_buffer *buffer_b, int cpu)
2036 {
2037         struct ring_buffer_per_cpu *cpu_buffer_a;
2038         struct ring_buffer_per_cpu *cpu_buffer_b;
2039
2040         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2041             !cpu_isset(cpu, buffer_b->cpumask))
2042                 return -EINVAL;
2043
2044         /* At least make sure the two buffers are somewhat the same */
2045         if (buffer_a->size != buffer_b->size ||
2046             buffer_a->pages != buffer_b->pages)
2047                 return -EINVAL;
2048
2049         cpu_buffer_a = buffer_a->buffers[cpu];
2050         cpu_buffer_b = buffer_b->buffers[cpu];
2051
2052         /*
2053          * We can't do a synchronize_sched here because this
2054          * function can be called in atomic context.
2055          * Normally this will be called from the same CPU as cpu.
2056          * If not it's up to the caller to protect this.
2057          */
2058         atomic_inc(&cpu_buffer_a->record_disabled);
2059         atomic_inc(&cpu_buffer_b->record_disabled);
2060
2061         buffer_a->buffers[cpu] = cpu_buffer_b;
2062         buffer_b->buffers[cpu] = cpu_buffer_a;
2063
2064         cpu_buffer_b->buffer = buffer_a;
2065         cpu_buffer_a->buffer = buffer_b;
2066
2067         atomic_dec(&cpu_buffer_a->record_disabled);
2068         atomic_dec(&cpu_buffer_b->record_disabled);
2069
2070         return 0;
2071 }
2072