tracing/core: Add current context on tracing recursion warning
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "\ttype        :    2 bits\n");
32         ret = trace_seq_printf(s, "\tlen         :    3 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata        : type == %d\n",
41                                RINGBUF_TYPE_DATA);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       28
208
209 enum {
210         RB_LEN_TIME_EXTEND = 8,
211         RB_LEN_TIME_STAMP = 16,
212 };
213
214 static inline int rb_null_event(struct ring_buffer_event *event)
215 {
216         return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
217 }
218
219 static inline int rb_discarded_event(struct ring_buffer_event *event)
220 {
221         return event->type == RINGBUF_TYPE_PADDING && event->time_delta;
222 }
223
224 static void rb_event_set_padding(struct ring_buffer_event *event)
225 {
226         event->type = RINGBUF_TYPE_PADDING;
227         event->time_delta = 0;
228 }
229
230 static unsigned
231 rb_event_data_length(struct ring_buffer_event *event)
232 {
233         unsigned length;
234
235         if (event->len)
236                 length = event->len * RB_ALIGNMENT;
237         else
238                 length = event->array[0];
239         return length + RB_EVNT_HDR_SIZE;
240 }
241
242 /* inline for ring buffer fast paths */
243 static unsigned
244 rb_event_length(struct ring_buffer_event *event)
245 {
246         switch (event->type) {
247         case RINGBUF_TYPE_PADDING:
248                 if (rb_null_event(event))
249                         /* undefined */
250                         return -1;
251                 return rb_event_data_length(event);
252
253         case RINGBUF_TYPE_TIME_EXTEND:
254                 return RB_LEN_TIME_EXTEND;
255
256         case RINGBUF_TYPE_TIME_STAMP:
257                 return RB_LEN_TIME_STAMP;
258
259         case RINGBUF_TYPE_DATA:
260                 return rb_event_data_length(event);
261         default:
262                 BUG();
263         }
264         /* not hit */
265         return 0;
266 }
267
268 /**
269  * ring_buffer_event_length - return the length of the event
270  * @event: the event to get the length of
271  */
272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274         unsigned length = rb_event_length(event);
275         if (event->type != RINGBUF_TYPE_DATA)
276                 return length;
277         length -= RB_EVNT_HDR_SIZE;
278         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280         return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284 /* inline for ring buffer fast paths */
285 static void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288         BUG_ON(event->type != RINGBUF_TYPE_DATA);
289         /* If length is in len field, then array[0] has the data */
290         if (event->len)
291                 return (void *)&event->array[0];
292         /* Otherwise length is in array[0] and array[1] has the data */
293         return (void *)&event->array[1];
294 }
295
296 /**
297  * ring_buffer_event_data - return the data of the event
298  * @event: the event to get the data from
299  */
300 void *ring_buffer_event_data(struct ring_buffer_event *event)
301 {
302         return rb_event_data(event);
303 }
304 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
305
306 #define for_each_buffer_cpu(buffer, cpu)                \
307         for_each_cpu(cpu, buffer->cpumask)
308
309 #define TS_SHIFT        27
310 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
311 #define TS_DELTA_TEST   (~TS_MASK)
312
313 struct buffer_data_page {
314         u64              time_stamp;    /* page time stamp */
315         local_t          commit;        /* write committed index */
316         unsigned char    data[];        /* data of buffer page */
317 };
318
319 struct buffer_page {
320         local_t          write;         /* index for next write */
321         unsigned         read;          /* index for next read */
322         struct list_head list;          /* list of free pages */
323         struct buffer_data_page *page;  /* Actual data page */
324 };
325
326 static void rb_init_page(struct buffer_data_page *bpage)
327 {
328         local_set(&bpage->commit, 0);
329 }
330
331 /**
332  * ring_buffer_page_len - the size of data on the page.
333  * @page: The page to read
334  *
335  * Returns the amount of data on the page, including buffer page header.
336  */
337 size_t ring_buffer_page_len(void *page)
338 {
339         return local_read(&((struct buffer_data_page *)page)->commit)
340                 + BUF_PAGE_HDR_SIZE;
341 }
342
343 /*
344  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
345  * this issue out.
346  */
347 static void free_buffer_page(struct buffer_page *bpage)
348 {
349         free_page((unsigned long)bpage->page);
350         kfree(bpage);
351 }
352
353 /*
354  * We need to fit the time_stamp delta into 27 bits.
355  */
356 static inline int test_time_stamp(u64 delta)
357 {
358         if (delta & TS_DELTA_TEST)
359                 return 1;
360         return 0;
361 }
362
363 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
364
365 int ring_buffer_print_page_header(struct trace_seq *s)
366 {
367         struct buffer_data_page field;
368         int ret;
369
370         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
371                                "offset:0;\tsize:%u;\n",
372                                (unsigned int)sizeof(field.time_stamp));
373
374         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
375                                "offset:%u;\tsize:%u;\n",
376                                (unsigned int)offsetof(typeof(field), commit),
377                                (unsigned int)sizeof(field.commit));
378
379         ret = trace_seq_printf(s, "\tfield: char data;\t"
380                                "offset:%u;\tsize:%u;\n",
381                                (unsigned int)offsetof(typeof(field), data),
382                                (unsigned int)BUF_PAGE_SIZE);
383
384         return ret;
385 }
386
387 /*
388  * head_page == tail_page && head == tail then buffer is empty.
389  */
390 struct ring_buffer_per_cpu {
391         int                             cpu;
392         struct ring_buffer              *buffer;
393         spinlock_t                      reader_lock; /* serialize readers */
394         raw_spinlock_t                  lock;
395         struct lock_class_key           lock_key;
396         struct list_head                pages;
397         struct buffer_page              *head_page;     /* read from head */
398         struct buffer_page              *tail_page;     /* write to tail */
399         struct buffer_page              *commit_page;   /* committed pages */
400         struct buffer_page              *reader_page;
401         unsigned long                   overrun;
402         unsigned long                   entries;
403         u64                             write_stamp;
404         u64                             read_stamp;
405         atomic_t                        record_disabled;
406 };
407
408 struct ring_buffer {
409         unsigned                        pages;
410         unsigned                        flags;
411         int                             cpus;
412         atomic_t                        record_disabled;
413         cpumask_var_t                   cpumask;
414
415         struct mutex                    mutex;
416
417         struct ring_buffer_per_cpu      **buffers;
418
419 #ifdef CONFIG_HOTPLUG_CPU
420         struct notifier_block           cpu_notify;
421 #endif
422         u64                             (*clock)(void);
423 };
424
425 struct ring_buffer_iter {
426         struct ring_buffer_per_cpu      *cpu_buffer;
427         unsigned long                   head;
428         struct buffer_page              *head_page;
429         u64                             read_stamp;
430 };
431
432 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
433 #define RB_WARN_ON(buffer, cond)                                \
434         ({                                                      \
435                 int _____ret = unlikely(cond);                  \
436                 if (_____ret) {                                 \
437                         atomic_inc(&buffer->record_disabled);   \
438                         WARN_ON(1);                             \
439                 }                                               \
440                 _____ret;                                       \
441         })
442
443 /* Up this if you want to test the TIME_EXTENTS and normalization */
444 #define DEBUG_SHIFT 0
445
446 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
447 {
448         u64 time;
449
450         preempt_disable_notrace();
451         /* shift to debug/test normalization and TIME_EXTENTS */
452         time = buffer->clock() << DEBUG_SHIFT;
453         preempt_enable_no_resched_notrace();
454
455         return time;
456 }
457 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
458
459 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
460                                       int cpu, u64 *ts)
461 {
462         /* Just stupid testing the normalize function and deltas */
463         *ts >>= DEBUG_SHIFT;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
466
467 /**
468  * check_pages - integrity check of buffer pages
469  * @cpu_buffer: CPU buffer with pages to test
470  *
471  * As a safety measure we check to make sure the data pages have not
472  * been corrupted.
473  */
474 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
475 {
476         struct list_head *head = &cpu_buffer->pages;
477         struct buffer_page *bpage, *tmp;
478
479         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
480                 return -1;
481         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
482                 return -1;
483
484         list_for_each_entry_safe(bpage, tmp, head, list) {
485                 if (RB_WARN_ON(cpu_buffer,
486                                bpage->list.next->prev != &bpage->list))
487                         return -1;
488                 if (RB_WARN_ON(cpu_buffer,
489                                bpage->list.prev->next != &bpage->list))
490                         return -1;
491         }
492
493         return 0;
494 }
495
496 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
497                              unsigned nr_pages)
498 {
499         struct list_head *head = &cpu_buffer->pages;
500         struct buffer_page *bpage, *tmp;
501         unsigned long addr;
502         LIST_HEAD(pages);
503         unsigned i;
504
505         for (i = 0; i < nr_pages; i++) {
506                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
507                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
508                 if (!bpage)
509                         goto free_pages;
510                 list_add(&bpage->list, &pages);
511
512                 addr = __get_free_page(GFP_KERNEL);
513                 if (!addr)
514                         goto free_pages;
515                 bpage->page = (void *)addr;
516                 rb_init_page(bpage->page);
517         }
518
519         list_splice(&pages, head);
520
521         rb_check_pages(cpu_buffer);
522
523         return 0;
524
525  free_pages:
526         list_for_each_entry_safe(bpage, tmp, &pages, list) {
527                 list_del_init(&bpage->list);
528                 free_buffer_page(bpage);
529         }
530         return -ENOMEM;
531 }
532
533 static struct ring_buffer_per_cpu *
534 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
535 {
536         struct ring_buffer_per_cpu *cpu_buffer;
537         struct buffer_page *bpage;
538         unsigned long addr;
539         int ret;
540
541         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
542                                   GFP_KERNEL, cpu_to_node(cpu));
543         if (!cpu_buffer)
544                 return NULL;
545
546         cpu_buffer->cpu = cpu;
547         cpu_buffer->buffer = buffer;
548         spin_lock_init(&cpu_buffer->reader_lock);
549         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
550         INIT_LIST_HEAD(&cpu_buffer->pages);
551
552         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
553                             GFP_KERNEL, cpu_to_node(cpu));
554         if (!bpage)
555                 goto fail_free_buffer;
556
557         cpu_buffer->reader_page = bpage;
558         addr = __get_free_page(GFP_KERNEL);
559         if (!addr)
560                 goto fail_free_reader;
561         bpage->page = (void *)addr;
562         rb_init_page(bpage->page);
563
564         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
565
566         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
567         if (ret < 0)
568                 goto fail_free_reader;
569
570         cpu_buffer->head_page
571                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
572         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
573
574         return cpu_buffer;
575
576  fail_free_reader:
577         free_buffer_page(cpu_buffer->reader_page);
578
579  fail_free_buffer:
580         kfree(cpu_buffer);
581         return NULL;
582 }
583
584 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
585 {
586         struct list_head *head = &cpu_buffer->pages;
587         struct buffer_page *bpage, *tmp;
588
589         free_buffer_page(cpu_buffer->reader_page);
590
591         list_for_each_entry_safe(bpage, tmp, head, list) {
592                 list_del_init(&bpage->list);
593                 free_buffer_page(bpage);
594         }
595         kfree(cpu_buffer);
596 }
597
598 /*
599  * Causes compile errors if the struct buffer_page gets bigger
600  * than the struct page.
601  */
602 extern int ring_buffer_page_too_big(void);
603
604 #ifdef CONFIG_HOTPLUG_CPU
605 static int rb_cpu_notify(struct notifier_block *self,
606                          unsigned long action, void *hcpu);
607 #endif
608
609 /**
610  * ring_buffer_alloc - allocate a new ring_buffer
611  * @size: the size in bytes per cpu that is needed.
612  * @flags: attributes to set for the ring buffer.
613  *
614  * Currently the only flag that is available is the RB_FL_OVERWRITE
615  * flag. This flag means that the buffer will overwrite old data
616  * when the buffer wraps. If this flag is not set, the buffer will
617  * drop data when the tail hits the head.
618  */
619 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
620 {
621         struct ring_buffer *buffer;
622         int bsize;
623         int cpu;
624
625         /* Paranoid! Optimizes out when all is well */
626         if (sizeof(struct buffer_page) > sizeof(struct page))
627                 ring_buffer_page_too_big();
628
629
630         /* keep it in its own cache line */
631         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
632                          GFP_KERNEL);
633         if (!buffer)
634                 return NULL;
635
636         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
637                 goto fail_free_buffer;
638
639         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
640         buffer->flags = flags;
641         buffer->clock = trace_clock_local;
642
643         /* need at least two pages */
644         if (buffer->pages == 1)
645                 buffer->pages++;
646
647         /*
648          * In case of non-hotplug cpu, if the ring-buffer is allocated
649          * in early initcall, it will not be notified of secondary cpus.
650          * In that off case, we need to allocate for all possible cpus.
651          */
652 #ifdef CONFIG_HOTPLUG_CPU
653         get_online_cpus();
654         cpumask_copy(buffer->cpumask, cpu_online_mask);
655 #else
656         cpumask_copy(buffer->cpumask, cpu_possible_mask);
657 #endif
658         buffer->cpus = nr_cpu_ids;
659
660         bsize = sizeof(void *) * nr_cpu_ids;
661         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
662                                   GFP_KERNEL);
663         if (!buffer->buffers)
664                 goto fail_free_cpumask;
665
666         for_each_buffer_cpu(buffer, cpu) {
667                 buffer->buffers[cpu] =
668                         rb_allocate_cpu_buffer(buffer, cpu);
669                 if (!buffer->buffers[cpu])
670                         goto fail_free_buffers;
671         }
672
673 #ifdef CONFIG_HOTPLUG_CPU
674         buffer->cpu_notify.notifier_call = rb_cpu_notify;
675         buffer->cpu_notify.priority = 0;
676         register_cpu_notifier(&buffer->cpu_notify);
677 #endif
678
679         put_online_cpus();
680         mutex_init(&buffer->mutex);
681
682         return buffer;
683
684  fail_free_buffers:
685         for_each_buffer_cpu(buffer, cpu) {
686                 if (buffer->buffers[cpu])
687                         rb_free_cpu_buffer(buffer->buffers[cpu]);
688         }
689         kfree(buffer->buffers);
690
691  fail_free_cpumask:
692         free_cpumask_var(buffer->cpumask);
693         put_online_cpus();
694
695  fail_free_buffer:
696         kfree(buffer);
697         return NULL;
698 }
699 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
700
701 /**
702  * ring_buffer_free - free a ring buffer.
703  * @buffer: the buffer to free.
704  */
705 void
706 ring_buffer_free(struct ring_buffer *buffer)
707 {
708         int cpu;
709
710         get_online_cpus();
711
712 #ifdef CONFIG_HOTPLUG_CPU
713         unregister_cpu_notifier(&buffer->cpu_notify);
714 #endif
715
716         for_each_buffer_cpu(buffer, cpu)
717                 rb_free_cpu_buffer(buffer->buffers[cpu]);
718
719         put_online_cpus();
720
721         free_cpumask_var(buffer->cpumask);
722
723         kfree(buffer);
724 }
725 EXPORT_SYMBOL_GPL(ring_buffer_free);
726
727 void ring_buffer_set_clock(struct ring_buffer *buffer,
728                            u64 (*clock)(void))
729 {
730         buffer->clock = clock;
731 }
732
733 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
734
735 static void
736 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
737 {
738         struct buffer_page *bpage;
739         struct list_head *p;
740         unsigned i;
741
742         atomic_inc(&cpu_buffer->record_disabled);
743         synchronize_sched();
744
745         for (i = 0; i < nr_pages; i++) {
746                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
747                         return;
748                 p = cpu_buffer->pages.next;
749                 bpage = list_entry(p, struct buffer_page, list);
750                 list_del_init(&bpage->list);
751                 free_buffer_page(bpage);
752         }
753         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
754                 return;
755
756         rb_reset_cpu(cpu_buffer);
757
758         rb_check_pages(cpu_buffer);
759
760         atomic_dec(&cpu_buffer->record_disabled);
761
762 }
763
764 static void
765 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
766                 struct list_head *pages, unsigned nr_pages)
767 {
768         struct buffer_page *bpage;
769         struct list_head *p;
770         unsigned i;
771
772         atomic_inc(&cpu_buffer->record_disabled);
773         synchronize_sched();
774
775         for (i = 0; i < nr_pages; i++) {
776                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
777                         return;
778                 p = pages->next;
779                 bpage = list_entry(p, struct buffer_page, list);
780                 list_del_init(&bpage->list);
781                 list_add_tail(&bpage->list, &cpu_buffer->pages);
782         }
783         rb_reset_cpu(cpu_buffer);
784
785         rb_check_pages(cpu_buffer);
786
787         atomic_dec(&cpu_buffer->record_disabled);
788 }
789
790 /**
791  * ring_buffer_resize - resize the ring buffer
792  * @buffer: the buffer to resize.
793  * @size: the new size.
794  *
795  * The tracer is responsible for making sure that the buffer is
796  * not being used while changing the size.
797  * Note: We may be able to change the above requirement by using
798  *  RCU synchronizations.
799  *
800  * Minimum size is 2 * BUF_PAGE_SIZE.
801  *
802  * Returns -1 on failure.
803  */
804 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
805 {
806         struct ring_buffer_per_cpu *cpu_buffer;
807         unsigned nr_pages, rm_pages, new_pages;
808         struct buffer_page *bpage, *tmp;
809         unsigned long buffer_size;
810         unsigned long addr;
811         LIST_HEAD(pages);
812         int i, cpu;
813
814         /*
815          * Always succeed at resizing a non-existent buffer:
816          */
817         if (!buffer)
818                 return size;
819
820         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
821         size *= BUF_PAGE_SIZE;
822         buffer_size = buffer->pages * BUF_PAGE_SIZE;
823
824         /* we need a minimum of two pages */
825         if (size < BUF_PAGE_SIZE * 2)
826                 size = BUF_PAGE_SIZE * 2;
827
828         if (size == buffer_size)
829                 return size;
830
831         mutex_lock(&buffer->mutex);
832         get_online_cpus();
833
834         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
835
836         if (size < buffer_size) {
837
838                 /* easy case, just free pages */
839                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
840                         goto out_fail;
841
842                 rm_pages = buffer->pages - nr_pages;
843
844                 for_each_buffer_cpu(buffer, cpu) {
845                         cpu_buffer = buffer->buffers[cpu];
846                         rb_remove_pages(cpu_buffer, rm_pages);
847                 }
848                 goto out;
849         }
850
851         /*
852          * This is a bit more difficult. We only want to add pages
853          * when we can allocate enough for all CPUs. We do this
854          * by allocating all the pages and storing them on a local
855          * link list. If we succeed in our allocation, then we
856          * add these pages to the cpu_buffers. Otherwise we just free
857          * them all and return -ENOMEM;
858          */
859         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
860                 goto out_fail;
861
862         new_pages = nr_pages - buffer->pages;
863
864         for_each_buffer_cpu(buffer, cpu) {
865                 for (i = 0; i < new_pages; i++) {
866                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
867                                                   cache_line_size()),
868                                             GFP_KERNEL, cpu_to_node(cpu));
869                         if (!bpage)
870                                 goto free_pages;
871                         list_add(&bpage->list, &pages);
872                         addr = __get_free_page(GFP_KERNEL);
873                         if (!addr)
874                                 goto free_pages;
875                         bpage->page = (void *)addr;
876                         rb_init_page(bpage->page);
877                 }
878         }
879
880         for_each_buffer_cpu(buffer, cpu) {
881                 cpu_buffer = buffer->buffers[cpu];
882                 rb_insert_pages(cpu_buffer, &pages, new_pages);
883         }
884
885         if (RB_WARN_ON(buffer, !list_empty(&pages)))
886                 goto out_fail;
887
888  out:
889         buffer->pages = nr_pages;
890         put_online_cpus();
891         mutex_unlock(&buffer->mutex);
892
893         return size;
894
895  free_pages:
896         list_for_each_entry_safe(bpage, tmp, &pages, list) {
897                 list_del_init(&bpage->list);
898                 free_buffer_page(bpage);
899         }
900         put_online_cpus();
901         mutex_unlock(&buffer->mutex);
902         return -ENOMEM;
903
904         /*
905          * Something went totally wrong, and we are too paranoid
906          * to even clean up the mess.
907          */
908  out_fail:
909         put_online_cpus();
910         mutex_unlock(&buffer->mutex);
911         return -1;
912 }
913 EXPORT_SYMBOL_GPL(ring_buffer_resize);
914
915 static inline void *
916 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
917 {
918         return bpage->data + index;
919 }
920
921 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
922 {
923         return bpage->page->data + index;
924 }
925
926 static inline struct ring_buffer_event *
927 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
928 {
929         return __rb_page_index(cpu_buffer->reader_page,
930                                cpu_buffer->reader_page->read);
931 }
932
933 static inline struct ring_buffer_event *
934 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
935 {
936         return __rb_page_index(cpu_buffer->head_page,
937                                cpu_buffer->head_page->read);
938 }
939
940 static inline struct ring_buffer_event *
941 rb_iter_head_event(struct ring_buffer_iter *iter)
942 {
943         return __rb_page_index(iter->head_page, iter->head);
944 }
945
946 static inline unsigned rb_page_write(struct buffer_page *bpage)
947 {
948         return local_read(&bpage->write);
949 }
950
951 static inline unsigned rb_page_commit(struct buffer_page *bpage)
952 {
953         return local_read(&bpage->page->commit);
954 }
955
956 /* Size is determined by what has been commited */
957 static inline unsigned rb_page_size(struct buffer_page *bpage)
958 {
959         return rb_page_commit(bpage);
960 }
961
962 static inline unsigned
963 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
964 {
965         return rb_page_commit(cpu_buffer->commit_page);
966 }
967
968 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
969 {
970         return rb_page_commit(cpu_buffer->head_page);
971 }
972
973 /*
974  * When the tail hits the head and the buffer is in overwrite mode,
975  * the head jumps to the next page and all content on the previous
976  * page is discarded. But before doing so, we update the overrun
977  * variable of the buffer.
978  */
979 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
980 {
981         struct ring_buffer_event *event;
982         unsigned long head;
983
984         for (head = 0; head < rb_head_size(cpu_buffer);
985              head += rb_event_length(event)) {
986
987                 event = __rb_page_index(cpu_buffer->head_page, head);
988                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
989                         return;
990                 /* Only count data entries */
991                 if (event->type != RINGBUF_TYPE_DATA)
992                         continue;
993                 cpu_buffer->overrun++;
994                 cpu_buffer->entries--;
995         }
996 }
997
998 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
999                                struct buffer_page **bpage)
1000 {
1001         struct list_head *p = (*bpage)->list.next;
1002
1003         if (p == &cpu_buffer->pages)
1004                 p = p->next;
1005
1006         *bpage = list_entry(p, struct buffer_page, list);
1007 }
1008
1009 static inline unsigned
1010 rb_event_index(struct ring_buffer_event *event)
1011 {
1012         unsigned long addr = (unsigned long)event;
1013
1014         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1015 }
1016
1017 static int
1018 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1019              struct ring_buffer_event *event)
1020 {
1021         unsigned long addr = (unsigned long)event;
1022         unsigned long index;
1023
1024         index = rb_event_index(event);
1025         addr &= PAGE_MASK;
1026
1027         return cpu_buffer->commit_page->page == (void *)addr &&
1028                 rb_commit_index(cpu_buffer) == index;
1029 }
1030
1031 static void
1032 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1033                     struct ring_buffer_event *event)
1034 {
1035         unsigned long addr = (unsigned long)event;
1036         unsigned long index;
1037
1038         index = rb_event_index(event);
1039         addr &= PAGE_MASK;
1040
1041         while (cpu_buffer->commit_page->page != (void *)addr) {
1042                 if (RB_WARN_ON(cpu_buffer,
1043                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1044                         return;
1045                 cpu_buffer->commit_page->page->commit =
1046                         cpu_buffer->commit_page->write;
1047                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1048                 cpu_buffer->write_stamp =
1049                         cpu_buffer->commit_page->page->time_stamp;
1050         }
1051
1052         /* Now set the commit to the event's index */
1053         local_set(&cpu_buffer->commit_page->page->commit, index);
1054 }
1055
1056 static void
1057 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1058 {
1059         /*
1060          * We only race with interrupts and NMIs on this CPU.
1061          * If we own the commit event, then we can commit
1062          * all others that interrupted us, since the interruptions
1063          * are in stack format (they finish before they come
1064          * back to us). This allows us to do a simple loop to
1065          * assign the commit to the tail.
1066          */
1067  again:
1068         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1069                 cpu_buffer->commit_page->page->commit =
1070                         cpu_buffer->commit_page->write;
1071                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1072                 cpu_buffer->write_stamp =
1073                         cpu_buffer->commit_page->page->time_stamp;
1074                 /* add barrier to keep gcc from optimizing too much */
1075                 barrier();
1076         }
1077         while (rb_commit_index(cpu_buffer) !=
1078                rb_page_write(cpu_buffer->commit_page)) {
1079                 cpu_buffer->commit_page->page->commit =
1080                         cpu_buffer->commit_page->write;
1081                 barrier();
1082         }
1083
1084         /* again, keep gcc from optimizing */
1085         barrier();
1086
1087         /*
1088          * If an interrupt came in just after the first while loop
1089          * and pushed the tail page forward, we will be left with
1090          * a dangling commit that will never go forward.
1091          */
1092         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1093                 goto again;
1094 }
1095
1096 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1099         cpu_buffer->reader_page->read = 0;
1100 }
1101
1102 static void rb_inc_iter(struct ring_buffer_iter *iter)
1103 {
1104         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1105
1106         /*
1107          * The iterator could be on the reader page (it starts there).
1108          * But the head could have moved, since the reader was
1109          * found. Check for this case and assign the iterator
1110          * to the head page instead of next.
1111          */
1112         if (iter->head_page == cpu_buffer->reader_page)
1113                 iter->head_page = cpu_buffer->head_page;
1114         else
1115                 rb_inc_page(cpu_buffer, &iter->head_page);
1116
1117         iter->read_stamp = iter->head_page->page->time_stamp;
1118         iter->head = 0;
1119 }
1120
1121 /**
1122  * ring_buffer_update_event - update event type and data
1123  * @event: the even to update
1124  * @type: the type of event
1125  * @length: the size of the event field in the ring buffer
1126  *
1127  * Update the type and data fields of the event. The length
1128  * is the actual size that is written to the ring buffer,
1129  * and with this, we can determine what to place into the
1130  * data field.
1131  */
1132 static void
1133 rb_update_event(struct ring_buffer_event *event,
1134                          unsigned type, unsigned length)
1135 {
1136         event->type = type;
1137
1138         switch (type) {
1139
1140         case RINGBUF_TYPE_PADDING:
1141                 break;
1142
1143         case RINGBUF_TYPE_TIME_EXTEND:
1144                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
1145                 break;
1146
1147         case RINGBUF_TYPE_TIME_STAMP:
1148                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1149                 break;
1150
1151         case RINGBUF_TYPE_DATA:
1152                 length -= RB_EVNT_HDR_SIZE;
1153                 if (length > RB_MAX_SMALL_DATA) {
1154                         event->len = 0;
1155                         event->array[0] = length;
1156                 } else
1157                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1158                 break;
1159         default:
1160                 BUG();
1161         }
1162 }
1163
1164 static unsigned rb_calculate_event_length(unsigned length)
1165 {
1166         struct ring_buffer_event event; /* Used only for sizeof array */
1167
1168         /* zero length can cause confusions */
1169         if (!length)
1170                 length = 1;
1171
1172         if (length > RB_MAX_SMALL_DATA)
1173                 length += sizeof(event.array[0]);
1174
1175         length += RB_EVNT_HDR_SIZE;
1176         length = ALIGN(length, RB_ALIGNMENT);
1177
1178         return length;
1179 }
1180
1181 static struct ring_buffer_event *
1182 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1183                   unsigned type, unsigned long length, u64 *ts)
1184 {
1185         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1186         unsigned long tail, write;
1187         struct ring_buffer *buffer = cpu_buffer->buffer;
1188         struct ring_buffer_event *event;
1189         unsigned long flags;
1190         bool lock_taken = false;
1191
1192         commit_page = cpu_buffer->commit_page;
1193         /* we just need to protect against interrupts */
1194         barrier();
1195         tail_page = cpu_buffer->tail_page;
1196         write = local_add_return(length, &tail_page->write);
1197         tail = write - length;
1198
1199         /* See if we shot pass the end of this buffer page */
1200         if (write > BUF_PAGE_SIZE) {
1201                 struct buffer_page *next_page = tail_page;
1202
1203                 local_irq_save(flags);
1204                 /*
1205                  * Since the write to the buffer is still not
1206                  * fully lockless, we must be careful with NMIs.
1207                  * The locks in the writers are taken when a write
1208                  * crosses to a new page. The locks protect against
1209                  * races with the readers (this will soon be fixed
1210                  * with a lockless solution).
1211                  *
1212                  * Because we can not protect against NMIs, and we
1213                  * want to keep traces reentrant, we need to manage
1214                  * what happens when we are in an NMI.
1215                  *
1216                  * NMIs can happen after we take the lock.
1217                  * If we are in an NMI, only take the lock
1218                  * if it is not already taken. Otherwise
1219                  * simply fail.
1220                  */
1221                 if (unlikely(in_nmi())) {
1222                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1223                                 goto out_reset;
1224                 } else
1225                         __raw_spin_lock(&cpu_buffer->lock);
1226
1227                 lock_taken = true;
1228
1229                 rb_inc_page(cpu_buffer, &next_page);
1230
1231                 head_page = cpu_buffer->head_page;
1232                 reader_page = cpu_buffer->reader_page;
1233
1234                 /* we grabbed the lock before incrementing */
1235                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1236                         goto out_reset;
1237
1238                 /*
1239                  * If for some reason, we had an interrupt storm that made
1240                  * it all the way around the buffer, bail, and warn
1241                  * about it.
1242                  */
1243                 if (unlikely(next_page == commit_page)) {
1244                         WARN_ON_ONCE(1);
1245                         goto out_reset;
1246                 }
1247
1248                 if (next_page == head_page) {
1249                         if (!(buffer->flags & RB_FL_OVERWRITE))
1250                                 goto out_reset;
1251
1252                         /* tail_page has not moved yet? */
1253                         if (tail_page == cpu_buffer->tail_page) {
1254                                 /* count overflows */
1255                                 rb_update_overflow(cpu_buffer);
1256
1257                                 rb_inc_page(cpu_buffer, &head_page);
1258                                 cpu_buffer->head_page = head_page;
1259                                 cpu_buffer->head_page->read = 0;
1260                         }
1261                 }
1262
1263                 /*
1264                  * If the tail page is still the same as what we think
1265                  * it is, then it is up to us to update the tail
1266                  * pointer.
1267                  */
1268                 if (tail_page == cpu_buffer->tail_page) {
1269                         local_set(&next_page->write, 0);
1270                         local_set(&next_page->page->commit, 0);
1271                         cpu_buffer->tail_page = next_page;
1272
1273                         /* reread the time stamp */
1274                         *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1275                         cpu_buffer->tail_page->page->time_stamp = *ts;
1276                 }
1277
1278                 /*
1279                  * The actual tail page has moved forward.
1280                  */
1281                 if (tail < BUF_PAGE_SIZE) {
1282                         /* Mark the rest of the page with padding */
1283                         event = __rb_page_index(tail_page, tail);
1284                         rb_event_set_padding(event);
1285                 }
1286
1287                 if (tail <= BUF_PAGE_SIZE)
1288                         /* Set the write back to the previous setting */
1289                         local_set(&tail_page->write, tail);
1290
1291                 /*
1292                  * If this was a commit entry that failed,
1293                  * increment that too
1294                  */
1295                 if (tail_page == cpu_buffer->commit_page &&
1296                     tail == rb_commit_index(cpu_buffer)) {
1297                         rb_set_commit_to_write(cpu_buffer);
1298                 }
1299
1300                 __raw_spin_unlock(&cpu_buffer->lock);
1301                 local_irq_restore(flags);
1302
1303                 /* fail and let the caller try again */
1304                 return ERR_PTR(-EAGAIN);
1305         }
1306
1307         /* We reserved something on the buffer */
1308
1309         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1310                 return NULL;
1311
1312         event = __rb_page_index(tail_page, tail);
1313         rb_update_event(event, type, length);
1314
1315         /*
1316          * If this is a commit and the tail is zero, then update
1317          * this page's time stamp.
1318          */
1319         if (!tail && rb_is_commit(cpu_buffer, event))
1320                 cpu_buffer->commit_page->page->time_stamp = *ts;
1321
1322         return event;
1323
1324  out_reset:
1325         /* reset write */
1326         if (tail <= BUF_PAGE_SIZE)
1327                 local_set(&tail_page->write, tail);
1328
1329         if (likely(lock_taken))
1330                 __raw_spin_unlock(&cpu_buffer->lock);
1331         local_irq_restore(flags);
1332         return NULL;
1333 }
1334
1335 static int
1336 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1337                   u64 *ts, u64 *delta)
1338 {
1339         struct ring_buffer_event *event;
1340         static int once;
1341         int ret;
1342
1343         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1344                 printk(KERN_WARNING "Delta way too big! %llu"
1345                        " ts=%llu write stamp = %llu\n",
1346                        (unsigned long long)*delta,
1347                        (unsigned long long)*ts,
1348                        (unsigned long long)cpu_buffer->write_stamp);
1349                 WARN_ON(1);
1350         }
1351
1352         /*
1353          * The delta is too big, we to add a
1354          * new timestamp.
1355          */
1356         event = __rb_reserve_next(cpu_buffer,
1357                                   RINGBUF_TYPE_TIME_EXTEND,
1358                                   RB_LEN_TIME_EXTEND,
1359                                   ts);
1360         if (!event)
1361                 return -EBUSY;
1362
1363         if (PTR_ERR(event) == -EAGAIN)
1364                 return -EAGAIN;
1365
1366         /* Only a commited time event can update the write stamp */
1367         if (rb_is_commit(cpu_buffer, event)) {
1368                 /*
1369                  * If this is the first on the page, then we need to
1370                  * update the page itself, and just put in a zero.
1371                  */
1372                 if (rb_event_index(event)) {
1373                         event->time_delta = *delta & TS_MASK;
1374                         event->array[0] = *delta >> TS_SHIFT;
1375                 } else {
1376                         cpu_buffer->commit_page->page->time_stamp = *ts;
1377                         event->time_delta = 0;
1378                         event->array[0] = 0;
1379                 }
1380                 cpu_buffer->write_stamp = *ts;
1381                 /* let the caller know this was the commit */
1382                 ret = 1;
1383         } else {
1384                 /* Darn, this is just wasted space */
1385                 event->time_delta = 0;
1386                 event->array[0] = 0;
1387                 ret = 0;
1388         }
1389
1390         *delta = 0;
1391
1392         return ret;
1393 }
1394
1395 static struct ring_buffer_event *
1396 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1397                       unsigned type, unsigned long length)
1398 {
1399         struct ring_buffer_event *event;
1400         u64 ts, delta;
1401         int commit = 0;
1402         int nr_loops = 0;
1403
1404  again:
1405         /*
1406          * We allow for interrupts to reenter here and do a trace.
1407          * If one does, it will cause this original code to loop
1408          * back here. Even with heavy interrupts happening, this
1409          * should only happen a few times in a row. If this happens
1410          * 1000 times in a row, there must be either an interrupt
1411          * storm or we have something buggy.
1412          * Bail!
1413          */
1414         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1415                 return NULL;
1416
1417         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1418
1419         /*
1420          * Only the first commit can update the timestamp.
1421          * Yes there is a race here. If an interrupt comes in
1422          * just after the conditional and it traces too, then it
1423          * will also check the deltas. More than one timestamp may
1424          * also be made. But only the entry that did the actual
1425          * commit will be something other than zero.
1426          */
1427         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1428             rb_page_write(cpu_buffer->tail_page) ==
1429             rb_commit_index(cpu_buffer)) {
1430
1431                 delta = ts - cpu_buffer->write_stamp;
1432
1433                 /* make sure this delta is calculated here */
1434                 barrier();
1435
1436                 /* Did the write stamp get updated already? */
1437                 if (unlikely(ts < cpu_buffer->write_stamp))
1438                         delta = 0;
1439
1440                 if (test_time_stamp(delta)) {
1441
1442                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1443
1444                         if (commit == -EBUSY)
1445                                 return NULL;
1446
1447                         if (commit == -EAGAIN)
1448                                 goto again;
1449
1450                         RB_WARN_ON(cpu_buffer, commit < 0);
1451                 }
1452         } else
1453                 /* Non commits have zero deltas */
1454                 delta = 0;
1455
1456         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1457         if (PTR_ERR(event) == -EAGAIN)
1458                 goto again;
1459
1460         if (!event) {
1461                 if (unlikely(commit))
1462                         /*
1463                          * Ouch! We needed a timestamp and it was commited. But
1464                          * we didn't get our event reserved.
1465                          */
1466                         rb_set_commit_to_write(cpu_buffer);
1467                 return NULL;
1468         }
1469
1470         /*
1471          * If the timestamp was commited, make the commit our entry
1472          * now so that we will update it when needed.
1473          */
1474         if (commit)
1475                 rb_set_commit_event(cpu_buffer, event);
1476         else if (!rb_is_commit(cpu_buffer, event))
1477                 delta = 0;
1478
1479         event->time_delta = delta;
1480
1481         return event;
1482 }
1483
1484 static int trace_irq_level(void)
1485 {
1486         return hardirq_count() + softirq_count() + in_nmi();
1487 }
1488
1489 static int trace_recursive_lock(void)
1490 {
1491         int level;
1492
1493         level = trace_irq_level();
1494
1495         if (unlikely(current->trace_recursion & (1 << level))) {
1496                 /* Disable all tracing before we do anything else */
1497                 tracing_off_permanent();
1498
1499                 printk_once(KERN_WARNING "Tracing recursion: "
1500                             "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1501                             hardirq_count() >> HARDIRQ_SHIFT,
1502                             softirq_count() >> SOFTIRQ_SHIFT,
1503                             in_nmi());
1504
1505                 WARN_ON_ONCE(1);
1506                 return -1;
1507         }
1508
1509         current->trace_recursion |= 1 << level;
1510
1511         return 0;
1512 }
1513
1514 static void trace_recursive_unlock(void)
1515 {
1516         int level;
1517
1518         level = trace_irq_level();
1519
1520         WARN_ON_ONCE(!current->trace_recursion & (1 << level));
1521
1522         current->trace_recursion &= ~(1 << level);
1523 }
1524
1525 static DEFINE_PER_CPU(int, rb_need_resched);
1526
1527 /**
1528  * ring_buffer_lock_reserve - reserve a part of the buffer
1529  * @buffer: the ring buffer to reserve from
1530  * @length: the length of the data to reserve (excluding event header)
1531  *
1532  * Returns a reseverd event on the ring buffer to copy directly to.
1533  * The user of this interface will need to get the body to write into
1534  * and can use the ring_buffer_event_data() interface.
1535  *
1536  * The length is the length of the data needed, not the event length
1537  * which also includes the event header.
1538  *
1539  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1540  * If NULL is returned, then nothing has been allocated or locked.
1541  */
1542 struct ring_buffer_event *
1543 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1544 {
1545         struct ring_buffer_per_cpu *cpu_buffer;
1546         struct ring_buffer_event *event;
1547         int cpu, resched;
1548
1549         if (ring_buffer_flags != RB_BUFFERS_ON)
1550                 return NULL;
1551
1552         if (atomic_read(&buffer->record_disabled))
1553                 return NULL;
1554
1555         /* If we are tracing schedule, we don't want to recurse */
1556         resched = ftrace_preempt_disable();
1557
1558         if (trace_recursive_lock())
1559                 goto out_nocheck;
1560
1561         cpu = raw_smp_processor_id();
1562
1563         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1564                 goto out;
1565
1566         cpu_buffer = buffer->buffers[cpu];
1567
1568         if (atomic_read(&cpu_buffer->record_disabled))
1569                 goto out;
1570
1571         length = rb_calculate_event_length(length);
1572         if (length > BUF_PAGE_SIZE)
1573                 goto out;
1574
1575         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1576         if (!event)
1577                 goto out;
1578
1579         /*
1580          * Need to store resched state on this cpu.
1581          * Only the first needs to.
1582          */
1583
1584         if (preempt_count() == 1)
1585                 per_cpu(rb_need_resched, cpu) = resched;
1586
1587         return event;
1588
1589  out:
1590         trace_recursive_unlock();
1591
1592  out_nocheck:
1593         ftrace_preempt_enable(resched);
1594         return NULL;
1595 }
1596 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1597
1598 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1599                       struct ring_buffer_event *event)
1600 {
1601         cpu_buffer->entries++;
1602
1603         /* Only process further if we own the commit */
1604         if (!rb_is_commit(cpu_buffer, event))
1605                 return;
1606
1607         cpu_buffer->write_stamp += event->time_delta;
1608
1609         rb_set_commit_to_write(cpu_buffer);
1610 }
1611
1612 /**
1613  * ring_buffer_unlock_commit - commit a reserved
1614  * @buffer: The buffer to commit to
1615  * @event: The event pointer to commit.
1616  *
1617  * This commits the data to the ring buffer, and releases any locks held.
1618  *
1619  * Must be paired with ring_buffer_lock_reserve.
1620  */
1621 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1622                               struct ring_buffer_event *event)
1623 {
1624         struct ring_buffer_per_cpu *cpu_buffer;
1625         int cpu = raw_smp_processor_id();
1626
1627         cpu_buffer = buffer->buffers[cpu];
1628
1629         rb_commit(cpu_buffer, event);
1630
1631         trace_recursive_unlock();
1632
1633         /*
1634          * Only the last preempt count needs to restore preemption.
1635          */
1636         if (preempt_count() == 1)
1637                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1638         else
1639                 preempt_enable_no_resched_notrace();
1640
1641         return 0;
1642 }
1643 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1644
1645 /**
1646  * ring_buffer_event_discard - discard any event in the ring buffer
1647  * @event: the event to discard
1648  *
1649  * Sometimes a event that is in the ring buffer needs to be ignored.
1650  * This function lets the user discard an event in the ring buffer
1651  * and then that event will not be read later.
1652  *
1653  * Note, it is up to the user to be careful with this, and protect
1654  * against races. If the user discards an event that has been consumed
1655  * it is possible that it could corrupt the ring buffer.
1656  */
1657 void ring_buffer_event_discard(struct ring_buffer_event *event)
1658 {
1659         event->type = RINGBUF_TYPE_PADDING;
1660         /* time delta must be non zero */
1661         if (!event->time_delta)
1662                 event->time_delta = 1;
1663 }
1664 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1665
1666 /**
1667  * ring_buffer_commit_discard - discard an event that has not been committed
1668  * @buffer: the ring buffer
1669  * @event: non committed event to discard
1670  *
1671  * This is similar to ring_buffer_event_discard but must only be
1672  * performed on an event that has not been committed yet. The difference
1673  * is that this will also try to free the event from the ring buffer
1674  * if another event has not been added behind it.
1675  *
1676  * If another event has been added behind it, it will set the event
1677  * up as discarded, and perform the commit.
1678  *
1679  * If this function is called, do not call ring_buffer_unlock_commit on
1680  * the event.
1681  */
1682 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1683                                 struct ring_buffer_event *event)
1684 {
1685         struct ring_buffer_per_cpu *cpu_buffer;
1686         unsigned long new_index, old_index;
1687         struct buffer_page *bpage;
1688         unsigned long index;
1689         unsigned long addr;
1690         int cpu;
1691
1692         /* The event is discarded regardless */
1693         ring_buffer_event_discard(event);
1694
1695         /*
1696          * This must only be called if the event has not been
1697          * committed yet. Thus we can assume that preemption
1698          * is still disabled.
1699          */
1700         RB_WARN_ON(buffer, !preempt_count());
1701
1702         cpu = smp_processor_id();
1703         cpu_buffer = buffer->buffers[cpu];
1704
1705         new_index = rb_event_index(event);
1706         old_index = new_index + rb_event_length(event);
1707         addr = (unsigned long)event;
1708         addr &= PAGE_MASK;
1709
1710         bpage = cpu_buffer->tail_page;
1711
1712         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1713                 /*
1714                  * This is on the tail page. It is possible that
1715                  * a write could come in and move the tail page
1716                  * and write to the next page. That is fine
1717                  * because we just shorten what is on this page.
1718                  */
1719                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1720                 if (index == old_index)
1721                         goto out;
1722         }
1723
1724         /*
1725          * The commit is still visible by the reader, so we
1726          * must increment entries.
1727          */
1728         cpu_buffer->entries++;
1729  out:
1730         /*
1731          * If a write came in and pushed the tail page
1732          * we still need to update the commit pointer
1733          * if we were the commit.
1734          */
1735         if (rb_is_commit(cpu_buffer, event))
1736                 rb_set_commit_to_write(cpu_buffer);
1737
1738         /*
1739          * Only the last preempt count needs to restore preemption.
1740          */
1741         if (preempt_count() == 1)
1742                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1743         else
1744                 preempt_enable_no_resched_notrace();
1745
1746 }
1747 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1748
1749 /**
1750  * ring_buffer_write - write data to the buffer without reserving
1751  * @buffer: The ring buffer to write to.
1752  * @length: The length of the data being written (excluding the event header)
1753  * @data: The data to write to the buffer.
1754  *
1755  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1756  * one function. If you already have the data to write to the buffer, it
1757  * may be easier to simply call this function.
1758  *
1759  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1760  * and not the length of the event which would hold the header.
1761  */
1762 int ring_buffer_write(struct ring_buffer *buffer,
1763                         unsigned long length,
1764                         void *data)
1765 {
1766         struct ring_buffer_per_cpu *cpu_buffer;
1767         struct ring_buffer_event *event;
1768         unsigned long event_length;
1769         void *body;
1770         int ret = -EBUSY;
1771         int cpu, resched;
1772
1773         if (ring_buffer_flags != RB_BUFFERS_ON)
1774                 return -EBUSY;
1775
1776         if (atomic_read(&buffer->record_disabled))
1777                 return -EBUSY;
1778
1779         resched = ftrace_preempt_disable();
1780
1781         cpu = raw_smp_processor_id();
1782
1783         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1784                 goto out;
1785
1786         cpu_buffer = buffer->buffers[cpu];
1787
1788         if (atomic_read(&cpu_buffer->record_disabled))
1789                 goto out;
1790
1791         event_length = rb_calculate_event_length(length);
1792         event = rb_reserve_next_event(cpu_buffer,
1793                                       RINGBUF_TYPE_DATA, event_length);
1794         if (!event)
1795                 goto out;
1796
1797         body = rb_event_data(event);
1798
1799         memcpy(body, data, length);
1800
1801         rb_commit(cpu_buffer, event);
1802
1803         ret = 0;
1804  out:
1805         ftrace_preempt_enable(resched);
1806
1807         return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_write);
1810
1811 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1812 {
1813         struct buffer_page *reader = cpu_buffer->reader_page;
1814         struct buffer_page *head = cpu_buffer->head_page;
1815         struct buffer_page *commit = cpu_buffer->commit_page;
1816
1817         return reader->read == rb_page_commit(reader) &&
1818                 (commit == reader ||
1819                  (commit == head &&
1820                   head->read == rb_page_commit(commit)));
1821 }
1822
1823 /**
1824  * ring_buffer_record_disable - stop all writes into the buffer
1825  * @buffer: The ring buffer to stop writes to.
1826  *
1827  * This prevents all writes to the buffer. Any attempt to write
1828  * to the buffer after this will fail and return NULL.
1829  *
1830  * The caller should call synchronize_sched() after this.
1831  */
1832 void ring_buffer_record_disable(struct ring_buffer *buffer)
1833 {
1834         atomic_inc(&buffer->record_disabled);
1835 }
1836 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1837
1838 /**
1839  * ring_buffer_record_enable - enable writes to the buffer
1840  * @buffer: The ring buffer to enable writes
1841  *
1842  * Note, multiple disables will need the same number of enables
1843  * to truely enable the writing (much like preempt_disable).
1844  */
1845 void ring_buffer_record_enable(struct ring_buffer *buffer)
1846 {
1847         atomic_dec(&buffer->record_disabled);
1848 }
1849 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1850
1851 /**
1852  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1853  * @buffer: The ring buffer to stop writes to.
1854  * @cpu: The CPU buffer to stop
1855  *
1856  * This prevents all writes to the buffer. Any attempt to write
1857  * to the buffer after this will fail and return NULL.
1858  *
1859  * The caller should call synchronize_sched() after this.
1860  */
1861 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1862 {
1863         struct ring_buffer_per_cpu *cpu_buffer;
1864
1865         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1866                 return;
1867
1868         cpu_buffer = buffer->buffers[cpu];
1869         atomic_inc(&cpu_buffer->record_disabled);
1870 }
1871 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1872
1873 /**
1874  * ring_buffer_record_enable_cpu - enable writes to the buffer
1875  * @buffer: The ring buffer to enable writes
1876  * @cpu: The CPU to enable.
1877  *
1878  * Note, multiple disables will need the same number of enables
1879  * to truely enable the writing (much like preempt_disable).
1880  */
1881 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1882 {
1883         struct ring_buffer_per_cpu *cpu_buffer;
1884
1885         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1886                 return;
1887
1888         cpu_buffer = buffer->buffers[cpu];
1889         atomic_dec(&cpu_buffer->record_disabled);
1890 }
1891 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1892
1893 /**
1894  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1895  * @buffer: The ring buffer
1896  * @cpu: The per CPU buffer to get the entries from.
1897  */
1898 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1899 {
1900         struct ring_buffer_per_cpu *cpu_buffer;
1901         unsigned long ret;
1902
1903         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1904                 return 0;
1905
1906         cpu_buffer = buffer->buffers[cpu];
1907         ret = cpu_buffer->entries;
1908
1909         return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1912
1913 /**
1914  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1915  * @buffer: The ring buffer
1916  * @cpu: The per CPU buffer to get the number of overruns from
1917  */
1918 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1919 {
1920         struct ring_buffer_per_cpu *cpu_buffer;
1921         unsigned long ret;
1922
1923         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1924                 return 0;
1925
1926         cpu_buffer = buffer->buffers[cpu];
1927         ret = cpu_buffer->overrun;
1928
1929         return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1932
1933 /**
1934  * ring_buffer_entries - get the number of entries in a buffer
1935  * @buffer: The ring buffer
1936  *
1937  * Returns the total number of entries in the ring buffer
1938  * (all CPU entries)
1939  */
1940 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1941 {
1942         struct ring_buffer_per_cpu *cpu_buffer;
1943         unsigned long entries = 0;
1944         int cpu;
1945
1946         /* if you care about this being correct, lock the buffer */
1947         for_each_buffer_cpu(buffer, cpu) {
1948                 cpu_buffer = buffer->buffers[cpu];
1949                 entries += cpu_buffer->entries;
1950         }
1951
1952         return entries;
1953 }
1954 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1955
1956 /**
1957  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1958  * @buffer: The ring buffer
1959  *
1960  * Returns the total number of overruns in the ring buffer
1961  * (all CPU entries)
1962  */
1963 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1964 {
1965         struct ring_buffer_per_cpu *cpu_buffer;
1966         unsigned long overruns = 0;
1967         int cpu;
1968
1969         /* if you care about this being correct, lock the buffer */
1970         for_each_buffer_cpu(buffer, cpu) {
1971                 cpu_buffer = buffer->buffers[cpu];
1972                 overruns += cpu_buffer->overrun;
1973         }
1974
1975         return overruns;
1976 }
1977 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1978
1979 static void rb_iter_reset(struct ring_buffer_iter *iter)
1980 {
1981         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1982
1983         /* Iterator usage is expected to have record disabled */
1984         if (list_empty(&cpu_buffer->reader_page->list)) {
1985                 iter->head_page = cpu_buffer->head_page;
1986                 iter->head = cpu_buffer->head_page->read;
1987         } else {
1988                 iter->head_page = cpu_buffer->reader_page;
1989                 iter->head = cpu_buffer->reader_page->read;
1990         }
1991         if (iter->head)
1992                 iter->read_stamp = cpu_buffer->read_stamp;
1993         else
1994                 iter->read_stamp = iter->head_page->page->time_stamp;
1995 }
1996
1997 /**
1998  * ring_buffer_iter_reset - reset an iterator
1999  * @iter: The iterator to reset
2000  *
2001  * Resets the iterator, so that it will start from the beginning
2002  * again.
2003  */
2004 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2005 {
2006         struct ring_buffer_per_cpu *cpu_buffer;
2007         unsigned long flags;
2008
2009         if (!iter)
2010                 return;
2011
2012         cpu_buffer = iter->cpu_buffer;
2013
2014         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2015         rb_iter_reset(iter);
2016         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2017 }
2018 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2019
2020 /**
2021  * ring_buffer_iter_empty - check if an iterator has no more to read
2022  * @iter: The iterator to check
2023  */
2024 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2025 {
2026         struct ring_buffer_per_cpu *cpu_buffer;
2027
2028         cpu_buffer = iter->cpu_buffer;
2029
2030         return iter->head_page == cpu_buffer->commit_page &&
2031                 iter->head == rb_commit_index(cpu_buffer);
2032 }
2033 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2034
2035 static void
2036 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2037                      struct ring_buffer_event *event)
2038 {
2039         u64 delta;
2040
2041         switch (event->type) {
2042         case RINGBUF_TYPE_PADDING:
2043                 return;
2044
2045         case RINGBUF_TYPE_TIME_EXTEND:
2046                 delta = event->array[0];
2047                 delta <<= TS_SHIFT;
2048                 delta += event->time_delta;
2049                 cpu_buffer->read_stamp += delta;
2050                 return;
2051
2052         case RINGBUF_TYPE_TIME_STAMP:
2053                 /* FIXME: not implemented */
2054                 return;
2055
2056         case RINGBUF_TYPE_DATA:
2057                 cpu_buffer->read_stamp += event->time_delta;
2058                 return;
2059
2060         default:
2061                 BUG();
2062         }
2063         return;
2064 }
2065
2066 static void
2067 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2068                           struct ring_buffer_event *event)
2069 {
2070         u64 delta;
2071
2072         switch (event->type) {
2073         case RINGBUF_TYPE_PADDING:
2074                 return;
2075
2076         case RINGBUF_TYPE_TIME_EXTEND:
2077                 delta = event->array[0];
2078                 delta <<= TS_SHIFT;
2079                 delta += event->time_delta;
2080                 iter->read_stamp += delta;
2081                 return;
2082
2083         case RINGBUF_TYPE_TIME_STAMP:
2084                 /* FIXME: not implemented */
2085                 return;
2086
2087         case RINGBUF_TYPE_DATA:
2088                 iter->read_stamp += event->time_delta;
2089                 return;
2090
2091         default:
2092                 BUG();
2093         }
2094         return;
2095 }
2096
2097 static struct buffer_page *
2098 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2099 {
2100         struct buffer_page *reader = NULL;
2101         unsigned long flags;
2102         int nr_loops = 0;
2103
2104         local_irq_save(flags);
2105         __raw_spin_lock(&cpu_buffer->lock);
2106
2107  again:
2108         /*
2109          * This should normally only loop twice. But because the
2110          * start of the reader inserts an empty page, it causes
2111          * a case where we will loop three times. There should be no
2112          * reason to loop four times (that I know of).
2113          */
2114         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2115                 reader = NULL;
2116                 goto out;
2117         }
2118
2119         reader = cpu_buffer->reader_page;
2120
2121         /* If there's more to read, return this page */
2122         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2123                 goto out;
2124
2125         /* Never should we have an index greater than the size */
2126         if (RB_WARN_ON(cpu_buffer,
2127                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2128                 goto out;
2129
2130         /* check if we caught up to the tail */
2131         reader = NULL;
2132         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2133                 goto out;
2134
2135         /*
2136          * Splice the empty reader page into the list around the head.
2137          * Reset the reader page to size zero.
2138          */
2139
2140         reader = cpu_buffer->head_page;
2141         cpu_buffer->reader_page->list.next = reader->list.next;
2142         cpu_buffer->reader_page->list.prev = reader->list.prev;
2143
2144         local_set(&cpu_buffer->reader_page->write, 0);
2145         local_set(&cpu_buffer->reader_page->page->commit, 0);
2146
2147         /* Make the reader page now replace the head */
2148         reader->list.prev->next = &cpu_buffer->reader_page->list;
2149         reader->list.next->prev = &cpu_buffer->reader_page->list;
2150
2151         /*
2152          * If the tail is on the reader, then we must set the head
2153          * to the inserted page, otherwise we set it one before.
2154          */
2155         cpu_buffer->head_page = cpu_buffer->reader_page;
2156
2157         if (cpu_buffer->commit_page != reader)
2158                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2159
2160         /* Finally update the reader page to the new head */
2161         cpu_buffer->reader_page = reader;
2162         rb_reset_reader_page(cpu_buffer);
2163
2164         goto again;
2165
2166  out:
2167         __raw_spin_unlock(&cpu_buffer->lock);
2168         local_irq_restore(flags);
2169
2170         return reader;
2171 }
2172
2173 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2174 {
2175         struct ring_buffer_event *event;
2176         struct buffer_page *reader;
2177         unsigned length;
2178
2179         reader = rb_get_reader_page(cpu_buffer);
2180
2181         /* This function should not be called when buffer is empty */
2182         if (RB_WARN_ON(cpu_buffer, !reader))
2183                 return;
2184
2185         event = rb_reader_event(cpu_buffer);
2186
2187         if (event->type == RINGBUF_TYPE_DATA || rb_discarded_event(event))
2188                 cpu_buffer->entries--;
2189
2190         rb_update_read_stamp(cpu_buffer, event);
2191
2192         length = rb_event_length(event);
2193         cpu_buffer->reader_page->read += length;
2194 }
2195
2196 static void rb_advance_iter(struct ring_buffer_iter *iter)
2197 {
2198         struct ring_buffer *buffer;
2199         struct ring_buffer_per_cpu *cpu_buffer;
2200         struct ring_buffer_event *event;
2201         unsigned length;
2202
2203         cpu_buffer = iter->cpu_buffer;
2204         buffer = cpu_buffer->buffer;
2205
2206         /*
2207          * Check if we are at the end of the buffer.
2208          */
2209         if (iter->head >= rb_page_size(iter->head_page)) {
2210                 if (RB_WARN_ON(buffer,
2211                                iter->head_page == cpu_buffer->commit_page))
2212                         return;
2213                 rb_inc_iter(iter);
2214                 return;
2215         }
2216
2217         event = rb_iter_head_event(iter);
2218
2219         length = rb_event_length(event);
2220
2221         /*
2222          * This should not be called to advance the header if we are
2223          * at the tail of the buffer.
2224          */
2225         if (RB_WARN_ON(cpu_buffer,
2226                        (iter->head_page == cpu_buffer->commit_page) &&
2227                        (iter->head + length > rb_commit_index(cpu_buffer))))
2228                 return;
2229
2230         rb_update_iter_read_stamp(iter, event);
2231
2232         iter->head += length;
2233
2234         /* check for end of page padding */
2235         if ((iter->head >= rb_page_size(iter->head_page)) &&
2236             (iter->head_page != cpu_buffer->commit_page))
2237                 rb_advance_iter(iter);
2238 }
2239
2240 static struct ring_buffer_event *
2241 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2242 {
2243         struct ring_buffer_per_cpu *cpu_buffer;
2244         struct ring_buffer_event *event;
2245         struct buffer_page *reader;
2246         int nr_loops = 0;
2247
2248         cpu_buffer = buffer->buffers[cpu];
2249
2250  again:
2251         /*
2252          * We repeat when a timestamp is encountered. It is possible
2253          * to get multiple timestamps from an interrupt entering just
2254          * as one timestamp is about to be written. The max times
2255          * that this can happen is the number of nested interrupts we
2256          * can have.  Nesting 10 deep of interrupts is clearly
2257          * an anomaly.
2258          */
2259         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2260                 return NULL;
2261
2262         reader = rb_get_reader_page(cpu_buffer);
2263         if (!reader)
2264                 return NULL;
2265
2266         event = rb_reader_event(cpu_buffer);
2267
2268         switch (event->type) {
2269         case RINGBUF_TYPE_PADDING:
2270                 if (rb_null_event(event))
2271                         RB_WARN_ON(cpu_buffer, 1);
2272                 /*
2273                  * Because the writer could be discarding every
2274                  * event it creates (which would probably be bad)
2275                  * if we were to go back to "again" then we may never
2276                  * catch up, and will trigger the warn on, or lock
2277                  * the box. Return the padding, and we will release
2278                  * the current locks, and try again.
2279                  */
2280                 rb_advance_reader(cpu_buffer);
2281                 return event;
2282
2283         case RINGBUF_TYPE_TIME_EXTEND:
2284                 /* Internal data, OK to advance */
2285                 rb_advance_reader(cpu_buffer);
2286                 goto again;
2287
2288         case RINGBUF_TYPE_TIME_STAMP:
2289                 /* FIXME: not implemented */
2290                 rb_advance_reader(cpu_buffer);
2291                 goto again;
2292
2293         case RINGBUF_TYPE_DATA:
2294                 if (ts) {
2295                         *ts = cpu_buffer->read_stamp + event->time_delta;
2296                         ring_buffer_normalize_time_stamp(buffer,
2297                                                          cpu_buffer->cpu, ts);
2298                 }
2299                 return event;
2300
2301         default:
2302                 BUG();
2303         }
2304
2305         return NULL;
2306 }
2307 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2308
2309 static struct ring_buffer_event *
2310 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2311 {
2312         struct ring_buffer *buffer;
2313         struct ring_buffer_per_cpu *cpu_buffer;
2314         struct ring_buffer_event *event;
2315         int nr_loops = 0;
2316
2317         if (ring_buffer_iter_empty(iter))
2318                 return NULL;
2319
2320         cpu_buffer = iter->cpu_buffer;
2321         buffer = cpu_buffer->buffer;
2322
2323  again:
2324         /*
2325          * We repeat when a timestamp is encountered. It is possible
2326          * to get multiple timestamps from an interrupt entering just
2327          * as one timestamp is about to be written. The max times
2328          * that this can happen is the number of nested interrupts we
2329          * can have. Nesting 10 deep of interrupts is clearly
2330          * an anomaly.
2331          */
2332         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2333                 return NULL;
2334
2335         if (rb_per_cpu_empty(cpu_buffer))
2336                 return NULL;
2337
2338         event = rb_iter_head_event(iter);
2339
2340         switch (event->type) {
2341         case RINGBUF_TYPE_PADDING:
2342                 if (rb_null_event(event)) {
2343                         rb_inc_iter(iter);
2344                         goto again;
2345                 }
2346                 rb_advance_iter(iter);
2347                 return event;
2348
2349         case RINGBUF_TYPE_TIME_EXTEND:
2350                 /* Internal data, OK to advance */
2351                 rb_advance_iter(iter);
2352                 goto again;
2353
2354         case RINGBUF_TYPE_TIME_STAMP:
2355                 /* FIXME: not implemented */
2356                 rb_advance_iter(iter);
2357                 goto again;
2358
2359         case RINGBUF_TYPE_DATA:
2360                 if (ts) {
2361                         *ts = iter->read_stamp + event->time_delta;
2362                         ring_buffer_normalize_time_stamp(buffer,
2363                                                          cpu_buffer->cpu, ts);
2364                 }
2365                 return event;
2366
2367         default:
2368                 BUG();
2369         }
2370
2371         return NULL;
2372 }
2373 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2374
2375 /**
2376  * ring_buffer_peek - peek at the next event to be read
2377  * @buffer: The ring buffer to read
2378  * @cpu: The cpu to peak at
2379  * @ts: The timestamp counter of this event.
2380  *
2381  * This will return the event that will be read next, but does
2382  * not consume the data.
2383  */
2384 struct ring_buffer_event *
2385 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2386 {
2387         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2388         struct ring_buffer_event *event;
2389         unsigned long flags;
2390
2391         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2392                 return NULL;
2393
2394  again:
2395         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2396         event = rb_buffer_peek(buffer, cpu, ts);
2397         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2398
2399         if (event && event->type == RINGBUF_TYPE_PADDING) {
2400                 cpu_relax();
2401                 goto again;
2402         }
2403
2404         return event;
2405 }
2406
2407 /**
2408  * ring_buffer_iter_peek - peek at the next event to be read
2409  * @iter: The ring buffer iterator
2410  * @ts: The timestamp counter of this event.
2411  *
2412  * This will return the event that will be read next, but does
2413  * not increment the iterator.
2414  */
2415 struct ring_buffer_event *
2416 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2417 {
2418         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2419         struct ring_buffer_event *event;
2420         unsigned long flags;
2421
2422  again:
2423         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2424         event = rb_iter_peek(iter, ts);
2425         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2426
2427         if (event && event->type == RINGBUF_TYPE_PADDING) {
2428                 cpu_relax();
2429                 goto again;
2430         }
2431
2432         return event;
2433 }
2434
2435 /**
2436  * ring_buffer_consume - return an event and consume it
2437  * @buffer: The ring buffer to get the next event from
2438  *
2439  * Returns the next event in the ring buffer, and that event is consumed.
2440  * Meaning, that sequential reads will keep returning a different event,
2441  * and eventually empty the ring buffer if the producer is slower.
2442  */
2443 struct ring_buffer_event *
2444 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2445 {
2446         struct ring_buffer_per_cpu *cpu_buffer;
2447         struct ring_buffer_event *event = NULL;
2448         unsigned long flags;
2449
2450  again:
2451         /* might be called in atomic */
2452         preempt_disable();
2453
2454         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2455                 goto out;
2456
2457         cpu_buffer = buffer->buffers[cpu];
2458         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2459
2460         event = rb_buffer_peek(buffer, cpu, ts);
2461         if (!event)
2462                 goto out_unlock;
2463
2464         rb_advance_reader(cpu_buffer);
2465
2466  out_unlock:
2467         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2468
2469  out:
2470         preempt_enable();
2471
2472         if (event && event->type == RINGBUF_TYPE_PADDING) {
2473                 cpu_relax();
2474                 goto again;
2475         }
2476
2477         return event;
2478 }
2479 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2480
2481 /**
2482  * ring_buffer_read_start - start a non consuming read of the buffer
2483  * @buffer: The ring buffer to read from
2484  * @cpu: The cpu buffer to iterate over
2485  *
2486  * This starts up an iteration through the buffer. It also disables
2487  * the recording to the buffer until the reading is finished.
2488  * This prevents the reading from being corrupted. This is not
2489  * a consuming read, so a producer is not expected.
2490  *
2491  * Must be paired with ring_buffer_finish.
2492  */
2493 struct ring_buffer_iter *
2494 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2495 {
2496         struct ring_buffer_per_cpu *cpu_buffer;
2497         struct ring_buffer_iter *iter;
2498         unsigned long flags;
2499
2500         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2501                 return NULL;
2502
2503         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2504         if (!iter)
2505                 return NULL;
2506
2507         cpu_buffer = buffer->buffers[cpu];
2508
2509         iter->cpu_buffer = cpu_buffer;
2510
2511         atomic_inc(&cpu_buffer->record_disabled);
2512         synchronize_sched();
2513
2514         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2515         __raw_spin_lock(&cpu_buffer->lock);
2516         rb_iter_reset(iter);
2517         __raw_spin_unlock(&cpu_buffer->lock);
2518         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2519
2520         return iter;
2521 }
2522 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2523
2524 /**
2525  * ring_buffer_finish - finish reading the iterator of the buffer
2526  * @iter: The iterator retrieved by ring_buffer_start
2527  *
2528  * This re-enables the recording to the buffer, and frees the
2529  * iterator.
2530  */
2531 void
2532 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2533 {
2534         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2535
2536         atomic_dec(&cpu_buffer->record_disabled);
2537         kfree(iter);
2538 }
2539 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2540
2541 /**
2542  * ring_buffer_read - read the next item in the ring buffer by the iterator
2543  * @iter: The ring buffer iterator
2544  * @ts: The time stamp of the event read.
2545  *
2546  * This reads the next event in the ring buffer and increments the iterator.
2547  */
2548 struct ring_buffer_event *
2549 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2550 {
2551         struct ring_buffer_event *event;
2552         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2553         unsigned long flags;
2554
2555  again:
2556         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2557         event = rb_iter_peek(iter, ts);
2558         if (!event)
2559                 goto out;
2560
2561         rb_advance_iter(iter);
2562  out:
2563         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2564
2565         if (event && event->type == RINGBUF_TYPE_PADDING) {
2566                 cpu_relax();
2567                 goto again;
2568         }
2569
2570         return event;
2571 }
2572 EXPORT_SYMBOL_GPL(ring_buffer_read);
2573
2574 /**
2575  * ring_buffer_size - return the size of the ring buffer (in bytes)
2576  * @buffer: The ring buffer.
2577  */
2578 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2579 {
2580         return BUF_PAGE_SIZE * buffer->pages;
2581 }
2582 EXPORT_SYMBOL_GPL(ring_buffer_size);
2583
2584 static void
2585 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2586 {
2587         cpu_buffer->head_page
2588                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2589         local_set(&cpu_buffer->head_page->write, 0);
2590         local_set(&cpu_buffer->head_page->page->commit, 0);
2591
2592         cpu_buffer->head_page->read = 0;
2593
2594         cpu_buffer->tail_page = cpu_buffer->head_page;
2595         cpu_buffer->commit_page = cpu_buffer->head_page;
2596
2597         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2598         local_set(&cpu_buffer->reader_page->write, 0);
2599         local_set(&cpu_buffer->reader_page->page->commit, 0);
2600         cpu_buffer->reader_page->read = 0;
2601
2602         cpu_buffer->overrun = 0;
2603         cpu_buffer->entries = 0;
2604
2605         cpu_buffer->write_stamp = 0;
2606         cpu_buffer->read_stamp = 0;
2607 }
2608
2609 /**
2610  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2611  * @buffer: The ring buffer to reset a per cpu buffer of
2612  * @cpu: The CPU buffer to be reset
2613  */
2614 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2615 {
2616         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2617         unsigned long flags;
2618
2619         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2620                 return;
2621
2622         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2623
2624         __raw_spin_lock(&cpu_buffer->lock);
2625
2626         rb_reset_cpu(cpu_buffer);
2627
2628         __raw_spin_unlock(&cpu_buffer->lock);
2629
2630         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2631 }
2632 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2633
2634 /**
2635  * ring_buffer_reset - reset a ring buffer
2636  * @buffer: The ring buffer to reset all cpu buffers
2637  */
2638 void ring_buffer_reset(struct ring_buffer *buffer)
2639 {
2640         int cpu;
2641
2642         for_each_buffer_cpu(buffer, cpu)
2643                 ring_buffer_reset_cpu(buffer, cpu);
2644 }
2645 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2646
2647 /**
2648  * rind_buffer_empty - is the ring buffer empty?
2649  * @buffer: The ring buffer to test
2650  */
2651 int ring_buffer_empty(struct ring_buffer *buffer)
2652 {
2653         struct ring_buffer_per_cpu *cpu_buffer;
2654         int cpu;
2655
2656         /* yes this is racy, but if you don't like the race, lock the buffer */
2657         for_each_buffer_cpu(buffer, cpu) {
2658                 cpu_buffer = buffer->buffers[cpu];
2659                 if (!rb_per_cpu_empty(cpu_buffer))
2660                         return 0;
2661         }
2662
2663         return 1;
2664 }
2665 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2666
2667 /**
2668  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2669  * @buffer: The ring buffer
2670  * @cpu: The CPU buffer to test
2671  */
2672 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2673 {
2674         struct ring_buffer_per_cpu *cpu_buffer;
2675         int ret;
2676
2677         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2678                 return 1;
2679
2680         cpu_buffer = buffer->buffers[cpu];
2681         ret = rb_per_cpu_empty(cpu_buffer);
2682
2683
2684         return ret;
2685 }
2686 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2687
2688 /**
2689  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2690  * @buffer_a: One buffer to swap with
2691  * @buffer_b: The other buffer to swap with
2692  *
2693  * This function is useful for tracers that want to take a "snapshot"
2694  * of a CPU buffer and has another back up buffer lying around.
2695  * it is expected that the tracer handles the cpu buffer not being
2696  * used at the moment.
2697  */
2698 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2699                          struct ring_buffer *buffer_b, int cpu)
2700 {
2701         struct ring_buffer_per_cpu *cpu_buffer_a;
2702         struct ring_buffer_per_cpu *cpu_buffer_b;
2703         int ret = -EINVAL;
2704
2705         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2706             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2707                 goto out;
2708
2709         /* At least make sure the two buffers are somewhat the same */
2710         if (buffer_a->pages != buffer_b->pages)
2711                 goto out;
2712
2713         ret = -EAGAIN;
2714
2715         if (ring_buffer_flags != RB_BUFFERS_ON)
2716                 goto out;
2717
2718         if (atomic_read(&buffer_a->record_disabled))
2719                 goto out;
2720
2721         if (atomic_read(&buffer_b->record_disabled))
2722                 goto out;
2723
2724         cpu_buffer_a = buffer_a->buffers[cpu];
2725         cpu_buffer_b = buffer_b->buffers[cpu];
2726
2727         if (atomic_read(&cpu_buffer_a->record_disabled))
2728                 goto out;
2729
2730         if (atomic_read(&cpu_buffer_b->record_disabled))
2731                 goto out;
2732
2733         /*
2734          * We can't do a synchronize_sched here because this
2735          * function can be called in atomic context.
2736          * Normally this will be called from the same CPU as cpu.
2737          * If not it's up to the caller to protect this.
2738          */
2739         atomic_inc(&cpu_buffer_a->record_disabled);
2740         atomic_inc(&cpu_buffer_b->record_disabled);
2741
2742         buffer_a->buffers[cpu] = cpu_buffer_b;
2743         buffer_b->buffers[cpu] = cpu_buffer_a;
2744
2745         cpu_buffer_b->buffer = buffer_a;
2746         cpu_buffer_a->buffer = buffer_b;
2747
2748         atomic_dec(&cpu_buffer_a->record_disabled);
2749         atomic_dec(&cpu_buffer_b->record_disabled);
2750
2751         ret = 0;
2752 out:
2753         return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2756
2757 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2758                               struct buffer_data_page *bpage,
2759                               unsigned int offset)
2760 {
2761         struct ring_buffer_event *event;
2762         unsigned long head;
2763
2764         __raw_spin_lock(&cpu_buffer->lock);
2765         for (head = offset; head < local_read(&bpage->commit);
2766              head += rb_event_length(event)) {
2767
2768                 event = __rb_data_page_index(bpage, head);
2769                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2770                         return;
2771                 /* Only count data entries */
2772                 if (event->type != RINGBUF_TYPE_DATA)
2773                         continue;
2774                 cpu_buffer->entries--;
2775         }
2776         __raw_spin_unlock(&cpu_buffer->lock);
2777 }
2778
2779 /**
2780  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2781  * @buffer: the buffer to allocate for.
2782  *
2783  * This function is used in conjunction with ring_buffer_read_page.
2784  * When reading a full page from the ring buffer, these functions
2785  * can be used to speed up the process. The calling function should
2786  * allocate a few pages first with this function. Then when it
2787  * needs to get pages from the ring buffer, it passes the result
2788  * of this function into ring_buffer_read_page, which will swap
2789  * the page that was allocated, with the read page of the buffer.
2790  *
2791  * Returns:
2792  *  The page allocated, or NULL on error.
2793  */
2794 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2795 {
2796         struct buffer_data_page *bpage;
2797         unsigned long addr;
2798
2799         addr = __get_free_page(GFP_KERNEL);
2800         if (!addr)
2801                 return NULL;
2802
2803         bpage = (void *)addr;
2804
2805         rb_init_page(bpage);
2806
2807         return bpage;
2808 }
2809
2810 /**
2811  * ring_buffer_free_read_page - free an allocated read page
2812  * @buffer: the buffer the page was allocate for
2813  * @data: the page to free
2814  *
2815  * Free a page allocated from ring_buffer_alloc_read_page.
2816  */
2817 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2818 {
2819         free_page((unsigned long)data);
2820 }
2821
2822 /**
2823  * ring_buffer_read_page - extract a page from the ring buffer
2824  * @buffer: buffer to extract from
2825  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2826  * @len: amount to extract
2827  * @cpu: the cpu of the buffer to extract
2828  * @full: should the extraction only happen when the page is full.
2829  *
2830  * This function will pull out a page from the ring buffer and consume it.
2831  * @data_page must be the address of the variable that was returned
2832  * from ring_buffer_alloc_read_page. This is because the page might be used
2833  * to swap with a page in the ring buffer.
2834  *
2835  * for example:
2836  *      rpage = ring_buffer_alloc_read_page(buffer);
2837  *      if (!rpage)
2838  *              return error;
2839  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2840  *      if (ret >= 0)
2841  *              process_page(rpage, ret);
2842  *
2843  * When @full is set, the function will not return true unless
2844  * the writer is off the reader page.
2845  *
2846  * Note: it is up to the calling functions to handle sleeps and wakeups.
2847  *  The ring buffer can be used anywhere in the kernel and can not
2848  *  blindly call wake_up. The layer that uses the ring buffer must be
2849  *  responsible for that.
2850  *
2851  * Returns:
2852  *  >=0 if data has been transferred, returns the offset of consumed data.
2853  *  <0 if no data has been transferred.
2854  */
2855 int ring_buffer_read_page(struct ring_buffer *buffer,
2856                           void **data_page, size_t len, int cpu, int full)
2857 {
2858         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2859         struct ring_buffer_event *event;
2860         struct buffer_data_page *bpage;
2861         struct buffer_page *reader;
2862         unsigned long flags;
2863         unsigned int commit;
2864         unsigned int read;
2865         u64 save_timestamp;
2866         int ret = -1;
2867
2868         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2869                 goto out;
2870
2871         /*
2872          * If len is not big enough to hold the page header, then
2873          * we can not copy anything.
2874          */
2875         if (len <= BUF_PAGE_HDR_SIZE)
2876                 goto out;
2877
2878         len -= BUF_PAGE_HDR_SIZE;
2879
2880         if (!data_page)
2881                 goto out;
2882
2883         bpage = *data_page;
2884         if (!bpage)
2885                 goto out;
2886
2887         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2888
2889         reader = rb_get_reader_page(cpu_buffer);
2890         if (!reader)
2891                 goto out_unlock;
2892
2893         event = rb_reader_event(cpu_buffer);
2894
2895         read = reader->read;
2896         commit = rb_page_commit(reader);
2897
2898         /*
2899          * If this page has been partially read or
2900          * if len is not big enough to read the rest of the page or
2901          * a writer is still on the page, then
2902          * we must copy the data from the page to the buffer.
2903          * Otherwise, we can simply swap the page with the one passed in.
2904          */
2905         if (read || (len < (commit - read)) ||
2906             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2907                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2908                 unsigned int rpos = read;
2909                 unsigned int pos = 0;
2910                 unsigned int size;
2911
2912                 if (full)
2913                         goto out_unlock;
2914
2915                 if (len > (commit - read))
2916                         len = (commit - read);
2917
2918                 size = rb_event_length(event);
2919
2920                 if (len < size)
2921                         goto out_unlock;
2922
2923                 /* save the current timestamp, since the user will need it */
2924                 save_timestamp = cpu_buffer->read_stamp;
2925
2926                 /* Need to copy one event at a time */
2927                 do {
2928                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2929
2930                         len -= size;
2931
2932                         rb_advance_reader(cpu_buffer);
2933                         rpos = reader->read;
2934                         pos += size;
2935
2936                         event = rb_reader_event(cpu_buffer);
2937                         size = rb_event_length(event);
2938                 } while (len > size);
2939
2940                 /* update bpage */
2941                 local_set(&bpage->commit, pos);
2942                 bpage->time_stamp = save_timestamp;
2943
2944                 /* we copied everything to the beginning */
2945                 read = 0;
2946         } else {
2947                 /* swap the pages */
2948                 rb_init_page(bpage);
2949                 bpage = reader->page;
2950                 reader->page = *data_page;
2951                 local_set(&reader->write, 0);
2952                 reader->read = 0;
2953                 *data_page = bpage;
2954
2955                 /* update the entry counter */
2956                 rb_remove_entries(cpu_buffer, bpage, read);
2957         }
2958         ret = read;
2959
2960  out_unlock:
2961         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2962
2963  out:
2964         return ret;
2965 }
2966
2967 static ssize_t
2968 rb_simple_read(struct file *filp, char __user *ubuf,
2969                size_t cnt, loff_t *ppos)
2970 {
2971         unsigned long *p = filp->private_data;
2972         char buf[64];
2973         int r;
2974
2975         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2976                 r = sprintf(buf, "permanently disabled\n");
2977         else
2978                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2979
2980         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2981 }
2982
2983 static ssize_t
2984 rb_simple_write(struct file *filp, const char __user *ubuf,
2985                 size_t cnt, loff_t *ppos)
2986 {
2987         unsigned long *p = filp->private_data;
2988         char buf[64];
2989         unsigned long val;
2990         int ret;
2991
2992         if (cnt >= sizeof(buf))
2993                 return -EINVAL;
2994
2995         if (copy_from_user(&buf, ubuf, cnt))
2996                 return -EFAULT;
2997
2998         buf[cnt] = 0;
2999
3000         ret = strict_strtoul(buf, 10, &val);
3001         if (ret < 0)
3002                 return ret;
3003
3004         if (val)
3005                 set_bit(RB_BUFFERS_ON_BIT, p);
3006         else
3007                 clear_bit(RB_BUFFERS_ON_BIT, p);
3008
3009         (*ppos)++;
3010
3011         return cnt;
3012 }
3013
3014 static const struct file_operations rb_simple_fops = {
3015         .open           = tracing_open_generic,
3016         .read           = rb_simple_read,
3017         .write          = rb_simple_write,
3018 };
3019
3020
3021 static __init int rb_init_debugfs(void)
3022 {
3023         struct dentry *d_tracer;
3024
3025         d_tracer = tracing_init_dentry();
3026
3027         trace_create_file("tracing_on", 0644, d_tracer,
3028                             &ring_buffer_flags, &rb_simple_fops);
3029
3030         return 0;
3031 }
3032
3033 fs_initcall(rb_init_debugfs);
3034
3035 #ifdef CONFIG_HOTPLUG_CPU
3036 static int rb_cpu_notify(struct notifier_block *self,
3037                          unsigned long action, void *hcpu)
3038 {
3039         struct ring_buffer *buffer =
3040                 container_of(self, struct ring_buffer, cpu_notify);
3041         long cpu = (long)hcpu;
3042
3043         switch (action) {
3044         case CPU_UP_PREPARE:
3045         case CPU_UP_PREPARE_FROZEN:
3046                 if (cpu_isset(cpu, *buffer->cpumask))
3047                         return NOTIFY_OK;
3048
3049                 buffer->buffers[cpu] =
3050                         rb_allocate_cpu_buffer(buffer, cpu);
3051                 if (!buffer->buffers[cpu]) {
3052                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3053                              cpu);
3054                         return NOTIFY_OK;
3055                 }
3056                 smp_wmb();
3057                 cpu_set(cpu, *buffer->cpumask);
3058                 break;
3059         case CPU_DOWN_PREPARE:
3060         case CPU_DOWN_PREPARE_FROZEN:
3061                 /*
3062                  * Do nothing.
3063                  *  If we were to free the buffer, then the user would
3064                  *  lose any trace that was in the buffer.
3065                  */
3066                 break;
3067         default:
3068                 break;
3069         }
3070         return NOTIFY_OK;
3071 }
3072 #endif