Merge branch 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT            4U
206 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224         /* padding has a NULL time_delta */
225         event->type_len = RINGBUF_TYPE_PADDING;
226         event->time_delta = 0;
227 }
228
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len)
235                 length = event->type_len * RB_ALIGNMENT;
236         else
237                 length = event->array[0];
238         return length + RB_EVNT_HDR_SIZE;
239 }
240
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245         switch (event->type_len) {
246         case RINGBUF_TYPE_PADDING:
247                 if (rb_null_event(event))
248                         /* undefined */
249                         return -1;
250                 return  event->array[0] + RB_EVNT_HDR_SIZE;
251
252         case RINGBUF_TYPE_TIME_EXTEND:
253                 return RB_LEN_TIME_EXTEND;
254
255         case RINGBUF_TYPE_TIME_STAMP:
256                 return RB_LEN_TIME_STAMP;
257
258         case RINGBUF_TYPE_DATA:
259                 return rb_event_data_length(event);
260         default:
261                 BUG();
262         }
263         /* not hit */
264         return 0;
265 }
266
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273         unsigned length = rb_event_length(event);
274         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275                 return length;
276         length -= RB_EVNT_HDR_SIZE;
277         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279         return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288         /* If length is in len field, then array[0] has the data */
289         if (event->type_len)
290                 return (void *)&event->array[0];
291         /* Otherwise length is in array[0] and array[1] has the data */
292         return (void *)&event->array[1];
293 }
294
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301         return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304
305 #define for_each_buffer_cpu(buffer, cpu)                \
306         for_each_cpu(cpu, buffer->cpumask)
307
308 #define TS_SHIFT        27
309 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST   (~TS_MASK)
311
312 struct buffer_data_page {
313         u64              time_stamp;    /* page time stamp */
314         local_t          commit;        /* write committed index */
315         unsigned char    data[];        /* data of buffer page */
316 };
317
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327         struct list_head list;          /* list of buffer pages */
328         local_t          write;         /* index for next write */
329         unsigned         read;          /* index for next read */
330         local_t          entries;       /* entries on this page */
331         struct buffer_data_page *page;  /* Actual data page */
332 };
333
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK           0xfffff
347 #define RB_WRITE_INTCNT         (1 << 20)
348
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351         local_set(&bpage->commit, 0);
352 }
353
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362         return local_read(&((struct buffer_data_page *)page)->commit)
363                 + BUF_PAGE_HDR_SIZE;
364 }
365
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372         free_page((unsigned long)bpage->page);
373         kfree(bpage);
374 }
375
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381         if (delta & TS_DELTA_TEST)
382                 return 1;
383         return 0;
384 }
385
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396         struct buffer_data_page field;
397         int ret;
398
399         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400                                "offset:0;\tsize:%u;\n",
401                                (unsigned int)sizeof(field.time_stamp));
402
403         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
404                                "offset:%u;\tsize:%u;\n",
405                                (unsigned int)offsetof(typeof(field), commit),
406                                (unsigned int)sizeof(field.commit));
407
408         ret = trace_seq_printf(s, "\tfield: char data;\t"
409                                "offset:%u;\tsize:%u;\n",
410                                (unsigned int)offsetof(typeof(field), data),
411                                (unsigned int)BUF_PAGE_SIZE);
412
413         return ret;
414 }
415
416 /*
417  * head_page == tail_page && head == tail then buffer is empty.
418  */
419 struct ring_buffer_per_cpu {
420         int                             cpu;
421         struct ring_buffer              *buffer;
422         spinlock_t                      reader_lock;    /* serialize readers */
423         raw_spinlock_t                  lock;
424         struct lock_class_key           lock_key;
425         struct list_head                *pages;
426         struct buffer_page              *head_page;     /* read from head */
427         struct buffer_page              *tail_page;     /* write to tail */
428         struct buffer_page              *commit_page;   /* committed pages */
429         struct buffer_page              *reader_page;
430         local_t                         commit_overrun;
431         local_t                         overrun;
432         local_t                         entries;
433         local_t                         committing;
434         local_t                         commits;
435         unsigned long                   read;
436         u64                             write_stamp;
437         u64                             read_stamp;
438         atomic_t                        record_disabled;
439 };
440
441 struct ring_buffer {
442         unsigned                        pages;
443         unsigned                        flags;
444         int                             cpus;
445         atomic_t                        record_disabled;
446         cpumask_var_t                   cpumask;
447
448         struct lock_class_key           *reader_lock_key;
449
450         struct mutex                    mutex;
451
452         struct ring_buffer_per_cpu      **buffers;
453
454 #ifdef CONFIG_HOTPLUG_CPU
455         struct notifier_block           cpu_notify;
456 #endif
457         u64                             (*clock)(void);
458 };
459
460 struct ring_buffer_iter {
461         struct ring_buffer_per_cpu      *cpu_buffer;
462         unsigned long                   head;
463         struct buffer_page              *head_page;
464         u64                             read_stamp;
465 };
466
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond)                                             \
469         ({                                                              \
470                 int _____ret = unlikely(cond);                          \
471                 if (_____ret) {                                         \
472                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473                                 struct ring_buffer_per_cpu *__b =       \
474                                         (void *)b;                      \
475                                 atomic_inc(&__b->buffer->record_disabled); \
476                         } else                                          \
477                                 atomic_inc(&b->record_disabled);        \
478                         WARN_ON(1);                                     \
479                 }                                                       \
480                 _____ret;                                               \
481         })
482
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
485
486 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
487 {
488         /* shift to debug/test normalization and TIME_EXTENTS */
489         return buffer->clock() << DEBUG_SHIFT;
490 }
491
492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
493 {
494         u64 time;
495
496         preempt_disable_notrace();
497         time = rb_time_stamp(buffer);
498         preempt_enable_no_resched_notrace();
499
500         return time;
501 }
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
503
504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
505                                       int cpu, u64 *ts)
506 {
507         /* Just stupid testing the normalize function and deltas */
508         *ts >>= DEBUG_SHIFT;
509 }
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
511
512 /*
513  * Making the ring buffer lockless makes things tricky.
514  * Although writes only happen on the CPU that they are on,
515  * and they only need to worry about interrupts. Reads can
516  * happen on any CPU.
517  *
518  * The reader page is always off the ring buffer, but when the
519  * reader finishes with a page, it needs to swap its page with
520  * a new one from the buffer. The reader needs to take from
521  * the head (writes go to the tail). But if a writer is in overwrite
522  * mode and wraps, it must push the head page forward.
523  *
524  * Here lies the problem.
525  *
526  * The reader must be careful to replace only the head page, and
527  * not another one. As described at the top of the file in the
528  * ASCII art, the reader sets its old page to point to the next
529  * page after head. It then sets the page after head to point to
530  * the old reader page. But if the writer moves the head page
531  * during this operation, the reader could end up with the tail.
532  *
533  * We use cmpxchg to help prevent this race. We also do something
534  * special with the page before head. We set the LSB to 1.
535  *
536  * When the writer must push the page forward, it will clear the
537  * bit that points to the head page, move the head, and then set
538  * the bit that points to the new head page.
539  *
540  * We also don't want an interrupt coming in and moving the head
541  * page on another writer. Thus we use the second LSB to catch
542  * that too. Thus:
543  *
544  * head->list->prev->next        bit 1          bit 0
545  *                              -------        -------
546  * Normal page                     0              0
547  * Points to head page             0              1
548  * New head page                   1              0
549  *
550  * Note we can not trust the prev pointer of the head page, because:
551  *
552  * +----+       +-----+        +-----+
553  * |    |------>|  T  |---X--->|  N  |
554  * |    |<------|     |        |     |
555  * +----+       +-----+        +-----+
556  *   ^                           ^ |
557  *   |          +-----+          | |
558  *   +----------|  R  |----------+ |
559  *              |     |<-----------+
560  *              +-----+
561  *
562  * Key:  ---X-->  HEAD flag set in pointer
563  *         T      Tail page
564  *         R      Reader page
565  *         N      Next page
566  *
567  * (see __rb_reserve_next() to see where this happens)
568  *
569  *  What the above shows is that the reader just swapped out
570  *  the reader page with a page in the buffer, but before it
571  *  could make the new header point back to the new page added
572  *  it was preempted by a writer. The writer moved forward onto
573  *  the new page added by the reader and is about to move forward
574  *  again.
575  *
576  *  You can see, it is legitimate for the previous pointer of
577  *  the head (or any page) not to point back to itself. But only
578  *  temporarially.
579  */
580
581 #define RB_PAGE_NORMAL          0UL
582 #define RB_PAGE_HEAD            1UL
583 #define RB_PAGE_UPDATE          2UL
584
585
586 #define RB_FLAG_MASK            3UL
587
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED           4UL
590
591 /*
592  * rb_list_head - remove any bit
593  */
594 static struct list_head *rb_list_head(struct list_head *list)
595 {
596         unsigned long val = (unsigned long)list;
597
598         return (struct list_head *)(val & ~RB_FLAG_MASK);
599 }
600
601 /*
602  * rb_is_head_page - test if the given page is the head page
603  *
604  * Because the reader may move the head_page pointer, we can
605  * not trust what the head page is (it may be pointing to
606  * the reader page). But if the next page is a header page,
607  * its flags will be non zero.
608  */
609 static int inline
610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
611                 struct buffer_page *page, struct list_head *list)
612 {
613         unsigned long val;
614
615         val = (unsigned long)list->next;
616
617         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
618                 return RB_PAGE_MOVED;
619
620         return val & RB_FLAG_MASK;
621 }
622
623 /*
624  * rb_is_reader_page
625  *
626  * The unique thing about the reader page, is that, if the
627  * writer is ever on it, the previous pointer never points
628  * back to the reader page.
629  */
630 static int rb_is_reader_page(struct buffer_page *page)
631 {
632         struct list_head *list = page->list.prev;
633
634         return rb_list_head(list->next) != &page->list;
635 }
636
637 /*
638  * rb_set_list_to_head - set a list_head to be pointing to head.
639  */
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
641                                 struct list_head *list)
642 {
643         unsigned long *ptr;
644
645         ptr = (unsigned long *)&list->next;
646         *ptr |= RB_PAGE_HEAD;
647         *ptr &= ~RB_PAGE_UPDATE;
648 }
649
650 /*
651  * rb_head_page_activate - sets up head page
652  */
653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
654 {
655         struct buffer_page *head;
656
657         head = cpu_buffer->head_page;
658         if (!head)
659                 return;
660
661         /*
662          * Set the previous list pointer to have the HEAD flag.
663          */
664         rb_set_list_to_head(cpu_buffer, head->list.prev);
665 }
666
667 static void rb_list_head_clear(struct list_head *list)
668 {
669         unsigned long *ptr = (unsigned long *)&list->next;
670
671         *ptr &= ~RB_FLAG_MASK;
672 }
673
674 /*
675  * rb_head_page_dactivate - clears head page ptr (for free list)
676  */
677 static void
678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
679 {
680         struct list_head *hd;
681
682         /* Go through the whole list and clear any pointers found. */
683         rb_list_head_clear(cpu_buffer->pages);
684
685         list_for_each(hd, cpu_buffer->pages)
686                 rb_list_head_clear(hd);
687 }
688
689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
690                             struct buffer_page *head,
691                             struct buffer_page *prev,
692                             int old_flag, int new_flag)
693 {
694         struct list_head *list;
695         unsigned long val = (unsigned long)&head->list;
696         unsigned long ret;
697
698         list = &prev->list;
699
700         val &= ~RB_FLAG_MASK;
701
702         ret = cmpxchg((unsigned long *)&list->next,
703                       val | old_flag, val | new_flag);
704
705         /* check if the reader took the page */
706         if ((ret & ~RB_FLAG_MASK) != val)
707                 return RB_PAGE_MOVED;
708
709         return ret & RB_FLAG_MASK;
710 }
711
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
713                                    struct buffer_page *head,
714                                    struct buffer_page *prev,
715                                    int old_flag)
716 {
717         return rb_head_page_set(cpu_buffer, head, prev,
718                                 old_flag, RB_PAGE_UPDATE);
719 }
720
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
722                                  struct buffer_page *head,
723                                  struct buffer_page *prev,
724                                  int old_flag)
725 {
726         return rb_head_page_set(cpu_buffer, head, prev,
727                                 old_flag, RB_PAGE_HEAD);
728 }
729
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
731                                    struct buffer_page *head,
732                                    struct buffer_page *prev,
733                                    int old_flag)
734 {
735         return rb_head_page_set(cpu_buffer, head, prev,
736                                 old_flag, RB_PAGE_NORMAL);
737 }
738
739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
740                                struct buffer_page **bpage)
741 {
742         struct list_head *p = rb_list_head((*bpage)->list.next);
743
744         *bpage = list_entry(p, struct buffer_page, list);
745 }
746
747 static struct buffer_page *
748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
749 {
750         struct buffer_page *head;
751         struct buffer_page *page;
752         struct list_head *list;
753         int i;
754
755         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
756                 return NULL;
757
758         /* sanity check */
759         list = cpu_buffer->pages;
760         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
761                 return NULL;
762
763         page = head = cpu_buffer->head_page;
764         /*
765          * It is possible that the writer moves the header behind
766          * where we started, and we miss in one loop.
767          * A second loop should grab the header, but we'll do
768          * three loops just because I'm paranoid.
769          */
770         for (i = 0; i < 3; i++) {
771                 do {
772                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
773                                 cpu_buffer->head_page = page;
774                                 return page;
775                         }
776                         rb_inc_page(cpu_buffer, &page);
777                 } while (page != head);
778         }
779
780         RB_WARN_ON(cpu_buffer, 1);
781
782         return NULL;
783 }
784
785 static int rb_head_page_replace(struct buffer_page *old,
786                                 struct buffer_page *new)
787 {
788         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
789         unsigned long val;
790         unsigned long ret;
791
792         val = *ptr & ~RB_FLAG_MASK;
793         val |= RB_PAGE_HEAD;
794
795         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
796
797         return ret == val;
798 }
799
800 /*
801  * rb_tail_page_update - move the tail page forward
802  *
803  * Returns 1 if moved tail page, 0 if someone else did.
804  */
805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
806                                struct buffer_page *tail_page,
807                                struct buffer_page *next_page)
808 {
809         struct buffer_page *old_tail;
810         unsigned long old_entries;
811         unsigned long old_write;
812         int ret = 0;
813
814         /*
815          * The tail page now needs to be moved forward.
816          *
817          * We need to reset the tail page, but without messing
818          * with possible erasing of data brought in by interrupts
819          * that have moved the tail page and are currently on it.
820          *
821          * We add a counter to the write field to denote this.
822          */
823         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
824         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
825
826         /*
827          * Just make sure we have seen our old_write and synchronize
828          * with any interrupts that come in.
829          */
830         barrier();
831
832         /*
833          * If the tail page is still the same as what we think
834          * it is, then it is up to us to update the tail
835          * pointer.
836          */
837         if (tail_page == cpu_buffer->tail_page) {
838                 /* Zero the write counter */
839                 unsigned long val = old_write & ~RB_WRITE_MASK;
840                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
841
842                 /*
843                  * This will only succeed if an interrupt did
844                  * not come in and change it. In which case, we
845                  * do not want to modify it.
846                  *
847                  * We add (void) to let the compiler know that we do not care
848                  * about the return value of these functions. We use the
849                  * cmpxchg to only update if an interrupt did not already
850                  * do it for us. If the cmpxchg fails, we don't care.
851                  */
852                 (void)local_cmpxchg(&next_page->write, old_write, val);
853                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
854
855                 /*
856                  * No need to worry about races with clearing out the commit.
857                  * it only can increment when a commit takes place. But that
858                  * only happens in the outer most nested commit.
859                  */
860                 local_set(&next_page->page->commit, 0);
861
862                 old_tail = cmpxchg(&cpu_buffer->tail_page,
863                                    tail_page, next_page);
864
865                 if (old_tail == tail_page)
866                         ret = 1;
867         }
868
869         return ret;
870 }
871
872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
873                           struct buffer_page *bpage)
874 {
875         unsigned long val = (unsigned long)bpage;
876
877         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
878                 return 1;
879
880         return 0;
881 }
882
883 /**
884  * rb_check_list - make sure a pointer to a list has the last bits zero
885  */
886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
887                          struct list_head *list)
888 {
889         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
890                 return 1;
891         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
892                 return 1;
893         return 0;
894 }
895
896 /**
897  * check_pages - integrity check of buffer pages
898  * @cpu_buffer: CPU buffer with pages to test
899  *
900  * As a safety measure we check to make sure the data pages have not
901  * been corrupted.
902  */
903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905         struct list_head *head = cpu_buffer->pages;
906         struct buffer_page *bpage, *tmp;
907
908         rb_head_page_deactivate(cpu_buffer);
909
910         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
911                 return -1;
912         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
913                 return -1;
914
915         if (rb_check_list(cpu_buffer, head))
916                 return -1;
917
918         list_for_each_entry_safe(bpage, tmp, head, list) {
919                 if (RB_WARN_ON(cpu_buffer,
920                                bpage->list.next->prev != &bpage->list))
921                         return -1;
922                 if (RB_WARN_ON(cpu_buffer,
923                                bpage->list.prev->next != &bpage->list))
924                         return -1;
925                 if (rb_check_list(cpu_buffer, &bpage->list))
926                         return -1;
927         }
928
929         rb_head_page_activate(cpu_buffer);
930
931         return 0;
932 }
933
934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
935                              unsigned nr_pages)
936 {
937         struct buffer_page *bpage, *tmp;
938         unsigned long addr;
939         LIST_HEAD(pages);
940         unsigned i;
941
942         WARN_ON(!nr_pages);
943
944         for (i = 0; i < nr_pages; i++) {
945                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
946                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
947                 if (!bpage)
948                         goto free_pages;
949
950                 rb_check_bpage(cpu_buffer, bpage);
951
952                 list_add(&bpage->list, &pages);
953
954                 addr = __get_free_page(GFP_KERNEL);
955                 if (!addr)
956                         goto free_pages;
957                 bpage->page = (void *)addr;
958                 rb_init_page(bpage->page);
959         }
960
961         /*
962          * The ring buffer page list is a circular list that does not
963          * start and end with a list head. All page list items point to
964          * other pages.
965          */
966         cpu_buffer->pages = pages.next;
967         list_del(&pages);
968
969         rb_check_pages(cpu_buffer);
970
971         return 0;
972
973  free_pages:
974         list_for_each_entry_safe(bpage, tmp, &pages, list) {
975                 list_del_init(&bpage->list);
976                 free_buffer_page(bpage);
977         }
978         return -ENOMEM;
979 }
980
981 static struct ring_buffer_per_cpu *
982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
983 {
984         struct ring_buffer_per_cpu *cpu_buffer;
985         struct buffer_page *bpage;
986         unsigned long addr;
987         int ret;
988
989         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
990                                   GFP_KERNEL, cpu_to_node(cpu));
991         if (!cpu_buffer)
992                 return NULL;
993
994         cpu_buffer->cpu = cpu;
995         cpu_buffer->buffer = buffer;
996         spin_lock_init(&cpu_buffer->reader_lock);
997         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
998         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
999
1000         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1001                             GFP_KERNEL, cpu_to_node(cpu));
1002         if (!bpage)
1003                 goto fail_free_buffer;
1004
1005         rb_check_bpage(cpu_buffer, bpage);
1006
1007         cpu_buffer->reader_page = bpage;
1008         addr = __get_free_page(GFP_KERNEL);
1009         if (!addr)
1010                 goto fail_free_reader;
1011         bpage->page = (void *)addr;
1012         rb_init_page(bpage->page);
1013
1014         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1015
1016         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1017         if (ret < 0)
1018                 goto fail_free_reader;
1019
1020         cpu_buffer->head_page
1021                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1022         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1023
1024         rb_head_page_activate(cpu_buffer);
1025
1026         return cpu_buffer;
1027
1028  fail_free_reader:
1029         free_buffer_page(cpu_buffer->reader_page);
1030
1031  fail_free_buffer:
1032         kfree(cpu_buffer);
1033         return NULL;
1034 }
1035
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1037 {
1038         struct list_head *head = cpu_buffer->pages;
1039         struct buffer_page *bpage, *tmp;
1040
1041         free_buffer_page(cpu_buffer->reader_page);
1042
1043         rb_head_page_deactivate(cpu_buffer);
1044
1045         if (head) {
1046                 list_for_each_entry_safe(bpage, tmp, head, list) {
1047                         list_del_init(&bpage->list);
1048                         free_buffer_page(bpage);
1049                 }
1050                 bpage = list_entry(head, struct buffer_page, list);
1051                 free_buffer_page(bpage);
1052         }
1053
1054         kfree(cpu_buffer);
1055 }
1056
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block *self,
1059                          unsigned long action, void *hcpu);
1060 #endif
1061
1062 /**
1063  * ring_buffer_alloc - allocate a new ring_buffer
1064  * @size: the size in bytes per cpu that is needed.
1065  * @flags: attributes to set for the ring buffer.
1066  *
1067  * Currently the only flag that is available is the RB_FL_OVERWRITE
1068  * flag. This flag means that the buffer will overwrite old data
1069  * when the buffer wraps. If this flag is not set, the buffer will
1070  * drop data when the tail hits the head.
1071  */
1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1073                                         struct lock_class_key *key)
1074 {
1075         struct ring_buffer *buffer;
1076         int bsize;
1077         int cpu;
1078
1079         /* keep it in its own cache line */
1080         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1081                          GFP_KERNEL);
1082         if (!buffer)
1083                 return NULL;
1084
1085         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1086                 goto fail_free_buffer;
1087
1088         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1089         buffer->flags = flags;
1090         buffer->clock = trace_clock_local;
1091         buffer->reader_lock_key = key;
1092
1093         /* need at least two pages */
1094         if (buffer->pages < 2)
1095                 buffer->pages = 2;
1096
1097         /*
1098          * In case of non-hotplug cpu, if the ring-buffer is allocated
1099          * in early initcall, it will not be notified of secondary cpus.
1100          * In that off case, we need to allocate for all possible cpus.
1101          */
1102 #ifdef CONFIG_HOTPLUG_CPU
1103         get_online_cpus();
1104         cpumask_copy(buffer->cpumask, cpu_online_mask);
1105 #else
1106         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1107 #endif
1108         buffer->cpus = nr_cpu_ids;
1109
1110         bsize = sizeof(void *) * nr_cpu_ids;
1111         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1112                                   GFP_KERNEL);
1113         if (!buffer->buffers)
1114                 goto fail_free_cpumask;
1115
1116         for_each_buffer_cpu(buffer, cpu) {
1117                 buffer->buffers[cpu] =
1118                         rb_allocate_cpu_buffer(buffer, cpu);
1119                 if (!buffer->buffers[cpu])
1120                         goto fail_free_buffers;
1121         }
1122
1123 #ifdef CONFIG_HOTPLUG_CPU
1124         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1125         buffer->cpu_notify.priority = 0;
1126         register_cpu_notifier(&buffer->cpu_notify);
1127 #endif
1128
1129         put_online_cpus();
1130         mutex_init(&buffer->mutex);
1131
1132         return buffer;
1133
1134  fail_free_buffers:
1135         for_each_buffer_cpu(buffer, cpu) {
1136                 if (buffer->buffers[cpu])
1137                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1138         }
1139         kfree(buffer->buffers);
1140
1141  fail_free_cpumask:
1142         free_cpumask_var(buffer->cpumask);
1143         put_online_cpus();
1144
1145  fail_free_buffer:
1146         kfree(buffer);
1147         return NULL;
1148 }
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1150
1151 /**
1152  * ring_buffer_free - free a ring buffer.
1153  * @buffer: the buffer to free.
1154  */
1155 void
1156 ring_buffer_free(struct ring_buffer *buffer)
1157 {
1158         int cpu;
1159
1160         get_online_cpus();
1161
1162 #ifdef CONFIG_HOTPLUG_CPU
1163         unregister_cpu_notifier(&buffer->cpu_notify);
1164 #endif
1165
1166         for_each_buffer_cpu(buffer, cpu)
1167                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1168
1169         put_online_cpus();
1170
1171         kfree(buffer->buffers);
1172         free_cpumask_var(buffer->cpumask);
1173
1174         kfree(buffer);
1175 }
1176 EXPORT_SYMBOL_GPL(ring_buffer_free);
1177
1178 void ring_buffer_set_clock(struct ring_buffer *buffer,
1179                            u64 (*clock)(void))
1180 {
1181         buffer->clock = clock;
1182 }
1183
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1185
1186 static void
1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1188 {
1189         struct buffer_page *bpage;
1190         struct list_head *p;
1191         unsigned i;
1192
1193         atomic_inc(&cpu_buffer->record_disabled);
1194         synchronize_sched();
1195
1196         spin_lock_irq(&cpu_buffer->reader_lock);
1197         rb_head_page_deactivate(cpu_buffer);
1198
1199         for (i = 0; i < nr_pages; i++) {
1200                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1201                         return;
1202                 p = cpu_buffer->pages->next;
1203                 bpage = list_entry(p, struct buffer_page, list);
1204                 list_del_init(&bpage->list);
1205                 free_buffer_page(bpage);
1206         }
1207         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1208                 return;
1209
1210         rb_reset_cpu(cpu_buffer);
1211         spin_unlock_irq(&cpu_buffer->reader_lock);
1212
1213         rb_check_pages(cpu_buffer);
1214
1215         atomic_dec(&cpu_buffer->record_disabled);
1216
1217 }
1218
1219 static void
1220 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221                 struct list_head *pages, unsigned nr_pages)
1222 {
1223         struct buffer_page *bpage;
1224         struct list_head *p;
1225         unsigned i;
1226
1227         atomic_inc(&cpu_buffer->record_disabled);
1228         synchronize_sched();
1229
1230         spin_lock_irq(&cpu_buffer->reader_lock);
1231         rb_head_page_deactivate(cpu_buffer);
1232
1233         for (i = 0; i < nr_pages; i++) {
1234                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1235                         return;
1236                 p = pages->next;
1237                 bpage = list_entry(p, struct buffer_page, list);
1238                 list_del_init(&bpage->list);
1239                 list_add_tail(&bpage->list, cpu_buffer->pages);
1240         }
1241         rb_reset_cpu(cpu_buffer);
1242         spin_unlock_irq(&cpu_buffer->reader_lock);
1243
1244         rb_check_pages(cpu_buffer);
1245
1246         atomic_dec(&cpu_buffer->record_disabled);
1247 }
1248
1249 /**
1250  * ring_buffer_resize - resize the ring buffer
1251  * @buffer: the buffer to resize.
1252  * @size: the new size.
1253  *
1254  * The tracer is responsible for making sure that the buffer is
1255  * not being used while changing the size.
1256  * Note: We may be able to change the above requirement by using
1257  *  RCU synchronizations.
1258  *
1259  * Minimum size is 2 * BUF_PAGE_SIZE.
1260  *
1261  * Returns -1 on failure.
1262  */
1263 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1264 {
1265         struct ring_buffer_per_cpu *cpu_buffer;
1266         unsigned nr_pages, rm_pages, new_pages;
1267         struct buffer_page *bpage, *tmp;
1268         unsigned long buffer_size;
1269         unsigned long addr;
1270         LIST_HEAD(pages);
1271         int i, cpu;
1272
1273         /*
1274          * Always succeed at resizing a non-existent buffer:
1275          */
1276         if (!buffer)
1277                 return size;
1278
1279         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280         size *= BUF_PAGE_SIZE;
1281         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1282
1283         /* we need a minimum of two pages */
1284         if (size < BUF_PAGE_SIZE * 2)
1285                 size = BUF_PAGE_SIZE * 2;
1286
1287         if (size == buffer_size)
1288                 return size;
1289
1290         mutex_lock(&buffer->mutex);
1291         get_online_cpus();
1292
1293         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1294
1295         if (size < buffer_size) {
1296
1297                 /* easy case, just free pages */
1298                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1299                         goto out_fail;
1300
1301                 rm_pages = buffer->pages - nr_pages;
1302
1303                 for_each_buffer_cpu(buffer, cpu) {
1304                         cpu_buffer = buffer->buffers[cpu];
1305                         rb_remove_pages(cpu_buffer, rm_pages);
1306                 }
1307                 goto out;
1308         }
1309
1310         /*
1311          * This is a bit more difficult. We only want to add pages
1312          * when we can allocate enough for all CPUs. We do this
1313          * by allocating all the pages and storing them on a local
1314          * link list. If we succeed in our allocation, then we
1315          * add these pages to the cpu_buffers. Otherwise we just free
1316          * them all and return -ENOMEM;
1317          */
1318         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1319                 goto out_fail;
1320
1321         new_pages = nr_pages - buffer->pages;
1322
1323         for_each_buffer_cpu(buffer, cpu) {
1324                 for (i = 0; i < new_pages; i++) {
1325                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1326                                                   cache_line_size()),
1327                                             GFP_KERNEL, cpu_to_node(cpu));
1328                         if (!bpage)
1329                                 goto free_pages;
1330                         list_add(&bpage->list, &pages);
1331                         addr = __get_free_page(GFP_KERNEL);
1332                         if (!addr)
1333                                 goto free_pages;
1334                         bpage->page = (void *)addr;
1335                         rb_init_page(bpage->page);
1336                 }
1337         }
1338
1339         for_each_buffer_cpu(buffer, cpu) {
1340                 cpu_buffer = buffer->buffers[cpu];
1341                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1342         }
1343
1344         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1345                 goto out_fail;
1346
1347  out:
1348         buffer->pages = nr_pages;
1349         put_online_cpus();
1350         mutex_unlock(&buffer->mutex);
1351
1352         return size;
1353
1354  free_pages:
1355         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1356                 list_del_init(&bpage->list);
1357                 free_buffer_page(bpage);
1358         }
1359         put_online_cpus();
1360         mutex_unlock(&buffer->mutex);
1361         return -ENOMEM;
1362
1363         /*
1364          * Something went totally wrong, and we are too paranoid
1365          * to even clean up the mess.
1366          */
1367  out_fail:
1368         put_online_cpus();
1369         mutex_unlock(&buffer->mutex);
1370         return -1;
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1373
1374 static inline void *
1375 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1376 {
1377         return bpage->data + index;
1378 }
1379
1380 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1381 {
1382         return bpage->page->data + index;
1383 }
1384
1385 static inline struct ring_buffer_event *
1386 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1387 {
1388         return __rb_page_index(cpu_buffer->reader_page,
1389                                cpu_buffer->reader_page->read);
1390 }
1391
1392 static inline struct ring_buffer_event *
1393 rb_iter_head_event(struct ring_buffer_iter *iter)
1394 {
1395         return __rb_page_index(iter->head_page, iter->head);
1396 }
1397
1398 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1399 {
1400         return local_read(&bpage->write) & RB_WRITE_MASK;
1401 }
1402
1403 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1404 {
1405         return local_read(&bpage->page->commit);
1406 }
1407
1408 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409 {
1410         return local_read(&bpage->entries) & RB_WRITE_MASK;
1411 }
1412
1413 /* Size is determined by what has been commited */
1414 static inline unsigned rb_page_size(struct buffer_page *bpage)
1415 {
1416         return rb_page_commit(bpage);
1417 }
1418
1419 static inline unsigned
1420 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1421 {
1422         return rb_page_commit(cpu_buffer->commit_page);
1423 }
1424
1425 static inline unsigned
1426 rb_event_index(struct ring_buffer_event *event)
1427 {
1428         unsigned long addr = (unsigned long)event;
1429
1430         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1431 }
1432
1433 static inline int
1434 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1435                    struct ring_buffer_event *event)
1436 {
1437         unsigned long addr = (unsigned long)event;
1438         unsigned long index;
1439
1440         index = rb_event_index(event);
1441         addr &= PAGE_MASK;
1442
1443         return cpu_buffer->commit_page->page == (void *)addr &&
1444                 rb_commit_index(cpu_buffer) == index;
1445 }
1446
1447 static void
1448 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450         unsigned long max_count;
1451
1452         /*
1453          * We only race with interrupts and NMIs on this CPU.
1454          * If we own the commit event, then we can commit
1455          * all others that interrupted us, since the interruptions
1456          * are in stack format (they finish before they come
1457          * back to us). This allows us to do a simple loop to
1458          * assign the commit to the tail.
1459          */
1460  again:
1461         max_count = cpu_buffer->buffer->pages * 100;
1462
1463         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1464                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1465                         return;
1466                 if (RB_WARN_ON(cpu_buffer,
1467                                rb_is_reader_page(cpu_buffer->tail_page)))
1468                         return;
1469                 local_set(&cpu_buffer->commit_page->page->commit,
1470                           rb_page_write(cpu_buffer->commit_page));
1471                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1472                 cpu_buffer->write_stamp =
1473                         cpu_buffer->commit_page->page->time_stamp;
1474                 /* add barrier to keep gcc from optimizing too much */
1475                 barrier();
1476         }
1477         while (rb_commit_index(cpu_buffer) !=
1478                rb_page_write(cpu_buffer->commit_page)) {
1479
1480                 local_set(&cpu_buffer->commit_page->page->commit,
1481                           rb_page_write(cpu_buffer->commit_page));
1482                 RB_WARN_ON(cpu_buffer,
1483                            local_read(&cpu_buffer->commit_page->page->commit) &
1484                            ~RB_WRITE_MASK);
1485                 barrier();
1486         }
1487
1488         /* again, keep gcc from optimizing */
1489         barrier();
1490
1491         /*
1492          * If an interrupt came in just after the first while loop
1493          * and pushed the tail page forward, we will be left with
1494          * a dangling commit that will never go forward.
1495          */
1496         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1497                 goto again;
1498 }
1499
1500 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1501 {
1502         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1503         cpu_buffer->reader_page->read = 0;
1504 }
1505
1506 static void rb_inc_iter(struct ring_buffer_iter *iter)
1507 {
1508         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509
1510         /*
1511          * The iterator could be on the reader page (it starts there).
1512          * But the head could have moved, since the reader was
1513          * found. Check for this case and assign the iterator
1514          * to the head page instead of next.
1515          */
1516         if (iter->head_page == cpu_buffer->reader_page)
1517                 iter->head_page = rb_set_head_page(cpu_buffer);
1518         else
1519                 rb_inc_page(cpu_buffer, &iter->head_page);
1520
1521         iter->read_stamp = iter->head_page->page->time_stamp;
1522         iter->head = 0;
1523 }
1524
1525 /**
1526  * ring_buffer_update_event - update event type and data
1527  * @event: the even to update
1528  * @type: the type of event
1529  * @length: the size of the event field in the ring buffer
1530  *
1531  * Update the type and data fields of the event. The length
1532  * is the actual size that is written to the ring buffer,
1533  * and with this, we can determine what to place into the
1534  * data field.
1535  */
1536 static void
1537 rb_update_event(struct ring_buffer_event *event,
1538                          unsigned type, unsigned length)
1539 {
1540         event->type_len = type;
1541
1542         switch (type) {
1543
1544         case RINGBUF_TYPE_PADDING:
1545         case RINGBUF_TYPE_TIME_EXTEND:
1546         case RINGBUF_TYPE_TIME_STAMP:
1547                 break;
1548
1549         case 0:
1550                 length -= RB_EVNT_HDR_SIZE;
1551                 if (length > RB_MAX_SMALL_DATA)
1552                         event->array[0] = length;
1553                 else
1554                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1555                 break;
1556         default:
1557                 BUG();
1558         }
1559 }
1560
1561 /*
1562  * rb_handle_head_page - writer hit the head page
1563  *
1564  * Returns: +1 to retry page
1565  *           0 to continue
1566  *          -1 on error
1567  */
1568 static int
1569 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570                     struct buffer_page *tail_page,
1571                     struct buffer_page *next_page)
1572 {
1573         struct buffer_page *new_head;
1574         int entries;
1575         int type;
1576         int ret;
1577
1578         entries = rb_page_entries(next_page);
1579
1580         /*
1581          * The hard part is here. We need to move the head
1582          * forward, and protect against both readers on
1583          * other CPUs and writers coming in via interrupts.
1584          */
1585         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586                                        RB_PAGE_HEAD);
1587
1588         /*
1589          * type can be one of four:
1590          *  NORMAL - an interrupt already moved it for us
1591          *  HEAD   - we are the first to get here.
1592          *  UPDATE - we are the interrupt interrupting
1593          *           a current move.
1594          *  MOVED  - a reader on another CPU moved the next
1595          *           pointer to its reader page. Give up
1596          *           and try again.
1597          */
1598
1599         switch (type) {
1600         case RB_PAGE_HEAD:
1601                 /*
1602                  * We changed the head to UPDATE, thus
1603                  * it is our responsibility to update
1604                  * the counters.
1605                  */
1606                 local_add(entries, &cpu_buffer->overrun);
1607
1608                 /*
1609                  * The entries will be zeroed out when we move the
1610                  * tail page.
1611                  */
1612
1613                 /* still more to do */
1614                 break;
1615
1616         case RB_PAGE_UPDATE:
1617                 /*
1618                  * This is an interrupt that interrupt the
1619                  * previous update. Still more to do.
1620                  */
1621                 break;
1622         case RB_PAGE_NORMAL:
1623                 /*
1624                  * An interrupt came in before the update
1625                  * and processed this for us.
1626                  * Nothing left to do.
1627                  */
1628                 return 1;
1629         case RB_PAGE_MOVED:
1630                 /*
1631                  * The reader is on another CPU and just did
1632                  * a swap with our next_page.
1633                  * Try again.
1634                  */
1635                 return 1;
1636         default:
1637                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638                 return -1;
1639         }
1640
1641         /*
1642          * Now that we are here, the old head pointer is
1643          * set to UPDATE. This will keep the reader from
1644          * swapping the head page with the reader page.
1645          * The reader (on another CPU) will spin till
1646          * we are finished.
1647          *
1648          * We just need to protect against interrupts
1649          * doing the job. We will set the next pointer
1650          * to HEAD. After that, we set the old pointer
1651          * to NORMAL, but only if it was HEAD before.
1652          * otherwise we are an interrupt, and only
1653          * want the outer most commit to reset it.
1654          */
1655         new_head = next_page;
1656         rb_inc_page(cpu_buffer, &new_head);
1657
1658         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659                                     RB_PAGE_NORMAL);
1660
1661         /*
1662          * Valid returns are:
1663          *  HEAD   - an interrupt came in and already set it.
1664          *  NORMAL - One of two things:
1665          *            1) We really set it.
1666          *            2) A bunch of interrupts came in and moved
1667          *               the page forward again.
1668          */
1669         switch (ret) {
1670         case RB_PAGE_HEAD:
1671         case RB_PAGE_NORMAL:
1672                 /* OK */
1673                 break;
1674         default:
1675                 RB_WARN_ON(cpu_buffer, 1);
1676                 return -1;
1677         }
1678
1679         /*
1680          * It is possible that an interrupt came in,
1681          * set the head up, then more interrupts came in
1682          * and moved it again. When we get back here,
1683          * the page would have been set to NORMAL but we
1684          * just set it back to HEAD.
1685          *
1686          * How do you detect this? Well, if that happened
1687          * the tail page would have moved.
1688          */
1689         if (ret == RB_PAGE_NORMAL) {
1690                 /*
1691                  * If the tail had moved passed next, then we need
1692                  * to reset the pointer.
1693                  */
1694                 if (cpu_buffer->tail_page != tail_page &&
1695                     cpu_buffer->tail_page != next_page)
1696                         rb_head_page_set_normal(cpu_buffer, new_head,
1697                                                 next_page,
1698                                                 RB_PAGE_HEAD);
1699         }
1700
1701         /*
1702          * If this was the outer most commit (the one that
1703          * changed the original pointer from HEAD to UPDATE),
1704          * then it is up to us to reset it to NORMAL.
1705          */
1706         if (type == RB_PAGE_HEAD) {
1707                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708                                               tail_page,
1709                                               RB_PAGE_UPDATE);
1710                 if (RB_WARN_ON(cpu_buffer,
1711                                ret != RB_PAGE_UPDATE))
1712                         return -1;
1713         }
1714
1715         return 0;
1716 }
1717
1718 static unsigned rb_calculate_event_length(unsigned length)
1719 {
1720         struct ring_buffer_event event; /* Used only for sizeof array */
1721
1722         /* zero length can cause confusions */
1723         if (!length)
1724                 length = 1;
1725
1726         if (length > RB_MAX_SMALL_DATA)
1727                 length += sizeof(event.array[0]);
1728
1729         length += RB_EVNT_HDR_SIZE;
1730         length = ALIGN(length, RB_ALIGNMENT);
1731
1732         return length;
1733 }
1734
1735 static inline void
1736 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1737               struct buffer_page *tail_page,
1738               unsigned long tail, unsigned long length)
1739 {
1740         struct ring_buffer_event *event;
1741
1742         /*
1743          * Only the event that crossed the page boundary
1744          * must fill the old tail_page with padding.
1745          */
1746         if (tail >= BUF_PAGE_SIZE) {
1747                 local_sub(length, &tail_page->write);
1748                 return;
1749         }
1750
1751         event = __rb_page_index(tail_page, tail);
1752         kmemcheck_annotate_bitfield(event, bitfield);
1753
1754         /*
1755          * If this event is bigger than the minimum size, then
1756          * we need to be careful that we don't subtract the
1757          * write counter enough to allow another writer to slip
1758          * in on this page.
1759          * We put in a discarded commit instead, to make sure
1760          * that this space is not used again.
1761          *
1762          * If we are less than the minimum size, we don't need to
1763          * worry about it.
1764          */
1765         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1766                 /* No room for any events */
1767
1768                 /* Mark the rest of the page with padding */
1769                 rb_event_set_padding(event);
1770
1771                 /* Set the write back to the previous setting */
1772                 local_sub(length, &tail_page->write);
1773                 return;
1774         }
1775
1776         /* Put in a discarded event */
1777         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1778         event->type_len = RINGBUF_TYPE_PADDING;
1779         /* time delta must be non zero */
1780         event->time_delta = 1;
1781
1782         /* Set write to end of buffer */
1783         length = (tail + length) - BUF_PAGE_SIZE;
1784         local_sub(length, &tail_page->write);
1785 }
1786
1787 static struct ring_buffer_event *
1788 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1789              unsigned long length, unsigned long tail,
1790              struct buffer_page *tail_page, u64 *ts)
1791 {
1792         struct buffer_page *commit_page = cpu_buffer->commit_page;
1793         struct ring_buffer *buffer = cpu_buffer->buffer;
1794         struct buffer_page *next_page;
1795         int ret;
1796
1797         next_page = tail_page;
1798
1799         rb_inc_page(cpu_buffer, &next_page);
1800
1801         /*
1802          * If for some reason, we had an interrupt storm that made
1803          * it all the way around the buffer, bail, and warn
1804          * about it.
1805          */
1806         if (unlikely(next_page == commit_page)) {
1807                 local_inc(&cpu_buffer->commit_overrun);
1808                 goto out_reset;
1809         }
1810
1811         /*
1812          * This is where the fun begins!
1813          *
1814          * We are fighting against races between a reader that
1815          * could be on another CPU trying to swap its reader
1816          * page with the buffer head.
1817          *
1818          * We are also fighting against interrupts coming in and
1819          * moving the head or tail on us as well.
1820          *
1821          * If the next page is the head page then we have filled
1822          * the buffer, unless the commit page is still on the
1823          * reader page.
1824          */
1825         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1826
1827                 /*
1828                  * If the commit is not on the reader page, then
1829                  * move the header page.
1830                  */
1831                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1832                         /*
1833                          * If we are not in overwrite mode,
1834                          * this is easy, just stop here.
1835                          */
1836                         if (!(buffer->flags & RB_FL_OVERWRITE))
1837                                 goto out_reset;
1838
1839                         ret = rb_handle_head_page(cpu_buffer,
1840                                                   tail_page,
1841                                                   next_page);
1842                         if (ret < 0)
1843                                 goto out_reset;
1844                         if (ret)
1845                                 goto out_again;
1846                 } else {
1847                         /*
1848                          * We need to be careful here too. The
1849                          * commit page could still be on the reader
1850                          * page. We could have a small buffer, and
1851                          * have filled up the buffer with events
1852                          * from interrupts and such, and wrapped.
1853                          *
1854                          * Note, if the tail page is also the on the
1855                          * reader_page, we let it move out.
1856                          */
1857                         if (unlikely((cpu_buffer->commit_page !=
1858                                       cpu_buffer->tail_page) &&
1859                                      (cpu_buffer->commit_page ==
1860                                       cpu_buffer->reader_page))) {
1861                                 local_inc(&cpu_buffer->commit_overrun);
1862                                 goto out_reset;
1863                         }
1864                 }
1865         }
1866
1867         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1868         if (ret) {
1869                 /*
1870                  * Nested commits always have zero deltas, so
1871                  * just reread the time stamp
1872                  */
1873                 *ts = rb_time_stamp(buffer);
1874                 next_page->page->time_stamp = *ts;
1875         }
1876
1877  out_again:
1878
1879         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1880
1881         /* fail and let the caller try again */
1882         return ERR_PTR(-EAGAIN);
1883
1884  out_reset:
1885         /* reset write */
1886         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1887
1888         return NULL;
1889 }
1890
1891 static struct ring_buffer_event *
1892 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1893                   unsigned type, unsigned long length, u64 *ts)
1894 {
1895         struct buffer_page *tail_page;
1896         struct ring_buffer_event *event;
1897         unsigned long tail, write;
1898
1899         tail_page = cpu_buffer->tail_page;
1900         write = local_add_return(length, &tail_page->write);
1901
1902         /* set write to only the index of the write */
1903         write &= RB_WRITE_MASK;
1904         tail = write - length;
1905
1906         /* See if we shot pass the end of this buffer page */
1907         if (write > BUF_PAGE_SIZE)
1908                 return rb_move_tail(cpu_buffer, length, tail,
1909                                     tail_page, ts);
1910
1911         /* We reserved something on the buffer */
1912
1913         event = __rb_page_index(tail_page, tail);
1914         kmemcheck_annotate_bitfield(event, bitfield);
1915         rb_update_event(event, type, length);
1916
1917         /* The passed in type is zero for DATA */
1918         if (likely(!type))
1919                 local_inc(&tail_page->entries);
1920
1921         /*
1922          * If this is the first commit on the page, then update
1923          * its timestamp.
1924          */
1925         if (!tail)
1926                 tail_page->page->time_stamp = *ts;
1927
1928         return event;
1929 }
1930
1931 static inline int
1932 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1933                   struct ring_buffer_event *event)
1934 {
1935         unsigned long new_index, old_index;
1936         struct buffer_page *bpage;
1937         unsigned long index;
1938         unsigned long addr;
1939
1940         new_index = rb_event_index(event);
1941         old_index = new_index + rb_event_length(event);
1942         addr = (unsigned long)event;
1943         addr &= PAGE_MASK;
1944
1945         bpage = cpu_buffer->tail_page;
1946
1947         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1948                 unsigned long write_mask =
1949                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1950                 /*
1951                  * This is on the tail page. It is possible that
1952                  * a write could come in and move the tail page
1953                  * and write to the next page. That is fine
1954                  * because we just shorten what is on this page.
1955                  */
1956                 old_index += write_mask;
1957                 new_index += write_mask;
1958                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1959                 if (index == old_index)
1960                         return 1;
1961         }
1962
1963         /* could not discard */
1964         return 0;
1965 }
1966
1967 static int
1968 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1969                   u64 *ts, u64 *delta)
1970 {
1971         struct ring_buffer_event *event;
1972         static int once;
1973         int ret;
1974
1975         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1976                 printk(KERN_WARNING "Delta way too big! %llu"
1977                        " ts=%llu write stamp = %llu\n",
1978                        (unsigned long long)*delta,
1979                        (unsigned long long)*ts,
1980                        (unsigned long long)cpu_buffer->write_stamp);
1981                 WARN_ON(1);
1982         }
1983
1984         /*
1985          * The delta is too big, we to add a
1986          * new timestamp.
1987          */
1988         event = __rb_reserve_next(cpu_buffer,
1989                                   RINGBUF_TYPE_TIME_EXTEND,
1990                                   RB_LEN_TIME_EXTEND,
1991                                   ts);
1992         if (!event)
1993                 return -EBUSY;
1994
1995         if (PTR_ERR(event) == -EAGAIN)
1996                 return -EAGAIN;
1997
1998         /* Only a commited time event can update the write stamp */
1999         if (rb_event_is_commit(cpu_buffer, event)) {
2000                 /*
2001                  * If this is the first on the page, then it was
2002                  * updated with the page itself. Try to discard it
2003                  * and if we can't just make it zero.
2004                  */
2005                 if (rb_event_index(event)) {
2006                         event->time_delta = *delta & TS_MASK;
2007                         event->array[0] = *delta >> TS_SHIFT;
2008                 } else {
2009                         /* try to discard, since we do not need this */
2010                         if (!rb_try_to_discard(cpu_buffer, event)) {
2011                                 /* nope, just zero it */
2012                                 event->time_delta = 0;
2013                                 event->array[0] = 0;
2014                         }
2015                 }
2016                 cpu_buffer->write_stamp = *ts;
2017                 /* let the caller know this was the commit */
2018                 ret = 1;
2019         } else {
2020                 /* Try to discard the event */
2021                 if (!rb_try_to_discard(cpu_buffer, event)) {
2022                         /* Darn, this is just wasted space */
2023                         event->time_delta = 0;
2024                         event->array[0] = 0;
2025                 }
2026                 ret = 0;
2027         }
2028
2029         *delta = 0;
2030
2031         return ret;
2032 }
2033
2034 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2035 {
2036         local_inc(&cpu_buffer->committing);
2037         local_inc(&cpu_buffer->commits);
2038 }
2039
2040 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2041 {
2042         unsigned long commits;
2043
2044         if (RB_WARN_ON(cpu_buffer,
2045                        !local_read(&cpu_buffer->committing)))
2046                 return;
2047
2048  again:
2049         commits = local_read(&cpu_buffer->commits);
2050         /* synchronize with interrupts */
2051         barrier();
2052         if (local_read(&cpu_buffer->committing) == 1)
2053                 rb_set_commit_to_write(cpu_buffer);
2054
2055         local_dec(&cpu_buffer->committing);
2056
2057         /* synchronize with interrupts */
2058         barrier();
2059
2060         /*
2061          * Need to account for interrupts coming in between the
2062          * updating of the commit page and the clearing of the
2063          * committing counter.
2064          */
2065         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2066             !local_read(&cpu_buffer->committing)) {
2067                 local_inc(&cpu_buffer->committing);
2068                 goto again;
2069         }
2070 }
2071
2072 static struct ring_buffer_event *
2073 rb_reserve_next_event(struct ring_buffer *buffer,
2074                       struct ring_buffer_per_cpu *cpu_buffer,
2075                       unsigned long length)
2076 {
2077         struct ring_buffer_event *event;
2078         u64 ts, delta = 0;
2079         int commit = 0;
2080         int nr_loops = 0;
2081
2082         rb_start_commit(cpu_buffer);
2083
2084 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2085         /*
2086          * Due to the ability to swap a cpu buffer from a buffer
2087          * it is possible it was swapped before we committed.
2088          * (committing stops a swap). We check for it here and
2089          * if it happened, we have to fail the write.
2090          */
2091         barrier();
2092         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2093                 local_dec(&cpu_buffer->committing);
2094                 local_dec(&cpu_buffer->commits);
2095                 return NULL;
2096         }
2097 #endif
2098
2099         length = rb_calculate_event_length(length);
2100  again:
2101         /*
2102          * We allow for interrupts to reenter here and do a trace.
2103          * If one does, it will cause this original code to loop
2104          * back here. Even with heavy interrupts happening, this
2105          * should only happen a few times in a row. If this happens
2106          * 1000 times in a row, there must be either an interrupt
2107          * storm or we have something buggy.
2108          * Bail!
2109          */
2110         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2111                 goto out_fail;
2112
2113         ts = rb_time_stamp(cpu_buffer->buffer);
2114
2115         /*
2116          * Only the first commit can update the timestamp.
2117          * Yes there is a race here. If an interrupt comes in
2118          * just after the conditional and it traces too, then it
2119          * will also check the deltas. More than one timestamp may
2120          * also be made. But only the entry that did the actual
2121          * commit will be something other than zero.
2122          */
2123         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2124                    rb_page_write(cpu_buffer->tail_page) ==
2125                    rb_commit_index(cpu_buffer))) {
2126                 u64 diff;
2127
2128                 diff = ts - cpu_buffer->write_stamp;
2129
2130                 /* make sure this diff is calculated here */
2131                 barrier();
2132
2133                 /* Did the write stamp get updated already? */
2134                 if (unlikely(ts < cpu_buffer->write_stamp))
2135                         goto get_event;
2136
2137                 delta = diff;
2138                 if (unlikely(test_time_stamp(delta))) {
2139
2140                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2141                         if (commit == -EBUSY)
2142                                 goto out_fail;
2143
2144                         if (commit == -EAGAIN)
2145                                 goto again;
2146
2147                         RB_WARN_ON(cpu_buffer, commit < 0);
2148                 }
2149         }
2150
2151  get_event:
2152         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2153         if (unlikely(PTR_ERR(event) == -EAGAIN))
2154                 goto again;
2155
2156         if (!event)
2157                 goto out_fail;
2158
2159         if (!rb_event_is_commit(cpu_buffer, event))
2160                 delta = 0;
2161
2162         event->time_delta = delta;
2163
2164         return event;
2165
2166  out_fail:
2167         rb_end_commit(cpu_buffer);
2168         return NULL;
2169 }
2170
2171 #ifdef CONFIG_TRACING
2172
2173 #define TRACE_RECURSIVE_DEPTH 16
2174
2175 static int trace_recursive_lock(void)
2176 {
2177         current->trace_recursion++;
2178
2179         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2180                 return 0;
2181
2182         /* Disable all tracing before we do anything else */
2183         tracing_off_permanent();
2184
2185         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2186                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2187                     current->trace_recursion,
2188                     hardirq_count() >> HARDIRQ_SHIFT,
2189                     softirq_count() >> SOFTIRQ_SHIFT,
2190                     in_nmi());
2191
2192         WARN_ON_ONCE(1);
2193         return -1;
2194 }
2195
2196 static void trace_recursive_unlock(void)
2197 {
2198         WARN_ON_ONCE(!current->trace_recursion);
2199
2200         current->trace_recursion--;
2201 }
2202
2203 #else
2204
2205 #define trace_recursive_lock()          (0)
2206 #define trace_recursive_unlock()        do { } while (0)
2207
2208 #endif
2209
2210 static DEFINE_PER_CPU(int, rb_need_resched);
2211
2212 /**
2213  * ring_buffer_lock_reserve - reserve a part of the buffer
2214  * @buffer: the ring buffer to reserve from
2215  * @length: the length of the data to reserve (excluding event header)
2216  *
2217  * Returns a reseverd event on the ring buffer to copy directly to.
2218  * The user of this interface will need to get the body to write into
2219  * and can use the ring_buffer_event_data() interface.
2220  *
2221  * The length is the length of the data needed, not the event length
2222  * which also includes the event header.
2223  *
2224  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2225  * If NULL is returned, then nothing has been allocated or locked.
2226  */
2227 struct ring_buffer_event *
2228 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2229 {
2230         struct ring_buffer_per_cpu *cpu_buffer;
2231         struct ring_buffer_event *event;
2232         int cpu, resched;
2233
2234         if (ring_buffer_flags != RB_BUFFERS_ON)
2235                 return NULL;
2236
2237         if (atomic_read(&buffer->record_disabled))
2238                 return NULL;
2239
2240         /* If we are tracing schedule, we don't want to recurse */
2241         resched = ftrace_preempt_disable();
2242
2243         if (trace_recursive_lock())
2244                 goto out_nocheck;
2245
2246         cpu = raw_smp_processor_id();
2247
2248         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2249                 goto out;
2250
2251         cpu_buffer = buffer->buffers[cpu];
2252
2253         if (atomic_read(&cpu_buffer->record_disabled))
2254                 goto out;
2255
2256         if (length > BUF_MAX_DATA_SIZE)
2257                 goto out;
2258
2259         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2260         if (!event)
2261                 goto out;
2262
2263         /*
2264          * Need to store resched state on this cpu.
2265          * Only the first needs to.
2266          */
2267
2268         if (preempt_count() == 1)
2269                 per_cpu(rb_need_resched, cpu) = resched;
2270
2271         return event;
2272
2273  out:
2274         trace_recursive_unlock();
2275
2276  out_nocheck:
2277         ftrace_preempt_enable(resched);
2278         return NULL;
2279 }
2280 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2281
2282 static void
2283 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2284                       struct ring_buffer_event *event)
2285 {
2286         /*
2287          * The event first in the commit queue updates the
2288          * time stamp.
2289          */
2290         if (rb_event_is_commit(cpu_buffer, event))
2291                 cpu_buffer->write_stamp += event->time_delta;
2292 }
2293
2294 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2295                       struct ring_buffer_event *event)
2296 {
2297         local_inc(&cpu_buffer->entries);
2298         rb_update_write_stamp(cpu_buffer, event);
2299         rb_end_commit(cpu_buffer);
2300 }
2301
2302 /**
2303  * ring_buffer_unlock_commit - commit a reserved
2304  * @buffer: The buffer to commit to
2305  * @event: The event pointer to commit.
2306  *
2307  * This commits the data to the ring buffer, and releases any locks held.
2308  *
2309  * Must be paired with ring_buffer_lock_reserve.
2310  */
2311 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2312                               struct ring_buffer_event *event)
2313 {
2314         struct ring_buffer_per_cpu *cpu_buffer;
2315         int cpu = raw_smp_processor_id();
2316
2317         cpu_buffer = buffer->buffers[cpu];
2318
2319         rb_commit(cpu_buffer, event);
2320
2321         trace_recursive_unlock();
2322
2323         /*
2324          * Only the last preempt count needs to restore preemption.
2325          */
2326         if (preempt_count() == 1)
2327                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2328         else
2329                 preempt_enable_no_resched_notrace();
2330
2331         return 0;
2332 }
2333 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2334
2335 static inline void rb_event_discard(struct ring_buffer_event *event)
2336 {
2337         /* array[0] holds the actual length for the discarded event */
2338         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2339         event->type_len = RINGBUF_TYPE_PADDING;
2340         /* time delta must be non zero */
2341         if (!event->time_delta)
2342                 event->time_delta = 1;
2343 }
2344
2345 /*
2346  * Decrement the entries to the page that an event is on.
2347  * The event does not even need to exist, only the pointer
2348  * to the page it is on. This may only be called before the commit
2349  * takes place.
2350  */
2351 static inline void
2352 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2353                    struct ring_buffer_event *event)
2354 {
2355         unsigned long addr = (unsigned long)event;
2356         struct buffer_page *bpage = cpu_buffer->commit_page;
2357         struct buffer_page *start;
2358
2359         addr &= PAGE_MASK;
2360
2361         /* Do the likely case first */
2362         if (likely(bpage->page == (void *)addr)) {
2363                 local_dec(&bpage->entries);
2364                 return;
2365         }
2366
2367         /*
2368          * Because the commit page may be on the reader page we
2369          * start with the next page and check the end loop there.
2370          */
2371         rb_inc_page(cpu_buffer, &bpage);
2372         start = bpage;
2373         do {
2374                 if (bpage->page == (void *)addr) {
2375                         local_dec(&bpage->entries);
2376                         return;
2377                 }
2378                 rb_inc_page(cpu_buffer, &bpage);
2379         } while (bpage != start);
2380
2381         /* commit not part of this buffer?? */
2382         RB_WARN_ON(cpu_buffer, 1);
2383 }
2384
2385 /**
2386  * ring_buffer_commit_discard - discard an event that has not been committed
2387  * @buffer: the ring buffer
2388  * @event: non committed event to discard
2389  *
2390  * Sometimes an event that is in the ring buffer needs to be ignored.
2391  * This function lets the user discard an event in the ring buffer
2392  * and then that event will not be read later.
2393  *
2394  * This function only works if it is called before the the item has been
2395  * committed. It will try to free the event from the ring buffer
2396  * if another event has not been added behind it.
2397  *
2398  * If another event has been added behind it, it will set the event
2399  * up as discarded, and perform the commit.
2400  *
2401  * If this function is called, do not call ring_buffer_unlock_commit on
2402  * the event.
2403  */
2404 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2405                                 struct ring_buffer_event *event)
2406 {
2407         struct ring_buffer_per_cpu *cpu_buffer;
2408         int cpu;
2409
2410         /* The event is discarded regardless */
2411         rb_event_discard(event);
2412
2413         cpu = smp_processor_id();
2414         cpu_buffer = buffer->buffers[cpu];
2415
2416         /*
2417          * This must only be called if the event has not been
2418          * committed yet. Thus we can assume that preemption
2419          * is still disabled.
2420          */
2421         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2422
2423         rb_decrement_entry(cpu_buffer, event);
2424         if (rb_try_to_discard(cpu_buffer, event))
2425                 goto out;
2426
2427         /*
2428          * The commit is still visible by the reader, so we
2429          * must still update the timestamp.
2430          */
2431         rb_update_write_stamp(cpu_buffer, event);
2432  out:
2433         rb_end_commit(cpu_buffer);
2434
2435         trace_recursive_unlock();
2436
2437         /*
2438          * Only the last preempt count needs to restore preemption.
2439          */
2440         if (preempt_count() == 1)
2441                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2442         else
2443                 preempt_enable_no_resched_notrace();
2444
2445 }
2446 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2447
2448 /**
2449  * ring_buffer_write - write data to the buffer without reserving
2450  * @buffer: The ring buffer to write to.
2451  * @length: The length of the data being written (excluding the event header)
2452  * @data: The data to write to the buffer.
2453  *
2454  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2455  * one function. If you already have the data to write to the buffer, it
2456  * may be easier to simply call this function.
2457  *
2458  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2459  * and not the length of the event which would hold the header.
2460  */
2461 int ring_buffer_write(struct ring_buffer *buffer,
2462                         unsigned long length,
2463                         void *data)
2464 {
2465         struct ring_buffer_per_cpu *cpu_buffer;
2466         struct ring_buffer_event *event;
2467         void *body;
2468         int ret = -EBUSY;
2469         int cpu, resched;
2470
2471         if (ring_buffer_flags != RB_BUFFERS_ON)
2472                 return -EBUSY;
2473
2474         if (atomic_read(&buffer->record_disabled))
2475                 return -EBUSY;
2476
2477         resched = ftrace_preempt_disable();
2478
2479         cpu = raw_smp_processor_id();
2480
2481         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2482                 goto out;
2483
2484         cpu_buffer = buffer->buffers[cpu];
2485
2486         if (atomic_read(&cpu_buffer->record_disabled))
2487                 goto out;
2488
2489         if (length > BUF_MAX_DATA_SIZE)
2490                 goto out;
2491
2492         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2493         if (!event)
2494                 goto out;
2495
2496         body = rb_event_data(event);
2497
2498         memcpy(body, data, length);
2499
2500         rb_commit(cpu_buffer, event);
2501
2502         ret = 0;
2503  out:
2504         ftrace_preempt_enable(resched);
2505
2506         return ret;
2507 }
2508 EXPORT_SYMBOL_GPL(ring_buffer_write);
2509
2510 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2511 {
2512         struct buffer_page *reader = cpu_buffer->reader_page;
2513         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2514         struct buffer_page *commit = cpu_buffer->commit_page;
2515
2516         /* In case of error, head will be NULL */
2517         if (unlikely(!head))
2518                 return 1;
2519
2520         return reader->read == rb_page_commit(reader) &&
2521                 (commit == reader ||
2522                  (commit == head &&
2523                   head->read == rb_page_commit(commit)));
2524 }
2525
2526 /**
2527  * ring_buffer_record_disable - stop all writes into the buffer
2528  * @buffer: The ring buffer to stop writes to.
2529  *
2530  * This prevents all writes to the buffer. Any attempt to write
2531  * to the buffer after this will fail and return NULL.
2532  *
2533  * The caller should call synchronize_sched() after this.
2534  */
2535 void ring_buffer_record_disable(struct ring_buffer *buffer)
2536 {
2537         atomic_inc(&buffer->record_disabled);
2538 }
2539 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2540
2541 /**
2542  * ring_buffer_record_enable - enable writes to the buffer
2543  * @buffer: The ring buffer to enable writes
2544  *
2545  * Note, multiple disables will need the same number of enables
2546  * to truely enable the writing (much like preempt_disable).
2547  */
2548 void ring_buffer_record_enable(struct ring_buffer *buffer)
2549 {
2550         atomic_dec(&buffer->record_disabled);
2551 }
2552 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2553
2554 /**
2555  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2556  * @buffer: The ring buffer to stop writes to.
2557  * @cpu: The CPU buffer to stop
2558  *
2559  * This prevents all writes to the buffer. Any attempt to write
2560  * to the buffer after this will fail and return NULL.
2561  *
2562  * The caller should call synchronize_sched() after this.
2563  */
2564 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2565 {
2566         struct ring_buffer_per_cpu *cpu_buffer;
2567
2568         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2569                 return;
2570
2571         cpu_buffer = buffer->buffers[cpu];
2572         atomic_inc(&cpu_buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2575
2576 /**
2577  * ring_buffer_record_enable_cpu - enable writes to the buffer
2578  * @buffer: The ring buffer to enable writes
2579  * @cpu: The CPU to enable.
2580  *
2581  * Note, multiple disables will need the same number of enables
2582  * to truely enable the writing (much like preempt_disable).
2583  */
2584 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2585 {
2586         struct ring_buffer_per_cpu *cpu_buffer;
2587
2588         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2589                 return;
2590
2591         cpu_buffer = buffer->buffers[cpu];
2592         atomic_dec(&cpu_buffer->record_disabled);
2593 }
2594 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2595
2596 /**
2597  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2598  * @buffer: The ring buffer
2599  * @cpu: The per CPU buffer to get the entries from.
2600  */
2601 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2602 {
2603         struct ring_buffer_per_cpu *cpu_buffer;
2604         unsigned long ret;
2605
2606         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2607                 return 0;
2608
2609         cpu_buffer = buffer->buffers[cpu];
2610         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2611                 - cpu_buffer->read;
2612
2613         return ret;
2614 }
2615 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2616
2617 /**
2618  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2619  * @buffer: The ring buffer
2620  * @cpu: The per CPU buffer to get the number of overruns from
2621  */
2622 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2623 {
2624         struct ring_buffer_per_cpu *cpu_buffer;
2625         unsigned long ret;
2626
2627         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2628                 return 0;
2629
2630         cpu_buffer = buffer->buffers[cpu];
2631         ret = local_read(&cpu_buffer->overrun);
2632
2633         return ret;
2634 }
2635 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2636
2637 /**
2638  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2639  * @buffer: The ring buffer
2640  * @cpu: The per CPU buffer to get the number of overruns from
2641  */
2642 unsigned long
2643 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2644 {
2645         struct ring_buffer_per_cpu *cpu_buffer;
2646         unsigned long ret;
2647
2648         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2649                 return 0;
2650
2651         cpu_buffer = buffer->buffers[cpu];
2652         ret = local_read(&cpu_buffer->commit_overrun);
2653
2654         return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2657
2658 /**
2659  * ring_buffer_entries - get the number of entries in a buffer
2660  * @buffer: The ring buffer
2661  *
2662  * Returns the total number of entries in the ring buffer
2663  * (all CPU entries)
2664  */
2665 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2666 {
2667         struct ring_buffer_per_cpu *cpu_buffer;
2668         unsigned long entries = 0;
2669         int cpu;
2670
2671         /* if you care about this being correct, lock the buffer */
2672         for_each_buffer_cpu(buffer, cpu) {
2673                 cpu_buffer = buffer->buffers[cpu];
2674                 entries += (local_read(&cpu_buffer->entries) -
2675                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2676         }
2677
2678         return entries;
2679 }
2680 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2681
2682 /**
2683  * ring_buffer_overruns - get the number of overruns in buffer
2684  * @buffer: The ring buffer
2685  *
2686  * Returns the total number of overruns in the ring buffer
2687  * (all CPU entries)
2688  */
2689 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2690 {
2691         struct ring_buffer_per_cpu *cpu_buffer;
2692         unsigned long overruns = 0;
2693         int cpu;
2694
2695         /* if you care about this being correct, lock the buffer */
2696         for_each_buffer_cpu(buffer, cpu) {
2697                 cpu_buffer = buffer->buffers[cpu];
2698                 overruns += local_read(&cpu_buffer->overrun);
2699         }
2700
2701         return overruns;
2702 }
2703 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2704
2705 static void rb_iter_reset(struct ring_buffer_iter *iter)
2706 {
2707         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2708
2709         /* Iterator usage is expected to have record disabled */
2710         if (list_empty(&cpu_buffer->reader_page->list)) {
2711                 iter->head_page = rb_set_head_page(cpu_buffer);
2712                 if (unlikely(!iter->head_page))
2713                         return;
2714                 iter->head = iter->head_page->read;
2715         } else {
2716                 iter->head_page = cpu_buffer->reader_page;
2717                 iter->head = cpu_buffer->reader_page->read;
2718         }
2719         if (iter->head)
2720                 iter->read_stamp = cpu_buffer->read_stamp;
2721         else
2722                 iter->read_stamp = iter->head_page->page->time_stamp;
2723 }
2724
2725 /**
2726  * ring_buffer_iter_reset - reset an iterator
2727  * @iter: The iterator to reset
2728  *
2729  * Resets the iterator, so that it will start from the beginning
2730  * again.
2731  */
2732 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2733 {
2734         struct ring_buffer_per_cpu *cpu_buffer;
2735         unsigned long flags;
2736
2737         if (!iter)
2738                 return;
2739
2740         cpu_buffer = iter->cpu_buffer;
2741
2742         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2743         rb_iter_reset(iter);
2744         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2745 }
2746 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2747
2748 /**
2749  * ring_buffer_iter_empty - check if an iterator has no more to read
2750  * @iter: The iterator to check
2751  */
2752 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2753 {
2754         struct ring_buffer_per_cpu *cpu_buffer;
2755
2756         cpu_buffer = iter->cpu_buffer;
2757
2758         return iter->head_page == cpu_buffer->commit_page &&
2759                 iter->head == rb_commit_index(cpu_buffer);
2760 }
2761 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2762
2763 static void
2764 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2765                      struct ring_buffer_event *event)
2766 {
2767         u64 delta;
2768
2769         switch (event->type_len) {
2770         case RINGBUF_TYPE_PADDING:
2771                 return;
2772
2773         case RINGBUF_TYPE_TIME_EXTEND:
2774                 delta = event->array[0];
2775                 delta <<= TS_SHIFT;
2776                 delta += event->time_delta;
2777                 cpu_buffer->read_stamp += delta;
2778                 return;
2779
2780         case RINGBUF_TYPE_TIME_STAMP:
2781                 /* FIXME: not implemented */
2782                 return;
2783
2784         case RINGBUF_TYPE_DATA:
2785                 cpu_buffer->read_stamp += event->time_delta;
2786                 return;
2787
2788         default:
2789                 BUG();
2790         }
2791         return;
2792 }
2793
2794 static void
2795 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2796                           struct ring_buffer_event *event)
2797 {
2798         u64 delta;
2799
2800         switch (event->type_len) {
2801         case RINGBUF_TYPE_PADDING:
2802                 return;
2803
2804         case RINGBUF_TYPE_TIME_EXTEND:
2805                 delta = event->array[0];
2806                 delta <<= TS_SHIFT;
2807                 delta += event->time_delta;
2808                 iter->read_stamp += delta;
2809                 return;
2810
2811         case RINGBUF_TYPE_TIME_STAMP:
2812                 /* FIXME: not implemented */
2813                 return;
2814
2815         case RINGBUF_TYPE_DATA:
2816                 iter->read_stamp += event->time_delta;
2817                 return;
2818
2819         default:
2820                 BUG();
2821         }
2822         return;
2823 }
2824
2825 static struct buffer_page *
2826 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2827 {
2828         struct buffer_page *reader = NULL;
2829         unsigned long flags;
2830         int nr_loops = 0;
2831         int ret;
2832
2833         local_irq_save(flags);
2834         __raw_spin_lock(&cpu_buffer->lock);
2835
2836  again:
2837         /*
2838          * This should normally only loop twice. But because the
2839          * start of the reader inserts an empty page, it causes
2840          * a case where we will loop three times. There should be no
2841          * reason to loop four times (that I know of).
2842          */
2843         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2844                 reader = NULL;
2845                 goto out;
2846         }
2847
2848         reader = cpu_buffer->reader_page;
2849
2850         /* If there's more to read, return this page */
2851         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2852                 goto out;
2853
2854         /* Never should we have an index greater than the size */
2855         if (RB_WARN_ON(cpu_buffer,
2856                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2857                 goto out;
2858
2859         /* check if we caught up to the tail */
2860         reader = NULL;
2861         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2862                 goto out;
2863
2864         /*
2865          * Reset the reader page to size zero.
2866          */
2867         local_set(&cpu_buffer->reader_page->write, 0);
2868         local_set(&cpu_buffer->reader_page->entries, 0);
2869         local_set(&cpu_buffer->reader_page->page->commit, 0);
2870
2871  spin:
2872         /*
2873          * Splice the empty reader page into the list around the head.
2874          */
2875         reader = rb_set_head_page(cpu_buffer);
2876         cpu_buffer->reader_page->list.next = reader->list.next;
2877         cpu_buffer->reader_page->list.prev = reader->list.prev;
2878
2879         /*
2880          * cpu_buffer->pages just needs to point to the buffer, it
2881          *  has no specific buffer page to point to. Lets move it out
2882          *  of our way so we don't accidently swap it.
2883          */
2884         cpu_buffer->pages = reader->list.prev;
2885
2886         /* The reader page will be pointing to the new head */
2887         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2888
2889         /*
2890          * Here's the tricky part.
2891          *
2892          * We need to move the pointer past the header page.
2893          * But we can only do that if a writer is not currently
2894          * moving it. The page before the header page has the
2895          * flag bit '1' set if it is pointing to the page we want.
2896          * but if the writer is in the process of moving it
2897          * than it will be '2' or already moved '0'.
2898          */
2899
2900         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2901
2902         /*
2903          * If we did not convert it, then we must try again.
2904          */
2905         if (!ret)
2906                 goto spin;
2907
2908         /*
2909          * Yeah! We succeeded in replacing the page.
2910          *
2911          * Now make the new head point back to the reader page.
2912          */
2913         reader->list.next->prev = &cpu_buffer->reader_page->list;
2914         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2915
2916         /* Finally update the reader page to the new head */
2917         cpu_buffer->reader_page = reader;
2918         rb_reset_reader_page(cpu_buffer);
2919
2920         goto again;
2921
2922  out:
2923         __raw_spin_unlock(&cpu_buffer->lock);
2924         local_irq_restore(flags);
2925
2926         return reader;
2927 }
2928
2929 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2930 {
2931         struct ring_buffer_event *event;
2932         struct buffer_page *reader;
2933         unsigned length;
2934
2935         reader = rb_get_reader_page(cpu_buffer);
2936
2937         /* This function should not be called when buffer is empty */
2938         if (RB_WARN_ON(cpu_buffer, !reader))
2939                 return;
2940
2941         event = rb_reader_event(cpu_buffer);
2942
2943         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2944                 cpu_buffer->read++;
2945
2946         rb_update_read_stamp(cpu_buffer, event);
2947
2948         length = rb_event_length(event);
2949         cpu_buffer->reader_page->read += length;
2950 }
2951
2952 static void rb_advance_iter(struct ring_buffer_iter *iter)
2953 {
2954         struct ring_buffer *buffer;
2955         struct ring_buffer_per_cpu *cpu_buffer;
2956         struct ring_buffer_event *event;
2957         unsigned length;
2958
2959         cpu_buffer = iter->cpu_buffer;
2960         buffer = cpu_buffer->buffer;
2961
2962         /*
2963          * Check if we are at the end of the buffer.
2964          */
2965         if (iter->head >= rb_page_size(iter->head_page)) {
2966                 /* discarded commits can make the page empty */
2967                 if (iter->head_page == cpu_buffer->commit_page)
2968                         return;
2969                 rb_inc_iter(iter);
2970                 return;
2971         }
2972
2973         event = rb_iter_head_event(iter);
2974
2975         length = rb_event_length(event);
2976
2977         /*
2978          * This should not be called to advance the header if we are
2979          * at the tail of the buffer.
2980          */
2981         if (RB_WARN_ON(cpu_buffer,
2982                        (iter->head_page == cpu_buffer->commit_page) &&
2983                        (iter->head + length > rb_commit_index(cpu_buffer))))
2984                 return;
2985
2986         rb_update_iter_read_stamp(iter, event);
2987
2988         iter->head += length;
2989
2990         /* check for end of page padding */
2991         if ((iter->head >= rb_page_size(iter->head_page)) &&
2992             (iter->head_page != cpu_buffer->commit_page))
2993                 rb_advance_iter(iter);
2994 }
2995
2996 static struct ring_buffer_event *
2997 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2998 {
2999         struct ring_buffer_event *event;
3000         struct buffer_page *reader;
3001         int nr_loops = 0;
3002
3003  again:
3004         /*
3005          * We repeat when a timestamp is encountered. It is possible
3006          * to get multiple timestamps from an interrupt entering just
3007          * as one timestamp is about to be written, or from discarded
3008          * commits. The most that we can have is the number on a single page.
3009          */
3010         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3011                 return NULL;
3012
3013         reader = rb_get_reader_page(cpu_buffer);
3014         if (!reader)
3015                 return NULL;
3016
3017         event = rb_reader_event(cpu_buffer);
3018
3019         switch (event->type_len) {
3020         case RINGBUF_TYPE_PADDING:
3021                 if (rb_null_event(event))
3022                         RB_WARN_ON(cpu_buffer, 1);
3023                 /*
3024                  * Because the writer could be discarding every
3025                  * event it creates (which would probably be bad)
3026                  * if we were to go back to "again" then we may never
3027                  * catch up, and will trigger the warn on, or lock
3028                  * the box. Return the padding, and we will release
3029                  * the current locks, and try again.
3030                  */
3031                 return event;
3032
3033         case RINGBUF_TYPE_TIME_EXTEND:
3034                 /* Internal data, OK to advance */
3035                 rb_advance_reader(cpu_buffer);
3036                 goto again;
3037
3038         case RINGBUF_TYPE_TIME_STAMP:
3039                 /* FIXME: not implemented */
3040                 rb_advance_reader(cpu_buffer);
3041                 goto again;
3042
3043         case RINGBUF_TYPE_DATA:
3044                 if (ts) {
3045                         *ts = cpu_buffer->read_stamp + event->time_delta;
3046                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3047                                                          cpu_buffer->cpu, ts);
3048                 }
3049                 return event;
3050
3051         default:
3052                 BUG();
3053         }
3054
3055         return NULL;
3056 }
3057 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3058
3059 static struct ring_buffer_event *
3060 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3061 {
3062         struct ring_buffer *buffer;
3063         struct ring_buffer_per_cpu *cpu_buffer;
3064         struct ring_buffer_event *event;
3065         int nr_loops = 0;
3066
3067         if (ring_buffer_iter_empty(iter))
3068                 return NULL;
3069
3070         cpu_buffer = iter->cpu_buffer;
3071         buffer = cpu_buffer->buffer;
3072
3073  again:
3074         /*
3075          * We repeat when a timestamp is encountered.
3076          * We can get multiple timestamps by nested interrupts or also
3077          * if filtering is on (discarding commits). Since discarding
3078          * commits can be frequent we can get a lot of timestamps.
3079          * But we limit them by not adding timestamps if they begin
3080          * at the start of a page.
3081          */
3082         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3083                 return NULL;
3084
3085         if (rb_per_cpu_empty(cpu_buffer))
3086                 return NULL;
3087
3088         event = rb_iter_head_event(iter);
3089
3090         switch (event->type_len) {
3091         case RINGBUF_TYPE_PADDING:
3092                 if (rb_null_event(event)) {
3093                         rb_inc_iter(iter);
3094                         goto again;
3095                 }
3096                 rb_advance_iter(iter);
3097                 return event;
3098
3099         case RINGBUF_TYPE_TIME_EXTEND:
3100                 /* Internal data, OK to advance */
3101                 rb_advance_iter(iter);
3102                 goto again;
3103
3104         case RINGBUF_TYPE_TIME_STAMP:
3105                 /* FIXME: not implemented */
3106                 rb_advance_iter(iter);
3107                 goto again;
3108
3109         case RINGBUF_TYPE_DATA:
3110                 if (ts) {
3111                         *ts = iter->read_stamp + event->time_delta;
3112                         ring_buffer_normalize_time_stamp(buffer,
3113                                                          cpu_buffer->cpu, ts);
3114                 }
3115                 return event;
3116
3117         default:
3118                 BUG();
3119         }
3120
3121         return NULL;
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3124
3125 static inline int rb_ok_to_lock(void)
3126 {
3127         /*
3128          * If an NMI die dumps out the content of the ring buffer
3129          * do not grab locks. We also permanently disable the ring
3130          * buffer too. A one time deal is all you get from reading
3131          * the ring buffer from an NMI.
3132          */
3133         if (likely(!in_nmi()))
3134                 return 1;
3135
3136         tracing_off_permanent();
3137         return 0;
3138 }
3139
3140 /**
3141  * ring_buffer_peek - peek at the next event to be read
3142  * @buffer: The ring buffer to read
3143  * @cpu: The cpu to peak at
3144  * @ts: The timestamp counter of this event.
3145  *
3146  * This will return the event that will be read next, but does
3147  * not consume the data.
3148  */
3149 struct ring_buffer_event *
3150 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3151 {
3152         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3153         struct ring_buffer_event *event;
3154         unsigned long flags;
3155         int dolock;
3156
3157         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158                 return NULL;
3159
3160         dolock = rb_ok_to_lock();
3161  again:
3162         local_irq_save(flags);
3163         if (dolock)
3164                 spin_lock(&cpu_buffer->reader_lock);
3165         event = rb_buffer_peek(cpu_buffer, ts);
3166         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3167                 rb_advance_reader(cpu_buffer);
3168         if (dolock)
3169                 spin_unlock(&cpu_buffer->reader_lock);
3170         local_irq_restore(flags);
3171
3172         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3173                 goto again;
3174
3175         return event;
3176 }
3177
3178 /**
3179  * ring_buffer_iter_peek - peek at the next event to be read
3180  * @iter: The ring buffer iterator
3181  * @ts: The timestamp counter of this event.
3182  *
3183  * This will return the event that will be read next, but does
3184  * not increment the iterator.
3185  */
3186 struct ring_buffer_event *
3187 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3188 {
3189         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3190         struct ring_buffer_event *event;
3191         unsigned long flags;
3192
3193  again:
3194         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3195         event = rb_iter_peek(iter, ts);
3196         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3197
3198         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3199                 goto again;
3200
3201         return event;
3202 }
3203
3204 /**
3205  * ring_buffer_consume - return an event and consume it
3206  * @buffer: The ring buffer to get the next event from
3207  *
3208  * Returns the next event in the ring buffer, and that event is consumed.
3209  * Meaning, that sequential reads will keep returning a different event,
3210  * and eventually empty the ring buffer if the producer is slower.
3211  */
3212 struct ring_buffer_event *
3213 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3214 {
3215         struct ring_buffer_per_cpu *cpu_buffer;
3216         struct ring_buffer_event *event = NULL;
3217         unsigned long flags;
3218         int dolock;
3219
3220         dolock = rb_ok_to_lock();
3221
3222  again:
3223         /* might be called in atomic */
3224         preempt_disable();
3225
3226         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3227                 goto out;
3228
3229         cpu_buffer = buffer->buffers[cpu];
3230         local_irq_save(flags);
3231         if (dolock)
3232                 spin_lock(&cpu_buffer->reader_lock);
3233
3234         event = rb_buffer_peek(cpu_buffer, ts);
3235         if (event)
3236                 rb_advance_reader(cpu_buffer);
3237
3238         if (dolock)
3239                 spin_unlock(&cpu_buffer->reader_lock);
3240         local_irq_restore(flags);
3241
3242  out:
3243         preempt_enable();
3244
3245         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3246                 goto again;
3247
3248         return event;
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3251
3252 /**
3253  * ring_buffer_read_start - start a non consuming read of the buffer
3254  * @buffer: The ring buffer to read from
3255  * @cpu: The cpu buffer to iterate over
3256  *
3257  * This starts up an iteration through the buffer. It also disables
3258  * the recording to the buffer until the reading is finished.
3259  * This prevents the reading from being corrupted. This is not
3260  * a consuming read, so a producer is not expected.
3261  *
3262  * Must be paired with ring_buffer_finish.
3263  */
3264 struct ring_buffer_iter *
3265 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3266 {
3267         struct ring_buffer_per_cpu *cpu_buffer;
3268         struct ring_buffer_iter *iter;
3269         unsigned long flags;
3270
3271         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3272                 return NULL;
3273
3274         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3275         if (!iter)
3276                 return NULL;
3277
3278         cpu_buffer = buffer->buffers[cpu];
3279
3280         iter->cpu_buffer = cpu_buffer;
3281
3282         atomic_inc(&cpu_buffer->record_disabled);
3283         synchronize_sched();
3284
3285         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3286         __raw_spin_lock(&cpu_buffer->lock);
3287         rb_iter_reset(iter);
3288         __raw_spin_unlock(&cpu_buffer->lock);
3289         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3290
3291         return iter;
3292 }
3293 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3294
3295 /**
3296  * ring_buffer_finish - finish reading the iterator of the buffer
3297  * @iter: The iterator retrieved by ring_buffer_start
3298  *
3299  * This re-enables the recording to the buffer, and frees the
3300  * iterator.
3301  */
3302 void
3303 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3304 {
3305         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3306
3307         atomic_dec(&cpu_buffer->record_disabled);
3308         kfree(iter);
3309 }
3310 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3311
3312 /**
3313  * ring_buffer_read - read the next item in the ring buffer by the iterator
3314  * @iter: The ring buffer iterator
3315  * @ts: The time stamp of the event read.
3316  *
3317  * This reads the next event in the ring buffer and increments the iterator.
3318  */
3319 struct ring_buffer_event *
3320 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3321 {
3322         struct ring_buffer_event *event;
3323         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3324         unsigned long flags;
3325
3326         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3327  again:
3328         event = rb_iter_peek(iter, ts);
3329         if (!event)
3330                 goto out;
3331
3332         if (event->type_len == RINGBUF_TYPE_PADDING)
3333                 goto again;
3334
3335         rb_advance_iter(iter);
3336  out:
3337         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3338
3339         return event;
3340 }
3341 EXPORT_SYMBOL_GPL(ring_buffer_read);
3342
3343 /**
3344  * ring_buffer_size - return the size of the ring buffer (in bytes)
3345  * @buffer: The ring buffer.
3346  */
3347 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3348 {
3349         return BUF_PAGE_SIZE * buffer->pages;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_size);
3352
3353 static void
3354 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3355 {
3356         rb_head_page_deactivate(cpu_buffer);
3357
3358         cpu_buffer->head_page
3359                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3360         local_set(&cpu_buffer->head_page->write, 0);
3361         local_set(&cpu_buffer->head_page->entries, 0);
3362         local_set(&cpu_buffer->head_page->page->commit, 0);
3363
3364         cpu_buffer->head_page->read = 0;
3365
3366         cpu_buffer->tail_page = cpu_buffer->head_page;
3367         cpu_buffer->commit_page = cpu_buffer->head_page;
3368
3369         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3370         local_set(&cpu_buffer->reader_page->write, 0);
3371         local_set(&cpu_buffer->reader_page->entries, 0);
3372         local_set(&cpu_buffer->reader_page->page->commit, 0);
3373         cpu_buffer->reader_page->read = 0;
3374
3375         local_set(&cpu_buffer->commit_overrun, 0);
3376         local_set(&cpu_buffer->overrun, 0);
3377         local_set(&cpu_buffer->entries, 0);
3378         local_set(&cpu_buffer->committing, 0);
3379         local_set(&cpu_buffer->commits, 0);
3380         cpu_buffer->read = 0;
3381
3382         cpu_buffer->write_stamp = 0;
3383         cpu_buffer->read_stamp = 0;
3384
3385         rb_head_page_activate(cpu_buffer);
3386 }
3387
3388 /**
3389  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3390  * @buffer: The ring buffer to reset a per cpu buffer of
3391  * @cpu: The CPU buffer to be reset
3392  */
3393 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3394 {
3395         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3396         unsigned long flags;
3397
3398         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3399                 return;
3400
3401         atomic_inc(&cpu_buffer->record_disabled);
3402
3403         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3404
3405         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3406                 goto out;
3407
3408         __raw_spin_lock(&cpu_buffer->lock);
3409
3410         rb_reset_cpu(cpu_buffer);
3411
3412         __raw_spin_unlock(&cpu_buffer->lock);
3413
3414  out:
3415         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3416
3417         atomic_dec(&cpu_buffer->record_disabled);
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3420
3421 /**
3422  * ring_buffer_reset - reset a ring buffer
3423  * @buffer: The ring buffer to reset all cpu buffers
3424  */
3425 void ring_buffer_reset(struct ring_buffer *buffer)
3426 {
3427         int cpu;
3428
3429         for_each_buffer_cpu(buffer, cpu)
3430                 ring_buffer_reset_cpu(buffer, cpu);
3431 }
3432 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3433
3434 /**
3435  * rind_buffer_empty - is the ring buffer empty?
3436  * @buffer: The ring buffer to test
3437  */
3438 int ring_buffer_empty(struct ring_buffer *buffer)
3439 {
3440         struct ring_buffer_per_cpu *cpu_buffer;
3441         unsigned long flags;
3442         int dolock;
3443         int cpu;
3444         int ret;
3445
3446         dolock = rb_ok_to_lock();
3447
3448         /* yes this is racy, but if you don't like the race, lock the buffer */
3449         for_each_buffer_cpu(buffer, cpu) {
3450                 cpu_buffer = buffer->buffers[cpu];
3451                 local_irq_save(flags);
3452                 if (dolock)
3453                         spin_lock(&cpu_buffer->reader_lock);
3454                 ret = rb_per_cpu_empty(cpu_buffer);
3455                 if (dolock)
3456                         spin_unlock(&cpu_buffer->reader_lock);
3457                 local_irq_restore(flags);
3458
3459                 if (!ret)
3460                         return 0;
3461         }
3462
3463         return 1;
3464 }
3465 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3466
3467 /**
3468  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3469  * @buffer: The ring buffer
3470  * @cpu: The CPU buffer to test
3471  */
3472 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3473 {
3474         struct ring_buffer_per_cpu *cpu_buffer;
3475         unsigned long flags;
3476         int dolock;
3477         int ret;
3478
3479         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3480                 return 1;
3481
3482         dolock = rb_ok_to_lock();
3483
3484         cpu_buffer = buffer->buffers[cpu];
3485         local_irq_save(flags);
3486         if (dolock)
3487                 spin_lock(&cpu_buffer->reader_lock);
3488         ret = rb_per_cpu_empty(cpu_buffer);
3489         if (dolock)
3490                 spin_unlock(&cpu_buffer->reader_lock);
3491         local_irq_restore(flags);
3492
3493         return ret;
3494 }
3495 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3496
3497 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3498 /**
3499  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3500  * @buffer_a: One buffer to swap with
3501  * @buffer_b: The other buffer to swap with
3502  *
3503  * This function is useful for tracers that want to take a "snapshot"
3504  * of a CPU buffer and has another back up buffer lying around.
3505  * it is expected that the tracer handles the cpu buffer not being
3506  * used at the moment.
3507  */
3508 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3509                          struct ring_buffer *buffer_b, int cpu)
3510 {
3511         struct ring_buffer_per_cpu *cpu_buffer_a;
3512         struct ring_buffer_per_cpu *cpu_buffer_b;
3513         int ret = -EINVAL;
3514
3515         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3516             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3517                 goto out;
3518
3519         /* At least make sure the two buffers are somewhat the same */
3520         if (buffer_a->pages != buffer_b->pages)
3521                 goto out;
3522
3523         ret = -EAGAIN;
3524
3525         if (ring_buffer_flags != RB_BUFFERS_ON)
3526                 goto out;
3527
3528         if (atomic_read(&buffer_a->record_disabled))
3529                 goto out;
3530
3531         if (atomic_read(&buffer_b->record_disabled))
3532                 goto out;
3533
3534         cpu_buffer_a = buffer_a->buffers[cpu];
3535         cpu_buffer_b = buffer_b->buffers[cpu];
3536
3537         if (atomic_read(&cpu_buffer_a->record_disabled))
3538                 goto out;
3539
3540         if (atomic_read(&cpu_buffer_b->record_disabled))
3541                 goto out;
3542
3543         /*
3544          * We can't do a synchronize_sched here because this
3545          * function can be called in atomic context.
3546          * Normally this will be called from the same CPU as cpu.
3547          * If not it's up to the caller to protect this.
3548          */
3549         atomic_inc(&cpu_buffer_a->record_disabled);
3550         atomic_inc(&cpu_buffer_b->record_disabled);
3551
3552         ret = -EBUSY;
3553         if (local_read(&cpu_buffer_a->committing))
3554                 goto out_dec;
3555         if (local_read(&cpu_buffer_b->committing))
3556                 goto out_dec;
3557
3558         buffer_a->buffers[cpu] = cpu_buffer_b;
3559         buffer_b->buffers[cpu] = cpu_buffer_a;
3560
3561         cpu_buffer_b->buffer = buffer_a;
3562         cpu_buffer_a->buffer = buffer_b;
3563
3564         ret = 0;
3565
3566 out_dec:
3567         atomic_dec(&cpu_buffer_a->record_disabled);
3568         atomic_dec(&cpu_buffer_b->record_disabled);
3569 out:
3570         return ret;
3571 }
3572 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3573 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3574
3575 /**
3576  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3577  * @buffer: the buffer to allocate for.
3578  *
3579  * This function is used in conjunction with ring_buffer_read_page.
3580  * When reading a full page from the ring buffer, these functions
3581  * can be used to speed up the process. The calling function should
3582  * allocate a few pages first with this function. Then when it
3583  * needs to get pages from the ring buffer, it passes the result
3584  * of this function into ring_buffer_read_page, which will swap
3585  * the page that was allocated, with the read page of the buffer.
3586  *
3587  * Returns:
3588  *  The page allocated, or NULL on error.
3589  */
3590 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3591 {
3592         struct buffer_data_page *bpage;
3593         unsigned long addr;
3594
3595         addr = __get_free_page(GFP_KERNEL);
3596         if (!addr)
3597                 return NULL;
3598
3599         bpage = (void *)addr;
3600
3601         rb_init_page(bpage);
3602
3603         return bpage;
3604 }
3605 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3606
3607 /**
3608  * ring_buffer_free_read_page - free an allocated read page
3609  * @buffer: the buffer the page was allocate for
3610  * @data: the page to free
3611  *
3612  * Free a page allocated from ring_buffer_alloc_read_page.
3613  */
3614 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3615 {
3616         free_page((unsigned long)data);
3617 }
3618 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3619
3620 /**
3621  * ring_buffer_read_page - extract a page from the ring buffer
3622  * @buffer: buffer to extract from
3623  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3624  * @len: amount to extract
3625  * @cpu: the cpu of the buffer to extract
3626  * @full: should the extraction only happen when the page is full.
3627  *
3628  * This function will pull out a page from the ring buffer and consume it.
3629  * @data_page must be the address of the variable that was returned
3630  * from ring_buffer_alloc_read_page. This is because the page might be used
3631  * to swap with a page in the ring buffer.
3632  *
3633  * for example:
3634  *      rpage = ring_buffer_alloc_read_page(buffer);
3635  *      if (!rpage)
3636  *              return error;
3637  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3638  *      if (ret >= 0)
3639  *              process_page(rpage, ret);
3640  *
3641  * When @full is set, the function will not return true unless
3642  * the writer is off the reader page.
3643  *
3644  * Note: it is up to the calling functions to handle sleeps and wakeups.
3645  *  The ring buffer can be used anywhere in the kernel and can not
3646  *  blindly call wake_up. The layer that uses the ring buffer must be
3647  *  responsible for that.
3648  *
3649  * Returns:
3650  *  >=0 if data has been transferred, returns the offset of consumed data.
3651  *  <0 if no data has been transferred.
3652  */
3653 int ring_buffer_read_page(struct ring_buffer *buffer,
3654                           void **data_page, size_t len, int cpu, int full)
3655 {
3656         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3657         struct ring_buffer_event *event;
3658         struct buffer_data_page *bpage;
3659         struct buffer_page *reader;
3660         unsigned long flags;
3661         unsigned int commit;
3662         unsigned int read;
3663         u64 save_timestamp;
3664         int ret = -1;
3665
3666         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3667                 goto out;
3668
3669         /*
3670          * If len is not big enough to hold the page header, then
3671          * we can not copy anything.
3672          */
3673         if (len <= BUF_PAGE_HDR_SIZE)
3674                 goto out;
3675
3676         len -= BUF_PAGE_HDR_SIZE;
3677
3678         if (!data_page)
3679                 goto out;
3680
3681         bpage = *data_page;
3682         if (!bpage)
3683                 goto out;
3684
3685         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3686
3687         reader = rb_get_reader_page(cpu_buffer);
3688         if (!reader)
3689                 goto out_unlock;
3690
3691         event = rb_reader_event(cpu_buffer);
3692
3693         read = reader->read;
3694         commit = rb_page_commit(reader);
3695
3696         /*
3697          * If this page has been partially read or
3698          * if len is not big enough to read the rest of the page or
3699          * a writer is still on the page, then
3700          * we must copy the data from the page to the buffer.
3701          * Otherwise, we can simply swap the page with the one passed in.
3702          */
3703         if (read || (len < (commit - read)) ||
3704             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3705                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3706                 unsigned int rpos = read;
3707                 unsigned int pos = 0;
3708                 unsigned int size;
3709
3710                 if (full)
3711                         goto out_unlock;
3712
3713                 if (len > (commit - read))
3714                         len = (commit - read);
3715
3716                 size = rb_event_length(event);
3717
3718                 if (len < size)
3719                         goto out_unlock;
3720
3721                 /* save the current timestamp, since the user will need it */
3722                 save_timestamp = cpu_buffer->read_stamp;
3723
3724                 /* Need to copy one event at a time */
3725                 do {
3726                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3727
3728                         len -= size;
3729
3730                         rb_advance_reader(cpu_buffer);
3731                         rpos = reader->read;
3732                         pos += size;
3733
3734                         event = rb_reader_event(cpu_buffer);
3735                         size = rb_event_length(event);
3736                 } while (len > size);
3737
3738                 /* update bpage */
3739                 local_set(&bpage->commit, pos);
3740                 bpage->time_stamp = save_timestamp;
3741
3742                 /* we copied everything to the beginning */
3743                 read = 0;
3744         } else {
3745                 /* update the entry counter */
3746                 cpu_buffer->read += rb_page_entries(reader);
3747
3748                 /* swap the pages */
3749                 rb_init_page(bpage);
3750                 bpage = reader->page;
3751                 reader->page = *data_page;
3752                 local_set(&reader->write, 0);
3753                 local_set(&reader->entries, 0);
3754                 reader->read = 0;
3755                 *data_page = bpage;
3756         }
3757         ret = read;
3758
3759  out_unlock:
3760         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3761
3762  out:
3763         return ret;
3764 }
3765 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3766
3767 #ifdef CONFIG_TRACING
3768 static ssize_t
3769 rb_simple_read(struct file *filp, char __user *ubuf,
3770                size_t cnt, loff_t *ppos)
3771 {
3772         unsigned long *p = filp->private_data;
3773         char buf[64];
3774         int r;
3775
3776         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3777                 r = sprintf(buf, "permanently disabled\n");
3778         else
3779                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3780
3781         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3782 }
3783
3784 static ssize_t
3785 rb_simple_write(struct file *filp, const char __user *ubuf,
3786                 size_t cnt, loff_t *ppos)
3787 {
3788         unsigned long *p = filp->private_data;
3789         char buf[64];
3790         unsigned long val;
3791         int ret;
3792
3793         if (cnt >= sizeof(buf))
3794                 return -EINVAL;
3795
3796         if (copy_from_user(&buf, ubuf, cnt))
3797                 return -EFAULT;
3798
3799         buf[cnt] = 0;
3800
3801         ret = strict_strtoul(buf, 10, &val);
3802         if (ret < 0)
3803                 return ret;
3804
3805         if (val)
3806                 set_bit(RB_BUFFERS_ON_BIT, p);
3807         else
3808                 clear_bit(RB_BUFFERS_ON_BIT, p);
3809
3810         (*ppos)++;
3811
3812         return cnt;
3813 }
3814
3815 static const struct file_operations rb_simple_fops = {
3816         .open           = tracing_open_generic,
3817         .read           = rb_simple_read,
3818         .write          = rb_simple_write,
3819 };
3820
3821
3822 static __init int rb_init_debugfs(void)
3823 {
3824         struct dentry *d_tracer;
3825
3826         d_tracer = tracing_init_dentry();
3827
3828         trace_create_file("tracing_on", 0644, d_tracer,
3829                             &ring_buffer_flags, &rb_simple_fops);
3830
3831         return 0;
3832 }
3833
3834 fs_initcall(rb_init_debugfs);
3835 #endif
3836
3837 #ifdef CONFIG_HOTPLUG_CPU
3838 static int rb_cpu_notify(struct notifier_block *self,
3839                          unsigned long action, void *hcpu)
3840 {
3841         struct ring_buffer *buffer =
3842                 container_of(self, struct ring_buffer, cpu_notify);
3843         long cpu = (long)hcpu;
3844
3845         switch (action) {
3846         case CPU_UP_PREPARE:
3847         case CPU_UP_PREPARE_FROZEN:
3848                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3849                         return NOTIFY_OK;
3850
3851                 buffer->buffers[cpu] =
3852                         rb_allocate_cpu_buffer(buffer, cpu);
3853                 if (!buffer->buffers[cpu]) {
3854                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3855                              cpu);
3856                         return NOTIFY_OK;
3857                 }
3858                 smp_wmb();
3859                 cpumask_set_cpu(cpu, buffer->cpumask);
3860                 break;
3861         case CPU_DOWN_PREPARE:
3862         case CPU_DOWN_PREPARE_FROZEN:
3863                 /*
3864                  * Do nothing.
3865                  *  If we were to free the buffer, then the user would
3866                  *  lose any trace that was in the buffer.
3867                  */
3868                 break;
3869         default:
3870                 break;
3871         }
3872         return NOTIFY_OK;
3873 }
3874 #endif