tracing: unified trace buffer
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 /* Up this if you want to test the TIME_EXTENTS and normalization */
20 #define DEBUG_SHIFT 0
21
22 /* FIXME!!! */
23 u64 ring_buffer_time_stamp(int cpu)
24 {
25         /* shift to debug/test normalization and TIME_EXTENTS */
26         return sched_clock() << DEBUG_SHIFT;
27 }
28
29 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
30 {
31         /* Just stupid testing the normalize function and deltas */
32         *ts >>= DEBUG_SHIFT;
33 }
34
35 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
36 #define RB_ALIGNMENT_SHIFT      2
37 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
38 #define RB_MAX_SMALL_DATA       28
39
40 enum {
41         RB_LEN_TIME_EXTEND = 8,
42         RB_LEN_TIME_STAMP = 16,
43 };
44
45 /* inline for ring buffer fast paths */
46 static inline unsigned
47 rb_event_length(struct ring_buffer_event *event)
48 {
49         unsigned length;
50
51         switch (event->type) {
52         case RINGBUF_TYPE_PADDING:
53                 /* undefined */
54                 return -1;
55
56         case RINGBUF_TYPE_TIME_EXTEND:
57                 return RB_LEN_TIME_EXTEND;
58
59         case RINGBUF_TYPE_TIME_STAMP:
60                 return RB_LEN_TIME_STAMP;
61
62         case RINGBUF_TYPE_DATA:
63                 if (event->len)
64                         length = event->len << RB_ALIGNMENT_SHIFT;
65                 else
66                         length = event->array[0];
67                 return length + RB_EVNT_HDR_SIZE;
68         default:
69                 BUG();
70         }
71         /* not hit */
72         return 0;
73 }
74
75 /**
76  * ring_buffer_event_length - return the length of the event
77  * @event: the event to get the length of
78  */
79 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
80 {
81         return rb_event_length(event);
82 }
83
84 /* inline for ring buffer fast paths */
85 static inline void *
86 rb_event_data(struct ring_buffer_event *event)
87 {
88         BUG_ON(event->type != RINGBUF_TYPE_DATA);
89         /* If length is in len field, then array[0] has the data */
90         if (event->len)
91                 return (void *)&event->array[0];
92         /* Otherwise length is in array[0] and array[1] has the data */
93         return (void *)&event->array[1];
94 }
95
96 /**
97  * ring_buffer_event_data - return the data of the event
98  * @event: the event to get the data from
99  */
100 void *ring_buffer_event_data(struct ring_buffer_event *event)
101 {
102         return rb_event_data(event);
103 }
104
105 #define for_each_buffer_cpu(buffer, cpu)                \
106         for_each_cpu_mask(cpu, buffer->cpumask)
107
108 #define TS_SHIFT        27
109 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
110 #define TS_DELTA_TEST   (~TS_MASK)
111
112 /*
113  * This hack stolen from mm/slob.c.
114  * We can store per page timing information in the page frame of the page.
115  * Thanks to Peter Zijlstra for suggesting this idea.
116  */
117 struct buffer_page {
118         union {
119                 struct {
120                         unsigned long    flags;         /* mandatory */
121                         atomic_t         _count;        /* mandatory */
122                         u64              time_stamp;    /* page time stamp */
123                         unsigned         size;          /* size of page data */
124                         struct list_head list;          /* list of free pages */
125                 };
126                 struct page page;
127         };
128 };
129
130 /*
131  * We need to fit the time_stamp delta into 27 bits.
132  */
133 static inline int test_time_stamp(u64 delta)
134 {
135         if (delta & TS_DELTA_TEST)
136                 return 1;
137         return 0;
138 }
139
140 #define BUF_PAGE_SIZE PAGE_SIZE
141
142 /*
143  * head_page == tail_page && head == tail then buffer is empty.
144  */
145 struct ring_buffer_per_cpu {
146         int                             cpu;
147         struct ring_buffer              *buffer;
148         spinlock_t                      lock;
149         struct lock_class_key           lock_key;
150         struct list_head                pages;
151         unsigned long                   head;   /* read from head */
152         unsigned long                   tail;   /* write to tail */
153         struct buffer_page              *head_page;
154         struct buffer_page              *tail_page;
155         unsigned long                   overrun;
156         unsigned long                   entries;
157         u64                             write_stamp;
158         u64                             read_stamp;
159         atomic_t                        record_disabled;
160 };
161
162 struct ring_buffer {
163         unsigned long                   size;
164         unsigned                        pages;
165         unsigned                        flags;
166         int                             cpus;
167         cpumask_t                       cpumask;
168         atomic_t                        record_disabled;
169
170         struct mutex                    mutex;
171
172         struct ring_buffer_per_cpu      **buffers;
173 };
174
175 struct ring_buffer_iter {
176         struct ring_buffer_per_cpu      *cpu_buffer;
177         unsigned long                   head;
178         struct buffer_page              *head_page;
179         u64                             read_stamp;
180 };
181
182 #define RB_WARN_ON(buffer, cond)                        \
183         if (unlikely(cond)) {                           \
184                 atomic_inc(&buffer->record_disabled);   \
185                 WARN_ON(1);                             \
186                 return -1;                              \
187         }
188
189 /**
190  * check_pages - integrity check of buffer pages
191  * @cpu_buffer: CPU buffer with pages to test
192  *
193  * As a safty measure we check to make sure the data pages have not
194  * been corrupted.
195  */
196 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
197 {
198         struct list_head *head = &cpu_buffer->pages;
199         struct buffer_page *page, *tmp;
200
201         RB_WARN_ON(cpu_buffer, head->next->prev != head);
202         RB_WARN_ON(cpu_buffer, head->prev->next != head);
203
204         list_for_each_entry_safe(page, tmp, head, list) {
205                 RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
206                 RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
207         }
208
209         return 0;
210 }
211
212 static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
213 {
214         return cpu_buffer->head_page->size;
215 }
216
217 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
218                              unsigned nr_pages)
219 {
220         struct list_head *head = &cpu_buffer->pages;
221         struct buffer_page *page, *tmp;
222         unsigned long addr;
223         LIST_HEAD(pages);
224         unsigned i;
225
226         for (i = 0; i < nr_pages; i++) {
227                 addr = __get_free_page(GFP_KERNEL);
228                 if (!addr)
229                         goto free_pages;
230                 page = (struct buffer_page *)virt_to_page(addr);
231                 list_add(&page->list, &pages);
232         }
233
234         list_splice(&pages, head);
235
236         rb_check_pages(cpu_buffer);
237
238         return 0;
239
240  free_pages:
241         list_for_each_entry_safe(page, tmp, &pages, list) {
242                 list_del_init(&page->list);
243                 __free_page(&page->page);
244         }
245         return -ENOMEM;
246 }
247
248 static struct ring_buffer_per_cpu *
249 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
250 {
251         struct ring_buffer_per_cpu *cpu_buffer;
252         int ret;
253
254         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
255                                   GFP_KERNEL, cpu_to_node(cpu));
256         if (!cpu_buffer)
257                 return NULL;
258
259         cpu_buffer->cpu = cpu;
260         cpu_buffer->buffer = buffer;
261         spin_lock_init(&cpu_buffer->lock);
262         INIT_LIST_HEAD(&cpu_buffer->pages);
263
264         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
265         if (ret < 0)
266                 goto fail_free_buffer;
267
268         cpu_buffer->head_page
269                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
270         cpu_buffer->tail_page
271                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
272
273         return cpu_buffer;
274
275  fail_free_buffer:
276         kfree(cpu_buffer);
277         return NULL;
278 }
279
280 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
281 {
282         struct list_head *head = &cpu_buffer->pages;
283         struct buffer_page *page, *tmp;
284
285         list_for_each_entry_safe(page, tmp, head, list) {
286                 list_del_init(&page->list);
287                 __free_page(&page->page);
288         }
289         kfree(cpu_buffer);
290 }
291
292 /**
293  * ring_buffer_alloc - allocate a new ring_buffer
294  * @size: the size in bytes that is needed.
295  * @flags: attributes to set for the ring buffer.
296  *
297  * Currently the only flag that is available is the RB_FL_OVERWRITE
298  * flag. This flag means that the buffer will overwrite old data
299  * when the buffer wraps. If this flag is not set, the buffer will
300  * drop data when the tail hits the head.
301  */
302 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
303 {
304         struct ring_buffer *buffer;
305         int bsize;
306         int cpu;
307
308         /* keep it in its own cache line */
309         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
310                          GFP_KERNEL);
311         if (!buffer)
312                 return NULL;
313
314         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
315         buffer->flags = flags;
316
317         /* need at least two pages */
318         if (buffer->pages == 1)
319                 buffer->pages++;
320
321         buffer->cpumask = cpu_possible_map;
322         buffer->cpus = nr_cpu_ids;
323
324         bsize = sizeof(void *) * nr_cpu_ids;
325         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
326                                   GFP_KERNEL);
327         if (!buffer->buffers)
328                 goto fail_free_buffer;
329
330         for_each_buffer_cpu(buffer, cpu) {
331                 buffer->buffers[cpu] =
332                         rb_allocate_cpu_buffer(buffer, cpu);
333                 if (!buffer->buffers[cpu])
334                         goto fail_free_buffers;
335         }
336
337         mutex_init(&buffer->mutex);
338
339         return buffer;
340
341  fail_free_buffers:
342         for_each_buffer_cpu(buffer, cpu) {
343                 if (buffer->buffers[cpu])
344                         rb_free_cpu_buffer(buffer->buffers[cpu]);
345         }
346         kfree(buffer->buffers);
347
348  fail_free_buffer:
349         kfree(buffer);
350         return NULL;
351 }
352
353 /**
354  * ring_buffer_free - free a ring buffer.
355  * @buffer: the buffer to free.
356  */
357 void
358 ring_buffer_free(struct ring_buffer *buffer)
359 {
360         int cpu;
361
362         for_each_buffer_cpu(buffer, cpu)
363                 rb_free_cpu_buffer(buffer->buffers[cpu]);
364
365         kfree(buffer);
366 }
367
368 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
369
370 static void
371 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
372 {
373         struct buffer_page *page;
374         struct list_head *p;
375         unsigned i;
376
377         atomic_inc(&cpu_buffer->record_disabled);
378         synchronize_sched();
379
380         for (i = 0; i < nr_pages; i++) {
381                 BUG_ON(list_empty(&cpu_buffer->pages));
382                 p = cpu_buffer->pages.next;
383                 page = list_entry(p, struct buffer_page, list);
384                 list_del_init(&page->list);
385                 __free_page(&page->page);
386         }
387         BUG_ON(list_empty(&cpu_buffer->pages));
388
389         rb_reset_cpu(cpu_buffer);
390
391         rb_check_pages(cpu_buffer);
392
393         atomic_dec(&cpu_buffer->record_disabled);
394
395 }
396
397 static void
398 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
399                 struct list_head *pages, unsigned nr_pages)
400 {
401         struct buffer_page *page;
402         struct list_head *p;
403         unsigned i;
404
405         atomic_inc(&cpu_buffer->record_disabled);
406         synchronize_sched();
407
408         for (i = 0; i < nr_pages; i++) {
409                 BUG_ON(list_empty(pages));
410                 p = pages->next;
411                 page = list_entry(p, struct buffer_page, list);
412                 list_del_init(&page->list);
413                 list_add_tail(&page->list, &cpu_buffer->pages);
414         }
415         rb_reset_cpu(cpu_buffer);
416
417         rb_check_pages(cpu_buffer);
418
419         atomic_dec(&cpu_buffer->record_disabled);
420 }
421
422 /**
423  * ring_buffer_resize - resize the ring buffer
424  * @buffer: the buffer to resize.
425  * @size: the new size.
426  *
427  * The tracer is responsible for making sure that the buffer is
428  * not being used while changing the size.
429  * Note: We may be able to change the above requirement by using
430  *  RCU synchronizations.
431  *
432  * Minimum size is 2 * BUF_PAGE_SIZE.
433  *
434  * Returns -1 on failure.
435  */
436 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
437 {
438         struct ring_buffer_per_cpu *cpu_buffer;
439         unsigned nr_pages, rm_pages, new_pages;
440         struct buffer_page *page, *tmp;
441         unsigned long buffer_size;
442         unsigned long addr;
443         LIST_HEAD(pages);
444         int i, cpu;
445
446         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
447         size *= BUF_PAGE_SIZE;
448         buffer_size = buffer->pages * BUF_PAGE_SIZE;
449
450         /* we need a minimum of two pages */
451         if (size < BUF_PAGE_SIZE * 2)
452                 size = BUF_PAGE_SIZE * 2;
453
454         if (size == buffer_size)
455                 return size;
456
457         mutex_lock(&buffer->mutex);
458
459         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
460
461         if (size < buffer_size) {
462
463                 /* easy case, just free pages */
464                 BUG_ON(nr_pages >= buffer->pages);
465
466                 rm_pages = buffer->pages - nr_pages;
467
468                 for_each_buffer_cpu(buffer, cpu) {
469                         cpu_buffer = buffer->buffers[cpu];
470                         rb_remove_pages(cpu_buffer, rm_pages);
471                 }
472                 goto out;
473         }
474
475         /*
476          * This is a bit more difficult. We only want to add pages
477          * when we can allocate enough for all CPUs. We do this
478          * by allocating all the pages and storing them on a local
479          * link list. If we succeed in our allocation, then we
480          * add these pages to the cpu_buffers. Otherwise we just free
481          * them all and return -ENOMEM;
482          */
483         BUG_ON(nr_pages <= buffer->pages);
484         new_pages = nr_pages - buffer->pages;
485
486         for_each_buffer_cpu(buffer, cpu) {
487                 for (i = 0; i < new_pages; i++) {
488                         addr = __get_free_page(GFP_KERNEL);
489                         if (!addr)
490                                 goto free_pages;
491                         page = (struct buffer_page *)virt_to_page(addr);
492                         list_add(&page->list, &pages);
493                 }
494         }
495
496         for_each_buffer_cpu(buffer, cpu) {
497                 cpu_buffer = buffer->buffers[cpu];
498                 rb_insert_pages(cpu_buffer, &pages, new_pages);
499         }
500
501         BUG_ON(!list_empty(&pages));
502
503  out:
504         buffer->pages = nr_pages;
505         mutex_unlock(&buffer->mutex);
506
507         return size;
508
509  free_pages:
510         list_for_each_entry_safe(page, tmp, &pages, list) {
511                 list_del_init(&page->list);
512                 __free_page(&page->page);
513         }
514         return -ENOMEM;
515 }
516
517 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
518 {
519         return cpu_buffer->head_page == cpu_buffer->tail_page &&
520                 cpu_buffer->head == cpu_buffer->tail;
521 }
522
523 static inline int rb_null_event(struct ring_buffer_event *event)
524 {
525         return event->type == RINGBUF_TYPE_PADDING;
526 }
527
528 static inline void *rb_page_index(struct buffer_page *page, unsigned index)
529 {
530         void *addr = page_address(&page->page);
531
532         return addr + index;
533 }
534
535 static inline struct ring_buffer_event *
536 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
537 {
538         return rb_page_index(cpu_buffer->head_page,
539                              cpu_buffer->head);
540 }
541
542 static inline struct ring_buffer_event *
543 rb_iter_head_event(struct ring_buffer_iter *iter)
544 {
545         return rb_page_index(iter->head_page,
546                              iter->head);
547 }
548
549 /*
550  * When the tail hits the head and the buffer is in overwrite mode,
551  * the head jumps to the next page and all content on the previous
552  * page is discarded. But before doing so, we update the overrun
553  * variable of the buffer.
554  */
555 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
556 {
557         struct ring_buffer_event *event;
558         unsigned long head;
559
560         for (head = 0; head < rb_head_size(cpu_buffer);
561              head += rb_event_length(event)) {
562
563                 event = rb_page_index(cpu_buffer->head_page, head);
564                 BUG_ON(rb_null_event(event));
565                 /* Only count data entries */
566                 if (event->type != RINGBUF_TYPE_DATA)
567                         continue;
568                 cpu_buffer->overrun++;
569                 cpu_buffer->entries--;
570         }
571 }
572
573 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
574                                struct buffer_page **page)
575 {
576         struct list_head *p = (*page)->list.next;
577
578         if (p == &cpu_buffer->pages)
579                 p = p->next;
580
581         *page = list_entry(p, struct buffer_page, list);
582 }
583
584 static inline void
585 rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
586 {
587         cpu_buffer->tail_page->time_stamp = *ts;
588         cpu_buffer->write_stamp = *ts;
589 }
590
591 static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer)
592 {
593         cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp;
594         cpu_buffer->head = 0;
595 }
596
597 static void
598 rb_reset_iter_read_page(struct ring_buffer_iter *iter)
599 {
600         iter->read_stamp = iter->head_page->time_stamp;
601         iter->head = 0;
602 }
603
604 /**
605  * ring_buffer_update_event - update event type and data
606  * @event: the even to update
607  * @type: the type of event
608  * @length: the size of the event field in the ring buffer
609  *
610  * Update the type and data fields of the event. The length
611  * is the actual size that is written to the ring buffer,
612  * and with this, we can determine what to place into the
613  * data field.
614  */
615 static inline void
616 rb_update_event(struct ring_buffer_event *event,
617                          unsigned type, unsigned length)
618 {
619         event->type = type;
620
621         switch (type) {
622
623         case RINGBUF_TYPE_PADDING:
624                 break;
625
626         case RINGBUF_TYPE_TIME_EXTEND:
627                 event->len =
628                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
629                         >> RB_ALIGNMENT_SHIFT;
630                 break;
631
632         case RINGBUF_TYPE_TIME_STAMP:
633                 event->len =
634                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
635                         >> RB_ALIGNMENT_SHIFT;
636                 break;
637
638         case RINGBUF_TYPE_DATA:
639                 length -= RB_EVNT_HDR_SIZE;
640                 if (length > RB_MAX_SMALL_DATA) {
641                         event->len = 0;
642                         event->array[0] = length;
643                 } else
644                         event->len =
645                                 (length + (RB_ALIGNMENT-1))
646                                 >> RB_ALIGNMENT_SHIFT;
647                 break;
648         default:
649                 BUG();
650         }
651 }
652
653 static inline unsigned rb_calculate_event_length(unsigned length)
654 {
655         struct ring_buffer_event event; /* Used only for sizeof array */
656
657         /* zero length can cause confusions */
658         if (!length)
659                 length = 1;
660
661         if (length > RB_MAX_SMALL_DATA)
662                 length += sizeof(event.array[0]);
663
664         length += RB_EVNT_HDR_SIZE;
665         length = ALIGN(length, RB_ALIGNMENT);
666
667         return length;
668 }
669
670 static struct ring_buffer_event *
671 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
672                   unsigned type, unsigned long length, u64 *ts)
673 {
674         struct buffer_page *head_page, *tail_page;
675         unsigned long tail;
676         struct ring_buffer *buffer = cpu_buffer->buffer;
677         struct ring_buffer_event *event;
678
679         tail_page = cpu_buffer->tail_page;
680         head_page = cpu_buffer->head_page;
681         tail = cpu_buffer->tail;
682
683         if (tail + length > BUF_PAGE_SIZE) {
684                 struct buffer_page *next_page = tail_page;
685
686                 rb_inc_page(cpu_buffer, &next_page);
687
688                 if (next_page == head_page) {
689                         if (!(buffer->flags & RB_FL_OVERWRITE))
690                                 return NULL;
691
692                         /* count overflows */
693                         rb_update_overflow(cpu_buffer);
694
695                         rb_inc_page(cpu_buffer, &head_page);
696                         cpu_buffer->head_page = head_page;
697                         rb_reset_read_page(cpu_buffer);
698                 }
699
700                 if (tail != BUF_PAGE_SIZE) {
701                         event = rb_page_index(tail_page, tail);
702                         /* page padding */
703                         event->type = RINGBUF_TYPE_PADDING;
704                 }
705
706                 tail_page->size = tail;
707                 tail_page = next_page;
708                 tail_page->size = 0;
709                 tail = 0;
710                 cpu_buffer->tail_page = tail_page;
711                 cpu_buffer->tail = tail;
712                 rb_add_stamp(cpu_buffer, ts);
713         }
714
715         BUG_ON(tail + length > BUF_PAGE_SIZE);
716
717         event = rb_page_index(tail_page, tail);
718         rb_update_event(event, type, length);
719
720         return event;
721 }
722
723 static int
724 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
725                   u64 *ts, u64 *delta)
726 {
727         struct ring_buffer_event *event;
728         static int once;
729
730         if (unlikely(*delta > (1ULL << 59) && !once++)) {
731                 printk(KERN_WARNING "Delta way too big! %llu"
732                        " ts=%llu write stamp = %llu\n",
733                        *delta, *ts, cpu_buffer->write_stamp);
734                 WARN_ON(1);
735         }
736
737         /*
738          * The delta is too big, we to add a
739          * new timestamp.
740          */
741         event = __rb_reserve_next(cpu_buffer,
742                                   RINGBUF_TYPE_TIME_EXTEND,
743                                   RB_LEN_TIME_EXTEND,
744                                   ts);
745         if (!event)
746                 return -1;
747
748         /* check to see if we went to the next page */
749         if (cpu_buffer->tail) {
750                 /* Still on same page, update timestamp */
751                 event->time_delta = *delta & TS_MASK;
752                 event->array[0] = *delta >> TS_SHIFT;
753                 /* commit the time event */
754                 cpu_buffer->tail +=
755                         rb_event_length(event);
756                 cpu_buffer->write_stamp = *ts;
757                 *delta = 0;
758         }
759
760         return 0;
761 }
762
763 static struct ring_buffer_event *
764 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
765                       unsigned type, unsigned long length)
766 {
767         struct ring_buffer_event *event;
768         u64 ts, delta;
769
770         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
771
772         if (cpu_buffer->tail) {
773                 delta = ts - cpu_buffer->write_stamp;
774
775                 if (test_time_stamp(delta)) {
776                         int ret;
777
778                         ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
779                         if (ret < 0)
780                                 return NULL;
781                 }
782         } else {
783                 rb_add_stamp(cpu_buffer, &ts);
784                 delta = 0;
785         }
786
787         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
788         if (!event)
789                 return NULL;
790
791         /* If the reserve went to the next page, our delta is zero */
792         if (!cpu_buffer->tail)
793                 delta = 0;
794
795         event->time_delta = delta;
796
797         return event;
798 }
799
800 /**
801  * ring_buffer_lock_reserve - reserve a part of the buffer
802  * @buffer: the ring buffer to reserve from
803  * @length: the length of the data to reserve (excluding event header)
804  * @flags: a pointer to save the interrupt flags
805  *
806  * Returns a reseverd event on the ring buffer to copy directly to.
807  * The user of this interface will need to get the body to write into
808  * and can use the ring_buffer_event_data() interface.
809  *
810  * The length is the length of the data needed, not the event length
811  * which also includes the event header.
812  *
813  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
814  * If NULL is returned, then nothing has been allocated or locked.
815  */
816 struct ring_buffer_event *
817 ring_buffer_lock_reserve(struct ring_buffer *buffer,
818                          unsigned long length,
819                          unsigned long *flags)
820 {
821         struct ring_buffer_per_cpu *cpu_buffer;
822         struct ring_buffer_event *event;
823         int cpu;
824
825         if (atomic_read(&buffer->record_disabled))
826                 return NULL;
827
828         raw_local_irq_save(*flags);
829         cpu = raw_smp_processor_id();
830
831         if (!cpu_isset(cpu, buffer->cpumask))
832                 goto out_irq;
833
834         cpu_buffer = buffer->buffers[cpu];
835         spin_lock(&cpu_buffer->lock);
836
837         if (atomic_read(&cpu_buffer->record_disabled))
838                 goto no_record;
839
840         length = rb_calculate_event_length(length);
841         if (length > BUF_PAGE_SIZE)
842                 return NULL;
843
844         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
845         if (!event)
846                 goto no_record;
847
848         return event;
849
850  no_record:
851         spin_unlock(&cpu_buffer->lock);
852  out_irq:
853         local_irq_restore(*flags);
854         return NULL;
855 }
856
857 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
858                       struct ring_buffer_event *event)
859 {
860         cpu_buffer->tail += rb_event_length(event);
861         cpu_buffer->tail_page->size = cpu_buffer->tail;
862         cpu_buffer->write_stamp += event->time_delta;
863         cpu_buffer->entries++;
864 }
865
866 /**
867  * ring_buffer_unlock_commit - commit a reserved
868  * @buffer: The buffer to commit to
869  * @event: The event pointer to commit.
870  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
871  *
872  * This commits the data to the ring buffer, and releases any locks held.
873  *
874  * Must be paired with ring_buffer_lock_reserve.
875  */
876 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
877                               struct ring_buffer_event *event,
878                               unsigned long flags)
879 {
880         struct ring_buffer_per_cpu *cpu_buffer;
881         int cpu = raw_smp_processor_id();
882
883         cpu_buffer = buffer->buffers[cpu];
884
885         assert_spin_locked(&cpu_buffer->lock);
886
887         rb_commit(cpu_buffer, event);
888
889         spin_unlock(&cpu_buffer->lock);
890         raw_local_irq_restore(flags);
891
892         return 0;
893 }
894
895 /**
896  * ring_buffer_write - write data to the buffer without reserving
897  * @buffer: The ring buffer to write to.
898  * @length: The length of the data being written (excluding the event header)
899  * @data: The data to write to the buffer.
900  *
901  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
902  * one function. If you already have the data to write to the buffer, it
903  * may be easier to simply call this function.
904  *
905  * Note, like ring_buffer_lock_reserve, the length is the length of the data
906  * and not the length of the event which would hold the header.
907  */
908 int ring_buffer_write(struct ring_buffer *buffer,
909                         unsigned long length,
910                         void *data)
911 {
912         struct ring_buffer_per_cpu *cpu_buffer;
913         struct ring_buffer_event *event;
914         unsigned long event_length, flags;
915         void *body;
916         int ret = -EBUSY;
917         int cpu;
918
919         if (atomic_read(&buffer->record_disabled))
920                 return -EBUSY;
921
922         local_irq_save(flags);
923         cpu = raw_smp_processor_id();
924
925         if (!cpu_isset(cpu, buffer->cpumask))
926                 goto out_irq;
927
928         cpu_buffer = buffer->buffers[cpu];
929         spin_lock(&cpu_buffer->lock);
930
931         if (atomic_read(&cpu_buffer->record_disabled))
932                 goto out;
933
934         event_length = rb_calculate_event_length(length);
935         event = rb_reserve_next_event(cpu_buffer,
936                                       RINGBUF_TYPE_DATA, event_length);
937         if (!event)
938                 goto out;
939
940         body = rb_event_data(event);
941
942         memcpy(body, data, length);
943
944         rb_commit(cpu_buffer, event);
945
946         ret = 0;
947  out:
948         spin_unlock(&cpu_buffer->lock);
949  out_irq:
950         local_irq_restore(flags);
951
952         return ret;
953 }
954
955 /**
956  * ring_buffer_lock - lock the ring buffer
957  * @buffer: The ring buffer to lock
958  * @flags: The place to store the interrupt flags
959  *
960  * This locks all the per CPU buffers.
961  *
962  * Must be unlocked by ring_buffer_unlock.
963  */
964 void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags)
965 {
966         struct ring_buffer_per_cpu *cpu_buffer;
967         int cpu;
968
969         local_irq_save(*flags);
970
971         for_each_buffer_cpu(buffer, cpu) {
972                 cpu_buffer = buffer->buffers[cpu];
973                 spin_lock(&cpu_buffer->lock);
974         }
975 }
976
977 /**
978  * ring_buffer_unlock - unlock a locked buffer
979  * @buffer: The locked buffer to unlock
980  * @flags: The interrupt flags received by ring_buffer_lock
981  */
982 void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags)
983 {
984         struct ring_buffer_per_cpu *cpu_buffer;
985         int cpu;
986
987         for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) {
988                 if (!cpu_isset(cpu, buffer->cpumask))
989                         continue;
990                 cpu_buffer = buffer->buffers[cpu];
991                 spin_unlock(&cpu_buffer->lock);
992         }
993
994         local_irq_restore(flags);
995 }
996
997 /**
998  * ring_buffer_record_disable - stop all writes into the buffer
999  * @buffer: The ring buffer to stop writes to.
1000  *
1001  * This prevents all writes to the buffer. Any attempt to write
1002  * to the buffer after this will fail and return NULL.
1003  *
1004  * The caller should call synchronize_sched() after this.
1005  */
1006 void ring_buffer_record_disable(struct ring_buffer *buffer)
1007 {
1008         atomic_inc(&buffer->record_disabled);
1009 }
1010
1011 /**
1012  * ring_buffer_record_enable - enable writes to the buffer
1013  * @buffer: The ring buffer to enable writes
1014  *
1015  * Note, multiple disables will need the same number of enables
1016  * to truely enable the writing (much like preempt_disable).
1017  */
1018 void ring_buffer_record_enable(struct ring_buffer *buffer)
1019 {
1020         atomic_dec(&buffer->record_disabled);
1021 }
1022
1023 /**
1024  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1025  * @buffer: The ring buffer to stop writes to.
1026  * @cpu: The CPU buffer to stop
1027  *
1028  * This prevents all writes to the buffer. Any attempt to write
1029  * to the buffer after this will fail and return NULL.
1030  *
1031  * The caller should call synchronize_sched() after this.
1032  */
1033 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1034 {
1035         struct ring_buffer_per_cpu *cpu_buffer;
1036
1037         if (!cpu_isset(cpu, buffer->cpumask))
1038                 return;
1039
1040         cpu_buffer = buffer->buffers[cpu];
1041         atomic_inc(&cpu_buffer->record_disabled);
1042 }
1043
1044 /**
1045  * ring_buffer_record_enable_cpu - enable writes to the buffer
1046  * @buffer: The ring buffer to enable writes
1047  * @cpu: The CPU to enable.
1048  *
1049  * Note, multiple disables will need the same number of enables
1050  * to truely enable the writing (much like preempt_disable).
1051  */
1052 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1053 {
1054         struct ring_buffer_per_cpu *cpu_buffer;
1055
1056         if (!cpu_isset(cpu, buffer->cpumask))
1057                 return;
1058
1059         cpu_buffer = buffer->buffers[cpu];
1060         atomic_dec(&cpu_buffer->record_disabled);
1061 }
1062
1063 /**
1064  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1065  * @buffer: The ring buffer
1066  * @cpu: The per CPU buffer to get the entries from.
1067  */
1068 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1069 {
1070         struct ring_buffer_per_cpu *cpu_buffer;
1071
1072         if (!cpu_isset(cpu, buffer->cpumask))
1073                 return 0;
1074
1075         cpu_buffer = buffer->buffers[cpu];
1076         return cpu_buffer->entries;
1077 }
1078
1079 /**
1080  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1081  * @buffer: The ring buffer
1082  * @cpu: The per CPU buffer to get the number of overruns from
1083  */
1084 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1085 {
1086         struct ring_buffer_per_cpu *cpu_buffer;
1087
1088         if (!cpu_isset(cpu, buffer->cpumask))
1089                 return 0;
1090
1091         cpu_buffer = buffer->buffers[cpu];
1092         return cpu_buffer->overrun;
1093 }
1094
1095 /**
1096  * ring_buffer_entries - get the number of entries in a buffer
1097  * @buffer: The ring buffer
1098  *
1099  * Returns the total number of entries in the ring buffer
1100  * (all CPU entries)
1101  */
1102 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1103 {
1104         struct ring_buffer_per_cpu *cpu_buffer;
1105         unsigned long entries = 0;
1106         int cpu;
1107
1108         /* if you care about this being correct, lock the buffer */
1109         for_each_buffer_cpu(buffer, cpu) {
1110                 cpu_buffer = buffer->buffers[cpu];
1111                 entries += cpu_buffer->entries;
1112         }
1113
1114         return entries;
1115 }
1116
1117 /**
1118  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1119  * @buffer: The ring buffer
1120  *
1121  * Returns the total number of overruns in the ring buffer
1122  * (all CPU entries)
1123  */
1124 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1125 {
1126         struct ring_buffer_per_cpu *cpu_buffer;
1127         unsigned long overruns = 0;
1128         int cpu;
1129
1130         /* if you care about this being correct, lock the buffer */
1131         for_each_buffer_cpu(buffer, cpu) {
1132                 cpu_buffer = buffer->buffers[cpu];
1133                 overruns += cpu_buffer->overrun;
1134         }
1135
1136         return overruns;
1137 }
1138
1139 /**
1140  * ring_buffer_iter_reset - reset an iterator
1141  * @iter: The iterator to reset
1142  *
1143  * Resets the iterator, so that it will start from the beginning
1144  * again.
1145  */
1146 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1147 {
1148         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1149
1150         iter->head_page = cpu_buffer->head_page;
1151         iter->head = cpu_buffer->head;
1152         rb_reset_iter_read_page(iter);
1153 }
1154
1155 /**
1156  * ring_buffer_iter_empty - check if an iterator has no more to read
1157  * @iter: The iterator to check
1158  */
1159 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1160 {
1161         struct ring_buffer_per_cpu *cpu_buffer;
1162
1163         cpu_buffer = iter->cpu_buffer;
1164
1165         return iter->head_page == cpu_buffer->tail_page &&
1166                 iter->head == cpu_buffer->tail;
1167 }
1168
1169 static void
1170 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1171                      struct ring_buffer_event *event)
1172 {
1173         u64 delta;
1174
1175         switch (event->type) {
1176         case RINGBUF_TYPE_PADDING:
1177                 return;
1178
1179         case RINGBUF_TYPE_TIME_EXTEND:
1180                 delta = event->array[0];
1181                 delta <<= TS_SHIFT;
1182                 delta += event->time_delta;
1183                 cpu_buffer->read_stamp += delta;
1184                 return;
1185
1186         case RINGBUF_TYPE_TIME_STAMP:
1187                 /* FIXME: not implemented */
1188                 return;
1189
1190         case RINGBUF_TYPE_DATA:
1191                 cpu_buffer->read_stamp += event->time_delta;
1192                 return;
1193
1194         default:
1195                 BUG();
1196         }
1197         return;
1198 }
1199
1200 static void
1201 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1202                           struct ring_buffer_event *event)
1203 {
1204         u64 delta;
1205
1206         switch (event->type) {
1207         case RINGBUF_TYPE_PADDING:
1208                 return;
1209
1210         case RINGBUF_TYPE_TIME_EXTEND:
1211                 delta = event->array[0];
1212                 delta <<= TS_SHIFT;
1213                 delta += event->time_delta;
1214                 iter->read_stamp += delta;
1215                 return;
1216
1217         case RINGBUF_TYPE_TIME_STAMP:
1218                 /* FIXME: not implemented */
1219                 return;
1220
1221         case RINGBUF_TYPE_DATA:
1222                 iter->read_stamp += event->time_delta;
1223                 return;
1224
1225         default:
1226                 BUG();
1227         }
1228         return;
1229 }
1230
1231 static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer)
1232 {
1233         struct ring_buffer_event *event;
1234         unsigned length;
1235
1236         /*
1237          * Check if we are at the end of the buffer.
1238          */
1239         if (cpu_buffer->head >= cpu_buffer->head_page->size) {
1240                 BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page);
1241                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1242                 rb_reset_read_page(cpu_buffer);
1243                 return;
1244         }
1245
1246         event = rb_head_event(cpu_buffer);
1247
1248         if (event->type == RINGBUF_TYPE_DATA)
1249                 cpu_buffer->entries--;
1250
1251         length = rb_event_length(event);
1252
1253         /*
1254          * This should not be called to advance the header if we are
1255          * at the tail of the buffer.
1256          */
1257         BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) &&
1258                (cpu_buffer->head + length > cpu_buffer->tail));
1259
1260         rb_update_read_stamp(cpu_buffer, event);
1261
1262         cpu_buffer->head += length;
1263
1264         /* check for end of page */
1265         if ((cpu_buffer->head >= cpu_buffer->head_page->size) &&
1266             (cpu_buffer->head_page != cpu_buffer->tail_page))
1267                 rb_advance_head(cpu_buffer);
1268 }
1269
1270 static void rb_advance_iter(struct ring_buffer_iter *iter)
1271 {
1272         struct ring_buffer *buffer;
1273         struct ring_buffer_per_cpu *cpu_buffer;
1274         struct ring_buffer_event *event;
1275         unsigned length;
1276
1277         cpu_buffer = iter->cpu_buffer;
1278         buffer = cpu_buffer->buffer;
1279
1280         /*
1281          * Check if we are at the end of the buffer.
1282          */
1283         if (iter->head >= iter->head_page->size) {
1284                 BUG_ON(iter->head_page == cpu_buffer->tail_page);
1285                 rb_inc_page(cpu_buffer, &iter->head_page);
1286                 rb_reset_iter_read_page(iter);
1287                 return;
1288         }
1289
1290         event = rb_iter_head_event(iter);
1291
1292         length = rb_event_length(event);
1293
1294         /*
1295          * This should not be called to advance the header if we are
1296          * at the tail of the buffer.
1297          */
1298         BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
1299                (iter->head + length > cpu_buffer->tail));
1300
1301         rb_update_iter_read_stamp(iter, event);
1302
1303         iter->head += length;
1304
1305         /* check for end of page padding */
1306         if ((iter->head >= iter->head_page->size) &&
1307             (iter->head_page != cpu_buffer->tail_page))
1308                 rb_advance_iter(iter);
1309 }
1310
1311 /**
1312  * ring_buffer_peek - peek at the next event to be read
1313  * @buffer: The ring buffer to read
1314  * @cpu: The cpu to peak at
1315  * @ts: The timestamp counter of this event.
1316  *
1317  * This will return the event that will be read next, but does
1318  * not consume the data.
1319  */
1320 struct ring_buffer_event *
1321 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1322 {
1323         struct ring_buffer_per_cpu *cpu_buffer;
1324         struct ring_buffer_event *event;
1325
1326         if (!cpu_isset(cpu, buffer->cpumask))
1327                 return NULL;
1328
1329         cpu_buffer = buffer->buffers[cpu];
1330
1331  again:
1332         if (rb_per_cpu_empty(cpu_buffer))
1333                 return NULL;
1334
1335         event = rb_head_event(cpu_buffer);
1336
1337         switch (event->type) {
1338         case RINGBUF_TYPE_PADDING:
1339                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1340                 rb_reset_read_page(cpu_buffer);
1341                 goto again;
1342
1343         case RINGBUF_TYPE_TIME_EXTEND:
1344                 /* Internal data, OK to advance */
1345                 rb_advance_head(cpu_buffer);
1346                 goto again;
1347
1348         case RINGBUF_TYPE_TIME_STAMP:
1349                 /* FIXME: not implemented */
1350                 rb_advance_head(cpu_buffer);
1351                 goto again;
1352
1353         case RINGBUF_TYPE_DATA:
1354                 if (ts) {
1355                         *ts = cpu_buffer->read_stamp + event->time_delta;
1356                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1357                 }
1358                 return event;
1359
1360         default:
1361                 BUG();
1362         }
1363
1364         return NULL;
1365 }
1366
1367 /**
1368  * ring_buffer_iter_peek - peek at the next event to be read
1369  * @iter: The ring buffer iterator
1370  * @ts: The timestamp counter of this event.
1371  *
1372  * This will return the event that will be read next, but does
1373  * not increment the iterator.
1374  */
1375 struct ring_buffer_event *
1376 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1377 {
1378         struct ring_buffer *buffer;
1379         struct ring_buffer_per_cpu *cpu_buffer;
1380         struct ring_buffer_event *event;
1381
1382         if (ring_buffer_iter_empty(iter))
1383                 return NULL;
1384
1385         cpu_buffer = iter->cpu_buffer;
1386         buffer = cpu_buffer->buffer;
1387
1388  again:
1389         if (rb_per_cpu_empty(cpu_buffer))
1390                 return NULL;
1391
1392         event = rb_iter_head_event(iter);
1393
1394         switch (event->type) {
1395         case RINGBUF_TYPE_PADDING:
1396                 rb_inc_page(cpu_buffer, &iter->head_page);
1397                 rb_reset_iter_read_page(iter);
1398                 goto again;
1399
1400         case RINGBUF_TYPE_TIME_EXTEND:
1401                 /* Internal data, OK to advance */
1402                 rb_advance_iter(iter);
1403                 goto again;
1404
1405         case RINGBUF_TYPE_TIME_STAMP:
1406                 /* FIXME: not implemented */
1407                 rb_advance_iter(iter);
1408                 goto again;
1409
1410         case RINGBUF_TYPE_DATA:
1411                 if (ts) {
1412                         *ts = iter->read_stamp + event->time_delta;
1413                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1414                 }
1415                 return event;
1416
1417         default:
1418                 BUG();
1419         }
1420
1421         return NULL;
1422 }
1423
1424 /**
1425  * ring_buffer_consume - return an event and consume it
1426  * @buffer: The ring buffer to get the next event from
1427  *
1428  * Returns the next event in the ring buffer, and that event is consumed.
1429  * Meaning, that sequential reads will keep returning a different event,
1430  * and eventually empty the ring buffer if the producer is slower.
1431  */
1432 struct ring_buffer_event *
1433 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1434 {
1435         struct ring_buffer_per_cpu *cpu_buffer;
1436         struct ring_buffer_event *event;
1437
1438         if (!cpu_isset(cpu, buffer->cpumask))
1439                 return NULL;
1440
1441         event = ring_buffer_peek(buffer, cpu, ts);
1442         if (!event)
1443                 return NULL;
1444
1445         cpu_buffer = buffer->buffers[cpu];
1446         rb_advance_head(cpu_buffer);
1447
1448         return event;
1449 }
1450
1451 /**
1452  * ring_buffer_read_start - start a non consuming read of the buffer
1453  * @buffer: The ring buffer to read from
1454  * @cpu: The cpu buffer to iterate over
1455  *
1456  * This starts up an iteration through the buffer. It also disables
1457  * the recording to the buffer until the reading is finished.
1458  * This prevents the reading from being corrupted. This is not
1459  * a consuming read, so a producer is not expected.
1460  *
1461  * Must be paired with ring_buffer_finish.
1462  */
1463 struct ring_buffer_iter *
1464 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1465 {
1466         struct ring_buffer_per_cpu *cpu_buffer;
1467         struct ring_buffer_iter *iter;
1468
1469         if (!cpu_isset(cpu, buffer->cpumask))
1470                 return NULL;
1471
1472         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1473         if (!iter)
1474                 return NULL;
1475
1476         cpu_buffer = buffer->buffers[cpu];
1477
1478         iter->cpu_buffer = cpu_buffer;
1479
1480         atomic_inc(&cpu_buffer->record_disabled);
1481         synchronize_sched();
1482
1483         spin_lock(&cpu_buffer->lock);
1484         iter->head = cpu_buffer->head;
1485         iter->head_page = cpu_buffer->head_page;
1486         rb_reset_iter_read_page(iter);
1487         spin_unlock(&cpu_buffer->lock);
1488
1489         return iter;
1490 }
1491
1492 /**
1493  * ring_buffer_finish - finish reading the iterator of the buffer
1494  * @iter: The iterator retrieved by ring_buffer_start
1495  *
1496  * This re-enables the recording to the buffer, and frees the
1497  * iterator.
1498  */
1499 void
1500 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1501 {
1502         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1503
1504         atomic_dec(&cpu_buffer->record_disabled);
1505         kfree(iter);
1506 }
1507
1508 /**
1509  * ring_buffer_read - read the next item in the ring buffer by the iterator
1510  * @iter: The ring buffer iterator
1511  * @ts: The time stamp of the event read.
1512  *
1513  * This reads the next event in the ring buffer and increments the iterator.
1514  */
1515 struct ring_buffer_event *
1516 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1517 {
1518         struct ring_buffer_event *event;
1519
1520         event = ring_buffer_iter_peek(iter, ts);
1521         if (!event)
1522                 return NULL;
1523
1524         rb_advance_iter(iter);
1525
1526         return event;
1527 }
1528
1529 /**
1530  * ring_buffer_size - return the size of the ring buffer (in bytes)
1531  * @buffer: The ring buffer.
1532  */
1533 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1534 {
1535         return BUF_PAGE_SIZE * buffer->pages;
1536 }
1537
1538 static void
1539 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1540 {
1541         cpu_buffer->head_page
1542                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1543         cpu_buffer->tail_page
1544                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1545
1546         cpu_buffer->head = cpu_buffer->tail = 0;
1547         cpu_buffer->overrun = 0;
1548         cpu_buffer->entries = 0;
1549 }
1550
1551 /**
1552  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1553  * @buffer: The ring buffer to reset a per cpu buffer of
1554  * @cpu: The CPU buffer to be reset
1555  */
1556 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1557 {
1558         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1559         unsigned long flags;
1560
1561         if (!cpu_isset(cpu, buffer->cpumask))
1562                 return;
1563
1564         raw_local_irq_save(flags);
1565         spin_lock(&cpu_buffer->lock);
1566
1567         rb_reset_cpu(cpu_buffer);
1568
1569         spin_unlock(&cpu_buffer->lock);
1570         raw_local_irq_restore(flags);
1571 }
1572
1573 /**
1574  * ring_buffer_reset - reset a ring buffer
1575  * @buffer: The ring buffer to reset all cpu buffers
1576  */
1577 void ring_buffer_reset(struct ring_buffer *buffer)
1578 {
1579         unsigned long flags;
1580         int cpu;
1581
1582         ring_buffer_lock(buffer, &flags);
1583
1584         for_each_buffer_cpu(buffer, cpu)
1585                 rb_reset_cpu(buffer->buffers[cpu]);
1586
1587         ring_buffer_unlock(buffer, flags);
1588 }
1589
1590 /**
1591  * rind_buffer_empty - is the ring buffer empty?
1592  * @buffer: The ring buffer to test
1593  */
1594 int ring_buffer_empty(struct ring_buffer *buffer)
1595 {
1596         struct ring_buffer_per_cpu *cpu_buffer;
1597         int cpu;
1598
1599         /* yes this is racy, but if you don't like the race, lock the buffer */
1600         for_each_buffer_cpu(buffer, cpu) {
1601                 cpu_buffer = buffer->buffers[cpu];
1602                 if (!rb_per_cpu_empty(cpu_buffer))
1603                         return 0;
1604         }
1605         return 1;
1606 }
1607
1608 /**
1609  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
1610  * @buffer: The ring buffer
1611  * @cpu: The CPU buffer to test
1612  */
1613 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
1614 {
1615         struct ring_buffer_per_cpu *cpu_buffer;
1616
1617         if (!cpu_isset(cpu, buffer->cpumask))
1618                 return 1;
1619
1620         cpu_buffer = buffer->buffers[cpu];
1621         return rb_per_cpu_empty(cpu_buffer);
1622 }
1623
1624 /**
1625  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
1626  * @buffer_a: One buffer to swap with
1627  * @buffer_b: The other buffer to swap with
1628  *
1629  * This function is useful for tracers that want to take a "snapshot"
1630  * of a CPU buffer and has another back up buffer lying around.
1631  * it is expected that the tracer handles the cpu buffer not being
1632  * used at the moment.
1633  */
1634 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
1635                          struct ring_buffer *buffer_b, int cpu)
1636 {
1637         struct ring_buffer_per_cpu *cpu_buffer_a;
1638         struct ring_buffer_per_cpu *cpu_buffer_b;
1639
1640         if (!cpu_isset(cpu, buffer_a->cpumask) ||
1641             !cpu_isset(cpu, buffer_b->cpumask))
1642                 return -EINVAL;
1643
1644         /* At least make sure the two buffers are somewhat the same */
1645         if (buffer_a->size != buffer_b->size ||
1646             buffer_a->pages != buffer_b->pages)
1647                 return -EINVAL;
1648
1649         cpu_buffer_a = buffer_a->buffers[cpu];
1650         cpu_buffer_b = buffer_b->buffers[cpu];
1651
1652         /*
1653          * We can't do a synchronize_sched here because this
1654          * function can be called in atomic context.
1655          * Normally this will be called from the same CPU as cpu.
1656          * If not it's up to the caller to protect this.
1657          */
1658         atomic_inc(&cpu_buffer_a->record_disabled);
1659         atomic_inc(&cpu_buffer_b->record_disabled);
1660
1661         buffer_a->buffers[cpu] = cpu_buffer_b;
1662         buffer_b->buffers[cpu] = cpu_buffer_a;
1663
1664         cpu_buffer_b->buffer = buffer_a;
1665         cpu_buffer_a->buffer = buffer_b;
1666
1667         atomic_dec(&cpu_buffer_a->record_disabled);
1668         atomic_dec(&cpu_buffer_b->record_disabled);
1669
1670         return 0;
1671 }
1672