ring-buffer: add NMI protection for spinlocks
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/ftrace_irq.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/module.h>
12 #include <linux/percpu.h>
13 #include <linux/mutex.h>
14 #include <linux/sched.h>        /* used for sched_clock() (for now) */
15 #include <linux/init.h>
16 #include <linux/hash.h>
17 #include <linux/list.h>
18 #include <linux/fs.h>
19
20 #include "trace.h"
21
22 /*
23  * Since the write to the buffer is still not fully lockless,
24  * we must be careful with NMIs. The locks in the writers
25  * are taken when a write crosses to a new page. The locks
26  * protect against races with the readers (this will soon
27  * be fixed with a lockless solution).
28  *
29  * Because we can not protect against NMIs, and we want to
30  * keep traces reentrant, we need to manage what happens
31  * when we are in an NMI.
32  */
33 static DEFINE_PER_CPU(int, rb_in_nmi);
34
35 void ftrace_nmi_enter(void)
36 {
37         __get_cpu_var(rb_in_nmi)++;
38         /* call arch specific handler too */
39         arch_ftrace_nmi_enter();
40 }
41
42 void ftrace_nmi_exit(void)
43 {
44         arch_ftrace_nmi_exit();
45         __get_cpu_var(rb_in_nmi)--;
46         /* NMIs are not recursive */
47         WARN_ON_ONCE(__get_cpu_var(rb_in_nmi));
48 }
49
50
51 /*
52  * A fast way to enable or disable all ring buffers is to
53  * call tracing_on or tracing_off. Turning off the ring buffers
54  * prevents all ring buffers from being recorded to.
55  * Turning this switch on, makes it OK to write to the
56  * ring buffer, if the ring buffer is enabled itself.
57  *
58  * There's three layers that must be on in order to write
59  * to the ring buffer.
60  *
61  * 1) This global flag must be set.
62  * 2) The ring buffer must be enabled for recording.
63  * 3) The per cpu buffer must be enabled for recording.
64  *
65  * In case of an anomaly, this global flag has a bit set that
66  * will permantly disable all ring buffers.
67  */
68
69 /*
70  * Global flag to disable all recording to ring buffers
71  *  This has two bits: ON, DISABLED
72  *
73  *  ON   DISABLED
74  * ---- ----------
75  *   0      0        : ring buffers are off
76  *   1      0        : ring buffers are on
77  *   X      1        : ring buffers are permanently disabled
78  */
79
80 enum {
81         RB_BUFFERS_ON_BIT       = 0,
82         RB_BUFFERS_DISABLED_BIT = 1,
83 };
84
85 enum {
86         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
87         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
88 };
89
90 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
91
92 /**
93  * tracing_on - enable all tracing buffers
94  *
95  * This function enables all tracing buffers that may have been
96  * disabled with tracing_off.
97  */
98 void tracing_on(void)
99 {
100         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
101 }
102 EXPORT_SYMBOL_GPL(tracing_on);
103
104 /**
105  * tracing_off - turn off all tracing buffers
106  *
107  * This function stops all tracing buffers from recording data.
108  * It does not disable any overhead the tracers themselves may
109  * be causing. This function simply causes all recording to
110  * the ring buffers to fail.
111  */
112 void tracing_off(void)
113 {
114         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
115 }
116 EXPORT_SYMBOL_GPL(tracing_off);
117
118 /**
119  * tracing_off_permanent - permanently disable ring buffers
120  *
121  * This function, once called, will disable all ring buffers
122  * permanenty.
123  */
124 void tracing_off_permanent(void)
125 {
126         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
127 }
128
129 #include "trace.h"
130
131 /* Up this if you want to test the TIME_EXTENTS and normalization */
132 #define DEBUG_SHIFT 0
133
134 /* FIXME!!! */
135 u64 ring_buffer_time_stamp(int cpu)
136 {
137         u64 time;
138
139         preempt_disable_notrace();
140         /* shift to debug/test normalization and TIME_EXTENTS */
141         time = sched_clock() << DEBUG_SHIFT;
142         preempt_enable_no_resched_notrace();
143
144         return time;
145 }
146 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
147
148 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
149 {
150         /* Just stupid testing the normalize function and deltas */
151         *ts >>= DEBUG_SHIFT;
152 }
153 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
154
155 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
156 #define RB_ALIGNMENT            4U
157 #define RB_MAX_SMALL_DATA       28
158
159 enum {
160         RB_LEN_TIME_EXTEND = 8,
161         RB_LEN_TIME_STAMP = 16,
162 };
163
164 /* inline for ring buffer fast paths */
165 static unsigned
166 rb_event_length(struct ring_buffer_event *event)
167 {
168         unsigned length;
169
170         switch (event->type) {
171         case RINGBUF_TYPE_PADDING:
172                 /* undefined */
173                 return -1;
174
175         case RINGBUF_TYPE_TIME_EXTEND:
176                 return RB_LEN_TIME_EXTEND;
177
178         case RINGBUF_TYPE_TIME_STAMP:
179                 return RB_LEN_TIME_STAMP;
180
181         case RINGBUF_TYPE_DATA:
182                 if (event->len)
183                         length = event->len * RB_ALIGNMENT;
184                 else
185                         length = event->array[0];
186                 return length + RB_EVNT_HDR_SIZE;
187         default:
188                 BUG();
189         }
190         /* not hit */
191         return 0;
192 }
193
194 /**
195  * ring_buffer_event_length - return the length of the event
196  * @event: the event to get the length of
197  */
198 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
199 {
200         unsigned length = rb_event_length(event);
201         if (event->type != RINGBUF_TYPE_DATA)
202                 return length;
203         length -= RB_EVNT_HDR_SIZE;
204         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
205                 length -= sizeof(event->array[0]);
206         return length;
207 }
208 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
209
210 /* inline for ring buffer fast paths */
211 static void *
212 rb_event_data(struct ring_buffer_event *event)
213 {
214         BUG_ON(event->type != RINGBUF_TYPE_DATA);
215         /* If length is in len field, then array[0] has the data */
216         if (event->len)
217                 return (void *)&event->array[0];
218         /* Otherwise length is in array[0] and array[1] has the data */
219         return (void *)&event->array[1];
220 }
221
222 /**
223  * ring_buffer_event_data - return the data of the event
224  * @event: the event to get the data from
225  */
226 void *ring_buffer_event_data(struct ring_buffer_event *event)
227 {
228         return rb_event_data(event);
229 }
230 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
231
232 #define for_each_buffer_cpu(buffer, cpu)                \
233         for_each_cpu(cpu, buffer->cpumask)
234
235 #define TS_SHIFT        27
236 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
237 #define TS_DELTA_TEST   (~TS_MASK)
238
239 struct buffer_data_page {
240         u64              time_stamp;    /* page time stamp */
241         local_t          commit;        /* write commited index */
242         unsigned char    data[];        /* data of buffer page */
243 };
244
245 struct buffer_page {
246         local_t          write;         /* index for next write */
247         unsigned         read;          /* index for next read */
248         struct list_head list;          /* list of free pages */
249         struct buffer_data_page *page;  /* Actual data page */
250 };
251
252 static void rb_init_page(struct buffer_data_page *bpage)
253 {
254         local_set(&bpage->commit, 0);
255 }
256
257 /*
258  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
259  * this issue out.
260  */
261 static void free_buffer_page(struct buffer_page *bpage)
262 {
263         free_page((unsigned long)bpage->page);
264         kfree(bpage);
265 }
266
267 /*
268  * We need to fit the time_stamp delta into 27 bits.
269  */
270 static inline int test_time_stamp(u64 delta)
271 {
272         if (delta & TS_DELTA_TEST)
273                 return 1;
274         return 0;
275 }
276
277 #define BUF_PAGE_SIZE (PAGE_SIZE - offsetof(struct buffer_data_page, data))
278
279 /*
280  * head_page == tail_page && head == tail then buffer is empty.
281  */
282 struct ring_buffer_per_cpu {
283         int                             cpu;
284         struct ring_buffer              *buffer;
285         spinlock_t                      reader_lock; /* serialize readers */
286         raw_spinlock_t                  lock;
287         struct lock_class_key           lock_key;
288         struct list_head                pages;
289         struct buffer_page              *head_page;     /* read from head */
290         struct buffer_page              *tail_page;     /* write to tail */
291         struct buffer_page              *commit_page;   /* commited pages */
292         struct buffer_page              *reader_page;
293         unsigned long                   overrun;
294         unsigned long                   entries;
295         u64                             write_stamp;
296         u64                             read_stamp;
297         atomic_t                        record_disabled;
298 };
299
300 struct ring_buffer {
301         unsigned                        pages;
302         unsigned                        flags;
303         int                             cpus;
304         cpumask_var_t                   cpumask;
305         atomic_t                        record_disabled;
306
307         struct mutex                    mutex;
308
309         struct ring_buffer_per_cpu      **buffers;
310 };
311
312 struct ring_buffer_iter {
313         struct ring_buffer_per_cpu      *cpu_buffer;
314         unsigned long                   head;
315         struct buffer_page              *head_page;
316         u64                             read_stamp;
317 };
318
319 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
320 #define RB_WARN_ON(buffer, cond)                                \
321         ({                                                      \
322                 int _____ret = unlikely(cond);                  \
323                 if (_____ret) {                                 \
324                         atomic_inc(&buffer->record_disabled);   \
325                         WARN_ON(1);                             \
326                 }                                               \
327                 _____ret;                                       \
328         })
329
330 /**
331  * check_pages - integrity check of buffer pages
332  * @cpu_buffer: CPU buffer with pages to test
333  *
334  * As a safty measure we check to make sure the data pages have not
335  * been corrupted.
336  */
337 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
338 {
339         struct list_head *head = &cpu_buffer->pages;
340         struct buffer_page *bpage, *tmp;
341
342         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
343                 return -1;
344         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
345                 return -1;
346
347         list_for_each_entry_safe(bpage, tmp, head, list) {
348                 if (RB_WARN_ON(cpu_buffer,
349                                bpage->list.next->prev != &bpage->list))
350                         return -1;
351                 if (RB_WARN_ON(cpu_buffer,
352                                bpage->list.prev->next != &bpage->list))
353                         return -1;
354         }
355
356         return 0;
357 }
358
359 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
360                              unsigned nr_pages)
361 {
362         struct list_head *head = &cpu_buffer->pages;
363         struct buffer_page *bpage, *tmp;
364         unsigned long addr;
365         LIST_HEAD(pages);
366         unsigned i;
367
368         for (i = 0; i < nr_pages; i++) {
369                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
370                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
371                 if (!bpage)
372                         goto free_pages;
373                 list_add(&bpage->list, &pages);
374
375                 addr = __get_free_page(GFP_KERNEL);
376                 if (!addr)
377                         goto free_pages;
378                 bpage->page = (void *)addr;
379                 rb_init_page(bpage->page);
380         }
381
382         list_splice(&pages, head);
383
384         rb_check_pages(cpu_buffer);
385
386         return 0;
387
388  free_pages:
389         list_for_each_entry_safe(bpage, tmp, &pages, list) {
390                 list_del_init(&bpage->list);
391                 free_buffer_page(bpage);
392         }
393         return -ENOMEM;
394 }
395
396 static struct ring_buffer_per_cpu *
397 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
398 {
399         struct ring_buffer_per_cpu *cpu_buffer;
400         struct buffer_page *bpage;
401         unsigned long addr;
402         int ret;
403
404         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
405                                   GFP_KERNEL, cpu_to_node(cpu));
406         if (!cpu_buffer)
407                 return NULL;
408
409         cpu_buffer->cpu = cpu;
410         cpu_buffer->buffer = buffer;
411         spin_lock_init(&cpu_buffer->reader_lock);
412         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
413         INIT_LIST_HEAD(&cpu_buffer->pages);
414
415         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
416                             GFP_KERNEL, cpu_to_node(cpu));
417         if (!bpage)
418                 goto fail_free_buffer;
419
420         cpu_buffer->reader_page = bpage;
421         addr = __get_free_page(GFP_KERNEL);
422         if (!addr)
423                 goto fail_free_reader;
424         bpage->page = (void *)addr;
425         rb_init_page(bpage->page);
426
427         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
428
429         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
430         if (ret < 0)
431                 goto fail_free_reader;
432
433         cpu_buffer->head_page
434                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
435         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
436
437         return cpu_buffer;
438
439  fail_free_reader:
440         free_buffer_page(cpu_buffer->reader_page);
441
442  fail_free_buffer:
443         kfree(cpu_buffer);
444         return NULL;
445 }
446
447 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
448 {
449         struct list_head *head = &cpu_buffer->pages;
450         struct buffer_page *bpage, *tmp;
451
452         list_del_init(&cpu_buffer->reader_page->list);
453         free_buffer_page(cpu_buffer->reader_page);
454
455         list_for_each_entry_safe(bpage, tmp, head, list) {
456                 list_del_init(&bpage->list);
457                 free_buffer_page(bpage);
458         }
459         kfree(cpu_buffer);
460 }
461
462 /*
463  * Causes compile errors if the struct buffer_page gets bigger
464  * than the struct page.
465  */
466 extern int ring_buffer_page_too_big(void);
467
468 /**
469  * ring_buffer_alloc - allocate a new ring_buffer
470  * @size: the size in bytes per cpu that is needed.
471  * @flags: attributes to set for the ring buffer.
472  *
473  * Currently the only flag that is available is the RB_FL_OVERWRITE
474  * flag. This flag means that the buffer will overwrite old data
475  * when the buffer wraps. If this flag is not set, the buffer will
476  * drop data when the tail hits the head.
477  */
478 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
479 {
480         struct ring_buffer *buffer;
481         int bsize;
482         int cpu;
483
484         /* Paranoid! Optimizes out when all is well */
485         if (sizeof(struct buffer_page) > sizeof(struct page))
486                 ring_buffer_page_too_big();
487
488
489         /* keep it in its own cache line */
490         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
491                          GFP_KERNEL);
492         if (!buffer)
493                 return NULL;
494
495         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
496                 goto fail_free_buffer;
497
498         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
499         buffer->flags = flags;
500
501         /* need at least two pages */
502         if (buffer->pages == 1)
503                 buffer->pages++;
504
505         cpumask_copy(buffer->cpumask, cpu_possible_mask);
506         buffer->cpus = nr_cpu_ids;
507
508         bsize = sizeof(void *) * nr_cpu_ids;
509         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
510                                   GFP_KERNEL);
511         if (!buffer->buffers)
512                 goto fail_free_cpumask;
513
514         for_each_buffer_cpu(buffer, cpu) {
515                 buffer->buffers[cpu] =
516                         rb_allocate_cpu_buffer(buffer, cpu);
517                 if (!buffer->buffers[cpu])
518                         goto fail_free_buffers;
519         }
520
521         mutex_init(&buffer->mutex);
522
523         return buffer;
524
525  fail_free_buffers:
526         for_each_buffer_cpu(buffer, cpu) {
527                 if (buffer->buffers[cpu])
528                         rb_free_cpu_buffer(buffer->buffers[cpu]);
529         }
530         kfree(buffer->buffers);
531
532  fail_free_cpumask:
533         free_cpumask_var(buffer->cpumask);
534
535  fail_free_buffer:
536         kfree(buffer);
537         return NULL;
538 }
539 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
540
541 /**
542  * ring_buffer_free - free a ring buffer.
543  * @buffer: the buffer to free.
544  */
545 void
546 ring_buffer_free(struct ring_buffer *buffer)
547 {
548         int cpu;
549
550         for_each_buffer_cpu(buffer, cpu)
551                 rb_free_cpu_buffer(buffer->buffers[cpu]);
552
553         free_cpumask_var(buffer->cpumask);
554
555         kfree(buffer);
556 }
557 EXPORT_SYMBOL_GPL(ring_buffer_free);
558
559 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
560
561 static void
562 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
563 {
564         struct buffer_page *bpage;
565         struct list_head *p;
566         unsigned i;
567
568         atomic_inc(&cpu_buffer->record_disabled);
569         synchronize_sched();
570
571         for (i = 0; i < nr_pages; i++) {
572                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
573                         return;
574                 p = cpu_buffer->pages.next;
575                 bpage = list_entry(p, struct buffer_page, list);
576                 list_del_init(&bpage->list);
577                 free_buffer_page(bpage);
578         }
579         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
580                 return;
581
582         rb_reset_cpu(cpu_buffer);
583
584         rb_check_pages(cpu_buffer);
585
586         atomic_dec(&cpu_buffer->record_disabled);
587
588 }
589
590 static void
591 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
592                 struct list_head *pages, unsigned nr_pages)
593 {
594         struct buffer_page *bpage;
595         struct list_head *p;
596         unsigned i;
597
598         atomic_inc(&cpu_buffer->record_disabled);
599         synchronize_sched();
600
601         for (i = 0; i < nr_pages; i++) {
602                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
603                         return;
604                 p = pages->next;
605                 bpage = list_entry(p, struct buffer_page, list);
606                 list_del_init(&bpage->list);
607                 list_add_tail(&bpage->list, &cpu_buffer->pages);
608         }
609         rb_reset_cpu(cpu_buffer);
610
611         rb_check_pages(cpu_buffer);
612
613         atomic_dec(&cpu_buffer->record_disabled);
614 }
615
616 /**
617  * ring_buffer_resize - resize the ring buffer
618  * @buffer: the buffer to resize.
619  * @size: the new size.
620  *
621  * The tracer is responsible for making sure that the buffer is
622  * not being used while changing the size.
623  * Note: We may be able to change the above requirement by using
624  *  RCU synchronizations.
625  *
626  * Minimum size is 2 * BUF_PAGE_SIZE.
627  *
628  * Returns -1 on failure.
629  */
630 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
631 {
632         struct ring_buffer_per_cpu *cpu_buffer;
633         unsigned nr_pages, rm_pages, new_pages;
634         struct buffer_page *bpage, *tmp;
635         unsigned long buffer_size;
636         unsigned long addr;
637         LIST_HEAD(pages);
638         int i, cpu;
639
640         /*
641          * Always succeed at resizing a non-existent buffer:
642          */
643         if (!buffer)
644                 return size;
645
646         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
647         size *= BUF_PAGE_SIZE;
648         buffer_size = buffer->pages * BUF_PAGE_SIZE;
649
650         /* we need a minimum of two pages */
651         if (size < BUF_PAGE_SIZE * 2)
652                 size = BUF_PAGE_SIZE * 2;
653
654         if (size == buffer_size)
655                 return size;
656
657         mutex_lock(&buffer->mutex);
658
659         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
660
661         if (size < buffer_size) {
662
663                 /* easy case, just free pages */
664                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
665                         mutex_unlock(&buffer->mutex);
666                         return -1;
667                 }
668
669                 rm_pages = buffer->pages - nr_pages;
670
671                 for_each_buffer_cpu(buffer, cpu) {
672                         cpu_buffer = buffer->buffers[cpu];
673                         rb_remove_pages(cpu_buffer, rm_pages);
674                 }
675                 goto out;
676         }
677
678         /*
679          * This is a bit more difficult. We only want to add pages
680          * when we can allocate enough for all CPUs. We do this
681          * by allocating all the pages and storing them on a local
682          * link list. If we succeed in our allocation, then we
683          * add these pages to the cpu_buffers. Otherwise we just free
684          * them all and return -ENOMEM;
685          */
686         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
687                 mutex_unlock(&buffer->mutex);
688                 return -1;
689         }
690
691         new_pages = nr_pages - buffer->pages;
692
693         for_each_buffer_cpu(buffer, cpu) {
694                 for (i = 0; i < new_pages; i++) {
695                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
696                                                   cache_line_size()),
697                                             GFP_KERNEL, cpu_to_node(cpu));
698                         if (!bpage)
699                                 goto free_pages;
700                         list_add(&bpage->list, &pages);
701                         addr = __get_free_page(GFP_KERNEL);
702                         if (!addr)
703                                 goto free_pages;
704                         bpage->page = (void *)addr;
705                         rb_init_page(bpage->page);
706                 }
707         }
708
709         for_each_buffer_cpu(buffer, cpu) {
710                 cpu_buffer = buffer->buffers[cpu];
711                 rb_insert_pages(cpu_buffer, &pages, new_pages);
712         }
713
714         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
715                 mutex_unlock(&buffer->mutex);
716                 return -1;
717         }
718
719  out:
720         buffer->pages = nr_pages;
721         mutex_unlock(&buffer->mutex);
722
723         return size;
724
725  free_pages:
726         list_for_each_entry_safe(bpage, tmp, &pages, list) {
727                 list_del_init(&bpage->list);
728                 free_buffer_page(bpage);
729         }
730         mutex_unlock(&buffer->mutex);
731         return -ENOMEM;
732 }
733 EXPORT_SYMBOL_GPL(ring_buffer_resize);
734
735 static inline int rb_null_event(struct ring_buffer_event *event)
736 {
737         return event->type == RINGBUF_TYPE_PADDING;
738 }
739
740 static inline void *
741 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
742 {
743         return bpage->data + index;
744 }
745
746 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
747 {
748         return bpage->page->data + index;
749 }
750
751 static inline struct ring_buffer_event *
752 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
753 {
754         return __rb_page_index(cpu_buffer->reader_page,
755                                cpu_buffer->reader_page->read);
756 }
757
758 static inline struct ring_buffer_event *
759 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
760 {
761         return __rb_page_index(cpu_buffer->head_page,
762                                cpu_buffer->head_page->read);
763 }
764
765 static inline struct ring_buffer_event *
766 rb_iter_head_event(struct ring_buffer_iter *iter)
767 {
768         return __rb_page_index(iter->head_page, iter->head);
769 }
770
771 static inline unsigned rb_page_write(struct buffer_page *bpage)
772 {
773         return local_read(&bpage->write);
774 }
775
776 static inline unsigned rb_page_commit(struct buffer_page *bpage)
777 {
778         return local_read(&bpage->page->commit);
779 }
780
781 /* Size is determined by what has been commited */
782 static inline unsigned rb_page_size(struct buffer_page *bpage)
783 {
784         return rb_page_commit(bpage);
785 }
786
787 static inline unsigned
788 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790         return rb_page_commit(cpu_buffer->commit_page);
791 }
792
793 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
794 {
795         return rb_page_commit(cpu_buffer->head_page);
796 }
797
798 /*
799  * When the tail hits the head and the buffer is in overwrite mode,
800  * the head jumps to the next page and all content on the previous
801  * page is discarded. But before doing so, we update the overrun
802  * variable of the buffer.
803  */
804 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
805 {
806         struct ring_buffer_event *event;
807         unsigned long head;
808
809         for (head = 0; head < rb_head_size(cpu_buffer);
810              head += rb_event_length(event)) {
811
812                 event = __rb_page_index(cpu_buffer->head_page, head);
813                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
814                         return;
815                 /* Only count data entries */
816                 if (event->type != RINGBUF_TYPE_DATA)
817                         continue;
818                 cpu_buffer->overrun++;
819                 cpu_buffer->entries--;
820         }
821 }
822
823 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
824                                struct buffer_page **bpage)
825 {
826         struct list_head *p = (*bpage)->list.next;
827
828         if (p == &cpu_buffer->pages)
829                 p = p->next;
830
831         *bpage = list_entry(p, struct buffer_page, list);
832 }
833
834 static inline unsigned
835 rb_event_index(struct ring_buffer_event *event)
836 {
837         unsigned long addr = (unsigned long)event;
838
839         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
840 }
841
842 static int
843 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
844              struct ring_buffer_event *event)
845 {
846         unsigned long addr = (unsigned long)event;
847         unsigned long index;
848
849         index = rb_event_index(event);
850         addr &= PAGE_MASK;
851
852         return cpu_buffer->commit_page->page == (void *)addr &&
853                 rb_commit_index(cpu_buffer) == index;
854 }
855
856 static void
857 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
858                     struct ring_buffer_event *event)
859 {
860         unsigned long addr = (unsigned long)event;
861         unsigned long index;
862
863         index = rb_event_index(event);
864         addr &= PAGE_MASK;
865
866         while (cpu_buffer->commit_page->page != (void *)addr) {
867                 if (RB_WARN_ON(cpu_buffer,
868                           cpu_buffer->commit_page == cpu_buffer->tail_page))
869                         return;
870                 cpu_buffer->commit_page->page->commit =
871                         cpu_buffer->commit_page->write;
872                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
873                 cpu_buffer->write_stamp =
874                         cpu_buffer->commit_page->page->time_stamp;
875         }
876
877         /* Now set the commit to the event's index */
878         local_set(&cpu_buffer->commit_page->page->commit, index);
879 }
880
881 static void
882 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
883 {
884         /*
885          * We only race with interrupts and NMIs on this CPU.
886          * If we own the commit event, then we can commit
887          * all others that interrupted us, since the interruptions
888          * are in stack format (they finish before they come
889          * back to us). This allows us to do a simple loop to
890          * assign the commit to the tail.
891          */
892  again:
893         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
894                 cpu_buffer->commit_page->page->commit =
895                         cpu_buffer->commit_page->write;
896                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
897                 cpu_buffer->write_stamp =
898                         cpu_buffer->commit_page->page->time_stamp;
899                 /* add barrier to keep gcc from optimizing too much */
900                 barrier();
901         }
902         while (rb_commit_index(cpu_buffer) !=
903                rb_page_write(cpu_buffer->commit_page)) {
904                 cpu_buffer->commit_page->page->commit =
905                         cpu_buffer->commit_page->write;
906                 barrier();
907         }
908
909         /* again, keep gcc from optimizing */
910         barrier();
911
912         /*
913          * If an interrupt came in just after the first while loop
914          * and pushed the tail page forward, we will be left with
915          * a dangling commit that will never go forward.
916          */
917         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
918                 goto again;
919 }
920
921 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
922 {
923         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
924         cpu_buffer->reader_page->read = 0;
925 }
926
927 static void rb_inc_iter(struct ring_buffer_iter *iter)
928 {
929         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
930
931         /*
932          * The iterator could be on the reader page (it starts there).
933          * But the head could have moved, since the reader was
934          * found. Check for this case and assign the iterator
935          * to the head page instead of next.
936          */
937         if (iter->head_page == cpu_buffer->reader_page)
938                 iter->head_page = cpu_buffer->head_page;
939         else
940                 rb_inc_page(cpu_buffer, &iter->head_page);
941
942         iter->read_stamp = iter->head_page->page->time_stamp;
943         iter->head = 0;
944 }
945
946 /**
947  * ring_buffer_update_event - update event type and data
948  * @event: the even to update
949  * @type: the type of event
950  * @length: the size of the event field in the ring buffer
951  *
952  * Update the type and data fields of the event. The length
953  * is the actual size that is written to the ring buffer,
954  * and with this, we can determine what to place into the
955  * data field.
956  */
957 static void
958 rb_update_event(struct ring_buffer_event *event,
959                          unsigned type, unsigned length)
960 {
961         event->type = type;
962
963         switch (type) {
964
965         case RINGBUF_TYPE_PADDING:
966                 break;
967
968         case RINGBUF_TYPE_TIME_EXTEND:
969                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
970                 break;
971
972         case RINGBUF_TYPE_TIME_STAMP:
973                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
974                 break;
975
976         case RINGBUF_TYPE_DATA:
977                 length -= RB_EVNT_HDR_SIZE;
978                 if (length > RB_MAX_SMALL_DATA) {
979                         event->len = 0;
980                         event->array[0] = length;
981                 } else
982                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
983                 break;
984         default:
985                 BUG();
986         }
987 }
988
989 static unsigned rb_calculate_event_length(unsigned length)
990 {
991         struct ring_buffer_event event; /* Used only for sizeof array */
992
993         /* zero length can cause confusions */
994         if (!length)
995                 length = 1;
996
997         if (length > RB_MAX_SMALL_DATA)
998                 length += sizeof(event.array[0]);
999
1000         length += RB_EVNT_HDR_SIZE;
1001         length = ALIGN(length, RB_ALIGNMENT);
1002
1003         return length;
1004 }
1005
1006 static struct ring_buffer_event *
1007 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1008                   unsigned type, unsigned long length, u64 *ts)
1009 {
1010         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1011         unsigned long tail, write;
1012         struct ring_buffer *buffer = cpu_buffer->buffer;
1013         struct ring_buffer_event *event;
1014         unsigned long flags;
1015         bool lock_taken = false;
1016
1017         commit_page = cpu_buffer->commit_page;
1018         /* we just need to protect against interrupts */
1019         barrier();
1020         tail_page = cpu_buffer->tail_page;
1021         write = local_add_return(length, &tail_page->write);
1022         tail = write - length;
1023
1024         /* See if we shot pass the end of this buffer page */
1025         if (write > BUF_PAGE_SIZE) {
1026                 struct buffer_page *next_page = tail_page;
1027
1028                 local_irq_save(flags);
1029                 /*
1030                  * NMIs can happen after we take the lock.
1031                  * If we are in an NMI, only take the lock
1032                  * if it is not already taken. Otherwise
1033                  * simply fail.
1034                  */
1035                 if (unlikely(__get_cpu_var(rb_in_nmi))) {
1036                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1037                                 goto out_unlock;
1038                 } else
1039                         __raw_spin_lock(&cpu_buffer->lock);
1040
1041                 lock_taken = true;
1042
1043                 rb_inc_page(cpu_buffer, &next_page);
1044
1045                 head_page = cpu_buffer->head_page;
1046                 reader_page = cpu_buffer->reader_page;
1047
1048                 /* we grabbed the lock before incrementing */
1049                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1050                         goto out_unlock;
1051
1052                 /*
1053                  * If for some reason, we had an interrupt storm that made
1054                  * it all the way around the buffer, bail, and warn
1055                  * about it.
1056                  */
1057                 if (unlikely(next_page == commit_page)) {
1058                         WARN_ON_ONCE(1);
1059                         goto out_unlock;
1060                 }
1061
1062                 if (next_page == head_page) {
1063                         if (!(buffer->flags & RB_FL_OVERWRITE))
1064                                 goto out_unlock;
1065
1066                         /* tail_page has not moved yet? */
1067                         if (tail_page == cpu_buffer->tail_page) {
1068                                 /* count overflows */
1069                                 rb_update_overflow(cpu_buffer);
1070
1071                                 rb_inc_page(cpu_buffer, &head_page);
1072                                 cpu_buffer->head_page = head_page;
1073                                 cpu_buffer->head_page->read = 0;
1074                         }
1075                 }
1076
1077                 /*
1078                  * If the tail page is still the same as what we think
1079                  * it is, then it is up to us to update the tail
1080                  * pointer.
1081                  */
1082                 if (tail_page == cpu_buffer->tail_page) {
1083                         local_set(&next_page->write, 0);
1084                         local_set(&next_page->page->commit, 0);
1085                         cpu_buffer->tail_page = next_page;
1086
1087                         /* reread the time stamp */
1088                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1089                         cpu_buffer->tail_page->page->time_stamp = *ts;
1090                 }
1091
1092                 /*
1093                  * The actual tail page has moved forward.
1094                  */
1095                 if (tail < BUF_PAGE_SIZE) {
1096                         /* Mark the rest of the page with padding */
1097                         event = __rb_page_index(tail_page, tail);
1098                         event->type = RINGBUF_TYPE_PADDING;
1099                 }
1100
1101                 if (tail <= BUF_PAGE_SIZE)
1102                         /* Set the write back to the previous setting */
1103                         local_set(&tail_page->write, tail);
1104
1105                 /*
1106                  * If this was a commit entry that failed,
1107                  * increment that too
1108                  */
1109                 if (tail_page == cpu_buffer->commit_page &&
1110                     tail == rb_commit_index(cpu_buffer)) {
1111                         rb_set_commit_to_write(cpu_buffer);
1112                 }
1113
1114                 __raw_spin_unlock(&cpu_buffer->lock);
1115                 local_irq_restore(flags);
1116
1117                 /* fail and let the caller try again */
1118                 return ERR_PTR(-EAGAIN);
1119         }
1120
1121         /* We reserved something on the buffer */
1122
1123         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1124                 return NULL;
1125
1126         event = __rb_page_index(tail_page, tail);
1127         rb_update_event(event, type, length);
1128
1129         /*
1130          * If this is a commit and the tail is zero, then update
1131          * this page's time stamp.
1132          */
1133         if (!tail && rb_is_commit(cpu_buffer, event))
1134                 cpu_buffer->commit_page->page->time_stamp = *ts;
1135
1136         return event;
1137
1138  out_unlock:
1139         /* reset write */
1140         if (tail <= BUF_PAGE_SIZE)
1141                 local_set(&tail_page->write, tail);
1142
1143         if (likely(lock_taken))
1144                 __raw_spin_unlock(&cpu_buffer->lock);
1145         local_irq_restore(flags);
1146         return NULL;
1147 }
1148
1149 static int
1150 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1151                   u64 *ts, u64 *delta)
1152 {
1153         struct ring_buffer_event *event;
1154         static int once;
1155         int ret;
1156
1157         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1158                 printk(KERN_WARNING "Delta way too big! %llu"
1159                        " ts=%llu write stamp = %llu\n",
1160                        (unsigned long long)*delta,
1161                        (unsigned long long)*ts,
1162                        (unsigned long long)cpu_buffer->write_stamp);
1163                 WARN_ON(1);
1164         }
1165
1166         /*
1167          * The delta is too big, we to add a
1168          * new timestamp.
1169          */
1170         event = __rb_reserve_next(cpu_buffer,
1171                                   RINGBUF_TYPE_TIME_EXTEND,
1172                                   RB_LEN_TIME_EXTEND,
1173                                   ts);
1174         if (!event)
1175                 return -EBUSY;
1176
1177         if (PTR_ERR(event) == -EAGAIN)
1178                 return -EAGAIN;
1179
1180         /* Only a commited time event can update the write stamp */
1181         if (rb_is_commit(cpu_buffer, event)) {
1182                 /*
1183                  * If this is the first on the page, then we need to
1184                  * update the page itself, and just put in a zero.
1185                  */
1186                 if (rb_event_index(event)) {
1187                         event->time_delta = *delta & TS_MASK;
1188                         event->array[0] = *delta >> TS_SHIFT;
1189                 } else {
1190                         cpu_buffer->commit_page->page->time_stamp = *ts;
1191                         event->time_delta = 0;
1192                         event->array[0] = 0;
1193                 }
1194                 cpu_buffer->write_stamp = *ts;
1195                 /* let the caller know this was the commit */
1196                 ret = 1;
1197         } else {
1198                 /* Darn, this is just wasted space */
1199                 event->time_delta = 0;
1200                 event->array[0] = 0;
1201                 ret = 0;
1202         }
1203
1204         *delta = 0;
1205
1206         return ret;
1207 }
1208
1209 static struct ring_buffer_event *
1210 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1211                       unsigned type, unsigned long length)
1212 {
1213         struct ring_buffer_event *event;
1214         u64 ts, delta;
1215         int commit = 0;
1216         int nr_loops = 0;
1217
1218  again:
1219         /*
1220          * We allow for interrupts to reenter here and do a trace.
1221          * If one does, it will cause this original code to loop
1222          * back here. Even with heavy interrupts happening, this
1223          * should only happen a few times in a row. If this happens
1224          * 1000 times in a row, there must be either an interrupt
1225          * storm or we have something buggy.
1226          * Bail!
1227          */
1228         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1229                 return NULL;
1230
1231         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1232
1233         /*
1234          * Only the first commit can update the timestamp.
1235          * Yes there is a race here. If an interrupt comes in
1236          * just after the conditional and it traces too, then it
1237          * will also check the deltas. More than one timestamp may
1238          * also be made. But only the entry that did the actual
1239          * commit will be something other than zero.
1240          */
1241         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1242             rb_page_write(cpu_buffer->tail_page) ==
1243             rb_commit_index(cpu_buffer)) {
1244
1245                 delta = ts - cpu_buffer->write_stamp;
1246
1247                 /* make sure this delta is calculated here */
1248                 barrier();
1249
1250                 /* Did the write stamp get updated already? */
1251                 if (unlikely(ts < cpu_buffer->write_stamp))
1252                         delta = 0;
1253
1254                 if (test_time_stamp(delta)) {
1255
1256                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1257
1258                         if (commit == -EBUSY)
1259                                 return NULL;
1260
1261                         if (commit == -EAGAIN)
1262                                 goto again;
1263
1264                         RB_WARN_ON(cpu_buffer, commit < 0);
1265                 }
1266         } else
1267                 /* Non commits have zero deltas */
1268                 delta = 0;
1269
1270         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1271         if (PTR_ERR(event) == -EAGAIN)
1272                 goto again;
1273
1274         if (!event) {
1275                 if (unlikely(commit))
1276                         /*
1277                          * Ouch! We needed a timestamp and it was commited. But
1278                          * we didn't get our event reserved.
1279                          */
1280                         rb_set_commit_to_write(cpu_buffer);
1281                 return NULL;
1282         }
1283
1284         /*
1285          * If the timestamp was commited, make the commit our entry
1286          * now so that we will update it when needed.
1287          */
1288         if (commit)
1289                 rb_set_commit_event(cpu_buffer, event);
1290         else if (!rb_is_commit(cpu_buffer, event))
1291                 delta = 0;
1292
1293         event->time_delta = delta;
1294
1295         return event;
1296 }
1297
1298 static DEFINE_PER_CPU(int, rb_need_resched);
1299
1300 /**
1301  * ring_buffer_lock_reserve - reserve a part of the buffer
1302  * @buffer: the ring buffer to reserve from
1303  * @length: the length of the data to reserve (excluding event header)
1304  * @flags: a pointer to save the interrupt flags
1305  *
1306  * Returns a reseverd event on the ring buffer to copy directly to.
1307  * The user of this interface will need to get the body to write into
1308  * and can use the ring_buffer_event_data() interface.
1309  *
1310  * The length is the length of the data needed, not the event length
1311  * which also includes the event header.
1312  *
1313  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1314  * If NULL is returned, then nothing has been allocated or locked.
1315  */
1316 struct ring_buffer_event *
1317 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1318                          unsigned long length,
1319                          unsigned long *flags)
1320 {
1321         struct ring_buffer_per_cpu *cpu_buffer;
1322         struct ring_buffer_event *event;
1323         int cpu, resched;
1324
1325         if (ring_buffer_flags != RB_BUFFERS_ON)
1326                 return NULL;
1327
1328         if (atomic_read(&buffer->record_disabled))
1329                 return NULL;
1330
1331         /* If we are tracing schedule, we don't want to recurse */
1332         resched = ftrace_preempt_disable();
1333
1334         cpu = raw_smp_processor_id();
1335
1336         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1337                 goto out;
1338
1339         cpu_buffer = buffer->buffers[cpu];
1340
1341         if (atomic_read(&cpu_buffer->record_disabled))
1342                 goto out;
1343
1344         length = rb_calculate_event_length(length);
1345         if (length > BUF_PAGE_SIZE)
1346                 goto out;
1347
1348         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1349         if (!event)
1350                 goto out;
1351
1352         /*
1353          * Need to store resched state on this cpu.
1354          * Only the first needs to.
1355          */
1356
1357         if (preempt_count() == 1)
1358                 per_cpu(rb_need_resched, cpu) = resched;
1359
1360         return event;
1361
1362  out:
1363         ftrace_preempt_enable(resched);
1364         return NULL;
1365 }
1366 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1367
1368 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1369                       struct ring_buffer_event *event)
1370 {
1371         cpu_buffer->entries++;
1372
1373         /* Only process further if we own the commit */
1374         if (!rb_is_commit(cpu_buffer, event))
1375                 return;
1376
1377         cpu_buffer->write_stamp += event->time_delta;
1378
1379         rb_set_commit_to_write(cpu_buffer);
1380 }
1381
1382 /**
1383  * ring_buffer_unlock_commit - commit a reserved
1384  * @buffer: The buffer to commit to
1385  * @event: The event pointer to commit.
1386  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1387  *
1388  * This commits the data to the ring buffer, and releases any locks held.
1389  *
1390  * Must be paired with ring_buffer_lock_reserve.
1391  */
1392 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1393                               struct ring_buffer_event *event,
1394                               unsigned long flags)
1395 {
1396         struct ring_buffer_per_cpu *cpu_buffer;
1397         int cpu = raw_smp_processor_id();
1398
1399         cpu_buffer = buffer->buffers[cpu];
1400
1401         rb_commit(cpu_buffer, event);
1402
1403         /*
1404          * Only the last preempt count needs to restore preemption.
1405          */
1406         if (preempt_count() == 1)
1407                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1408         else
1409                 preempt_enable_no_resched_notrace();
1410
1411         return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1414
1415 /**
1416  * ring_buffer_write - write data to the buffer without reserving
1417  * @buffer: The ring buffer to write to.
1418  * @length: The length of the data being written (excluding the event header)
1419  * @data: The data to write to the buffer.
1420  *
1421  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1422  * one function. If you already have the data to write to the buffer, it
1423  * may be easier to simply call this function.
1424  *
1425  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1426  * and not the length of the event which would hold the header.
1427  */
1428 int ring_buffer_write(struct ring_buffer *buffer,
1429                         unsigned long length,
1430                         void *data)
1431 {
1432         struct ring_buffer_per_cpu *cpu_buffer;
1433         struct ring_buffer_event *event;
1434         unsigned long event_length;
1435         void *body;
1436         int ret = -EBUSY;
1437         int cpu, resched;
1438
1439         if (ring_buffer_flags != RB_BUFFERS_ON)
1440                 return -EBUSY;
1441
1442         if (atomic_read(&buffer->record_disabled))
1443                 return -EBUSY;
1444
1445         resched = ftrace_preempt_disable();
1446
1447         cpu = raw_smp_processor_id();
1448
1449         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1450                 goto out;
1451
1452         cpu_buffer = buffer->buffers[cpu];
1453
1454         if (atomic_read(&cpu_buffer->record_disabled))
1455                 goto out;
1456
1457         event_length = rb_calculate_event_length(length);
1458         event = rb_reserve_next_event(cpu_buffer,
1459                                       RINGBUF_TYPE_DATA, event_length);
1460         if (!event)
1461                 goto out;
1462
1463         body = rb_event_data(event);
1464
1465         memcpy(body, data, length);
1466
1467         rb_commit(cpu_buffer, event);
1468
1469         ret = 0;
1470  out:
1471         ftrace_preempt_enable(resched);
1472
1473         return ret;
1474 }
1475 EXPORT_SYMBOL_GPL(ring_buffer_write);
1476
1477 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1478 {
1479         struct buffer_page *reader = cpu_buffer->reader_page;
1480         struct buffer_page *head = cpu_buffer->head_page;
1481         struct buffer_page *commit = cpu_buffer->commit_page;
1482
1483         return reader->read == rb_page_commit(reader) &&
1484                 (commit == reader ||
1485                  (commit == head &&
1486                   head->read == rb_page_commit(commit)));
1487 }
1488
1489 /**
1490  * ring_buffer_record_disable - stop all writes into the buffer
1491  * @buffer: The ring buffer to stop writes to.
1492  *
1493  * This prevents all writes to the buffer. Any attempt to write
1494  * to the buffer after this will fail and return NULL.
1495  *
1496  * The caller should call synchronize_sched() after this.
1497  */
1498 void ring_buffer_record_disable(struct ring_buffer *buffer)
1499 {
1500         atomic_inc(&buffer->record_disabled);
1501 }
1502 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1503
1504 /**
1505  * ring_buffer_record_enable - enable writes to the buffer
1506  * @buffer: The ring buffer to enable writes
1507  *
1508  * Note, multiple disables will need the same number of enables
1509  * to truely enable the writing (much like preempt_disable).
1510  */
1511 void ring_buffer_record_enable(struct ring_buffer *buffer)
1512 {
1513         atomic_dec(&buffer->record_disabled);
1514 }
1515 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1516
1517 /**
1518  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1519  * @buffer: The ring buffer to stop writes to.
1520  * @cpu: The CPU buffer to stop
1521  *
1522  * This prevents all writes to the buffer. Any attempt to write
1523  * to the buffer after this will fail and return NULL.
1524  *
1525  * The caller should call synchronize_sched() after this.
1526  */
1527 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1528 {
1529         struct ring_buffer_per_cpu *cpu_buffer;
1530
1531         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1532                 return;
1533
1534         cpu_buffer = buffer->buffers[cpu];
1535         atomic_inc(&cpu_buffer->record_disabled);
1536 }
1537 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1538
1539 /**
1540  * ring_buffer_record_enable_cpu - enable writes to the buffer
1541  * @buffer: The ring buffer to enable writes
1542  * @cpu: The CPU to enable.
1543  *
1544  * Note, multiple disables will need the same number of enables
1545  * to truely enable the writing (much like preempt_disable).
1546  */
1547 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1548 {
1549         struct ring_buffer_per_cpu *cpu_buffer;
1550
1551         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1552                 return;
1553
1554         cpu_buffer = buffer->buffers[cpu];
1555         atomic_dec(&cpu_buffer->record_disabled);
1556 }
1557 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1558
1559 /**
1560  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1561  * @buffer: The ring buffer
1562  * @cpu: The per CPU buffer to get the entries from.
1563  */
1564 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1565 {
1566         struct ring_buffer_per_cpu *cpu_buffer;
1567
1568         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1569                 return 0;
1570
1571         cpu_buffer = buffer->buffers[cpu];
1572         return cpu_buffer->entries;
1573 }
1574 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1575
1576 /**
1577  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1578  * @buffer: The ring buffer
1579  * @cpu: The per CPU buffer to get the number of overruns from
1580  */
1581 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1582 {
1583         struct ring_buffer_per_cpu *cpu_buffer;
1584
1585         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1586                 return 0;
1587
1588         cpu_buffer = buffer->buffers[cpu];
1589         return cpu_buffer->overrun;
1590 }
1591 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1592
1593 /**
1594  * ring_buffer_entries - get the number of entries in a buffer
1595  * @buffer: The ring buffer
1596  *
1597  * Returns the total number of entries in the ring buffer
1598  * (all CPU entries)
1599  */
1600 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1601 {
1602         struct ring_buffer_per_cpu *cpu_buffer;
1603         unsigned long entries = 0;
1604         int cpu;
1605
1606         /* if you care about this being correct, lock the buffer */
1607         for_each_buffer_cpu(buffer, cpu) {
1608                 cpu_buffer = buffer->buffers[cpu];
1609                 entries += cpu_buffer->entries;
1610         }
1611
1612         return entries;
1613 }
1614 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1615
1616 /**
1617  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1618  * @buffer: The ring buffer
1619  *
1620  * Returns the total number of overruns in the ring buffer
1621  * (all CPU entries)
1622  */
1623 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1624 {
1625         struct ring_buffer_per_cpu *cpu_buffer;
1626         unsigned long overruns = 0;
1627         int cpu;
1628
1629         /* if you care about this being correct, lock the buffer */
1630         for_each_buffer_cpu(buffer, cpu) {
1631                 cpu_buffer = buffer->buffers[cpu];
1632                 overruns += cpu_buffer->overrun;
1633         }
1634
1635         return overruns;
1636 }
1637 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1638
1639 static void rb_iter_reset(struct ring_buffer_iter *iter)
1640 {
1641         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1642
1643         /* Iterator usage is expected to have record disabled */
1644         if (list_empty(&cpu_buffer->reader_page->list)) {
1645                 iter->head_page = cpu_buffer->head_page;
1646                 iter->head = cpu_buffer->head_page->read;
1647         } else {
1648                 iter->head_page = cpu_buffer->reader_page;
1649                 iter->head = cpu_buffer->reader_page->read;
1650         }
1651         if (iter->head)
1652                 iter->read_stamp = cpu_buffer->read_stamp;
1653         else
1654                 iter->read_stamp = iter->head_page->page->time_stamp;
1655 }
1656
1657 /**
1658  * ring_buffer_iter_reset - reset an iterator
1659  * @iter: The iterator to reset
1660  *
1661  * Resets the iterator, so that it will start from the beginning
1662  * again.
1663  */
1664 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1665 {
1666         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1667         unsigned long flags;
1668
1669         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1670         rb_iter_reset(iter);
1671         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1672 }
1673 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1674
1675 /**
1676  * ring_buffer_iter_empty - check if an iterator has no more to read
1677  * @iter: The iterator to check
1678  */
1679 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1680 {
1681         struct ring_buffer_per_cpu *cpu_buffer;
1682
1683         cpu_buffer = iter->cpu_buffer;
1684
1685         return iter->head_page == cpu_buffer->commit_page &&
1686                 iter->head == rb_commit_index(cpu_buffer);
1687 }
1688 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1689
1690 static void
1691 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1692                      struct ring_buffer_event *event)
1693 {
1694         u64 delta;
1695
1696         switch (event->type) {
1697         case RINGBUF_TYPE_PADDING:
1698                 return;
1699
1700         case RINGBUF_TYPE_TIME_EXTEND:
1701                 delta = event->array[0];
1702                 delta <<= TS_SHIFT;
1703                 delta += event->time_delta;
1704                 cpu_buffer->read_stamp += delta;
1705                 return;
1706
1707         case RINGBUF_TYPE_TIME_STAMP:
1708                 /* FIXME: not implemented */
1709                 return;
1710
1711         case RINGBUF_TYPE_DATA:
1712                 cpu_buffer->read_stamp += event->time_delta;
1713                 return;
1714
1715         default:
1716                 BUG();
1717         }
1718         return;
1719 }
1720
1721 static void
1722 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1723                           struct ring_buffer_event *event)
1724 {
1725         u64 delta;
1726
1727         switch (event->type) {
1728         case RINGBUF_TYPE_PADDING:
1729                 return;
1730
1731         case RINGBUF_TYPE_TIME_EXTEND:
1732                 delta = event->array[0];
1733                 delta <<= TS_SHIFT;
1734                 delta += event->time_delta;
1735                 iter->read_stamp += delta;
1736                 return;
1737
1738         case RINGBUF_TYPE_TIME_STAMP:
1739                 /* FIXME: not implemented */
1740                 return;
1741
1742         case RINGBUF_TYPE_DATA:
1743                 iter->read_stamp += event->time_delta;
1744                 return;
1745
1746         default:
1747                 BUG();
1748         }
1749         return;
1750 }
1751
1752 static struct buffer_page *
1753 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1754 {
1755         struct buffer_page *reader = NULL;
1756         unsigned long flags;
1757         int nr_loops = 0;
1758
1759         local_irq_save(flags);
1760         __raw_spin_lock(&cpu_buffer->lock);
1761
1762  again:
1763         /*
1764          * This should normally only loop twice. But because the
1765          * start of the reader inserts an empty page, it causes
1766          * a case where we will loop three times. There should be no
1767          * reason to loop four times (that I know of).
1768          */
1769         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1770                 reader = NULL;
1771                 goto out;
1772         }
1773
1774         reader = cpu_buffer->reader_page;
1775
1776         /* If there's more to read, return this page */
1777         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1778                 goto out;
1779
1780         /* Never should we have an index greater than the size */
1781         if (RB_WARN_ON(cpu_buffer,
1782                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1783                 goto out;
1784
1785         /* check if we caught up to the tail */
1786         reader = NULL;
1787         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1788                 goto out;
1789
1790         /*
1791          * Splice the empty reader page into the list around the head.
1792          * Reset the reader page to size zero.
1793          */
1794
1795         reader = cpu_buffer->head_page;
1796         cpu_buffer->reader_page->list.next = reader->list.next;
1797         cpu_buffer->reader_page->list.prev = reader->list.prev;
1798
1799         local_set(&cpu_buffer->reader_page->write, 0);
1800         local_set(&cpu_buffer->reader_page->page->commit, 0);
1801
1802         /* Make the reader page now replace the head */
1803         reader->list.prev->next = &cpu_buffer->reader_page->list;
1804         reader->list.next->prev = &cpu_buffer->reader_page->list;
1805
1806         /*
1807          * If the tail is on the reader, then we must set the head
1808          * to the inserted page, otherwise we set it one before.
1809          */
1810         cpu_buffer->head_page = cpu_buffer->reader_page;
1811
1812         if (cpu_buffer->commit_page != reader)
1813                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1814
1815         /* Finally update the reader page to the new head */
1816         cpu_buffer->reader_page = reader;
1817         rb_reset_reader_page(cpu_buffer);
1818
1819         goto again;
1820
1821  out:
1822         __raw_spin_unlock(&cpu_buffer->lock);
1823         local_irq_restore(flags);
1824
1825         return reader;
1826 }
1827
1828 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1829 {
1830         struct ring_buffer_event *event;
1831         struct buffer_page *reader;
1832         unsigned length;
1833
1834         reader = rb_get_reader_page(cpu_buffer);
1835
1836         /* This function should not be called when buffer is empty */
1837         if (RB_WARN_ON(cpu_buffer, !reader))
1838                 return;
1839
1840         event = rb_reader_event(cpu_buffer);
1841
1842         if (event->type == RINGBUF_TYPE_DATA)
1843                 cpu_buffer->entries--;
1844
1845         rb_update_read_stamp(cpu_buffer, event);
1846
1847         length = rb_event_length(event);
1848         cpu_buffer->reader_page->read += length;
1849 }
1850
1851 static void rb_advance_iter(struct ring_buffer_iter *iter)
1852 {
1853         struct ring_buffer *buffer;
1854         struct ring_buffer_per_cpu *cpu_buffer;
1855         struct ring_buffer_event *event;
1856         unsigned length;
1857
1858         cpu_buffer = iter->cpu_buffer;
1859         buffer = cpu_buffer->buffer;
1860
1861         /*
1862          * Check if we are at the end of the buffer.
1863          */
1864         if (iter->head >= rb_page_size(iter->head_page)) {
1865                 if (RB_WARN_ON(buffer,
1866                                iter->head_page == cpu_buffer->commit_page))
1867                         return;
1868                 rb_inc_iter(iter);
1869                 return;
1870         }
1871
1872         event = rb_iter_head_event(iter);
1873
1874         length = rb_event_length(event);
1875
1876         /*
1877          * This should not be called to advance the header if we are
1878          * at the tail of the buffer.
1879          */
1880         if (RB_WARN_ON(cpu_buffer,
1881                        (iter->head_page == cpu_buffer->commit_page) &&
1882                        (iter->head + length > rb_commit_index(cpu_buffer))))
1883                 return;
1884
1885         rb_update_iter_read_stamp(iter, event);
1886
1887         iter->head += length;
1888
1889         /* check for end of page padding */
1890         if ((iter->head >= rb_page_size(iter->head_page)) &&
1891             (iter->head_page != cpu_buffer->commit_page))
1892                 rb_advance_iter(iter);
1893 }
1894
1895 static struct ring_buffer_event *
1896 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1897 {
1898         struct ring_buffer_per_cpu *cpu_buffer;
1899         struct ring_buffer_event *event;
1900         struct buffer_page *reader;
1901         int nr_loops = 0;
1902
1903         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1904                 return NULL;
1905
1906         cpu_buffer = buffer->buffers[cpu];
1907
1908  again:
1909         /*
1910          * We repeat when a timestamp is encountered. It is possible
1911          * to get multiple timestamps from an interrupt entering just
1912          * as one timestamp is about to be written. The max times
1913          * that this can happen is the number of nested interrupts we
1914          * can have.  Nesting 10 deep of interrupts is clearly
1915          * an anomaly.
1916          */
1917         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1918                 return NULL;
1919
1920         reader = rb_get_reader_page(cpu_buffer);
1921         if (!reader)
1922                 return NULL;
1923
1924         event = rb_reader_event(cpu_buffer);
1925
1926         switch (event->type) {
1927         case RINGBUF_TYPE_PADDING:
1928                 RB_WARN_ON(cpu_buffer, 1);
1929                 rb_advance_reader(cpu_buffer);
1930                 return NULL;
1931
1932         case RINGBUF_TYPE_TIME_EXTEND:
1933                 /* Internal data, OK to advance */
1934                 rb_advance_reader(cpu_buffer);
1935                 goto again;
1936
1937         case RINGBUF_TYPE_TIME_STAMP:
1938                 /* FIXME: not implemented */
1939                 rb_advance_reader(cpu_buffer);
1940                 goto again;
1941
1942         case RINGBUF_TYPE_DATA:
1943                 if (ts) {
1944                         *ts = cpu_buffer->read_stamp + event->time_delta;
1945                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1946                 }
1947                 return event;
1948
1949         default:
1950                 BUG();
1951         }
1952
1953         return NULL;
1954 }
1955 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1956
1957 static struct ring_buffer_event *
1958 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1959 {
1960         struct ring_buffer *buffer;
1961         struct ring_buffer_per_cpu *cpu_buffer;
1962         struct ring_buffer_event *event;
1963         int nr_loops = 0;
1964
1965         if (ring_buffer_iter_empty(iter))
1966                 return NULL;
1967
1968         cpu_buffer = iter->cpu_buffer;
1969         buffer = cpu_buffer->buffer;
1970
1971  again:
1972         /*
1973          * We repeat when a timestamp is encountered. It is possible
1974          * to get multiple timestamps from an interrupt entering just
1975          * as one timestamp is about to be written. The max times
1976          * that this can happen is the number of nested interrupts we
1977          * can have. Nesting 10 deep of interrupts is clearly
1978          * an anomaly.
1979          */
1980         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1981                 return NULL;
1982
1983         if (rb_per_cpu_empty(cpu_buffer))
1984                 return NULL;
1985
1986         event = rb_iter_head_event(iter);
1987
1988         switch (event->type) {
1989         case RINGBUF_TYPE_PADDING:
1990                 rb_inc_iter(iter);
1991                 goto again;
1992
1993         case RINGBUF_TYPE_TIME_EXTEND:
1994                 /* Internal data, OK to advance */
1995                 rb_advance_iter(iter);
1996                 goto again;
1997
1998         case RINGBUF_TYPE_TIME_STAMP:
1999                 /* FIXME: not implemented */
2000                 rb_advance_iter(iter);
2001                 goto again;
2002
2003         case RINGBUF_TYPE_DATA:
2004                 if (ts) {
2005                         *ts = iter->read_stamp + event->time_delta;
2006                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2007                 }
2008                 return event;
2009
2010         default:
2011                 BUG();
2012         }
2013
2014         return NULL;
2015 }
2016 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2017
2018 /**
2019  * ring_buffer_peek - peek at the next event to be read
2020  * @buffer: The ring buffer to read
2021  * @cpu: The cpu to peak at
2022  * @ts: The timestamp counter of this event.
2023  *
2024  * This will return the event that will be read next, but does
2025  * not consume the data.
2026  */
2027 struct ring_buffer_event *
2028 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2029 {
2030         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2031         struct ring_buffer_event *event;
2032         unsigned long flags;
2033
2034         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2035         event = rb_buffer_peek(buffer, cpu, ts);
2036         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2037
2038         return event;
2039 }
2040
2041 /**
2042  * ring_buffer_iter_peek - peek at the next event to be read
2043  * @iter: The ring buffer iterator
2044  * @ts: The timestamp counter of this event.
2045  *
2046  * This will return the event that will be read next, but does
2047  * not increment the iterator.
2048  */
2049 struct ring_buffer_event *
2050 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2051 {
2052         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2053         struct ring_buffer_event *event;
2054         unsigned long flags;
2055
2056         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2057         event = rb_iter_peek(iter, ts);
2058         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2059
2060         return event;
2061 }
2062
2063 /**
2064  * ring_buffer_consume - return an event and consume it
2065  * @buffer: The ring buffer to get the next event from
2066  *
2067  * Returns the next event in the ring buffer, and that event is consumed.
2068  * Meaning, that sequential reads will keep returning a different event,
2069  * and eventually empty the ring buffer if the producer is slower.
2070  */
2071 struct ring_buffer_event *
2072 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2073 {
2074         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2075         struct ring_buffer_event *event;
2076         unsigned long flags;
2077
2078         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2079                 return NULL;
2080
2081         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2082
2083         event = rb_buffer_peek(buffer, cpu, ts);
2084         if (!event)
2085                 goto out;
2086
2087         rb_advance_reader(cpu_buffer);
2088
2089  out:
2090         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2091
2092         return event;
2093 }
2094 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2095
2096 /**
2097  * ring_buffer_read_start - start a non consuming read of the buffer
2098  * @buffer: The ring buffer to read from
2099  * @cpu: The cpu buffer to iterate over
2100  *
2101  * This starts up an iteration through the buffer. It also disables
2102  * the recording to the buffer until the reading is finished.
2103  * This prevents the reading from being corrupted. This is not
2104  * a consuming read, so a producer is not expected.
2105  *
2106  * Must be paired with ring_buffer_finish.
2107  */
2108 struct ring_buffer_iter *
2109 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2110 {
2111         struct ring_buffer_per_cpu *cpu_buffer;
2112         struct ring_buffer_iter *iter;
2113         unsigned long flags;
2114
2115         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2116                 return NULL;
2117
2118         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2119         if (!iter)
2120                 return NULL;
2121
2122         cpu_buffer = buffer->buffers[cpu];
2123
2124         iter->cpu_buffer = cpu_buffer;
2125
2126         atomic_inc(&cpu_buffer->record_disabled);
2127         synchronize_sched();
2128
2129         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2130         __raw_spin_lock(&cpu_buffer->lock);
2131         rb_iter_reset(iter);
2132         __raw_spin_unlock(&cpu_buffer->lock);
2133         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2134
2135         return iter;
2136 }
2137 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2138
2139 /**
2140  * ring_buffer_finish - finish reading the iterator of the buffer
2141  * @iter: The iterator retrieved by ring_buffer_start
2142  *
2143  * This re-enables the recording to the buffer, and frees the
2144  * iterator.
2145  */
2146 void
2147 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2148 {
2149         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2150
2151         atomic_dec(&cpu_buffer->record_disabled);
2152         kfree(iter);
2153 }
2154 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2155
2156 /**
2157  * ring_buffer_read - read the next item in the ring buffer by the iterator
2158  * @iter: The ring buffer iterator
2159  * @ts: The time stamp of the event read.
2160  *
2161  * This reads the next event in the ring buffer and increments the iterator.
2162  */
2163 struct ring_buffer_event *
2164 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2165 {
2166         struct ring_buffer_event *event;
2167         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2168         unsigned long flags;
2169
2170         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2171         event = rb_iter_peek(iter, ts);
2172         if (!event)
2173                 goto out;
2174
2175         rb_advance_iter(iter);
2176  out:
2177         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2178
2179         return event;
2180 }
2181 EXPORT_SYMBOL_GPL(ring_buffer_read);
2182
2183 /**
2184  * ring_buffer_size - return the size of the ring buffer (in bytes)
2185  * @buffer: The ring buffer.
2186  */
2187 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2188 {
2189         return BUF_PAGE_SIZE * buffer->pages;
2190 }
2191 EXPORT_SYMBOL_GPL(ring_buffer_size);
2192
2193 static void
2194 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2195 {
2196         cpu_buffer->head_page
2197                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2198         local_set(&cpu_buffer->head_page->write, 0);
2199         local_set(&cpu_buffer->head_page->page->commit, 0);
2200
2201         cpu_buffer->head_page->read = 0;
2202
2203         cpu_buffer->tail_page = cpu_buffer->head_page;
2204         cpu_buffer->commit_page = cpu_buffer->head_page;
2205
2206         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2207         local_set(&cpu_buffer->reader_page->write, 0);
2208         local_set(&cpu_buffer->reader_page->page->commit, 0);
2209         cpu_buffer->reader_page->read = 0;
2210
2211         cpu_buffer->overrun = 0;
2212         cpu_buffer->entries = 0;
2213
2214         cpu_buffer->write_stamp = 0;
2215         cpu_buffer->read_stamp = 0;
2216 }
2217
2218 /**
2219  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2220  * @buffer: The ring buffer to reset a per cpu buffer of
2221  * @cpu: The CPU buffer to be reset
2222  */
2223 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2224 {
2225         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2226         unsigned long flags;
2227
2228         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2229                 return;
2230
2231         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2232
2233         __raw_spin_lock(&cpu_buffer->lock);
2234
2235         rb_reset_cpu(cpu_buffer);
2236
2237         __raw_spin_unlock(&cpu_buffer->lock);
2238
2239         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2240 }
2241 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2242
2243 /**
2244  * ring_buffer_reset - reset a ring buffer
2245  * @buffer: The ring buffer to reset all cpu buffers
2246  */
2247 void ring_buffer_reset(struct ring_buffer *buffer)
2248 {
2249         int cpu;
2250
2251         for_each_buffer_cpu(buffer, cpu)
2252                 ring_buffer_reset_cpu(buffer, cpu);
2253 }
2254 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2255
2256 /**
2257  * rind_buffer_empty - is the ring buffer empty?
2258  * @buffer: The ring buffer to test
2259  */
2260 int ring_buffer_empty(struct ring_buffer *buffer)
2261 {
2262         struct ring_buffer_per_cpu *cpu_buffer;
2263         int cpu;
2264
2265         /* yes this is racy, but if you don't like the race, lock the buffer */
2266         for_each_buffer_cpu(buffer, cpu) {
2267                 cpu_buffer = buffer->buffers[cpu];
2268                 if (!rb_per_cpu_empty(cpu_buffer))
2269                         return 0;
2270         }
2271         return 1;
2272 }
2273 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2274
2275 /**
2276  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2277  * @buffer: The ring buffer
2278  * @cpu: The CPU buffer to test
2279  */
2280 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2281 {
2282         struct ring_buffer_per_cpu *cpu_buffer;
2283
2284         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2285                 return 1;
2286
2287         cpu_buffer = buffer->buffers[cpu];
2288         return rb_per_cpu_empty(cpu_buffer);
2289 }
2290 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2291
2292 /**
2293  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2294  * @buffer_a: One buffer to swap with
2295  * @buffer_b: The other buffer to swap with
2296  *
2297  * This function is useful for tracers that want to take a "snapshot"
2298  * of a CPU buffer and has another back up buffer lying around.
2299  * it is expected that the tracer handles the cpu buffer not being
2300  * used at the moment.
2301  */
2302 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2303                          struct ring_buffer *buffer_b, int cpu)
2304 {
2305         struct ring_buffer_per_cpu *cpu_buffer_a;
2306         struct ring_buffer_per_cpu *cpu_buffer_b;
2307
2308         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2309             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2310                 return -EINVAL;
2311
2312         /* At least make sure the two buffers are somewhat the same */
2313         if (buffer_a->pages != buffer_b->pages)
2314                 return -EINVAL;
2315
2316         if (ring_buffer_flags != RB_BUFFERS_ON)
2317                 return -EAGAIN;
2318
2319         if (atomic_read(&buffer_a->record_disabled))
2320                 return -EAGAIN;
2321
2322         if (atomic_read(&buffer_b->record_disabled))
2323                 return -EAGAIN;
2324
2325         cpu_buffer_a = buffer_a->buffers[cpu];
2326         cpu_buffer_b = buffer_b->buffers[cpu];
2327
2328         if (atomic_read(&cpu_buffer_a->record_disabled))
2329                 return -EAGAIN;
2330
2331         if (atomic_read(&cpu_buffer_b->record_disabled))
2332                 return -EAGAIN;
2333
2334         /*
2335          * We can't do a synchronize_sched here because this
2336          * function can be called in atomic context.
2337          * Normally this will be called from the same CPU as cpu.
2338          * If not it's up to the caller to protect this.
2339          */
2340         atomic_inc(&cpu_buffer_a->record_disabled);
2341         atomic_inc(&cpu_buffer_b->record_disabled);
2342
2343         buffer_a->buffers[cpu] = cpu_buffer_b;
2344         buffer_b->buffers[cpu] = cpu_buffer_a;
2345
2346         cpu_buffer_b->buffer = buffer_a;
2347         cpu_buffer_a->buffer = buffer_b;
2348
2349         atomic_dec(&cpu_buffer_a->record_disabled);
2350         atomic_dec(&cpu_buffer_b->record_disabled);
2351
2352         return 0;
2353 }
2354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2355
2356 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2357                               struct buffer_data_page *bpage)
2358 {
2359         struct ring_buffer_event *event;
2360         unsigned long head;
2361
2362         __raw_spin_lock(&cpu_buffer->lock);
2363         for (head = 0; head < local_read(&bpage->commit);
2364              head += rb_event_length(event)) {
2365
2366                 event = __rb_data_page_index(bpage, head);
2367                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2368                         return;
2369                 /* Only count data entries */
2370                 if (event->type != RINGBUF_TYPE_DATA)
2371                         continue;
2372                 cpu_buffer->entries--;
2373         }
2374         __raw_spin_unlock(&cpu_buffer->lock);
2375 }
2376
2377 /**
2378  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2379  * @buffer: the buffer to allocate for.
2380  *
2381  * This function is used in conjunction with ring_buffer_read_page.
2382  * When reading a full page from the ring buffer, these functions
2383  * can be used to speed up the process. The calling function should
2384  * allocate a few pages first with this function. Then when it
2385  * needs to get pages from the ring buffer, it passes the result
2386  * of this function into ring_buffer_read_page, which will swap
2387  * the page that was allocated, with the read page of the buffer.
2388  *
2389  * Returns:
2390  *  The page allocated, or NULL on error.
2391  */
2392 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2393 {
2394         unsigned long addr;
2395         struct buffer_data_page *bpage;
2396
2397         addr = __get_free_page(GFP_KERNEL);
2398         if (!addr)
2399                 return NULL;
2400
2401         bpage = (void *)addr;
2402
2403         return bpage;
2404 }
2405
2406 /**
2407  * ring_buffer_free_read_page - free an allocated read page
2408  * @buffer: the buffer the page was allocate for
2409  * @data: the page to free
2410  *
2411  * Free a page allocated from ring_buffer_alloc_read_page.
2412  */
2413 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2414 {
2415         free_page((unsigned long)data);
2416 }
2417
2418 /**
2419  * ring_buffer_read_page - extract a page from the ring buffer
2420  * @buffer: buffer to extract from
2421  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2422  * @cpu: the cpu of the buffer to extract
2423  * @full: should the extraction only happen when the page is full.
2424  *
2425  * This function will pull out a page from the ring buffer and consume it.
2426  * @data_page must be the address of the variable that was returned
2427  * from ring_buffer_alloc_read_page. This is because the page might be used
2428  * to swap with a page in the ring buffer.
2429  *
2430  * for example:
2431  *      rpage = ring_buffer_alloc_page(buffer);
2432  *      if (!rpage)
2433  *              return error;
2434  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2435  *      if (ret)
2436  *              process_page(rpage);
2437  *
2438  * When @full is set, the function will not return true unless
2439  * the writer is off the reader page.
2440  *
2441  * Note: it is up to the calling functions to handle sleeps and wakeups.
2442  *  The ring buffer can be used anywhere in the kernel and can not
2443  *  blindly call wake_up. The layer that uses the ring buffer must be
2444  *  responsible for that.
2445  *
2446  * Returns:
2447  *  1 if data has been transferred
2448  *  0 if no data has been transferred.
2449  */
2450 int ring_buffer_read_page(struct ring_buffer *buffer,
2451                             void **data_page, int cpu, int full)
2452 {
2453         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2454         struct ring_buffer_event *event;
2455         struct buffer_data_page *bpage;
2456         unsigned long flags;
2457         int ret = 0;
2458
2459         if (!data_page)
2460                 return 0;
2461
2462         bpage = *data_page;
2463         if (!bpage)
2464                 return 0;
2465
2466         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2467
2468         /*
2469          * rb_buffer_peek will get the next ring buffer if
2470          * the current reader page is empty.
2471          */
2472         event = rb_buffer_peek(buffer, cpu, NULL);
2473         if (!event)
2474                 goto out;
2475
2476         /* check for data */
2477         if (!local_read(&cpu_buffer->reader_page->page->commit))
2478                 goto out;
2479         /*
2480          * If the writer is already off of the read page, then simply
2481          * switch the read page with the given page. Otherwise
2482          * we need to copy the data from the reader to the writer.
2483          */
2484         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2485                 unsigned int read = cpu_buffer->reader_page->read;
2486
2487                 if (full)
2488                         goto out;
2489                 /* The writer is still on the reader page, we must copy */
2490                 bpage = cpu_buffer->reader_page->page;
2491                 memcpy(bpage->data,
2492                        cpu_buffer->reader_page->page->data + read,
2493                        local_read(&bpage->commit) - read);
2494
2495                 /* consume what was read */
2496                 cpu_buffer->reader_page += read;
2497
2498         } else {
2499                 /* swap the pages */
2500                 rb_init_page(bpage);
2501                 bpage = cpu_buffer->reader_page->page;
2502                 cpu_buffer->reader_page->page = *data_page;
2503                 cpu_buffer->reader_page->read = 0;
2504                 *data_page = bpage;
2505         }
2506         ret = 1;
2507
2508         /* update the entry counter */
2509         rb_remove_entries(cpu_buffer, bpage);
2510  out:
2511         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2512
2513         return ret;
2514 }
2515
2516 static ssize_t
2517 rb_simple_read(struct file *filp, char __user *ubuf,
2518                size_t cnt, loff_t *ppos)
2519 {
2520         long *p = filp->private_data;
2521         char buf[64];
2522         int r;
2523
2524         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2525                 r = sprintf(buf, "permanently disabled\n");
2526         else
2527                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2528
2529         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2530 }
2531
2532 static ssize_t
2533 rb_simple_write(struct file *filp, const char __user *ubuf,
2534                 size_t cnt, loff_t *ppos)
2535 {
2536         long *p = filp->private_data;
2537         char buf[64];
2538         long val;
2539         int ret;
2540
2541         if (cnt >= sizeof(buf))
2542                 return -EINVAL;
2543
2544         if (copy_from_user(&buf, ubuf, cnt))
2545                 return -EFAULT;
2546
2547         buf[cnt] = 0;
2548
2549         ret = strict_strtoul(buf, 10, &val);
2550         if (ret < 0)
2551                 return ret;
2552
2553         if (val)
2554                 set_bit(RB_BUFFERS_ON_BIT, p);
2555         else
2556                 clear_bit(RB_BUFFERS_ON_BIT, p);
2557
2558         (*ppos)++;
2559
2560         return cnt;
2561 }
2562
2563 static struct file_operations rb_simple_fops = {
2564         .open           = tracing_open_generic,
2565         .read           = rb_simple_read,
2566         .write          = rb_simple_write,
2567 };
2568
2569
2570 static __init int rb_init_debugfs(void)
2571 {
2572         struct dentry *d_tracer;
2573         struct dentry *entry;
2574
2575         d_tracer = tracing_init_dentry();
2576
2577         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2578                                     &ring_buffer_flags, &rb_simple_fops);
2579         if (!entry)
2580                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2581
2582         return 0;
2583 }
2584
2585 fs_initcall(rb_init_debugfs);