ring-buffer: record page entries in buffer page descriptor
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING
220                         && event->time_delta == 0;
221 }
222
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230         event->type_len = RINGBUF_TYPE_PADDING;
231         event->time_delta = 0;
232 }
233
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237         unsigned length;
238
239         if (event->type_len)
240                 length = event->type_len * RB_ALIGNMENT;
241         else
242                 length = event->array[0];
243         return length + RB_EVNT_HDR_SIZE;
244 }
245
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250         switch (event->type_len) {
251         case RINGBUF_TYPE_PADDING:
252                 if (rb_null_event(event))
253                         /* undefined */
254                         return -1;
255                 return  event->array[0] + RB_EVNT_HDR_SIZE;
256
257         case RINGBUF_TYPE_TIME_EXTEND:
258                 return RB_LEN_TIME_EXTEND;
259
260         case RINGBUF_TYPE_TIME_STAMP:
261                 return RB_LEN_TIME_STAMP;
262
263         case RINGBUF_TYPE_DATA:
264                 return rb_event_data_length(event);
265         default:
266                 BUG();
267         }
268         /* not hit */
269         return 0;
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278         unsigned length = rb_event_length(event);
279         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280                 return length;
281         length -= RB_EVNT_HDR_SIZE;
282         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284         return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293         /* If length is in len field, then array[0] has the data */
294         if (event->type_len)
295                 return (void *)&event->array[0];
296         /* Otherwise length is in array[0] and array[1] has the data */
297         return (void *)&event->array[1];
298 }
299
300 /**
301  * ring_buffer_event_data - return the data of the event
302  * @event: the event to get the data from
303  */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306         return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309
310 #define for_each_buffer_cpu(buffer, cpu)                \
311         for_each_cpu(cpu, buffer->cpumask)
312
313 #define TS_SHIFT        27
314 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST   (~TS_MASK)
316
317 struct buffer_data_page {
318         u64              time_stamp;    /* page time stamp */
319         local_t          commit;        /* write committed index */
320         unsigned char    data[];        /* data of buffer page */
321 };
322
323 struct buffer_page {
324         struct list_head list;          /* list of buffer pages */
325         local_t          write;         /* index for next write */
326         unsigned         read;          /* index for next read */
327         local_t          entries;       /* entries on this page */
328         struct buffer_data_page *page;  /* Actual data page */
329 };
330
331 static void rb_init_page(struct buffer_data_page *bpage)
332 {
333         local_set(&bpage->commit, 0);
334 }
335
336 /**
337  * ring_buffer_page_len - the size of data on the page.
338  * @page: The page to read
339  *
340  * Returns the amount of data on the page, including buffer page header.
341  */
342 size_t ring_buffer_page_len(void *page)
343 {
344         return local_read(&((struct buffer_data_page *)page)->commit)
345                 + BUF_PAGE_HDR_SIZE;
346 }
347
348 /*
349  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350  * this issue out.
351  */
352 static void free_buffer_page(struct buffer_page *bpage)
353 {
354         free_page((unsigned long)bpage->page);
355         kfree(bpage);
356 }
357
358 /*
359  * We need to fit the time_stamp delta into 27 bits.
360  */
361 static inline int test_time_stamp(u64 delta)
362 {
363         if (delta & TS_DELTA_TEST)
364                 return 1;
365         return 0;
366 }
367
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
369
370 int ring_buffer_print_page_header(struct trace_seq *s)
371 {
372         struct buffer_data_page field;
373         int ret;
374
375         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376                                "offset:0;\tsize:%u;\n",
377                                (unsigned int)sizeof(field.time_stamp));
378
379         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
380                                "offset:%u;\tsize:%u;\n",
381                                (unsigned int)offsetof(typeof(field), commit),
382                                (unsigned int)sizeof(field.commit));
383
384         ret = trace_seq_printf(s, "\tfield: char data;\t"
385                                "offset:%u;\tsize:%u;\n",
386                                (unsigned int)offsetof(typeof(field), data),
387                                (unsigned int)BUF_PAGE_SIZE);
388
389         return ret;
390 }
391
392 /*
393  * head_page == tail_page && head == tail then buffer is empty.
394  */
395 struct ring_buffer_per_cpu {
396         int                             cpu;
397         struct ring_buffer              *buffer;
398         spinlock_t                      reader_lock; /* serialize readers */
399         raw_spinlock_t                  lock;
400         struct lock_class_key           lock_key;
401         struct list_head                pages;
402         struct buffer_page              *head_page;     /* read from head */
403         struct buffer_page              *tail_page;     /* write to tail */
404         struct buffer_page              *commit_page;   /* committed pages */
405         struct buffer_page              *reader_page;
406         unsigned long                   nmi_dropped;
407         unsigned long                   commit_overrun;
408         unsigned long                   overrun;
409         unsigned long                   read;
410         local_t                         entries;
411         u64                             write_stamp;
412         u64                             read_stamp;
413         atomic_t                        record_disabled;
414 };
415
416 struct ring_buffer {
417         unsigned                        pages;
418         unsigned                        flags;
419         int                             cpus;
420         atomic_t                        record_disabled;
421         cpumask_var_t                   cpumask;
422
423         struct mutex                    mutex;
424
425         struct ring_buffer_per_cpu      **buffers;
426
427 #ifdef CONFIG_HOTPLUG_CPU
428         struct notifier_block           cpu_notify;
429 #endif
430         u64                             (*clock)(void);
431 };
432
433 struct ring_buffer_iter {
434         struct ring_buffer_per_cpu      *cpu_buffer;
435         unsigned long                   head;
436         struct buffer_page              *head_page;
437         u64                             read_stamp;
438 };
439
440 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
441 #define RB_WARN_ON(buffer, cond)                                \
442         ({                                                      \
443                 int _____ret = unlikely(cond);                  \
444                 if (_____ret) {                                 \
445                         atomic_inc(&buffer->record_disabled);   \
446                         WARN_ON(1);                             \
447                 }                                               \
448                 _____ret;                                       \
449         })
450
451 /* Up this if you want to test the TIME_EXTENTS and normalization */
452 #define DEBUG_SHIFT 0
453
454 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
455 {
456         u64 time;
457
458         preempt_disable_notrace();
459         /* shift to debug/test normalization and TIME_EXTENTS */
460         time = buffer->clock() << DEBUG_SHIFT;
461         preempt_enable_no_resched_notrace();
462
463         return time;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
466
467 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
468                                       int cpu, u64 *ts)
469 {
470         /* Just stupid testing the normalize function and deltas */
471         *ts >>= DEBUG_SHIFT;
472 }
473 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
474
475 /**
476  * check_pages - integrity check of buffer pages
477  * @cpu_buffer: CPU buffer with pages to test
478  *
479  * As a safety measure we check to make sure the data pages have not
480  * been corrupted.
481  */
482 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
483 {
484         struct list_head *head = &cpu_buffer->pages;
485         struct buffer_page *bpage, *tmp;
486
487         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
488                 return -1;
489         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
490                 return -1;
491
492         list_for_each_entry_safe(bpage, tmp, head, list) {
493                 if (RB_WARN_ON(cpu_buffer,
494                                bpage->list.next->prev != &bpage->list))
495                         return -1;
496                 if (RB_WARN_ON(cpu_buffer,
497                                bpage->list.prev->next != &bpage->list))
498                         return -1;
499         }
500
501         return 0;
502 }
503
504 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
505                              unsigned nr_pages)
506 {
507         struct list_head *head = &cpu_buffer->pages;
508         struct buffer_page *bpage, *tmp;
509         unsigned long addr;
510         LIST_HEAD(pages);
511         unsigned i;
512
513         for (i = 0; i < nr_pages; i++) {
514                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
515                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
516                 if (!bpage)
517                         goto free_pages;
518                 list_add(&bpage->list, &pages);
519
520                 addr = __get_free_page(GFP_KERNEL);
521                 if (!addr)
522                         goto free_pages;
523                 bpage->page = (void *)addr;
524                 rb_init_page(bpage->page);
525         }
526
527         list_splice(&pages, head);
528
529         rb_check_pages(cpu_buffer);
530
531         return 0;
532
533  free_pages:
534         list_for_each_entry_safe(bpage, tmp, &pages, list) {
535                 list_del_init(&bpage->list);
536                 free_buffer_page(bpage);
537         }
538         return -ENOMEM;
539 }
540
541 static struct ring_buffer_per_cpu *
542 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
543 {
544         struct ring_buffer_per_cpu *cpu_buffer;
545         struct buffer_page *bpage;
546         unsigned long addr;
547         int ret;
548
549         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
550                                   GFP_KERNEL, cpu_to_node(cpu));
551         if (!cpu_buffer)
552                 return NULL;
553
554         cpu_buffer->cpu = cpu;
555         cpu_buffer->buffer = buffer;
556         spin_lock_init(&cpu_buffer->reader_lock);
557         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
558         INIT_LIST_HEAD(&cpu_buffer->pages);
559
560         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
561                             GFP_KERNEL, cpu_to_node(cpu));
562         if (!bpage)
563                 goto fail_free_buffer;
564
565         cpu_buffer->reader_page = bpage;
566         addr = __get_free_page(GFP_KERNEL);
567         if (!addr)
568                 goto fail_free_reader;
569         bpage->page = (void *)addr;
570         rb_init_page(bpage->page);
571
572         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
573
574         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
575         if (ret < 0)
576                 goto fail_free_reader;
577
578         cpu_buffer->head_page
579                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
580         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
581
582         return cpu_buffer;
583
584  fail_free_reader:
585         free_buffer_page(cpu_buffer->reader_page);
586
587  fail_free_buffer:
588         kfree(cpu_buffer);
589         return NULL;
590 }
591
592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
593 {
594         struct list_head *head = &cpu_buffer->pages;
595         struct buffer_page *bpage, *tmp;
596
597         free_buffer_page(cpu_buffer->reader_page);
598
599         list_for_each_entry_safe(bpage, tmp, head, list) {
600                 list_del_init(&bpage->list);
601                 free_buffer_page(bpage);
602         }
603         kfree(cpu_buffer);
604 }
605
606 /*
607  * Causes compile errors if the struct buffer_page gets bigger
608  * than the struct page.
609  */
610 extern int ring_buffer_page_too_big(void);
611
612 #ifdef CONFIG_HOTPLUG_CPU
613 static int rb_cpu_notify(struct notifier_block *self,
614                          unsigned long action, void *hcpu);
615 #endif
616
617 /**
618  * ring_buffer_alloc - allocate a new ring_buffer
619  * @size: the size in bytes per cpu that is needed.
620  * @flags: attributes to set for the ring buffer.
621  *
622  * Currently the only flag that is available is the RB_FL_OVERWRITE
623  * flag. This flag means that the buffer will overwrite old data
624  * when the buffer wraps. If this flag is not set, the buffer will
625  * drop data when the tail hits the head.
626  */
627 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
628 {
629         struct ring_buffer *buffer;
630         int bsize;
631         int cpu;
632
633         /* Paranoid! Optimizes out when all is well */
634         if (sizeof(struct buffer_page) > sizeof(struct page))
635                 ring_buffer_page_too_big();
636
637
638         /* keep it in its own cache line */
639         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
640                          GFP_KERNEL);
641         if (!buffer)
642                 return NULL;
643
644         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
645                 goto fail_free_buffer;
646
647         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
648         buffer->flags = flags;
649         buffer->clock = trace_clock_local;
650
651         /* need at least two pages */
652         if (buffer->pages == 1)
653                 buffer->pages++;
654
655         /*
656          * In case of non-hotplug cpu, if the ring-buffer is allocated
657          * in early initcall, it will not be notified of secondary cpus.
658          * In that off case, we need to allocate for all possible cpus.
659          */
660 #ifdef CONFIG_HOTPLUG_CPU
661         get_online_cpus();
662         cpumask_copy(buffer->cpumask, cpu_online_mask);
663 #else
664         cpumask_copy(buffer->cpumask, cpu_possible_mask);
665 #endif
666         buffer->cpus = nr_cpu_ids;
667
668         bsize = sizeof(void *) * nr_cpu_ids;
669         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
670                                   GFP_KERNEL);
671         if (!buffer->buffers)
672                 goto fail_free_cpumask;
673
674         for_each_buffer_cpu(buffer, cpu) {
675                 buffer->buffers[cpu] =
676                         rb_allocate_cpu_buffer(buffer, cpu);
677                 if (!buffer->buffers[cpu])
678                         goto fail_free_buffers;
679         }
680
681 #ifdef CONFIG_HOTPLUG_CPU
682         buffer->cpu_notify.notifier_call = rb_cpu_notify;
683         buffer->cpu_notify.priority = 0;
684         register_cpu_notifier(&buffer->cpu_notify);
685 #endif
686
687         put_online_cpus();
688         mutex_init(&buffer->mutex);
689
690         return buffer;
691
692  fail_free_buffers:
693         for_each_buffer_cpu(buffer, cpu) {
694                 if (buffer->buffers[cpu])
695                         rb_free_cpu_buffer(buffer->buffers[cpu]);
696         }
697         kfree(buffer->buffers);
698
699  fail_free_cpumask:
700         free_cpumask_var(buffer->cpumask);
701         put_online_cpus();
702
703  fail_free_buffer:
704         kfree(buffer);
705         return NULL;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
708
709 /**
710  * ring_buffer_free - free a ring buffer.
711  * @buffer: the buffer to free.
712  */
713 void
714 ring_buffer_free(struct ring_buffer *buffer)
715 {
716         int cpu;
717
718         get_online_cpus();
719
720 #ifdef CONFIG_HOTPLUG_CPU
721         unregister_cpu_notifier(&buffer->cpu_notify);
722 #endif
723
724         for_each_buffer_cpu(buffer, cpu)
725                 rb_free_cpu_buffer(buffer->buffers[cpu]);
726
727         put_online_cpus();
728
729         free_cpumask_var(buffer->cpumask);
730
731         kfree(buffer);
732 }
733 EXPORT_SYMBOL_GPL(ring_buffer_free);
734
735 void ring_buffer_set_clock(struct ring_buffer *buffer,
736                            u64 (*clock)(void))
737 {
738         buffer->clock = clock;
739 }
740
741 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
742
743 static void
744 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
745 {
746         struct buffer_page *bpage;
747         struct list_head *p;
748         unsigned i;
749
750         atomic_inc(&cpu_buffer->record_disabled);
751         synchronize_sched();
752
753         for (i = 0; i < nr_pages; i++) {
754                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
755                         return;
756                 p = cpu_buffer->pages.next;
757                 bpage = list_entry(p, struct buffer_page, list);
758                 list_del_init(&bpage->list);
759                 free_buffer_page(bpage);
760         }
761         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
762                 return;
763
764         rb_reset_cpu(cpu_buffer);
765
766         rb_check_pages(cpu_buffer);
767
768         atomic_dec(&cpu_buffer->record_disabled);
769
770 }
771
772 static void
773 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
774                 struct list_head *pages, unsigned nr_pages)
775 {
776         struct buffer_page *bpage;
777         struct list_head *p;
778         unsigned i;
779
780         atomic_inc(&cpu_buffer->record_disabled);
781         synchronize_sched();
782
783         for (i = 0; i < nr_pages; i++) {
784                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
785                         return;
786                 p = pages->next;
787                 bpage = list_entry(p, struct buffer_page, list);
788                 list_del_init(&bpage->list);
789                 list_add_tail(&bpage->list, &cpu_buffer->pages);
790         }
791         rb_reset_cpu(cpu_buffer);
792
793         rb_check_pages(cpu_buffer);
794
795         atomic_dec(&cpu_buffer->record_disabled);
796 }
797
798 /**
799  * ring_buffer_resize - resize the ring buffer
800  * @buffer: the buffer to resize.
801  * @size: the new size.
802  *
803  * The tracer is responsible for making sure that the buffer is
804  * not being used while changing the size.
805  * Note: We may be able to change the above requirement by using
806  *  RCU synchronizations.
807  *
808  * Minimum size is 2 * BUF_PAGE_SIZE.
809  *
810  * Returns -1 on failure.
811  */
812 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
813 {
814         struct ring_buffer_per_cpu *cpu_buffer;
815         unsigned nr_pages, rm_pages, new_pages;
816         struct buffer_page *bpage, *tmp;
817         unsigned long buffer_size;
818         unsigned long addr;
819         LIST_HEAD(pages);
820         int i, cpu;
821
822         /*
823          * Always succeed at resizing a non-existent buffer:
824          */
825         if (!buffer)
826                 return size;
827
828         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
829         size *= BUF_PAGE_SIZE;
830         buffer_size = buffer->pages * BUF_PAGE_SIZE;
831
832         /* we need a minimum of two pages */
833         if (size < BUF_PAGE_SIZE * 2)
834                 size = BUF_PAGE_SIZE * 2;
835
836         if (size == buffer_size)
837                 return size;
838
839         mutex_lock(&buffer->mutex);
840         get_online_cpus();
841
842         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
843
844         if (size < buffer_size) {
845
846                 /* easy case, just free pages */
847                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
848                         goto out_fail;
849
850                 rm_pages = buffer->pages - nr_pages;
851
852                 for_each_buffer_cpu(buffer, cpu) {
853                         cpu_buffer = buffer->buffers[cpu];
854                         rb_remove_pages(cpu_buffer, rm_pages);
855                 }
856                 goto out;
857         }
858
859         /*
860          * This is a bit more difficult. We only want to add pages
861          * when we can allocate enough for all CPUs. We do this
862          * by allocating all the pages and storing them on a local
863          * link list. If we succeed in our allocation, then we
864          * add these pages to the cpu_buffers. Otherwise we just free
865          * them all and return -ENOMEM;
866          */
867         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
868                 goto out_fail;
869
870         new_pages = nr_pages - buffer->pages;
871
872         for_each_buffer_cpu(buffer, cpu) {
873                 for (i = 0; i < new_pages; i++) {
874                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
875                                                   cache_line_size()),
876                                             GFP_KERNEL, cpu_to_node(cpu));
877                         if (!bpage)
878                                 goto free_pages;
879                         list_add(&bpage->list, &pages);
880                         addr = __get_free_page(GFP_KERNEL);
881                         if (!addr)
882                                 goto free_pages;
883                         bpage->page = (void *)addr;
884                         rb_init_page(bpage->page);
885                 }
886         }
887
888         for_each_buffer_cpu(buffer, cpu) {
889                 cpu_buffer = buffer->buffers[cpu];
890                 rb_insert_pages(cpu_buffer, &pages, new_pages);
891         }
892
893         if (RB_WARN_ON(buffer, !list_empty(&pages)))
894                 goto out_fail;
895
896  out:
897         buffer->pages = nr_pages;
898         put_online_cpus();
899         mutex_unlock(&buffer->mutex);
900
901         return size;
902
903  free_pages:
904         list_for_each_entry_safe(bpage, tmp, &pages, list) {
905                 list_del_init(&bpage->list);
906                 free_buffer_page(bpage);
907         }
908         put_online_cpus();
909         mutex_unlock(&buffer->mutex);
910         return -ENOMEM;
911
912         /*
913          * Something went totally wrong, and we are too paranoid
914          * to even clean up the mess.
915          */
916  out_fail:
917         put_online_cpus();
918         mutex_unlock(&buffer->mutex);
919         return -1;
920 }
921 EXPORT_SYMBOL_GPL(ring_buffer_resize);
922
923 static inline void *
924 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
925 {
926         return bpage->data + index;
927 }
928
929 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
930 {
931         return bpage->page->data + index;
932 }
933
934 static inline struct ring_buffer_event *
935 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937         return __rb_page_index(cpu_buffer->reader_page,
938                                cpu_buffer->reader_page->read);
939 }
940
941 static inline struct ring_buffer_event *
942 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
943 {
944         return __rb_page_index(cpu_buffer->head_page,
945                                cpu_buffer->head_page->read);
946 }
947
948 static inline struct ring_buffer_event *
949 rb_iter_head_event(struct ring_buffer_iter *iter)
950 {
951         return __rb_page_index(iter->head_page, iter->head);
952 }
953
954 static inline unsigned rb_page_write(struct buffer_page *bpage)
955 {
956         return local_read(&bpage->write);
957 }
958
959 static inline unsigned rb_page_commit(struct buffer_page *bpage)
960 {
961         return local_read(&bpage->page->commit);
962 }
963
964 /* Size is determined by what has been commited */
965 static inline unsigned rb_page_size(struct buffer_page *bpage)
966 {
967         return rb_page_commit(bpage);
968 }
969
970 static inline unsigned
971 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
972 {
973         return rb_page_commit(cpu_buffer->commit_page);
974 }
975
976 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
977 {
978         return rb_page_commit(cpu_buffer->head_page);
979 }
980
981 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
982                                struct buffer_page **bpage)
983 {
984         struct list_head *p = (*bpage)->list.next;
985
986         if (p == &cpu_buffer->pages)
987                 p = p->next;
988
989         *bpage = list_entry(p, struct buffer_page, list);
990 }
991
992 static inline unsigned
993 rb_event_index(struct ring_buffer_event *event)
994 {
995         unsigned long addr = (unsigned long)event;
996
997         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
998 }
999
1000 static int
1001 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1002              struct ring_buffer_event *event)
1003 {
1004         unsigned long addr = (unsigned long)event;
1005         unsigned long index;
1006
1007         index = rb_event_index(event);
1008         addr &= PAGE_MASK;
1009
1010         return cpu_buffer->commit_page->page == (void *)addr &&
1011                 rb_commit_index(cpu_buffer) == index;
1012 }
1013
1014 static void
1015 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1016                     struct ring_buffer_event *event)
1017 {
1018         unsigned long addr = (unsigned long)event;
1019         unsigned long index;
1020
1021         index = rb_event_index(event);
1022         addr &= PAGE_MASK;
1023
1024         while (cpu_buffer->commit_page->page != (void *)addr) {
1025                 if (RB_WARN_ON(cpu_buffer,
1026                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1027                         return;
1028                 cpu_buffer->commit_page->page->commit =
1029                         cpu_buffer->commit_page->write;
1030                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1031                 cpu_buffer->write_stamp =
1032                         cpu_buffer->commit_page->page->time_stamp;
1033         }
1034
1035         /* Now set the commit to the event's index */
1036         local_set(&cpu_buffer->commit_page->page->commit, index);
1037 }
1038
1039 static void
1040 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1041 {
1042         /*
1043          * We only race with interrupts and NMIs on this CPU.
1044          * If we own the commit event, then we can commit
1045          * all others that interrupted us, since the interruptions
1046          * are in stack format (they finish before they come
1047          * back to us). This allows us to do a simple loop to
1048          * assign the commit to the tail.
1049          */
1050  again:
1051         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1052                 cpu_buffer->commit_page->page->commit =
1053                         cpu_buffer->commit_page->write;
1054                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1055                 cpu_buffer->write_stamp =
1056                         cpu_buffer->commit_page->page->time_stamp;
1057                 /* add barrier to keep gcc from optimizing too much */
1058                 barrier();
1059         }
1060         while (rb_commit_index(cpu_buffer) !=
1061                rb_page_write(cpu_buffer->commit_page)) {
1062                 cpu_buffer->commit_page->page->commit =
1063                         cpu_buffer->commit_page->write;
1064                 barrier();
1065         }
1066
1067         /* again, keep gcc from optimizing */
1068         barrier();
1069
1070         /*
1071          * If an interrupt came in just after the first while loop
1072          * and pushed the tail page forward, we will be left with
1073          * a dangling commit that will never go forward.
1074          */
1075         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1076                 goto again;
1077 }
1078
1079 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1080 {
1081         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1082         cpu_buffer->reader_page->read = 0;
1083 }
1084
1085 static void rb_inc_iter(struct ring_buffer_iter *iter)
1086 {
1087         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1088
1089         /*
1090          * The iterator could be on the reader page (it starts there).
1091          * But the head could have moved, since the reader was
1092          * found. Check for this case and assign the iterator
1093          * to the head page instead of next.
1094          */
1095         if (iter->head_page == cpu_buffer->reader_page)
1096                 iter->head_page = cpu_buffer->head_page;
1097         else
1098                 rb_inc_page(cpu_buffer, &iter->head_page);
1099
1100         iter->read_stamp = iter->head_page->page->time_stamp;
1101         iter->head = 0;
1102 }
1103
1104 /**
1105  * ring_buffer_update_event - update event type and data
1106  * @event: the even to update
1107  * @type: the type of event
1108  * @length: the size of the event field in the ring buffer
1109  *
1110  * Update the type and data fields of the event. The length
1111  * is the actual size that is written to the ring buffer,
1112  * and with this, we can determine what to place into the
1113  * data field.
1114  */
1115 static void
1116 rb_update_event(struct ring_buffer_event *event,
1117                          unsigned type, unsigned length)
1118 {
1119         event->type_len = type;
1120
1121         switch (type) {
1122
1123         case RINGBUF_TYPE_PADDING:
1124         case RINGBUF_TYPE_TIME_EXTEND:
1125         case RINGBUF_TYPE_TIME_STAMP:
1126                 break;
1127
1128         case 0:
1129                 length -= RB_EVNT_HDR_SIZE;
1130                 if (length > RB_MAX_SMALL_DATA)
1131                         event->array[0] = length;
1132                 else
1133                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1134                 break;
1135         default:
1136                 BUG();
1137         }
1138 }
1139
1140 static unsigned rb_calculate_event_length(unsigned length)
1141 {
1142         struct ring_buffer_event event; /* Used only for sizeof array */
1143
1144         /* zero length can cause confusions */
1145         if (!length)
1146                 length = 1;
1147
1148         if (length > RB_MAX_SMALL_DATA)
1149                 length += sizeof(event.array[0]);
1150
1151         length += RB_EVNT_HDR_SIZE;
1152         length = ALIGN(length, RB_ALIGNMENT);
1153
1154         return length;
1155 }
1156
1157 static struct ring_buffer_event *
1158 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1159                   unsigned type, unsigned long length, u64 *ts)
1160 {
1161         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1162         unsigned long tail, write;
1163         struct ring_buffer *buffer = cpu_buffer->buffer;
1164         struct ring_buffer_event *event;
1165         unsigned long flags;
1166         bool lock_taken = false;
1167
1168         commit_page = cpu_buffer->commit_page;
1169         /* we just need to protect against interrupts */
1170         barrier();
1171         tail_page = cpu_buffer->tail_page;
1172         write = local_add_return(length, &tail_page->write);
1173         tail = write - length;
1174
1175         /* See if we shot pass the end of this buffer page */
1176         if (write > BUF_PAGE_SIZE) {
1177                 struct buffer_page *next_page = tail_page;
1178
1179                 local_irq_save(flags);
1180                 /*
1181                  * Since the write to the buffer is still not
1182                  * fully lockless, we must be careful with NMIs.
1183                  * The locks in the writers are taken when a write
1184                  * crosses to a new page. The locks protect against
1185                  * races with the readers (this will soon be fixed
1186                  * with a lockless solution).
1187                  *
1188                  * Because we can not protect against NMIs, and we
1189                  * want to keep traces reentrant, we need to manage
1190                  * what happens when we are in an NMI.
1191                  *
1192                  * NMIs can happen after we take the lock.
1193                  * If we are in an NMI, only take the lock
1194                  * if it is not already taken. Otherwise
1195                  * simply fail.
1196                  */
1197                 if (unlikely(in_nmi())) {
1198                         if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1199                                 cpu_buffer->nmi_dropped++;
1200                                 goto out_reset;
1201                         }
1202                 } else
1203                         __raw_spin_lock(&cpu_buffer->lock);
1204
1205                 lock_taken = true;
1206
1207                 rb_inc_page(cpu_buffer, &next_page);
1208
1209                 head_page = cpu_buffer->head_page;
1210                 reader_page = cpu_buffer->reader_page;
1211
1212                 /* we grabbed the lock before incrementing */
1213                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1214                         goto out_reset;
1215
1216                 /*
1217                  * If for some reason, we had an interrupt storm that made
1218                  * it all the way around the buffer, bail, and warn
1219                  * about it.
1220                  */
1221                 if (unlikely(next_page == commit_page)) {
1222                         cpu_buffer->commit_overrun++;
1223                         goto out_reset;
1224                 }
1225
1226                 if (next_page == head_page) {
1227                         if (!(buffer->flags & RB_FL_OVERWRITE))
1228                                 goto out_reset;
1229
1230                         /* tail_page has not moved yet? */
1231                         if (tail_page == cpu_buffer->tail_page) {
1232                                 /* count overflows */
1233                                 cpu_buffer->overrun +=
1234                                         local_read(&head_page->entries);
1235
1236                                 rb_inc_page(cpu_buffer, &head_page);
1237                                 cpu_buffer->head_page = head_page;
1238                                 cpu_buffer->head_page->read = 0;
1239                         }
1240                 }
1241
1242                 /*
1243                  * If the tail page is still the same as what we think
1244                  * it is, then it is up to us to update the tail
1245                  * pointer.
1246                  */
1247                 if (tail_page == cpu_buffer->tail_page) {
1248                         local_set(&next_page->write, 0);
1249                         local_set(&next_page->entries, 0);
1250                         local_set(&next_page->page->commit, 0);
1251                         cpu_buffer->tail_page = next_page;
1252
1253                         /* reread the time stamp */
1254                         *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1255                         cpu_buffer->tail_page->page->time_stamp = *ts;
1256                 }
1257
1258                 /*
1259                  * The actual tail page has moved forward.
1260                  */
1261                 if (tail < BUF_PAGE_SIZE) {
1262                         /* Mark the rest of the page with padding */
1263                         event = __rb_page_index(tail_page, tail);
1264                         rb_event_set_padding(event);
1265                 }
1266
1267                 if (tail <= BUF_PAGE_SIZE)
1268                         /* Set the write back to the previous setting */
1269                         local_set(&tail_page->write, tail);
1270
1271                 /*
1272                  * If this was a commit entry that failed,
1273                  * increment that too
1274                  */
1275                 if (tail_page == cpu_buffer->commit_page &&
1276                     tail == rb_commit_index(cpu_buffer)) {
1277                         rb_set_commit_to_write(cpu_buffer);
1278                 }
1279
1280                 __raw_spin_unlock(&cpu_buffer->lock);
1281                 local_irq_restore(flags);
1282
1283                 /* fail and let the caller try again */
1284                 return ERR_PTR(-EAGAIN);
1285         }
1286
1287         /* We reserved something on the buffer */
1288
1289         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1290                 return NULL;
1291
1292         event = __rb_page_index(tail_page, tail);
1293         rb_update_event(event, type, length);
1294
1295         /* The passed in type is zero for DATA */
1296         if (likely(!type))
1297                 local_inc(&tail_page->entries);
1298
1299         /*
1300          * If this is a commit and the tail is zero, then update
1301          * this page's time stamp.
1302          */
1303         if (!tail && rb_is_commit(cpu_buffer, event))
1304                 cpu_buffer->commit_page->page->time_stamp = *ts;
1305
1306         return event;
1307
1308  out_reset:
1309         /* reset write */
1310         if (tail <= BUF_PAGE_SIZE)
1311                 local_set(&tail_page->write, tail);
1312
1313         if (likely(lock_taken))
1314                 __raw_spin_unlock(&cpu_buffer->lock);
1315         local_irq_restore(flags);
1316         return NULL;
1317 }
1318
1319 static int
1320 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1321                   u64 *ts, u64 *delta)
1322 {
1323         struct ring_buffer_event *event;
1324         static int once;
1325         int ret;
1326
1327         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1328                 printk(KERN_WARNING "Delta way too big! %llu"
1329                        " ts=%llu write stamp = %llu\n",
1330                        (unsigned long long)*delta,
1331                        (unsigned long long)*ts,
1332                        (unsigned long long)cpu_buffer->write_stamp);
1333                 WARN_ON(1);
1334         }
1335
1336         /*
1337          * The delta is too big, we to add a
1338          * new timestamp.
1339          */
1340         event = __rb_reserve_next(cpu_buffer,
1341                                   RINGBUF_TYPE_TIME_EXTEND,
1342                                   RB_LEN_TIME_EXTEND,
1343                                   ts);
1344         if (!event)
1345                 return -EBUSY;
1346
1347         if (PTR_ERR(event) == -EAGAIN)
1348                 return -EAGAIN;
1349
1350         /* Only a commited time event can update the write stamp */
1351         if (rb_is_commit(cpu_buffer, event)) {
1352                 /*
1353                  * If this is the first on the page, then we need to
1354                  * update the page itself, and just put in a zero.
1355                  */
1356                 if (rb_event_index(event)) {
1357                         event->time_delta = *delta & TS_MASK;
1358                         event->array[0] = *delta >> TS_SHIFT;
1359                 } else {
1360                         cpu_buffer->commit_page->page->time_stamp = *ts;
1361                         event->time_delta = 0;
1362                         event->array[0] = 0;
1363                 }
1364                 cpu_buffer->write_stamp = *ts;
1365                 /* let the caller know this was the commit */
1366                 ret = 1;
1367         } else {
1368                 /* Darn, this is just wasted space */
1369                 event->time_delta = 0;
1370                 event->array[0] = 0;
1371                 ret = 0;
1372         }
1373
1374         *delta = 0;
1375
1376         return ret;
1377 }
1378
1379 static struct ring_buffer_event *
1380 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1381                       unsigned type, unsigned long length)
1382 {
1383         struct ring_buffer_event *event;
1384         u64 ts, delta;
1385         int commit = 0;
1386         int nr_loops = 0;
1387
1388  again:
1389         /*
1390          * We allow for interrupts to reenter here and do a trace.
1391          * If one does, it will cause this original code to loop
1392          * back here. Even with heavy interrupts happening, this
1393          * should only happen a few times in a row. If this happens
1394          * 1000 times in a row, there must be either an interrupt
1395          * storm or we have something buggy.
1396          * Bail!
1397          */
1398         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1399                 return NULL;
1400
1401         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1402
1403         /*
1404          * Only the first commit can update the timestamp.
1405          * Yes there is a race here. If an interrupt comes in
1406          * just after the conditional and it traces too, then it
1407          * will also check the deltas. More than one timestamp may
1408          * also be made. But only the entry that did the actual
1409          * commit will be something other than zero.
1410          */
1411         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1412             rb_page_write(cpu_buffer->tail_page) ==
1413             rb_commit_index(cpu_buffer)) {
1414
1415                 delta = ts - cpu_buffer->write_stamp;
1416
1417                 /* make sure this delta is calculated here */
1418                 barrier();
1419
1420                 /* Did the write stamp get updated already? */
1421                 if (unlikely(ts < cpu_buffer->write_stamp))
1422                         delta = 0;
1423
1424                 if (test_time_stamp(delta)) {
1425
1426                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1427
1428                         if (commit == -EBUSY)
1429                                 return NULL;
1430
1431                         if (commit == -EAGAIN)
1432                                 goto again;
1433
1434                         RB_WARN_ON(cpu_buffer, commit < 0);
1435                 }
1436         } else
1437                 /* Non commits have zero deltas */
1438                 delta = 0;
1439
1440         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1441         if (PTR_ERR(event) == -EAGAIN)
1442                 goto again;
1443
1444         if (!event) {
1445                 if (unlikely(commit))
1446                         /*
1447                          * Ouch! We needed a timestamp and it was commited. But
1448                          * we didn't get our event reserved.
1449                          */
1450                         rb_set_commit_to_write(cpu_buffer);
1451                 return NULL;
1452         }
1453
1454         /*
1455          * If the timestamp was commited, make the commit our entry
1456          * now so that we will update it when needed.
1457          */
1458         if (commit)
1459                 rb_set_commit_event(cpu_buffer, event);
1460         else if (!rb_is_commit(cpu_buffer, event))
1461                 delta = 0;
1462
1463         event->time_delta = delta;
1464
1465         return event;
1466 }
1467
1468 #define TRACE_RECURSIVE_DEPTH 16
1469
1470 static int trace_recursive_lock(void)
1471 {
1472         current->trace_recursion++;
1473
1474         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1475                 return 0;
1476
1477         /* Disable all tracing before we do anything else */
1478         tracing_off_permanent();
1479
1480         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1481                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1482                     current->trace_recursion,
1483                     hardirq_count() >> HARDIRQ_SHIFT,
1484                     softirq_count() >> SOFTIRQ_SHIFT,
1485                     in_nmi());
1486
1487         WARN_ON_ONCE(1);
1488         return -1;
1489 }
1490
1491 static void trace_recursive_unlock(void)
1492 {
1493         WARN_ON_ONCE(!current->trace_recursion);
1494
1495         current->trace_recursion--;
1496 }
1497
1498 static DEFINE_PER_CPU(int, rb_need_resched);
1499
1500 /**
1501  * ring_buffer_lock_reserve - reserve a part of the buffer
1502  * @buffer: the ring buffer to reserve from
1503  * @length: the length of the data to reserve (excluding event header)
1504  *
1505  * Returns a reseverd event on the ring buffer to copy directly to.
1506  * The user of this interface will need to get the body to write into
1507  * and can use the ring_buffer_event_data() interface.
1508  *
1509  * The length is the length of the data needed, not the event length
1510  * which also includes the event header.
1511  *
1512  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1513  * If NULL is returned, then nothing has been allocated or locked.
1514  */
1515 struct ring_buffer_event *
1516 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1517 {
1518         struct ring_buffer_per_cpu *cpu_buffer;
1519         struct ring_buffer_event *event;
1520         int cpu, resched;
1521
1522         if (ring_buffer_flags != RB_BUFFERS_ON)
1523                 return NULL;
1524
1525         if (atomic_read(&buffer->record_disabled))
1526                 return NULL;
1527
1528         /* If we are tracing schedule, we don't want to recurse */
1529         resched = ftrace_preempt_disable();
1530
1531         if (trace_recursive_lock())
1532                 goto out_nocheck;
1533
1534         cpu = raw_smp_processor_id();
1535
1536         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1537                 goto out;
1538
1539         cpu_buffer = buffer->buffers[cpu];
1540
1541         if (atomic_read(&cpu_buffer->record_disabled))
1542                 goto out;
1543
1544         length = rb_calculate_event_length(length);
1545         if (length > BUF_PAGE_SIZE)
1546                 goto out;
1547
1548         event = rb_reserve_next_event(cpu_buffer, 0, length);
1549         if (!event)
1550                 goto out;
1551
1552         /*
1553          * Need to store resched state on this cpu.
1554          * Only the first needs to.
1555          */
1556
1557         if (preempt_count() == 1)
1558                 per_cpu(rb_need_resched, cpu) = resched;
1559
1560         return event;
1561
1562  out:
1563         trace_recursive_unlock();
1564
1565  out_nocheck:
1566         ftrace_preempt_enable(resched);
1567         return NULL;
1568 }
1569 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1570
1571 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1572                       struct ring_buffer_event *event)
1573 {
1574         local_inc(&cpu_buffer->entries);
1575
1576         /* Only process further if we own the commit */
1577         if (!rb_is_commit(cpu_buffer, event))
1578                 return;
1579
1580         cpu_buffer->write_stamp += event->time_delta;
1581
1582         rb_set_commit_to_write(cpu_buffer);
1583 }
1584
1585 /**
1586  * ring_buffer_unlock_commit - commit a reserved
1587  * @buffer: The buffer to commit to
1588  * @event: The event pointer to commit.
1589  *
1590  * This commits the data to the ring buffer, and releases any locks held.
1591  *
1592  * Must be paired with ring_buffer_lock_reserve.
1593  */
1594 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1595                               struct ring_buffer_event *event)
1596 {
1597         struct ring_buffer_per_cpu *cpu_buffer;
1598         int cpu = raw_smp_processor_id();
1599
1600         cpu_buffer = buffer->buffers[cpu];
1601
1602         rb_commit(cpu_buffer, event);
1603
1604         trace_recursive_unlock();
1605
1606         /*
1607          * Only the last preempt count needs to restore preemption.
1608          */
1609         if (preempt_count() == 1)
1610                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1611         else
1612                 preempt_enable_no_resched_notrace();
1613
1614         return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1617
1618 static inline void rb_event_discard(struct ring_buffer_event *event)
1619 {
1620         /* array[0] holds the actual length for the discarded event */
1621         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1622         event->type_len = RINGBUF_TYPE_PADDING;
1623         /* time delta must be non zero */
1624         if (!event->time_delta)
1625                 event->time_delta = 1;
1626 }
1627
1628 /**
1629  * ring_buffer_event_discard - discard any event in the ring buffer
1630  * @event: the event to discard
1631  *
1632  * Sometimes a event that is in the ring buffer needs to be ignored.
1633  * This function lets the user discard an event in the ring buffer
1634  * and then that event will not be read later.
1635  *
1636  * Note, it is up to the user to be careful with this, and protect
1637  * against races. If the user discards an event that has been consumed
1638  * it is possible that it could corrupt the ring buffer.
1639  */
1640 void ring_buffer_event_discard(struct ring_buffer_event *event)
1641 {
1642         rb_event_discard(event);
1643 }
1644 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1645
1646 /**
1647  * ring_buffer_commit_discard - discard an event that has not been committed
1648  * @buffer: the ring buffer
1649  * @event: non committed event to discard
1650  *
1651  * This is similar to ring_buffer_event_discard but must only be
1652  * performed on an event that has not been committed yet. The difference
1653  * is that this will also try to free the event from the ring buffer
1654  * if another event has not been added behind it.
1655  *
1656  * If another event has been added behind it, it will set the event
1657  * up as discarded, and perform the commit.
1658  *
1659  * If this function is called, do not call ring_buffer_unlock_commit on
1660  * the event.
1661  */
1662 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1663                                 struct ring_buffer_event *event)
1664 {
1665         struct ring_buffer_per_cpu *cpu_buffer;
1666         unsigned long new_index, old_index;
1667         struct buffer_page *bpage;
1668         unsigned long index;
1669         unsigned long addr;
1670         int cpu;
1671
1672         /* The event is discarded regardless */
1673         rb_event_discard(event);
1674
1675         /*
1676          * This must only be called if the event has not been
1677          * committed yet. Thus we can assume that preemption
1678          * is still disabled.
1679          */
1680         RB_WARN_ON(buffer, !preempt_count());
1681
1682         cpu = smp_processor_id();
1683         cpu_buffer = buffer->buffers[cpu];
1684
1685         new_index = rb_event_index(event);
1686         old_index = new_index + rb_event_length(event);
1687         addr = (unsigned long)event;
1688         addr &= PAGE_MASK;
1689
1690         bpage = cpu_buffer->tail_page;
1691
1692         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1693                 /*
1694                  * This is on the tail page. It is possible that
1695                  * a write could come in and move the tail page
1696                  * and write to the next page. That is fine
1697                  * because we just shorten what is on this page.
1698                  */
1699                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1700                 if (index == old_index)
1701                         goto out;
1702         }
1703
1704         /*
1705          * The commit is still visible by the reader, so we
1706          * must increment entries.
1707          */
1708         local_inc(&cpu_buffer->entries);
1709  out:
1710         /*
1711          * If a write came in and pushed the tail page
1712          * we still need to update the commit pointer
1713          * if we were the commit.
1714          */
1715         if (rb_is_commit(cpu_buffer, event))
1716                 rb_set_commit_to_write(cpu_buffer);
1717
1718         trace_recursive_unlock();
1719
1720         /*
1721          * Only the last preempt count needs to restore preemption.
1722          */
1723         if (preempt_count() == 1)
1724                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1725         else
1726                 preempt_enable_no_resched_notrace();
1727
1728 }
1729 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1730
1731 /**
1732  * ring_buffer_write - write data to the buffer without reserving
1733  * @buffer: The ring buffer to write to.
1734  * @length: The length of the data being written (excluding the event header)
1735  * @data: The data to write to the buffer.
1736  *
1737  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1738  * one function. If you already have the data to write to the buffer, it
1739  * may be easier to simply call this function.
1740  *
1741  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1742  * and not the length of the event which would hold the header.
1743  */
1744 int ring_buffer_write(struct ring_buffer *buffer,
1745                         unsigned long length,
1746                         void *data)
1747 {
1748         struct ring_buffer_per_cpu *cpu_buffer;
1749         struct ring_buffer_event *event;
1750         unsigned long event_length;
1751         void *body;
1752         int ret = -EBUSY;
1753         int cpu, resched;
1754
1755         if (ring_buffer_flags != RB_BUFFERS_ON)
1756                 return -EBUSY;
1757
1758         if (atomic_read(&buffer->record_disabled))
1759                 return -EBUSY;
1760
1761         resched = ftrace_preempt_disable();
1762
1763         cpu = raw_smp_processor_id();
1764
1765         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1766                 goto out;
1767
1768         cpu_buffer = buffer->buffers[cpu];
1769
1770         if (atomic_read(&cpu_buffer->record_disabled))
1771                 goto out;
1772
1773         event_length = rb_calculate_event_length(length);
1774         event = rb_reserve_next_event(cpu_buffer, 0, event_length);
1775         if (!event)
1776                 goto out;
1777
1778         body = rb_event_data(event);
1779
1780         memcpy(body, data, length);
1781
1782         rb_commit(cpu_buffer, event);
1783
1784         ret = 0;
1785  out:
1786         ftrace_preempt_enable(resched);
1787
1788         return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(ring_buffer_write);
1791
1792 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1793 {
1794         struct buffer_page *reader = cpu_buffer->reader_page;
1795         struct buffer_page *head = cpu_buffer->head_page;
1796         struct buffer_page *commit = cpu_buffer->commit_page;
1797
1798         return reader->read == rb_page_commit(reader) &&
1799                 (commit == reader ||
1800                  (commit == head &&
1801                   head->read == rb_page_commit(commit)));
1802 }
1803
1804 /**
1805  * ring_buffer_record_disable - stop all writes into the buffer
1806  * @buffer: The ring buffer to stop writes to.
1807  *
1808  * This prevents all writes to the buffer. Any attempt to write
1809  * to the buffer after this will fail and return NULL.
1810  *
1811  * The caller should call synchronize_sched() after this.
1812  */
1813 void ring_buffer_record_disable(struct ring_buffer *buffer)
1814 {
1815         atomic_inc(&buffer->record_disabled);
1816 }
1817 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1818
1819 /**
1820  * ring_buffer_record_enable - enable writes to the buffer
1821  * @buffer: The ring buffer to enable writes
1822  *
1823  * Note, multiple disables will need the same number of enables
1824  * to truely enable the writing (much like preempt_disable).
1825  */
1826 void ring_buffer_record_enable(struct ring_buffer *buffer)
1827 {
1828         atomic_dec(&buffer->record_disabled);
1829 }
1830 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1831
1832 /**
1833  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1834  * @buffer: The ring buffer to stop writes to.
1835  * @cpu: The CPU buffer to stop
1836  *
1837  * This prevents all writes to the buffer. Any attempt to write
1838  * to the buffer after this will fail and return NULL.
1839  *
1840  * The caller should call synchronize_sched() after this.
1841  */
1842 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1843 {
1844         struct ring_buffer_per_cpu *cpu_buffer;
1845
1846         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1847                 return;
1848
1849         cpu_buffer = buffer->buffers[cpu];
1850         atomic_inc(&cpu_buffer->record_disabled);
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1853
1854 /**
1855  * ring_buffer_record_enable_cpu - enable writes to the buffer
1856  * @buffer: The ring buffer to enable writes
1857  * @cpu: The CPU to enable.
1858  *
1859  * Note, multiple disables will need the same number of enables
1860  * to truely enable the writing (much like preempt_disable).
1861  */
1862 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1863 {
1864         struct ring_buffer_per_cpu *cpu_buffer;
1865
1866         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1867                 return;
1868
1869         cpu_buffer = buffer->buffers[cpu];
1870         atomic_dec(&cpu_buffer->record_disabled);
1871 }
1872 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1873
1874 /**
1875  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1876  * @buffer: The ring buffer
1877  * @cpu: The per CPU buffer to get the entries from.
1878  */
1879 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1880 {
1881         struct ring_buffer_per_cpu *cpu_buffer;
1882         unsigned long ret;
1883
1884         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1885                 return 0;
1886
1887         cpu_buffer = buffer->buffers[cpu];
1888         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1889                 - cpu_buffer->read;
1890
1891         return ret;
1892 }
1893 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1894
1895 /**
1896  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1897  * @buffer: The ring buffer
1898  * @cpu: The per CPU buffer to get the number of overruns from
1899  */
1900 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1901 {
1902         struct ring_buffer_per_cpu *cpu_buffer;
1903         unsigned long ret;
1904
1905         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1906                 return 0;
1907
1908         cpu_buffer = buffer->buffers[cpu];
1909         ret = cpu_buffer->overrun;
1910
1911         return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1914
1915 /**
1916  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1917  * @buffer: The ring buffer
1918  * @cpu: The per CPU buffer to get the number of overruns from
1919  */
1920 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1921 {
1922         struct ring_buffer_per_cpu *cpu_buffer;
1923         unsigned long ret;
1924
1925         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1926                 return 0;
1927
1928         cpu_buffer = buffer->buffers[cpu];
1929         ret = cpu_buffer->nmi_dropped;
1930
1931         return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1934
1935 /**
1936  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1937  * @buffer: The ring buffer
1938  * @cpu: The per CPU buffer to get the number of overruns from
1939  */
1940 unsigned long
1941 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1942 {
1943         struct ring_buffer_per_cpu *cpu_buffer;
1944         unsigned long ret;
1945
1946         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1947                 return 0;
1948
1949         cpu_buffer = buffer->buffers[cpu];
1950         ret = cpu_buffer->commit_overrun;
1951
1952         return ret;
1953 }
1954 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1955
1956 /**
1957  * ring_buffer_entries - get the number of entries in a buffer
1958  * @buffer: The ring buffer
1959  *
1960  * Returns the total number of entries in the ring buffer
1961  * (all CPU entries)
1962  */
1963 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1964 {
1965         struct ring_buffer_per_cpu *cpu_buffer;
1966         unsigned long entries = 0;
1967         int cpu;
1968
1969         /* if you care about this being correct, lock the buffer */
1970         for_each_buffer_cpu(buffer, cpu) {
1971                 cpu_buffer = buffer->buffers[cpu];
1972                 entries += (local_read(&cpu_buffer->entries) -
1973                             cpu_buffer->overrun) - cpu_buffer->read;
1974         }
1975
1976         return entries;
1977 }
1978 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1979
1980 /**
1981  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1982  * @buffer: The ring buffer
1983  *
1984  * Returns the total number of overruns in the ring buffer
1985  * (all CPU entries)
1986  */
1987 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1988 {
1989         struct ring_buffer_per_cpu *cpu_buffer;
1990         unsigned long overruns = 0;
1991         int cpu;
1992
1993         /* if you care about this being correct, lock the buffer */
1994         for_each_buffer_cpu(buffer, cpu) {
1995                 cpu_buffer = buffer->buffers[cpu];
1996                 overruns += cpu_buffer->overrun;
1997         }
1998
1999         return overruns;
2000 }
2001 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2002
2003 static void rb_iter_reset(struct ring_buffer_iter *iter)
2004 {
2005         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2006
2007         /* Iterator usage is expected to have record disabled */
2008         if (list_empty(&cpu_buffer->reader_page->list)) {
2009                 iter->head_page = cpu_buffer->head_page;
2010                 iter->head = cpu_buffer->head_page->read;
2011         } else {
2012                 iter->head_page = cpu_buffer->reader_page;
2013                 iter->head = cpu_buffer->reader_page->read;
2014         }
2015         if (iter->head)
2016                 iter->read_stamp = cpu_buffer->read_stamp;
2017         else
2018                 iter->read_stamp = iter->head_page->page->time_stamp;
2019 }
2020
2021 /**
2022  * ring_buffer_iter_reset - reset an iterator
2023  * @iter: The iterator to reset
2024  *
2025  * Resets the iterator, so that it will start from the beginning
2026  * again.
2027  */
2028 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2029 {
2030         struct ring_buffer_per_cpu *cpu_buffer;
2031         unsigned long flags;
2032
2033         if (!iter)
2034                 return;
2035
2036         cpu_buffer = iter->cpu_buffer;
2037
2038         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2039         rb_iter_reset(iter);
2040         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2041 }
2042 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2043
2044 /**
2045  * ring_buffer_iter_empty - check if an iterator has no more to read
2046  * @iter: The iterator to check
2047  */
2048 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2049 {
2050         struct ring_buffer_per_cpu *cpu_buffer;
2051
2052         cpu_buffer = iter->cpu_buffer;
2053
2054         return iter->head_page == cpu_buffer->commit_page &&
2055                 iter->head == rb_commit_index(cpu_buffer);
2056 }
2057 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2058
2059 static void
2060 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2061                      struct ring_buffer_event *event)
2062 {
2063         u64 delta;
2064
2065         switch (event->type_len) {
2066         case RINGBUF_TYPE_PADDING:
2067                 return;
2068
2069         case RINGBUF_TYPE_TIME_EXTEND:
2070                 delta = event->array[0];
2071                 delta <<= TS_SHIFT;
2072                 delta += event->time_delta;
2073                 cpu_buffer->read_stamp += delta;
2074                 return;
2075
2076         case RINGBUF_TYPE_TIME_STAMP:
2077                 /* FIXME: not implemented */
2078                 return;
2079
2080         case RINGBUF_TYPE_DATA:
2081                 cpu_buffer->read_stamp += event->time_delta;
2082                 return;
2083
2084         default:
2085                 BUG();
2086         }
2087         return;
2088 }
2089
2090 static void
2091 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2092                           struct ring_buffer_event *event)
2093 {
2094         u64 delta;
2095
2096         switch (event->type_len) {
2097         case RINGBUF_TYPE_PADDING:
2098                 return;
2099
2100         case RINGBUF_TYPE_TIME_EXTEND:
2101                 delta = event->array[0];
2102                 delta <<= TS_SHIFT;
2103                 delta += event->time_delta;
2104                 iter->read_stamp += delta;
2105                 return;
2106
2107         case RINGBUF_TYPE_TIME_STAMP:
2108                 /* FIXME: not implemented */
2109                 return;
2110
2111         case RINGBUF_TYPE_DATA:
2112                 iter->read_stamp += event->time_delta;
2113                 return;
2114
2115         default:
2116                 BUG();
2117         }
2118         return;
2119 }
2120
2121 static struct buffer_page *
2122 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2123 {
2124         struct buffer_page *reader = NULL;
2125         unsigned long flags;
2126         int nr_loops = 0;
2127
2128         local_irq_save(flags);
2129         __raw_spin_lock(&cpu_buffer->lock);
2130
2131  again:
2132         /*
2133          * This should normally only loop twice. But because the
2134          * start of the reader inserts an empty page, it causes
2135          * a case where we will loop three times. There should be no
2136          * reason to loop four times (that I know of).
2137          */
2138         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2139                 reader = NULL;
2140                 goto out;
2141         }
2142
2143         reader = cpu_buffer->reader_page;
2144
2145         /* If there's more to read, return this page */
2146         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2147                 goto out;
2148
2149         /* Never should we have an index greater than the size */
2150         if (RB_WARN_ON(cpu_buffer,
2151                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2152                 goto out;
2153
2154         /* check if we caught up to the tail */
2155         reader = NULL;
2156         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2157                 goto out;
2158
2159         /*
2160          * Splice the empty reader page into the list around the head.
2161          * Reset the reader page to size zero.
2162          */
2163
2164         reader = cpu_buffer->head_page;
2165         cpu_buffer->reader_page->list.next = reader->list.next;
2166         cpu_buffer->reader_page->list.prev = reader->list.prev;
2167
2168         local_set(&cpu_buffer->reader_page->write, 0);
2169         local_set(&cpu_buffer->reader_page->entries, 0);
2170         local_set(&cpu_buffer->reader_page->page->commit, 0);
2171
2172         /* Make the reader page now replace the head */
2173         reader->list.prev->next = &cpu_buffer->reader_page->list;
2174         reader->list.next->prev = &cpu_buffer->reader_page->list;
2175
2176         /*
2177          * If the tail is on the reader, then we must set the head
2178          * to the inserted page, otherwise we set it one before.
2179          */
2180         cpu_buffer->head_page = cpu_buffer->reader_page;
2181
2182         if (cpu_buffer->commit_page != reader)
2183                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2184
2185         /* Finally update the reader page to the new head */
2186         cpu_buffer->reader_page = reader;
2187         rb_reset_reader_page(cpu_buffer);
2188
2189         goto again;
2190
2191  out:
2192         __raw_spin_unlock(&cpu_buffer->lock);
2193         local_irq_restore(flags);
2194
2195         return reader;
2196 }
2197
2198 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2199 {
2200         struct ring_buffer_event *event;
2201         struct buffer_page *reader;
2202         unsigned length;
2203
2204         reader = rb_get_reader_page(cpu_buffer);
2205
2206         /* This function should not be called when buffer is empty */
2207         if (RB_WARN_ON(cpu_buffer, !reader))
2208                 return;
2209
2210         event = rb_reader_event(cpu_buffer);
2211
2212         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2213                         || rb_discarded_event(event))
2214                 cpu_buffer->read++;
2215
2216         rb_update_read_stamp(cpu_buffer, event);
2217
2218         length = rb_event_length(event);
2219         cpu_buffer->reader_page->read += length;
2220 }
2221
2222 static void rb_advance_iter(struct ring_buffer_iter *iter)
2223 {
2224         struct ring_buffer *buffer;
2225         struct ring_buffer_per_cpu *cpu_buffer;
2226         struct ring_buffer_event *event;
2227         unsigned length;
2228
2229         cpu_buffer = iter->cpu_buffer;
2230         buffer = cpu_buffer->buffer;
2231
2232         /*
2233          * Check if we are at the end of the buffer.
2234          */
2235         if (iter->head >= rb_page_size(iter->head_page)) {
2236                 if (RB_WARN_ON(buffer,
2237                                iter->head_page == cpu_buffer->commit_page))
2238                         return;
2239                 rb_inc_iter(iter);
2240                 return;
2241         }
2242
2243         event = rb_iter_head_event(iter);
2244
2245         length = rb_event_length(event);
2246
2247         /*
2248          * This should not be called to advance the header if we are
2249          * at the tail of the buffer.
2250          */
2251         if (RB_WARN_ON(cpu_buffer,
2252                        (iter->head_page == cpu_buffer->commit_page) &&
2253                        (iter->head + length > rb_commit_index(cpu_buffer))))
2254                 return;
2255
2256         rb_update_iter_read_stamp(iter, event);
2257
2258         iter->head += length;
2259
2260         /* check for end of page padding */
2261         if ((iter->head >= rb_page_size(iter->head_page)) &&
2262             (iter->head_page != cpu_buffer->commit_page))
2263                 rb_advance_iter(iter);
2264 }
2265
2266 static struct ring_buffer_event *
2267 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2268 {
2269         struct ring_buffer_per_cpu *cpu_buffer;
2270         struct ring_buffer_event *event;
2271         struct buffer_page *reader;
2272         int nr_loops = 0;
2273
2274         cpu_buffer = buffer->buffers[cpu];
2275
2276  again:
2277         /*
2278          * We repeat when a timestamp is encountered. It is possible
2279          * to get multiple timestamps from an interrupt entering just
2280          * as one timestamp is about to be written. The max times
2281          * that this can happen is the number of nested interrupts we
2282          * can have.  Nesting 10 deep of interrupts is clearly
2283          * an anomaly.
2284          */
2285         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2286                 return NULL;
2287
2288         reader = rb_get_reader_page(cpu_buffer);
2289         if (!reader)
2290                 return NULL;
2291
2292         event = rb_reader_event(cpu_buffer);
2293
2294         switch (event->type_len) {
2295         case RINGBUF_TYPE_PADDING:
2296                 if (rb_null_event(event))
2297                         RB_WARN_ON(cpu_buffer, 1);
2298                 /*
2299                  * Because the writer could be discarding every
2300                  * event it creates (which would probably be bad)
2301                  * if we were to go back to "again" then we may never
2302                  * catch up, and will trigger the warn on, or lock
2303                  * the box. Return the padding, and we will release
2304                  * the current locks, and try again.
2305                  */
2306                 rb_advance_reader(cpu_buffer);
2307                 return event;
2308
2309         case RINGBUF_TYPE_TIME_EXTEND:
2310                 /* Internal data, OK to advance */
2311                 rb_advance_reader(cpu_buffer);
2312                 goto again;
2313
2314         case RINGBUF_TYPE_TIME_STAMP:
2315                 /* FIXME: not implemented */
2316                 rb_advance_reader(cpu_buffer);
2317                 goto again;
2318
2319         case RINGBUF_TYPE_DATA:
2320                 if (ts) {
2321                         *ts = cpu_buffer->read_stamp + event->time_delta;
2322                         ring_buffer_normalize_time_stamp(buffer,
2323                                                          cpu_buffer->cpu, ts);
2324                 }
2325                 return event;
2326
2327         default:
2328                 BUG();
2329         }
2330
2331         return NULL;
2332 }
2333 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2334
2335 static struct ring_buffer_event *
2336 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2337 {
2338         struct ring_buffer *buffer;
2339         struct ring_buffer_per_cpu *cpu_buffer;
2340         struct ring_buffer_event *event;
2341         int nr_loops = 0;
2342
2343         if (ring_buffer_iter_empty(iter))
2344                 return NULL;
2345
2346         cpu_buffer = iter->cpu_buffer;
2347         buffer = cpu_buffer->buffer;
2348
2349  again:
2350         /*
2351          * We repeat when a timestamp is encountered. It is possible
2352          * to get multiple timestamps from an interrupt entering just
2353          * as one timestamp is about to be written. The max times
2354          * that this can happen is the number of nested interrupts we
2355          * can have. Nesting 10 deep of interrupts is clearly
2356          * an anomaly.
2357          */
2358         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2359                 return NULL;
2360
2361         if (rb_per_cpu_empty(cpu_buffer))
2362                 return NULL;
2363
2364         event = rb_iter_head_event(iter);
2365
2366         switch (event->type_len) {
2367         case RINGBUF_TYPE_PADDING:
2368                 if (rb_null_event(event)) {
2369                         rb_inc_iter(iter);
2370                         goto again;
2371                 }
2372                 rb_advance_iter(iter);
2373                 return event;
2374
2375         case RINGBUF_TYPE_TIME_EXTEND:
2376                 /* Internal data, OK to advance */
2377                 rb_advance_iter(iter);
2378                 goto again;
2379
2380         case RINGBUF_TYPE_TIME_STAMP:
2381                 /* FIXME: not implemented */
2382                 rb_advance_iter(iter);
2383                 goto again;
2384
2385         case RINGBUF_TYPE_DATA:
2386                 if (ts) {
2387                         *ts = iter->read_stamp + event->time_delta;
2388                         ring_buffer_normalize_time_stamp(buffer,
2389                                                          cpu_buffer->cpu, ts);
2390                 }
2391                 return event;
2392
2393         default:
2394                 BUG();
2395         }
2396
2397         return NULL;
2398 }
2399 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2400
2401 /**
2402  * ring_buffer_peek - peek at the next event to be read
2403  * @buffer: The ring buffer to read
2404  * @cpu: The cpu to peak at
2405  * @ts: The timestamp counter of this event.
2406  *
2407  * This will return the event that will be read next, but does
2408  * not consume the data.
2409  */
2410 struct ring_buffer_event *
2411 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2412 {
2413         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2414         struct ring_buffer_event *event;
2415         unsigned long flags;
2416
2417         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2418                 return NULL;
2419
2420  again:
2421         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2422         event = rb_buffer_peek(buffer, cpu, ts);
2423         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2424
2425         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2426                 cpu_relax();
2427                 goto again;
2428         }
2429
2430         return event;
2431 }
2432
2433 /**
2434  * ring_buffer_iter_peek - peek at the next event to be read
2435  * @iter: The ring buffer iterator
2436  * @ts: The timestamp counter of this event.
2437  *
2438  * This will return the event that will be read next, but does
2439  * not increment the iterator.
2440  */
2441 struct ring_buffer_event *
2442 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2443 {
2444         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2445         struct ring_buffer_event *event;
2446         unsigned long flags;
2447
2448  again:
2449         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2450         event = rb_iter_peek(iter, ts);
2451         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2452
2453         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2454                 cpu_relax();
2455                 goto again;
2456         }
2457
2458         return event;
2459 }
2460
2461 /**
2462  * ring_buffer_consume - return an event and consume it
2463  * @buffer: The ring buffer to get the next event from
2464  *
2465  * Returns the next event in the ring buffer, and that event is consumed.
2466  * Meaning, that sequential reads will keep returning a different event,
2467  * and eventually empty the ring buffer if the producer is slower.
2468  */
2469 struct ring_buffer_event *
2470 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2471 {
2472         struct ring_buffer_per_cpu *cpu_buffer;
2473         struct ring_buffer_event *event = NULL;
2474         unsigned long flags;
2475
2476  again:
2477         /* might be called in atomic */
2478         preempt_disable();
2479
2480         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2481                 goto out;
2482
2483         cpu_buffer = buffer->buffers[cpu];
2484         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2485
2486         event = rb_buffer_peek(buffer, cpu, ts);
2487         if (!event)
2488                 goto out_unlock;
2489
2490         rb_advance_reader(cpu_buffer);
2491
2492  out_unlock:
2493         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2494
2495  out:
2496         preempt_enable();
2497
2498         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2499                 cpu_relax();
2500                 goto again;
2501         }
2502
2503         return event;
2504 }
2505 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2506
2507 /**
2508  * ring_buffer_read_start - start a non consuming read of the buffer
2509  * @buffer: The ring buffer to read from
2510  * @cpu: The cpu buffer to iterate over
2511  *
2512  * This starts up an iteration through the buffer. It also disables
2513  * the recording to the buffer until the reading is finished.
2514  * This prevents the reading from being corrupted. This is not
2515  * a consuming read, so a producer is not expected.
2516  *
2517  * Must be paired with ring_buffer_finish.
2518  */
2519 struct ring_buffer_iter *
2520 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2521 {
2522         struct ring_buffer_per_cpu *cpu_buffer;
2523         struct ring_buffer_iter *iter;
2524         unsigned long flags;
2525
2526         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2527                 return NULL;
2528
2529         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2530         if (!iter)
2531                 return NULL;
2532
2533         cpu_buffer = buffer->buffers[cpu];
2534
2535         iter->cpu_buffer = cpu_buffer;
2536
2537         atomic_inc(&cpu_buffer->record_disabled);
2538         synchronize_sched();
2539
2540         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2541         __raw_spin_lock(&cpu_buffer->lock);
2542         rb_iter_reset(iter);
2543         __raw_spin_unlock(&cpu_buffer->lock);
2544         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2545
2546         return iter;
2547 }
2548 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2549
2550 /**
2551  * ring_buffer_finish - finish reading the iterator of the buffer
2552  * @iter: The iterator retrieved by ring_buffer_start
2553  *
2554  * This re-enables the recording to the buffer, and frees the
2555  * iterator.
2556  */
2557 void
2558 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2559 {
2560         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2561
2562         atomic_dec(&cpu_buffer->record_disabled);
2563         kfree(iter);
2564 }
2565 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2566
2567 /**
2568  * ring_buffer_read - read the next item in the ring buffer by the iterator
2569  * @iter: The ring buffer iterator
2570  * @ts: The time stamp of the event read.
2571  *
2572  * This reads the next event in the ring buffer and increments the iterator.
2573  */
2574 struct ring_buffer_event *
2575 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2576 {
2577         struct ring_buffer_event *event;
2578         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2579         unsigned long flags;
2580
2581  again:
2582         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2583         event = rb_iter_peek(iter, ts);
2584         if (!event)
2585                 goto out;
2586
2587         rb_advance_iter(iter);
2588  out:
2589         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2590
2591         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2592                 cpu_relax();
2593                 goto again;
2594         }
2595
2596         return event;
2597 }
2598 EXPORT_SYMBOL_GPL(ring_buffer_read);
2599
2600 /**
2601  * ring_buffer_size - return the size of the ring buffer (in bytes)
2602  * @buffer: The ring buffer.
2603  */
2604 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2605 {
2606         return BUF_PAGE_SIZE * buffer->pages;
2607 }
2608 EXPORT_SYMBOL_GPL(ring_buffer_size);
2609
2610 static void
2611 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2612 {
2613         cpu_buffer->head_page
2614                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2615         local_set(&cpu_buffer->head_page->write, 0);
2616         local_set(&cpu_buffer->head_page->entries, 0);
2617         local_set(&cpu_buffer->head_page->page->commit, 0);
2618
2619         cpu_buffer->head_page->read = 0;
2620
2621         cpu_buffer->tail_page = cpu_buffer->head_page;
2622         cpu_buffer->commit_page = cpu_buffer->head_page;
2623
2624         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2625         local_set(&cpu_buffer->reader_page->write, 0);
2626         local_set(&cpu_buffer->reader_page->entries, 0);
2627         local_set(&cpu_buffer->reader_page->page->commit, 0);
2628         cpu_buffer->reader_page->read = 0;
2629
2630         cpu_buffer->nmi_dropped = 0;
2631         cpu_buffer->commit_overrun = 0;
2632         cpu_buffer->overrun = 0;
2633         cpu_buffer->read = 0;
2634         local_set(&cpu_buffer->entries, 0);
2635
2636         cpu_buffer->write_stamp = 0;
2637         cpu_buffer->read_stamp = 0;
2638 }
2639
2640 /**
2641  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2642  * @buffer: The ring buffer to reset a per cpu buffer of
2643  * @cpu: The CPU buffer to be reset
2644  */
2645 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2646 {
2647         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2648         unsigned long flags;
2649
2650         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2651                 return;
2652
2653         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2654
2655         __raw_spin_lock(&cpu_buffer->lock);
2656
2657         rb_reset_cpu(cpu_buffer);
2658
2659         __raw_spin_unlock(&cpu_buffer->lock);
2660
2661         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2662 }
2663 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2664
2665 /**
2666  * ring_buffer_reset - reset a ring buffer
2667  * @buffer: The ring buffer to reset all cpu buffers
2668  */
2669 void ring_buffer_reset(struct ring_buffer *buffer)
2670 {
2671         int cpu;
2672
2673         for_each_buffer_cpu(buffer, cpu)
2674                 ring_buffer_reset_cpu(buffer, cpu);
2675 }
2676 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2677
2678 /**
2679  * rind_buffer_empty - is the ring buffer empty?
2680  * @buffer: The ring buffer to test
2681  */
2682 int ring_buffer_empty(struct ring_buffer *buffer)
2683 {
2684         struct ring_buffer_per_cpu *cpu_buffer;
2685         int cpu;
2686
2687         /* yes this is racy, but if you don't like the race, lock the buffer */
2688         for_each_buffer_cpu(buffer, cpu) {
2689                 cpu_buffer = buffer->buffers[cpu];
2690                 if (!rb_per_cpu_empty(cpu_buffer))
2691                         return 0;
2692         }
2693
2694         return 1;
2695 }
2696 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2697
2698 /**
2699  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2700  * @buffer: The ring buffer
2701  * @cpu: The CPU buffer to test
2702  */
2703 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2704 {
2705         struct ring_buffer_per_cpu *cpu_buffer;
2706         int ret;
2707
2708         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2709                 return 1;
2710
2711         cpu_buffer = buffer->buffers[cpu];
2712         ret = rb_per_cpu_empty(cpu_buffer);
2713
2714
2715         return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2718
2719 /**
2720  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2721  * @buffer_a: One buffer to swap with
2722  * @buffer_b: The other buffer to swap with
2723  *
2724  * This function is useful for tracers that want to take a "snapshot"
2725  * of a CPU buffer and has another back up buffer lying around.
2726  * it is expected that the tracer handles the cpu buffer not being
2727  * used at the moment.
2728  */
2729 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2730                          struct ring_buffer *buffer_b, int cpu)
2731 {
2732         struct ring_buffer_per_cpu *cpu_buffer_a;
2733         struct ring_buffer_per_cpu *cpu_buffer_b;
2734         int ret = -EINVAL;
2735
2736         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2737             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2738                 goto out;
2739
2740         /* At least make sure the two buffers are somewhat the same */
2741         if (buffer_a->pages != buffer_b->pages)
2742                 goto out;
2743
2744         ret = -EAGAIN;
2745
2746         if (ring_buffer_flags != RB_BUFFERS_ON)
2747                 goto out;
2748
2749         if (atomic_read(&buffer_a->record_disabled))
2750                 goto out;
2751
2752         if (atomic_read(&buffer_b->record_disabled))
2753                 goto out;
2754
2755         cpu_buffer_a = buffer_a->buffers[cpu];
2756         cpu_buffer_b = buffer_b->buffers[cpu];
2757
2758         if (atomic_read(&cpu_buffer_a->record_disabled))
2759                 goto out;
2760
2761         if (atomic_read(&cpu_buffer_b->record_disabled))
2762                 goto out;
2763
2764         /*
2765          * We can't do a synchronize_sched here because this
2766          * function can be called in atomic context.
2767          * Normally this will be called from the same CPU as cpu.
2768          * If not it's up to the caller to protect this.
2769          */
2770         atomic_inc(&cpu_buffer_a->record_disabled);
2771         atomic_inc(&cpu_buffer_b->record_disabled);
2772
2773         buffer_a->buffers[cpu] = cpu_buffer_b;
2774         buffer_b->buffers[cpu] = cpu_buffer_a;
2775
2776         cpu_buffer_b->buffer = buffer_a;
2777         cpu_buffer_a->buffer = buffer_b;
2778
2779         atomic_dec(&cpu_buffer_a->record_disabled);
2780         atomic_dec(&cpu_buffer_b->record_disabled);
2781
2782         ret = 0;
2783 out:
2784         return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2787
2788 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2789                               struct buffer_data_page *bpage,
2790                               unsigned int offset)
2791 {
2792         struct ring_buffer_event *event;
2793         unsigned long head;
2794
2795         __raw_spin_lock(&cpu_buffer->lock);
2796         for (head = offset; head < local_read(&bpage->commit);
2797              head += rb_event_length(event)) {
2798
2799                 event = __rb_data_page_index(bpage, head);
2800                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2801                         return;
2802                 /* Only count data entries */
2803                 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2804                         continue;
2805                 cpu_buffer->read++;
2806         }
2807         __raw_spin_unlock(&cpu_buffer->lock);
2808 }
2809
2810 /**
2811  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2812  * @buffer: the buffer to allocate for.
2813  *
2814  * This function is used in conjunction with ring_buffer_read_page.
2815  * When reading a full page from the ring buffer, these functions
2816  * can be used to speed up the process. The calling function should
2817  * allocate a few pages first with this function. Then when it
2818  * needs to get pages from the ring buffer, it passes the result
2819  * of this function into ring_buffer_read_page, which will swap
2820  * the page that was allocated, with the read page of the buffer.
2821  *
2822  * Returns:
2823  *  The page allocated, or NULL on error.
2824  */
2825 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2826 {
2827         struct buffer_data_page *bpage;
2828         unsigned long addr;
2829
2830         addr = __get_free_page(GFP_KERNEL);
2831         if (!addr)
2832                 return NULL;
2833
2834         bpage = (void *)addr;
2835
2836         rb_init_page(bpage);
2837
2838         return bpage;
2839 }
2840 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2841
2842 /**
2843  * ring_buffer_free_read_page - free an allocated read page
2844  * @buffer: the buffer the page was allocate for
2845  * @data: the page to free
2846  *
2847  * Free a page allocated from ring_buffer_alloc_read_page.
2848  */
2849 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2850 {
2851         free_page((unsigned long)data);
2852 }
2853 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2854
2855 /**
2856  * ring_buffer_read_page - extract a page from the ring buffer
2857  * @buffer: buffer to extract from
2858  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2859  * @len: amount to extract
2860  * @cpu: the cpu of the buffer to extract
2861  * @full: should the extraction only happen when the page is full.
2862  *
2863  * This function will pull out a page from the ring buffer and consume it.
2864  * @data_page must be the address of the variable that was returned
2865  * from ring_buffer_alloc_read_page. This is because the page might be used
2866  * to swap with a page in the ring buffer.
2867  *
2868  * for example:
2869  *      rpage = ring_buffer_alloc_read_page(buffer);
2870  *      if (!rpage)
2871  *              return error;
2872  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2873  *      if (ret >= 0)
2874  *              process_page(rpage, ret);
2875  *
2876  * When @full is set, the function will not return true unless
2877  * the writer is off the reader page.
2878  *
2879  * Note: it is up to the calling functions to handle sleeps and wakeups.
2880  *  The ring buffer can be used anywhere in the kernel and can not
2881  *  blindly call wake_up. The layer that uses the ring buffer must be
2882  *  responsible for that.
2883  *
2884  * Returns:
2885  *  >=0 if data has been transferred, returns the offset of consumed data.
2886  *  <0 if no data has been transferred.
2887  */
2888 int ring_buffer_read_page(struct ring_buffer *buffer,
2889                           void **data_page, size_t len, int cpu, int full)
2890 {
2891         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2892         struct ring_buffer_event *event;
2893         struct buffer_data_page *bpage;
2894         struct buffer_page *reader;
2895         unsigned long flags;
2896         unsigned int commit;
2897         unsigned int read;
2898         u64 save_timestamp;
2899         int ret = -1;
2900
2901         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2902                 goto out;
2903
2904         /*
2905          * If len is not big enough to hold the page header, then
2906          * we can not copy anything.
2907          */
2908         if (len <= BUF_PAGE_HDR_SIZE)
2909                 goto out;
2910
2911         len -= BUF_PAGE_HDR_SIZE;
2912
2913         if (!data_page)
2914                 goto out;
2915
2916         bpage = *data_page;
2917         if (!bpage)
2918                 goto out;
2919
2920         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2921
2922         reader = rb_get_reader_page(cpu_buffer);
2923         if (!reader)
2924                 goto out_unlock;
2925
2926         event = rb_reader_event(cpu_buffer);
2927
2928         read = reader->read;
2929         commit = rb_page_commit(reader);
2930
2931         /*
2932          * If this page has been partially read or
2933          * if len is not big enough to read the rest of the page or
2934          * a writer is still on the page, then
2935          * we must copy the data from the page to the buffer.
2936          * Otherwise, we can simply swap the page with the one passed in.
2937          */
2938         if (read || (len < (commit - read)) ||
2939             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2940                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2941                 unsigned int rpos = read;
2942                 unsigned int pos = 0;
2943                 unsigned int size;
2944
2945                 if (full)
2946                         goto out_unlock;
2947
2948                 if (len > (commit - read))
2949                         len = (commit - read);
2950
2951                 size = rb_event_length(event);
2952
2953                 if (len < size)
2954                         goto out_unlock;
2955
2956                 /* save the current timestamp, since the user will need it */
2957                 save_timestamp = cpu_buffer->read_stamp;
2958
2959                 /* Need to copy one event at a time */
2960                 do {
2961                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2962
2963                         len -= size;
2964
2965                         rb_advance_reader(cpu_buffer);
2966                         rpos = reader->read;
2967                         pos += size;
2968
2969                         event = rb_reader_event(cpu_buffer);
2970                         size = rb_event_length(event);
2971                 } while (len > size);
2972
2973                 /* update bpage */
2974                 local_set(&bpage->commit, pos);
2975                 bpage->time_stamp = save_timestamp;
2976
2977                 /* we copied everything to the beginning */
2978                 read = 0;
2979         } else {
2980                 /* swap the pages */
2981                 rb_init_page(bpage);
2982                 bpage = reader->page;
2983                 reader->page = *data_page;
2984                 local_set(&reader->write, 0);
2985                 local_set(&reader->entries, 0);
2986                 reader->read = 0;
2987                 *data_page = bpage;
2988
2989                 /* update the entry counter */
2990                 rb_remove_entries(cpu_buffer, bpage, read);
2991         }
2992         ret = read;
2993
2994  out_unlock:
2995         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2996
2997  out:
2998         return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3001
3002 static ssize_t
3003 rb_simple_read(struct file *filp, char __user *ubuf,
3004                size_t cnt, loff_t *ppos)
3005 {
3006         unsigned long *p = filp->private_data;
3007         char buf[64];
3008         int r;
3009
3010         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3011                 r = sprintf(buf, "permanently disabled\n");
3012         else
3013                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3014
3015         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3016 }
3017
3018 static ssize_t
3019 rb_simple_write(struct file *filp, const char __user *ubuf,
3020                 size_t cnt, loff_t *ppos)
3021 {
3022         unsigned long *p = filp->private_data;
3023         char buf[64];
3024         unsigned long val;
3025         int ret;
3026
3027         if (cnt >= sizeof(buf))
3028                 return -EINVAL;
3029
3030         if (copy_from_user(&buf, ubuf, cnt))
3031                 return -EFAULT;
3032
3033         buf[cnt] = 0;
3034
3035         ret = strict_strtoul(buf, 10, &val);
3036         if (ret < 0)
3037                 return ret;
3038
3039         if (val)
3040                 set_bit(RB_BUFFERS_ON_BIT, p);
3041         else
3042                 clear_bit(RB_BUFFERS_ON_BIT, p);
3043
3044         (*ppos)++;
3045
3046         return cnt;
3047 }
3048
3049 static const struct file_operations rb_simple_fops = {
3050         .open           = tracing_open_generic,
3051         .read           = rb_simple_read,
3052         .write          = rb_simple_write,
3053 };
3054
3055
3056 static __init int rb_init_debugfs(void)
3057 {
3058         struct dentry *d_tracer;
3059
3060         d_tracer = tracing_init_dentry();
3061
3062         trace_create_file("tracing_on", 0644, d_tracer,
3063                             &ring_buffer_flags, &rb_simple_fops);
3064
3065         return 0;
3066 }
3067
3068 fs_initcall(rb_init_debugfs);
3069
3070 #ifdef CONFIG_HOTPLUG_CPU
3071 static int rb_cpu_notify(struct notifier_block *self,
3072                          unsigned long action, void *hcpu)
3073 {
3074         struct ring_buffer *buffer =
3075                 container_of(self, struct ring_buffer, cpu_notify);
3076         long cpu = (long)hcpu;
3077
3078         switch (action) {
3079         case CPU_UP_PREPARE:
3080         case CPU_UP_PREPARE_FROZEN:
3081                 if (cpu_isset(cpu, *buffer->cpumask))
3082                         return NOTIFY_OK;
3083
3084                 buffer->buffers[cpu] =
3085                         rb_allocate_cpu_buffer(buffer, cpu);
3086                 if (!buffer->buffers[cpu]) {
3087                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3088                              cpu);
3089                         return NOTIFY_OK;
3090                 }
3091                 smp_wmb();
3092                 cpu_set(cpu, *buffer->cpumask);
3093                 break;
3094         case CPU_DOWN_PREPARE:
3095         case CPU_DOWN_PREPARE_FROZEN:
3096                 /*
3097                  * Do nothing.
3098                  *  If we were to free the buffer, then the user would
3099                  *  lose any trace that was in the buffer.
3100                  */
3101                 break;
3102         default:
3103                 break;
3104         }
3105         return NOTIFY_OK;
3106 }
3107 #endif