ring-buffer: fix deadlock from reader_lock in read_start
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /* Global flag to disable all recording to ring buffers */
22 static int ring_buffers_off __read_mostly;
23
24 /**
25  * tracing_on - enable all tracing buffers
26  *
27  * This function enables all tracing buffers that may have been
28  * disabled with tracing_off.
29  */
30 void tracing_on(void)
31 {
32         ring_buffers_off = 0;
33 }
34
35 /**
36  * tracing_off - turn off all tracing buffers
37  *
38  * This function stops all tracing buffers from recording data.
39  * It does not disable any overhead the tracers themselves may
40  * be causing. This function simply causes all recording to
41  * the ring buffers to fail.
42  */
43 void tracing_off(void)
44 {
45         ring_buffers_off = 1;
46 }
47
48 #include "trace.h"
49
50 /* Up this if you want to test the TIME_EXTENTS and normalization */
51 #define DEBUG_SHIFT 0
52
53 /* FIXME!!! */
54 u64 ring_buffer_time_stamp(int cpu)
55 {
56         /* shift to debug/test normalization and TIME_EXTENTS */
57         return sched_clock() << DEBUG_SHIFT;
58 }
59
60 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
61 {
62         /* Just stupid testing the normalize function and deltas */
63         *ts >>= DEBUG_SHIFT;
64 }
65
66 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
67 #define RB_ALIGNMENT_SHIFT      2
68 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
69 #define RB_MAX_SMALL_DATA       28
70
71 enum {
72         RB_LEN_TIME_EXTEND = 8,
73         RB_LEN_TIME_STAMP = 16,
74 };
75
76 /* inline for ring buffer fast paths */
77 static inline unsigned
78 rb_event_length(struct ring_buffer_event *event)
79 {
80         unsigned length;
81
82         switch (event->type) {
83         case RINGBUF_TYPE_PADDING:
84                 /* undefined */
85                 return -1;
86
87         case RINGBUF_TYPE_TIME_EXTEND:
88                 return RB_LEN_TIME_EXTEND;
89
90         case RINGBUF_TYPE_TIME_STAMP:
91                 return RB_LEN_TIME_STAMP;
92
93         case RINGBUF_TYPE_DATA:
94                 if (event->len)
95                         length = event->len << RB_ALIGNMENT_SHIFT;
96                 else
97                         length = event->array[0];
98                 return length + RB_EVNT_HDR_SIZE;
99         default:
100                 BUG();
101         }
102         /* not hit */
103         return 0;
104 }
105
106 /**
107  * ring_buffer_event_length - return the length of the event
108  * @event: the event to get the length of
109  */
110 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
111 {
112         return rb_event_length(event);
113 }
114
115 /* inline for ring buffer fast paths */
116 static inline void *
117 rb_event_data(struct ring_buffer_event *event)
118 {
119         BUG_ON(event->type != RINGBUF_TYPE_DATA);
120         /* If length is in len field, then array[0] has the data */
121         if (event->len)
122                 return (void *)&event->array[0];
123         /* Otherwise length is in array[0] and array[1] has the data */
124         return (void *)&event->array[1];
125 }
126
127 /**
128  * ring_buffer_event_data - return the data of the event
129  * @event: the event to get the data from
130  */
131 void *ring_buffer_event_data(struct ring_buffer_event *event)
132 {
133         return rb_event_data(event);
134 }
135
136 #define for_each_buffer_cpu(buffer, cpu)                \
137         for_each_cpu_mask(cpu, buffer->cpumask)
138
139 #define TS_SHIFT        27
140 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
141 #define TS_DELTA_TEST   (~TS_MASK)
142
143 /*
144  * This hack stolen from mm/slob.c.
145  * We can store per page timing information in the page frame of the page.
146  * Thanks to Peter Zijlstra for suggesting this idea.
147  */
148 struct buffer_page {
149         u64              time_stamp;    /* page time stamp */
150         local_t          write;         /* index for next write */
151         local_t          commit;        /* write commited index */
152         unsigned         read;          /* index for next read */
153         struct list_head list;          /* list of free pages */
154         void *page;                     /* Actual data page */
155 };
156
157 /*
158  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
159  * this issue out.
160  */
161 static inline void free_buffer_page(struct buffer_page *bpage)
162 {
163         if (bpage->page)
164                 free_page((unsigned long)bpage->page);
165         kfree(bpage);
166 }
167
168 /*
169  * We need to fit the time_stamp delta into 27 bits.
170  */
171 static inline int test_time_stamp(u64 delta)
172 {
173         if (delta & TS_DELTA_TEST)
174                 return 1;
175         return 0;
176 }
177
178 #define BUF_PAGE_SIZE PAGE_SIZE
179
180 /*
181  * head_page == tail_page && head == tail then buffer is empty.
182  */
183 struct ring_buffer_per_cpu {
184         int                             cpu;
185         struct ring_buffer              *buffer;
186         spinlock_t                      reader_lock; /* serialize readers */
187         raw_spinlock_t                  lock;
188         struct lock_class_key           lock_key;
189         struct list_head                pages;
190         struct buffer_page              *head_page;     /* read from head */
191         struct buffer_page              *tail_page;     /* write to tail */
192         struct buffer_page              *commit_page;   /* commited pages */
193         struct buffer_page              *reader_page;
194         unsigned long                   overrun;
195         unsigned long                   entries;
196         u64                             write_stamp;
197         u64                             read_stamp;
198         atomic_t                        record_disabled;
199 };
200
201 struct ring_buffer {
202         unsigned long                   size;
203         unsigned                        pages;
204         unsigned                        flags;
205         int                             cpus;
206         cpumask_t                       cpumask;
207         atomic_t                        record_disabled;
208
209         struct mutex                    mutex;
210
211         struct ring_buffer_per_cpu      **buffers;
212 };
213
214 struct ring_buffer_iter {
215         struct ring_buffer_per_cpu      *cpu_buffer;
216         unsigned long                   head;
217         struct buffer_page              *head_page;
218         u64                             read_stamp;
219 };
220
221 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
222 #define RB_WARN_ON(buffer, cond)                                \
223         ({                                                      \
224                 int _____ret = unlikely(cond);                  \
225                 if (_____ret) {                                 \
226                         atomic_inc(&buffer->record_disabled);   \
227                         WARN_ON(1);                             \
228                 }                                               \
229                 _____ret;                                       \
230         })
231
232 /**
233  * check_pages - integrity check of buffer pages
234  * @cpu_buffer: CPU buffer with pages to test
235  *
236  * As a safty measure we check to make sure the data pages have not
237  * been corrupted.
238  */
239 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
240 {
241         struct list_head *head = &cpu_buffer->pages;
242         struct buffer_page *page, *tmp;
243
244         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
245                 return -1;
246         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
247                 return -1;
248
249         list_for_each_entry_safe(page, tmp, head, list) {
250                 if (RB_WARN_ON(cpu_buffer,
251                                page->list.next->prev != &page->list))
252                         return -1;
253                 if (RB_WARN_ON(cpu_buffer,
254                                page->list.prev->next != &page->list))
255                         return -1;
256         }
257
258         return 0;
259 }
260
261 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
262                              unsigned nr_pages)
263 {
264         struct list_head *head = &cpu_buffer->pages;
265         struct buffer_page *page, *tmp;
266         unsigned long addr;
267         LIST_HEAD(pages);
268         unsigned i;
269
270         for (i = 0; i < nr_pages; i++) {
271                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
272                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
273                 if (!page)
274                         goto free_pages;
275                 list_add(&page->list, &pages);
276
277                 addr = __get_free_page(GFP_KERNEL);
278                 if (!addr)
279                         goto free_pages;
280                 page->page = (void *)addr;
281         }
282
283         list_splice(&pages, head);
284
285         rb_check_pages(cpu_buffer);
286
287         return 0;
288
289  free_pages:
290         list_for_each_entry_safe(page, tmp, &pages, list) {
291                 list_del_init(&page->list);
292                 free_buffer_page(page);
293         }
294         return -ENOMEM;
295 }
296
297 static struct ring_buffer_per_cpu *
298 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
299 {
300         struct ring_buffer_per_cpu *cpu_buffer;
301         struct buffer_page *page;
302         unsigned long addr;
303         int ret;
304
305         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
306                                   GFP_KERNEL, cpu_to_node(cpu));
307         if (!cpu_buffer)
308                 return NULL;
309
310         cpu_buffer->cpu = cpu;
311         cpu_buffer->buffer = buffer;
312         spin_lock_init(&cpu_buffer->reader_lock);
313         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
314         INIT_LIST_HEAD(&cpu_buffer->pages);
315
316         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
317                             GFP_KERNEL, cpu_to_node(cpu));
318         if (!page)
319                 goto fail_free_buffer;
320
321         cpu_buffer->reader_page = page;
322         addr = __get_free_page(GFP_KERNEL);
323         if (!addr)
324                 goto fail_free_reader;
325         page->page = (void *)addr;
326
327         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
328
329         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
330         if (ret < 0)
331                 goto fail_free_reader;
332
333         cpu_buffer->head_page
334                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
335         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
336
337         return cpu_buffer;
338
339  fail_free_reader:
340         free_buffer_page(cpu_buffer->reader_page);
341
342  fail_free_buffer:
343         kfree(cpu_buffer);
344         return NULL;
345 }
346
347 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
348 {
349         struct list_head *head = &cpu_buffer->pages;
350         struct buffer_page *page, *tmp;
351
352         list_del_init(&cpu_buffer->reader_page->list);
353         free_buffer_page(cpu_buffer->reader_page);
354
355         list_for_each_entry_safe(page, tmp, head, list) {
356                 list_del_init(&page->list);
357                 free_buffer_page(page);
358         }
359         kfree(cpu_buffer);
360 }
361
362 /*
363  * Causes compile errors if the struct buffer_page gets bigger
364  * than the struct page.
365  */
366 extern int ring_buffer_page_too_big(void);
367
368 /**
369  * ring_buffer_alloc - allocate a new ring_buffer
370  * @size: the size in bytes that is needed.
371  * @flags: attributes to set for the ring buffer.
372  *
373  * Currently the only flag that is available is the RB_FL_OVERWRITE
374  * flag. This flag means that the buffer will overwrite old data
375  * when the buffer wraps. If this flag is not set, the buffer will
376  * drop data when the tail hits the head.
377  */
378 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
379 {
380         struct ring_buffer *buffer;
381         int bsize;
382         int cpu;
383
384         /* Paranoid! Optimizes out when all is well */
385         if (sizeof(struct buffer_page) > sizeof(struct page))
386                 ring_buffer_page_too_big();
387
388
389         /* keep it in its own cache line */
390         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
391                          GFP_KERNEL);
392         if (!buffer)
393                 return NULL;
394
395         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
396         buffer->flags = flags;
397
398         /* need at least two pages */
399         if (buffer->pages == 1)
400                 buffer->pages++;
401
402         buffer->cpumask = cpu_possible_map;
403         buffer->cpus = nr_cpu_ids;
404
405         bsize = sizeof(void *) * nr_cpu_ids;
406         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
407                                   GFP_KERNEL);
408         if (!buffer->buffers)
409                 goto fail_free_buffer;
410
411         for_each_buffer_cpu(buffer, cpu) {
412                 buffer->buffers[cpu] =
413                         rb_allocate_cpu_buffer(buffer, cpu);
414                 if (!buffer->buffers[cpu])
415                         goto fail_free_buffers;
416         }
417
418         mutex_init(&buffer->mutex);
419
420         return buffer;
421
422  fail_free_buffers:
423         for_each_buffer_cpu(buffer, cpu) {
424                 if (buffer->buffers[cpu])
425                         rb_free_cpu_buffer(buffer->buffers[cpu]);
426         }
427         kfree(buffer->buffers);
428
429  fail_free_buffer:
430         kfree(buffer);
431         return NULL;
432 }
433
434 /**
435  * ring_buffer_free - free a ring buffer.
436  * @buffer: the buffer to free.
437  */
438 void
439 ring_buffer_free(struct ring_buffer *buffer)
440 {
441         int cpu;
442
443         for_each_buffer_cpu(buffer, cpu)
444                 rb_free_cpu_buffer(buffer->buffers[cpu]);
445
446         kfree(buffer);
447 }
448
449 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
450
451 static void
452 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
453 {
454         struct buffer_page *page;
455         struct list_head *p;
456         unsigned i;
457
458         atomic_inc(&cpu_buffer->record_disabled);
459         synchronize_sched();
460
461         for (i = 0; i < nr_pages; i++) {
462                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
463                         return;
464                 p = cpu_buffer->pages.next;
465                 page = list_entry(p, struct buffer_page, list);
466                 list_del_init(&page->list);
467                 free_buffer_page(page);
468         }
469         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
470                 return;
471
472         rb_reset_cpu(cpu_buffer);
473
474         rb_check_pages(cpu_buffer);
475
476         atomic_dec(&cpu_buffer->record_disabled);
477
478 }
479
480 static void
481 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
482                 struct list_head *pages, unsigned nr_pages)
483 {
484         struct buffer_page *page;
485         struct list_head *p;
486         unsigned i;
487
488         atomic_inc(&cpu_buffer->record_disabled);
489         synchronize_sched();
490
491         for (i = 0; i < nr_pages; i++) {
492                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
493                         return;
494                 p = pages->next;
495                 page = list_entry(p, struct buffer_page, list);
496                 list_del_init(&page->list);
497                 list_add_tail(&page->list, &cpu_buffer->pages);
498         }
499         rb_reset_cpu(cpu_buffer);
500
501         rb_check_pages(cpu_buffer);
502
503         atomic_dec(&cpu_buffer->record_disabled);
504 }
505
506 /**
507  * ring_buffer_resize - resize the ring buffer
508  * @buffer: the buffer to resize.
509  * @size: the new size.
510  *
511  * The tracer is responsible for making sure that the buffer is
512  * not being used while changing the size.
513  * Note: We may be able to change the above requirement by using
514  *  RCU synchronizations.
515  *
516  * Minimum size is 2 * BUF_PAGE_SIZE.
517  *
518  * Returns -1 on failure.
519  */
520 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
521 {
522         struct ring_buffer_per_cpu *cpu_buffer;
523         unsigned nr_pages, rm_pages, new_pages;
524         struct buffer_page *page, *tmp;
525         unsigned long buffer_size;
526         unsigned long addr;
527         LIST_HEAD(pages);
528         int i, cpu;
529
530         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
531         size *= BUF_PAGE_SIZE;
532         buffer_size = buffer->pages * BUF_PAGE_SIZE;
533
534         /* we need a minimum of two pages */
535         if (size < BUF_PAGE_SIZE * 2)
536                 size = BUF_PAGE_SIZE * 2;
537
538         if (size == buffer_size)
539                 return size;
540
541         mutex_lock(&buffer->mutex);
542
543         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
544
545         if (size < buffer_size) {
546
547                 /* easy case, just free pages */
548                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
549                         mutex_unlock(&buffer->mutex);
550                         return -1;
551                 }
552
553                 rm_pages = buffer->pages - nr_pages;
554
555                 for_each_buffer_cpu(buffer, cpu) {
556                         cpu_buffer = buffer->buffers[cpu];
557                         rb_remove_pages(cpu_buffer, rm_pages);
558                 }
559                 goto out;
560         }
561
562         /*
563          * This is a bit more difficult. We only want to add pages
564          * when we can allocate enough for all CPUs. We do this
565          * by allocating all the pages and storing them on a local
566          * link list. If we succeed in our allocation, then we
567          * add these pages to the cpu_buffers. Otherwise we just free
568          * them all and return -ENOMEM;
569          */
570         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
571                 mutex_unlock(&buffer->mutex);
572                 return -1;
573         }
574
575         new_pages = nr_pages - buffer->pages;
576
577         for_each_buffer_cpu(buffer, cpu) {
578                 for (i = 0; i < new_pages; i++) {
579                         page = kzalloc_node(ALIGN(sizeof(*page),
580                                                   cache_line_size()),
581                                             GFP_KERNEL, cpu_to_node(cpu));
582                         if (!page)
583                                 goto free_pages;
584                         list_add(&page->list, &pages);
585                         addr = __get_free_page(GFP_KERNEL);
586                         if (!addr)
587                                 goto free_pages;
588                         page->page = (void *)addr;
589                 }
590         }
591
592         for_each_buffer_cpu(buffer, cpu) {
593                 cpu_buffer = buffer->buffers[cpu];
594                 rb_insert_pages(cpu_buffer, &pages, new_pages);
595         }
596
597         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
598                 mutex_unlock(&buffer->mutex);
599                 return -1;
600         }
601
602  out:
603         buffer->pages = nr_pages;
604         mutex_unlock(&buffer->mutex);
605
606         return size;
607
608  free_pages:
609         list_for_each_entry_safe(page, tmp, &pages, list) {
610                 list_del_init(&page->list);
611                 free_buffer_page(page);
612         }
613         return -ENOMEM;
614 }
615
616 static inline int rb_null_event(struct ring_buffer_event *event)
617 {
618         return event->type == RINGBUF_TYPE_PADDING;
619 }
620
621 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
622 {
623         return page->page + index;
624 }
625
626 static inline struct ring_buffer_event *
627 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
628 {
629         return __rb_page_index(cpu_buffer->reader_page,
630                                cpu_buffer->reader_page->read);
631 }
632
633 static inline struct ring_buffer_event *
634 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
635 {
636         return __rb_page_index(cpu_buffer->head_page,
637                                cpu_buffer->head_page->read);
638 }
639
640 static inline struct ring_buffer_event *
641 rb_iter_head_event(struct ring_buffer_iter *iter)
642 {
643         return __rb_page_index(iter->head_page, iter->head);
644 }
645
646 static inline unsigned rb_page_write(struct buffer_page *bpage)
647 {
648         return local_read(&bpage->write);
649 }
650
651 static inline unsigned rb_page_commit(struct buffer_page *bpage)
652 {
653         return local_read(&bpage->commit);
654 }
655
656 /* Size is determined by what has been commited */
657 static inline unsigned rb_page_size(struct buffer_page *bpage)
658 {
659         return rb_page_commit(bpage);
660 }
661
662 static inline unsigned
663 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
664 {
665         return rb_page_commit(cpu_buffer->commit_page);
666 }
667
668 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
669 {
670         return rb_page_commit(cpu_buffer->head_page);
671 }
672
673 /*
674  * When the tail hits the head and the buffer is in overwrite mode,
675  * the head jumps to the next page and all content on the previous
676  * page is discarded. But before doing so, we update the overrun
677  * variable of the buffer.
678  */
679 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
680 {
681         struct ring_buffer_event *event;
682         unsigned long head;
683
684         for (head = 0; head < rb_head_size(cpu_buffer);
685              head += rb_event_length(event)) {
686
687                 event = __rb_page_index(cpu_buffer->head_page, head);
688                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
689                         return;
690                 /* Only count data entries */
691                 if (event->type != RINGBUF_TYPE_DATA)
692                         continue;
693                 cpu_buffer->overrun++;
694                 cpu_buffer->entries--;
695         }
696 }
697
698 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
699                                struct buffer_page **page)
700 {
701         struct list_head *p = (*page)->list.next;
702
703         if (p == &cpu_buffer->pages)
704                 p = p->next;
705
706         *page = list_entry(p, struct buffer_page, list);
707 }
708
709 static inline unsigned
710 rb_event_index(struct ring_buffer_event *event)
711 {
712         unsigned long addr = (unsigned long)event;
713
714         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
715 }
716
717 static inline int
718 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
719              struct ring_buffer_event *event)
720 {
721         unsigned long addr = (unsigned long)event;
722         unsigned long index;
723
724         index = rb_event_index(event);
725         addr &= PAGE_MASK;
726
727         return cpu_buffer->commit_page->page == (void *)addr &&
728                 rb_commit_index(cpu_buffer) == index;
729 }
730
731 static inline void
732 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
733                     struct ring_buffer_event *event)
734 {
735         unsigned long addr = (unsigned long)event;
736         unsigned long index;
737
738         index = rb_event_index(event);
739         addr &= PAGE_MASK;
740
741         while (cpu_buffer->commit_page->page != (void *)addr) {
742                 if (RB_WARN_ON(cpu_buffer,
743                           cpu_buffer->commit_page == cpu_buffer->tail_page))
744                         return;
745                 cpu_buffer->commit_page->commit =
746                         cpu_buffer->commit_page->write;
747                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
748                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
749         }
750
751         /* Now set the commit to the event's index */
752         local_set(&cpu_buffer->commit_page->commit, index);
753 }
754
755 static inline void
756 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
757 {
758         /*
759          * We only race with interrupts and NMIs on this CPU.
760          * If we own the commit event, then we can commit
761          * all others that interrupted us, since the interruptions
762          * are in stack format (they finish before they come
763          * back to us). This allows us to do a simple loop to
764          * assign the commit to the tail.
765          */
766         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
767                 cpu_buffer->commit_page->commit =
768                         cpu_buffer->commit_page->write;
769                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
770                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
771                 /* add barrier to keep gcc from optimizing too much */
772                 barrier();
773         }
774         while (rb_commit_index(cpu_buffer) !=
775                rb_page_write(cpu_buffer->commit_page)) {
776                 cpu_buffer->commit_page->commit =
777                         cpu_buffer->commit_page->write;
778                 barrier();
779         }
780 }
781
782 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
783 {
784         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
785         cpu_buffer->reader_page->read = 0;
786 }
787
788 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
789 {
790         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
791
792         /*
793          * The iterator could be on the reader page (it starts there).
794          * But the head could have moved, since the reader was
795          * found. Check for this case and assign the iterator
796          * to the head page instead of next.
797          */
798         if (iter->head_page == cpu_buffer->reader_page)
799                 iter->head_page = cpu_buffer->head_page;
800         else
801                 rb_inc_page(cpu_buffer, &iter->head_page);
802
803         iter->read_stamp = iter->head_page->time_stamp;
804         iter->head = 0;
805 }
806
807 /**
808  * ring_buffer_update_event - update event type and data
809  * @event: the even to update
810  * @type: the type of event
811  * @length: the size of the event field in the ring buffer
812  *
813  * Update the type and data fields of the event. The length
814  * is the actual size that is written to the ring buffer,
815  * and with this, we can determine what to place into the
816  * data field.
817  */
818 static inline void
819 rb_update_event(struct ring_buffer_event *event,
820                          unsigned type, unsigned length)
821 {
822         event->type = type;
823
824         switch (type) {
825
826         case RINGBUF_TYPE_PADDING:
827                 break;
828
829         case RINGBUF_TYPE_TIME_EXTEND:
830                 event->len =
831                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
832                         >> RB_ALIGNMENT_SHIFT;
833                 break;
834
835         case RINGBUF_TYPE_TIME_STAMP:
836                 event->len =
837                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
838                         >> RB_ALIGNMENT_SHIFT;
839                 break;
840
841         case RINGBUF_TYPE_DATA:
842                 length -= RB_EVNT_HDR_SIZE;
843                 if (length > RB_MAX_SMALL_DATA) {
844                         event->len = 0;
845                         event->array[0] = length;
846                 } else
847                         event->len =
848                                 (length + (RB_ALIGNMENT-1))
849                                 >> RB_ALIGNMENT_SHIFT;
850                 break;
851         default:
852                 BUG();
853         }
854 }
855
856 static inline unsigned rb_calculate_event_length(unsigned length)
857 {
858         struct ring_buffer_event event; /* Used only for sizeof array */
859
860         /* zero length can cause confusions */
861         if (!length)
862                 length = 1;
863
864         if (length > RB_MAX_SMALL_DATA)
865                 length += sizeof(event.array[0]);
866
867         length += RB_EVNT_HDR_SIZE;
868         length = ALIGN(length, RB_ALIGNMENT);
869
870         return length;
871 }
872
873 static struct ring_buffer_event *
874 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
875                   unsigned type, unsigned long length, u64 *ts)
876 {
877         struct buffer_page *tail_page, *head_page, *reader_page;
878         unsigned long tail, write;
879         struct ring_buffer *buffer = cpu_buffer->buffer;
880         struct ring_buffer_event *event;
881         unsigned long flags;
882
883         tail_page = cpu_buffer->tail_page;
884         write = local_add_return(length, &tail_page->write);
885         tail = write - length;
886
887         /* See if we shot pass the end of this buffer page */
888         if (write > BUF_PAGE_SIZE) {
889                 struct buffer_page *next_page = tail_page;
890
891                 local_irq_save(flags);
892                 __raw_spin_lock(&cpu_buffer->lock);
893
894                 rb_inc_page(cpu_buffer, &next_page);
895
896                 head_page = cpu_buffer->head_page;
897                 reader_page = cpu_buffer->reader_page;
898
899                 /* we grabbed the lock before incrementing */
900                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
901                         goto out_unlock;
902
903                 /*
904                  * If for some reason, we had an interrupt storm that made
905                  * it all the way around the buffer, bail, and warn
906                  * about it.
907                  */
908                 if (unlikely(next_page == cpu_buffer->commit_page)) {
909                         WARN_ON_ONCE(1);
910                         goto out_unlock;
911                 }
912
913                 if (next_page == head_page) {
914                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
915                                 /* reset write */
916                                 if (tail <= BUF_PAGE_SIZE)
917                                         local_set(&tail_page->write, tail);
918                                 goto out_unlock;
919                         }
920
921                         /* tail_page has not moved yet? */
922                         if (tail_page == cpu_buffer->tail_page) {
923                                 /* count overflows */
924                                 rb_update_overflow(cpu_buffer);
925
926                                 rb_inc_page(cpu_buffer, &head_page);
927                                 cpu_buffer->head_page = head_page;
928                                 cpu_buffer->head_page->read = 0;
929                         }
930                 }
931
932                 /*
933                  * If the tail page is still the same as what we think
934                  * it is, then it is up to us to update the tail
935                  * pointer.
936                  */
937                 if (tail_page == cpu_buffer->tail_page) {
938                         local_set(&next_page->write, 0);
939                         local_set(&next_page->commit, 0);
940                         cpu_buffer->tail_page = next_page;
941
942                         /* reread the time stamp */
943                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
944                         cpu_buffer->tail_page->time_stamp = *ts;
945                 }
946
947                 /*
948                  * The actual tail page has moved forward.
949                  */
950                 if (tail < BUF_PAGE_SIZE) {
951                         /* Mark the rest of the page with padding */
952                         event = __rb_page_index(tail_page, tail);
953                         event->type = RINGBUF_TYPE_PADDING;
954                 }
955
956                 if (tail <= BUF_PAGE_SIZE)
957                         /* Set the write back to the previous setting */
958                         local_set(&tail_page->write, tail);
959
960                 /*
961                  * If this was a commit entry that failed,
962                  * increment that too
963                  */
964                 if (tail_page == cpu_buffer->commit_page &&
965                     tail == rb_commit_index(cpu_buffer)) {
966                         rb_set_commit_to_write(cpu_buffer);
967                 }
968
969                 __raw_spin_unlock(&cpu_buffer->lock);
970                 local_irq_restore(flags);
971
972                 /* fail and let the caller try again */
973                 return ERR_PTR(-EAGAIN);
974         }
975
976         /* We reserved something on the buffer */
977
978         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
979                 return NULL;
980
981         event = __rb_page_index(tail_page, tail);
982         rb_update_event(event, type, length);
983
984         /*
985          * If this is a commit and the tail is zero, then update
986          * this page's time stamp.
987          */
988         if (!tail && rb_is_commit(cpu_buffer, event))
989                 cpu_buffer->commit_page->time_stamp = *ts;
990
991         return event;
992
993  out_unlock:
994         __raw_spin_unlock(&cpu_buffer->lock);
995         local_irq_restore(flags);
996         return NULL;
997 }
998
999 static int
1000 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1001                   u64 *ts, u64 *delta)
1002 {
1003         struct ring_buffer_event *event;
1004         static int once;
1005         int ret;
1006
1007         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1008                 printk(KERN_WARNING "Delta way too big! %llu"
1009                        " ts=%llu write stamp = %llu\n",
1010                        (unsigned long long)*delta,
1011                        (unsigned long long)*ts,
1012                        (unsigned long long)cpu_buffer->write_stamp);
1013                 WARN_ON(1);
1014         }
1015
1016         /*
1017          * The delta is too big, we to add a
1018          * new timestamp.
1019          */
1020         event = __rb_reserve_next(cpu_buffer,
1021                                   RINGBUF_TYPE_TIME_EXTEND,
1022                                   RB_LEN_TIME_EXTEND,
1023                                   ts);
1024         if (!event)
1025                 return -EBUSY;
1026
1027         if (PTR_ERR(event) == -EAGAIN)
1028                 return -EAGAIN;
1029
1030         /* Only a commited time event can update the write stamp */
1031         if (rb_is_commit(cpu_buffer, event)) {
1032                 /*
1033                  * If this is the first on the page, then we need to
1034                  * update the page itself, and just put in a zero.
1035                  */
1036                 if (rb_event_index(event)) {
1037                         event->time_delta = *delta & TS_MASK;
1038                         event->array[0] = *delta >> TS_SHIFT;
1039                 } else {
1040                         cpu_buffer->commit_page->time_stamp = *ts;
1041                         event->time_delta = 0;
1042                         event->array[0] = 0;
1043                 }
1044                 cpu_buffer->write_stamp = *ts;
1045                 /* let the caller know this was the commit */
1046                 ret = 1;
1047         } else {
1048                 /* Darn, this is just wasted space */
1049                 event->time_delta = 0;
1050                 event->array[0] = 0;
1051                 ret = 0;
1052         }
1053
1054         *delta = 0;
1055
1056         return ret;
1057 }
1058
1059 static struct ring_buffer_event *
1060 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1061                       unsigned type, unsigned long length)
1062 {
1063         struct ring_buffer_event *event;
1064         u64 ts, delta;
1065         int commit = 0;
1066         int nr_loops = 0;
1067
1068  again:
1069         /*
1070          * We allow for interrupts to reenter here and do a trace.
1071          * If one does, it will cause this original code to loop
1072          * back here. Even with heavy interrupts happening, this
1073          * should only happen a few times in a row. If this happens
1074          * 1000 times in a row, there must be either an interrupt
1075          * storm or we have something buggy.
1076          * Bail!
1077          */
1078         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1079                 return NULL;
1080
1081         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1082
1083         /*
1084          * Only the first commit can update the timestamp.
1085          * Yes there is a race here. If an interrupt comes in
1086          * just after the conditional and it traces too, then it
1087          * will also check the deltas. More than one timestamp may
1088          * also be made. But only the entry that did the actual
1089          * commit will be something other than zero.
1090          */
1091         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1092             rb_page_write(cpu_buffer->tail_page) ==
1093             rb_commit_index(cpu_buffer)) {
1094
1095                 delta = ts - cpu_buffer->write_stamp;
1096
1097                 /* make sure this delta is calculated here */
1098                 barrier();
1099
1100                 /* Did the write stamp get updated already? */
1101                 if (unlikely(ts < cpu_buffer->write_stamp))
1102                         delta = 0;
1103
1104                 if (test_time_stamp(delta)) {
1105
1106                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1107
1108                         if (commit == -EBUSY)
1109                                 return NULL;
1110
1111                         if (commit == -EAGAIN)
1112                                 goto again;
1113
1114                         RB_WARN_ON(cpu_buffer, commit < 0);
1115                 }
1116         } else
1117                 /* Non commits have zero deltas */
1118                 delta = 0;
1119
1120         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1121         if (PTR_ERR(event) == -EAGAIN)
1122                 goto again;
1123
1124         if (!event) {
1125                 if (unlikely(commit))
1126                         /*
1127                          * Ouch! We needed a timestamp and it was commited. But
1128                          * we didn't get our event reserved.
1129                          */
1130                         rb_set_commit_to_write(cpu_buffer);
1131                 return NULL;
1132         }
1133
1134         /*
1135          * If the timestamp was commited, make the commit our entry
1136          * now so that we will update it when needed.
1137          */
1138         if (commit)
1139                 rb_set_commit_event(cpu_buffer, event);
1140         else if (!rb_is_commit(cpu_buffer, event))
1141                 delta = 0;
1142
1143         event->time_delta = delta;
1144
1145         return event;
1146 }
1147
1148 static DEFINE_PER_CPU(int, rb_need_resched);
1149
1150 /**
1151  * ring_buffer_lock_reserve - reserve a part of the buffer
1152  * @buffer: the ring buffer to reserve from
1153  * @length: the length of the data to reserve (excluding event header)
1154  * @flags: a pointer to save the interrupt flags
1155  *
1156  * Returns a reseverd event on the ring buffer to copy directly to.
1157  * The user of this interface will need to get the body to write into
1158  * and can use the ring_buffer_event_data() interface.
1159  *
1160  * The length is the length of the data needed, not the event length
1161  * which also includes the event header.
1162  *
1163  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1164  * If NULL is returned, then nothing has been allocated or locked.
1165  */
1166 struct ring_buffer_event *
1167 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1168                          unsigned long length,
1169                          unsigned long *flags)
1170 {
1171         struct ring_buffer_per_cpu *cpu_buffer;
1172         struct ring_buffer_event *event;
1173         int cpu, resched;
1174
1175         if (ring_buffers_off)
1176                 return NULL;
1177
1178         if (atomic_read(&buffer->record_disabled))
1179                 return NULL;
1180
1181         /* If we are tracing schedule, we don't want to recurse */
1182         resched = ftrace_preempt_disable();
1183
1184         cpu = raw_smp_processor_id();
1185
1186         if (!cpu_isset(cpu, buffer->cpumask))
1187                 goto out;
1188
1189         cpu_buffer = buffer->buffers[cpu];
1190
1191         if (atomic_read(&cpu_buffer->record_disabled))
1192                 goto out;
1193
1194         length = rb_calculate_event_length(length);
1195         if (length > BUF_PAGE_SIZE)
1196                 goto out;
1197
1198         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1199         if (!event)
1200                 goto out;
1201
1202         /*
1203          * Need to store resched state on this cpu.
1204          * Only the first needs to.
1205          */
1206
1207         if (preempt_count() == 1)
1208                 per_cpu(rb_need_resched, cpu) = resched;
1209
1210         return event;
1211
1212  out:
1213         ftrace_preempt_enable(resched);
1214         return NULL;
1215 }
1216
1217 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1218                       struct ring_buffer_event *event)
1219 {
1220         cpu_buffer->entries++;
1221
1222         /* Only process further if we own the commit */
1223         if (!rb_is_commit(cpu_buffer, event))
1224                 return;
1225
1226         cpu_buffer->write_stamp += event->time_delta;
1227
1228         rb_set_commit_to_write(cpu_buffer);
1229 }
1230
1231 /**
1232  * ring_buffer_unlock_commit - commit a reserved
1233  * @buffer: The buffer to commit to
1234  * @event: The event pointer to commit.
1235  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1236  *
1237  * This commits the data to the ring buffer, and releases any locks held.
1238  *
1239  * Must be paired with ring_buffer_lock_reserve.
1240  */
1241 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1242                               struct ring_buffer_event *event,
1243                               unsigned long flags)
1244 {
1245         struct ring_buffer_per_cpu *cpu_buffer;
1246         int cpu = raw_smp_processor_id();
1247
1248         cpu_buffer = buffer->buffers[cpu];
1249
1250         rb_commit(cpu_buffer, event);
1251
1252         /*
1253          * Only the last preempt count needs to restore preemption.
1254          */
1255         if (preempt_count() == 1)
1256                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1257         else
1258                 preempt_enable_no_resched_notrace();
1259
1260         return 0;
1261 }
1262
1263 /**
1264  * ring_buffer_write - write data to the buffer without reserving
1265  * @buffer: The ring buffer to write to.
1266  * @length: The length of the data being written (excluding the event header)
1267  * @data: The data to write to the buffer.
1268  *
1269  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1270  * one function. If you already have the data to write to the buffer, it
1271  * may be easier to simply call this function.
1272  *
1273  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1274  * and not the length of the event which would hold the header.
1275  */
1276 int ring_buffer_write(struct ring_buffer *buffer,
1277                         unsigned long length,
1278                         void *data)
1279 {
1280         struct ring_buffer_per_cpu *cpu_buffer;
1281         struct ring_buffer_event *event;
1282         unsigned long event_length;
1283         void *body;
1284         int ret = -EBUSY;
1285         int cpu, resched;
1286
1287         if (ring_buffers_off)
1288                 return -EBUSY;
1289
1290         if (atomic_read(&buffer->record_disabled))
1291                 return -EBUSY;
1292
1293         resched = ftrace_preempt_disable();
1294
1295         cpu = raw_smp_processor_id();
1296
1297         if (!cpu_isset(cpu, buffer->cpumask))
1298                 goto out;
1299
1300         cpu_buffer = buffer->buffers[cpu];
1301
1302         if (atomic_read(&cpu_buffer->record_disabled))
1303                 goto out;
1304
1305         event_length = rb_calculate_event_length(length);
1306         event = rb_reserve_next_event(cpu_buffer,
1307                                       RINGBUF_TYPE_DATA, event_length);
1308         if (!event)
1309                 goto out;
1310
1311         body = rb_event_data(event);
1312
1313         memcpy(body, data, length);
1314
1315         rb_commit(cpu_buffer, event);
1316
1317         ret = 0;
1318  out:
1319         ftrace_preempt_enable(resched);
1320
1321         return ret;
1322 }
1323
1324 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1325 {
1326         struct buffer_page *reader = cpu_buffer->reader_page;
1327         struct buffer_page *head = cpu_buffer->head_page;
1328         struct buffer_page *commit = cpu_buffer->commit_page;
1329
1330         return reader->read == rb_page_commit(reader) &&
1331                 (commit == reader ||
1332                  (commit == head &&
1333                   head->read == rb_page_commit(commit)));
1334 }
1335
1336 /**
1337  * ring_buffer_record_disable - stop all writes into the buffer
1338  * @buffer: The ring buffer to stop writes to.
1339  *
1340  * This prevents all writes to the buffer. Any attempt to write
1341  * to the buffer after this will fail and return NULL.
1342  *
1343  * The caller should call synchronize_sched() after this.
1344  */
1345 void ring_buffer_record_disable(struct ring_buffer *buffer)
1346 {
1347         atomic_inc(&buffer->record_disabled);
1348 }
1349
1350 /**
1351  * ring_buffer_record_enable - enable writes to the buffer
1352  * @buffer: The ring buffer to enable writes
1353  *
1354  * Note, multiple disables will need the same number of enables
1355  * to truely enable the writing (much like preempt_disable).
1356  */
1357 void ring_buffer_record_enable(struct ring_buffer *buffer)
1358 {
1359         atomic_dec(&buffer->record_disabled);
1360 }
1361
1362 /**
1363  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1364  * @buffer: The ring buffer to stop writes to.
1365  * @cpu: The CPU buffer to stop
1366  *
1367  * This prevents all writes to the buffer. Any attempt to write
1368  * to the buffer after this will fail and return NULL.
1369  *
1370  * The caller should call synchronize_sched() after this.
1371  */
1372 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1373 {
1374         struct ring_buffer_per_cpu *cpu_buffer;
1375
1376         if (!cpu_isset(cpu, buffer->cpumask))
1377                 return;
1378
1379         cpu_buffer = buffer->buffers[cpu];
1380         atomic_inc(&cpu_buffer->record_disabled);
1381 }
1382
1383 /**
1384  * ring_buffer_record_enable_cpu - enable writes to the buffer
1385  * @buffer: The ring buffer to enable writes
1386  * @cpu: The CPU to enable.
1387  *
1388  * Note, multiple disables will need the same number of enables
1389  * to truely enable the writing (much like preempt_disable).
1390  */
1391 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1392 {
1393         struct ring_buffer_per_cpu *cpu_buffer;
1394
1395         if (!cpu_isset(cpu, buffer->cpumask))
1396                 return;
1397
1398         cpu_buffer = buffer->buffers[cpu];
1399         atomic_dec(&cpu_buffer->record_disabled);
1400 }
1401
1402 /**
1403  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1404  * @buffer: The ring buffer
1405  * @cpu: The per CPU buffer to get the entries from.
1406  */
1407 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1408 {
1409         struct ring_buffer_per_cpu *cpu_buffer;
1410
1411         if (!cpu_isset(cpu, buffer->cpumask))
1412                 return 0;
1413
1414         cpu_buffer = buffer->buffers[cpu];
1415         return cpu_buffer->entries;
1416 }
1417
1418 /**
1419  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1420  * @buffer: The ring buffer
1421  * @cpu: The per CPU buffer to get the number of overruns from
1422  */
1423 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1424 {
1425         struct ring_buffer_per_cpu *cpu_buffer;
1426
1427         if (!cpu_isset(cpu, buffer->cpumask))
1428                 return 0;
1429
1430         cpu_buffer = buffer->buffers[cpu];
1431         return cpu_buffer->overrun;
1432 }
1433
1434 /**
1435  * ring_buffer_entries - get the number of entries in a buffer
1436  * @buffer: The ring buffer
1437  *
1438  * Returns the total number of entries in the ring buffer
1439  * (all CPU entries)
1440  */
1441 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1442 {
1443         struct ring_buffer_per_cpu *cpu_buffer;
1444         unsigned long entries = 0;
1445         int cpu;
1446
1447         /* if you care about this being correct, lock the buffer */
1448         for_each_buffer_cpu(buffer, cpu) {
1449                 cpu_buffer = buffer->buffers[cpu];
1450                 entries += cpu_buffer->entries;
1451         }
1452
1453         return entries;
1454 }
1455
1456 /**
1457  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1458  * @buffer: The ring buffer
1459  *
1460  * Returns the total number of overruns in the ring buffer
1461  * (all CPU entries)
1462  */
1463 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1464 {
1465         struct ring_buffer_per_cpu *cpu_buffer;
1466         unsigned long overruns = 0;
1467         int cpu;
1468
1469         /* if you care about this being correct, lock the buffer */
1470         for_each_buffer_cpu(buffer, cpu) {
1471                 cpu_buffer = buffer->buffers[cpu];
1472                 overruns += cpu_buffer->overrun;
1473         }
1474
1475         return overruns;
1476 }
1477
1478 static void rb_iter_reset(struct ring_buffer_iter *iter)
1479 {
1480         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1481
1482         /* Iterator usage is expected to have record disabled */
1483         if (list_empty(&cpu_buffer->reader_page->list)) {
1484                 iter->head_page = cpu_buffer->head_page;
1485                 iter->head = cpu_buffer->head_page->read;
1486         } else {
1487                 iter->head_page = cpu_buffer->reader_page;
1488                 iter->head = cpu_buffer->reader_page->read;
1489         }
1490         if (iter->head)
1491                 iter->read_stamp = cpu_buffer->read_stamp;
1492         else
1493                 iter->read_stamp = iter->head_page->time_stamp;
1494 }
1495
1496 /**
1497  * ring_buffer_iter_reset - reset an iterator
1498  * @iter: The iterator to reset
1499  *
1500  * Resets the iterator, so that it will start from the beginning
1501  * again.
1502  */
1503 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1504 {
1505         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1506         unsigned long flags;
1507
1508         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1509         rb_iter_reset(iter);
1510         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1511 }
1512
1513 /**
1514  * ring_buffer_iter_empty - check if an iterator has no more to read
1515  * @iter: The iterator to check
1516  */
1517 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1518 {
1519         struct ring_buffer_per_cpu *cpu_buffer;
1520
1521         cpu_buffer = iter->cpu_buffer;
1522
1523         return iter->head_page == cpu_buffer->commit_page &&
1524                 iter->head == rb_commit_index(cpu_buffer);
1525 }
1526
1527 static void
1528 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1529                      struct ring_buffer_event *event)
1530 {
1531         u64 delta;
1532
1533         switch (event->type) {
1534         case RINGBUF_TYPE_PADDING:
1535                 return;
1536
1537         case RINGBUF_TYPE_TIME_EXTEND:
1538                 delta = event->array[0];
1539                 delta <<= TS_SHIFT;
1540                 delta += event->time_delta;
1541                 cpu_buffer->read_stamp += delta;
1542                 return;
1543
1544         case RINGBUF_TYPE_TIME_STAMP:
1545                 /* FIXME: not implemented */
1546                 return;
1547
1548         case RINGBUF_TYPE_DATA:
1549                 cpu_buffer->read_stamp += event->time_delta;
1550                 return;
1551
1552         default:
1553                 BUG();
1554         }
1555         return;
1556 }
1557
1558 static void
1559 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1560                           struct ring_buffer_event *event)
1561 {
1562         u64 delta;
1563
1564         switch (event->type) {
1565         case RINGBUF_TYPE_PADDING:
1566                 return;
1567
1568         case RINGBUF_TYPE_TIME_EXTEND:
1569                 delta = event->array[0];
1570                 delta <<= TS_SHIFT;
1571                 delta += event->time_delta;
1572                 iter->read_stamp += delta;
1573                 return;
1574
1575         case RINGBUF_TYPE_TIME_STAMP:
1576                 /* FIXME: not implemented */
1577                 return;
1578
1579         case RINGBUF_TYPE_DATA:
1580                 iter->read_stamp += event->time_delta;
1581                 return;
1582
1583         default:
1584                 BUG();
1585         }
1586         return;
1587 }
1588
1589 static struct buffer_page *
1590 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1591 {
1592         struct buffer_page *reader = NULL;
1593         unsigned long flags;
1594         int nr_loops = 0;
1595
1596         local_irq_save(flags);
1597         __raw_spin_lock(&cpu_buffer->lock);
1598
1599  again:
1600         /*
1601          * This should normally only loop twice. But because the
1602          * start of the reader inserts an empty page, it causes
1603          * a case where we will loop three times. There should be no
1604          * reason to loop four times (that I know of).
1605          */
1606         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1607                 reader = NULL;
1608                 goto out;
1609         }
1610
1611         reader = cpu_buffer->reader_page;
1612
1613         /* If there's more to read, return this page */
1614         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1615                 goto out;
1616
1617         /* Never should we have an index greater than the size */
1618         if (RB_WARN_ON(cpu_buffer,
1619                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1620                 goto out;
1621
1622         /* check if we caught up to the tail */
1623         reader = NULL;
1624         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1625                 goto out;
1626
1627         /*
1628          * Splice the empty reader page into the list around the head.
1629          * Reset the reader page to size zero.
1630          */
1631
1632         reader = cpu_buffer->head_page;
1633         cpu_buffer->reader_page->list.next = reader->list.next;
1634         cpu_buffer->reader_page->list.prev = reader->list.prev;
1635
1636         local_set(&cpu_buffer->reader_page->write, 0);
1637         local_set(&cpu_buffer->reader_page->commit, 0);
1638
1639         /* Make the reader page now replace the head */
1640         reader->list.prev->next = &cpu_buffer->reader_page->list;
1641         reader->list.next->prev = &cpu_buffer->reader_page->list;
1642
1643         /*
1644          * If the tail is on the reader, then we must set the head
1645          * to the inserted page, otherwise we set it one before.
1646          */
1647         cpu_buffer->head_page = cpu_buffer->reader_page;
1648
1649         if (cpu_buffer->commit_page != reader)
1650                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1651
1652         /* Finally update the reader page to the new head */
1653         cpu_buffer->reader_page = reader;
1654         rb_reset_reader_page(cpu_buffer);
1655
1656         goto again;
1657
1658  out:
1659         __raw_spin_unlock(&cpu_buffer->lock);
1660         local_irq_restore(flags);
1661
1662         return reader;
1663 }
1664
1665 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1666 {
1667         struct ring_buffer_event *event;
1668         struct buffer_page *reader;
1669         unsigned length;
1670
1671         reader = rb_get_reader_page(cpu_buffer);
1672
1673         /* This function should not be called when buffer is empty */
1674         if (RB_WARN_ON(cpu_buffer, !reader))
1675                 return;
1676
1677         event = rb_reader_event(cpu_buffer);
1678
1679         if (event->type == RINGBUF_TYPE_DATA)
1680                 cpu_buffer->entries--;
1681
1682         rb_update_read_stamp(cpu_buffer, event);
1683
1684         length = rb_event_length(event);
1685         cpu_buffer->reader_page->read += length;
1686 }
1687
1688 static void rb_advance_iter(struct ring_buffer_iter *iter)
1689 {
1690         struct ring_buffer *buffer;
1691         struct ring_buffer_per_cpu *cpu_buffer;
1692         struct ring_buffer_event *event;
1693         unsigned length;
1694
1695         cpu_buffer = iter->cpu_buffer;
1696         buffer = cpu_buffer->buffer;
1697
1698         /*
1699          * Check if we are at the end of the buffer.
1700          */
1701         if (iter->head >= rb_page_size(iter->head_page)) {
1702                 if (RB_WARN_ON(buffer,
1703                                iter->head_page == cpu_buffer->commit_page))
1704                         return;
1705                 rb_inc_iter(iter);
1706                 return;
1707         }
1708
1709         event = rb_iter_head_event(iter);
1710
1711         length = rb_event_length(event);
1712
1713         /*
1714          * This should not be called to advance the header if we are
1715          * at the tail of the buffer.
1716          */
1717         if (RB_WARN_ON(cpu_buffer,
1718                        (iter->head_page == cpu_buffer->commit_page) &&
1719                        (iter->head + length > rb_commit_index(cpu_buffer))))
1720                 return;
1721
1722         rb_update_iter_read_stamp(iter, event);
1723
1724         iter->head += length;
1725
1726         /* check for end of page padding */
1727         if ((iter->head >= rb_page_size(iter->head_page)) &&
1728             (iter->head_page != cpu_buffer->commit_page))
1729                 rb_advance_iter(iter);
1730 }
1731
1732 static struct ring_buffer_event *
1733 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1734 {
1735         struct ring_buffer_per_cpu *cpu_buffer;
1736         struct ring_buffer_event *event;
1737         struct buffer_page *reader;
1738         int nr_loops = 0;
1739
1740         if (!cpu_isset(cpu, buffer->cpumask))
1741                 return NULL;
1742
1743         cpu_buffer = buffer->buffers[cpu];
1744
1745  again:
1746         /*
1747          * We repeat when a timestamp is encountered. It is possible
1748          * to get multiple timestamps from an interrupt entering just
1749          * as one timestamp is about to be written. The max times
1750          * that this can happen is the number of nested interrupts we
1751          * can have.  Nesting 10 deep of interrupts is clearly
1752          * an anomaly.
1753          */
1754         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1755                 return NULL;
1756
1757         reader = rb_get_reader_page(cpu_buffer);
1758         if (!reader)
1759                 return NULL;
1760
1761         event = rb_reader_event(cpu_buffer);
1762
1763         switch (event->type) {
1764         case RINGBUF_TYPE_PADDING:
1765                 RB_WARN_ON(cpu_buffer, 1);
1766                 rb_advance_reader(cpu_buffer);
1767                 return NULL;
1768
1769         case RINGBUF_TYPE_TIME_EXTEND:
1770                 /* Internal data, OK to advance */
1771                 rb_advance_reader(cpu_buffer);
1772                 goto again;
1773
1774         case RINGBUF_TYPE_TIME_STAMP:
1775                 /* FIXME: not implemented */
1776                 rb_advance_reader(cpu_buffer);
1777                 goto again;
1778
1779         case RINGBUF_TYPE_DATA:
1780                 if (ts) {
1781                         *ts = cpu_buffer->read_stamp + event->time_delta;
1782                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1783                 }
1784                 return event;
1785
1786         default:
1787                 BUG();
1788         }
1789
1790         return NULL;
1791 }
1792
1793 static struct ring_buffer_event *
1794 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1795 {
1796         struct ring_buffer *buffer;
1797         struct ring_buffer_per_cpu *cpu_buffer;
1798         struct ring_buffer_event *event;
1799         int nr_loops = 0;
1800
1801         if (ring_buffer_iter_empty(iter))
1802                 return NULL;
1803
1804         cpu_buffer = iter->cpu_buffer;
1805         buffer = cpu_buffer->buffer;
1806
1807  again:
1808         /*
1809          * We repeat when a timestamp is encountered. It is possible
1810          * to get multiple timestamps from an interrupt entering just
1811          * as one timestamp is about to be written. The max times
1812          * that this can happen is the number of nested interrupts we
1813          * can have. Nesting 10 deep of interrupts is clearly
1814          * an anomaly.
1815          */
1816         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1817                 return NULL;
1818
1819         if (rb_per_cpu_empty(cpu_buffer))
1820                 return NULL;
1821
1822         event = rb_iter_head_event(iter);
1823
1824         switch (event->type) {
1825         case RINGBUF_TYPE_PADDING:
1826                 rb_inc_iter(iter);
1827                 goto again;
1828
1829         case RINGBUF_TYPE_TIME_EXTEND:
1830                 /* Internal data, OK to advance */
1831                 rb_advance_iter(iter);
1832                 goto again;
1833
1834         case RINGBUF_TYPE_TIME_STAMP:
1835                 /* FIXME: not implemented */
1836                 rb_advance_iter(iter);
1837                 goto again;
1838
1839         case RINGBUF_TYPE_DATA:
1840                 if (ts) {
1841                         *ts = iter->read_stamp + event->time_delta;
1842                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1843                 }
1844                 return event;
1845
1846         default:
1847                 BUG();
1848         }
1849
1850         return NULL;
1851 }
1852
1853 /**
1854  * ring_buffer_peek - peek at the next event to be read
1855  * @buffer: The ring buffer to read
1856  * @cpu: The cpu to peak at
1857  * @ts: The timestamp counter of this event.
1858  *
1859  * This will return the event that will be read next, but does
1860  * not consume the data.
1861  */
1862 struct ring_buffer_event *
1863 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1864 {
1865         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1866         struct ring_buffer_event *event;
1867         unsigned long flags;
1868
1869         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1870         event = rb_buffer_peek(buffer, cpu, ts);
1871         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1872
1873         return event;
1874 }
1875
1876 /**
1877  * ring_buffer_iter_peek - peek at the next event to be read
1878  * @iter: The ring buffer iterator
1879  * @ts: The timestamp counter of this event.
1880  *
1881  * This will return the event that will be read next, but does
1882  * not increment the iterator.
1883  */
1884 struct ring_buffer_event *
1885 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1886 {
1887         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1888         struct ring_buffer_event *event;
1889         unsigned long flags;
1890
1891         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1892         event = rb_iter_peek(iter, ts);
1893         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1894
1895         return event;
1896 }
1897
1898 /**
1899  * ring_buffer_consume - return an event and consume it
1900  * @buffer: The ring buffer to get the next event from
1901  *
1902  * Returns the next event in the ring buffer, and that event is consumed.
1903  * Meaning, that sequential reads will keep returning a different event,
1904  * and eventually empty the ring buffer if the producer is slower.
1905  */
1906 struct ring_buffer_event *
1907 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1908 {
1909         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1910         struct ring_buffer_event *event;
1911         unsigned long flags;
1912
1913         if (!cpu_isset(cpu, buffer->cpumask))
1914                 return NULL;
1915
1916         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1917
1918         event = rb_buffer_peek(buffer, cpu, ts);
1919         if (!event)
1920                 goto out;
1921
1922         rb_advance_reader(cpu_buffer);
1923
1924  out:
1925         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1926
1927         return event;
1928 }
1929
1930 /**
1931  * ring_buffer_read_start - start a non consuming read of the buffer
1932  * @buffer: The ring buffer to read from
1933  * @cpu: The cpu buffer to iterate over
1934  *
1935  * This starts up an iteration through the buffer. It also disables
1936  * the recording to the buffer until the reading is finished.
1937  * This prevents the reading from being corrupted. This is not
1938  * a consuming read, so a producer is not expected.
1939  *
1940  * Must be paired with ring_buffer_finish.
1941  */
1942 struct ring_buffer_iter *
1943 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1944 {
1945         struct ring_buffer_per_cpu *cpu_buffer;
1946         struct ring_buffer_iter *iter;
1947         unsigned long flags;
1948
1949         if (!cpu_isset(cpu, buffer->cpumask))
1950                 return NULL;
1951
1952         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1953         if (!iter)
1954                 return NULL;
1955
1956         cpu_buffer = buffer->buffers[cpu];
1957
1958         iter->cpu_buffer = cpu_buffer;
1959
1960         atomic_inc(&cpu_buffer->record_disabled);
1961         synchronize_sched();
1962
1963         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1964         __raw_spin_lock(&cpu_buffer->lock);
1965         rb_iter_reset(iter);
1966         __raw_spin_unlock(&cpu_buffer->lock);
1967         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1968
1969         return iter;
1970 }
1971
1972 /**
1973  * ring_buffer_finish - finish reading the iterator of the buffer
1974  * @iter: The iterator retrieved by ring_buffer_start
1975  *
1976  * This re-enables the recording to the buffer, and frees the
1977  * iterator.
1978  */
1979 void
1980 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1981 {
1982         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1983
1984         atomic_dec(&cpu_buffer->record_disabled);
1985         kfree(iter);
1986 }
1987
1988 /**
1989  * ring_buffer_read - read the next item in the ring buffer by the iterator
1990  * @iter: The ring buffer iterator
1991  * @ts: The time stamp of the event read.
1992  *
1993  * This reads the next event in the ring buffer and increments the iterator.
1994  */
1995 struct ring_buffer_event *
1996 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1997 {
1998         struct ring_buffer_event *event;
1999         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2000         unsigned long flags;
2001
2002         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2003         event = rb_iter_peek(iter, ts);
2004         if (!event)
2005                 goto out;
2006
2007         rb_advance_iter(iter);
2008  out:
2009         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2010
2011         return event;
2012 }
2013
2014 /**
2015  * ring_buffer_size - return the size of the ring buffer (in bytes)
2016  * @buffer: The ring buffer.
2017  */
2018 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2019 {
2020         return BUF_PAGE_SIZE * buffer->pages;
2021 }
2022
2023 static void
2024 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2025 {
2026         cpu_buffer->head_page
2027                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2028         local_set(&cpu_buffer->head_page->write, 0);
2029         local_set(&cpu_buffer->head_page->commit, 0);
2030
2031         cpu_buffer->head_page->read = 0;
2032
2033         cpu_buffer->tail_page = cpu_buffer->head_page;
2034         cpu_buffer->commit_page = cpu_buffer->head_page;
2035
2036         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2037         local_set(&cpu_buffer->reader_page->write, 0);
2038         local_set(&cpu_buffer->reader_page->commit, 0);
2039         cpu_buffer->reader_page->read = 0;
2040
2041         cpu_buffer->overrun = 0;
2042         cpu_buffer->entries = 0;
2043 }
2044
2045 /**
2046  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2047  * @buffer: The ring buffer to reset a per cpu buffer of
2048  * @cpu: The CPU buffer to be reset
2049  */
2050 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2051 {
2052         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2053         unsigned long flags;
2054
2055         if (!cpu_isset(cpu, buffer->cpumask))
2056                 return;
2057
2058         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2059
2060         __raw_spin_lock(&cpu_buffer->lock);
2061
2062         rb_reset_cpu(cpu_buffer);
2063
2064         __raw_spin_unlock(&cpu_buffer->lock);
2065
2066         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2067 }
2068
2069 /**
2070  * ring_buffer_reset - reset a ring buffer
2071  * @buffer: The ring buffer to reset all cpu buffers
2072  */
2073 void ring_buffer_reset(struct ring_buffer *buffer)
2074 {
2075         int cpu;
2076
2077         for_each_buffer_cpu(buffer, cpu)
2078                 ring_buffer_reset_cpu(buffer, cpu);
2079 }
2080
2081 /**
2082  * rind_buffer_empty - is the ring buffer empty?
2083  * @buffer: The ring buffer to test
2084  */
2085 int ring_buffer_empty(struct ring_buffer *buffer)
2086 {
2087         struct ring_buffer_per_cpu *cpu_buffer;
2088         int cpu;
2089
2090         /* yes this is racy, but if you don't like the race, lock the buffer */
2091         for_each_buffer_cpu(buffer, cpu) {
2092                 cpu_buffer = buffer->buffers[cpu];
2093                 if (!rb_per_cpu_empty(cpu_buffer))
2094                         return 0;
2095         }
2096         return 1;
2097 }
2098
2099 /**
2100  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2101  * @buffer: The ring buffer
2102  * @cpu: The CPU buffer to test
2103  */
2104 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2105 {
2106         struct ring_buffer_per_cpu *cpu_buffer;
2107
2108         if (!cpu_isset(cpu, buffer->cpumask))
2109                 return 1;
2110
2111         cpu_buffer = buffer->buffers[cpu];
2112         return rb_per_cpu_empty(cpu_buffer);
2113 }
2114
2115 /**
2116  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2117  * @buffer_a: One buffer to swap with
2118  * @buffer_b: The other buffer to swap with
2119  *
2120  * This function is useful for tracers that want to take a "snapshot"
2121  * of a CPU buffer and has another back up buffer lying around.
2122  * it is expected that the tracer handles the cpu buffer not being
2123  * used at the moment.
2124  */
2125 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2126                          struct ring_buffer *buffer_b, int cpu)
2127 {
2128         struct ring_buffer_per_cpu *cpu_buffer_a;
2129         struct ring_buffer_per_cpu *cpu_buffer_b;
2130
2131         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2132             !cpu_isset(cpu, buffer_b->cpumask))
2133                 return -EINVAL;
2134
2135         /* At least make sure the two buffers are somewhat the same */
2136         if (buffer_a->size != buffer_b->size ||
2137             buffer_a->pages != buffer_b->pages)
2138                 return -EINVAL;
2139
2140         cpu_buffer_a = buffer_a->buffers[cpu];
2141         cpu_buffer_b = buffer_b->buffers[cpu];
2142
2143         /*
2144          * We can't do a synchronize_sched here because this
2145          * function can be called in atomic context.
2146          * Normally this will be called from the same CPU as cpu.
2147          * If not it's up to the caller to protect this.
2148          */
2149         atomic_inc(&cpu_buffer_a->record_disabled);
2150         atomic_inc(&cpu_buffer_b->record_disabled);
2151
2152         buffer_a->buffers[cpu] = cpu_buffer_b;
2153         buffer_b->buffers[cpu] = cpu_buffer_a;
2154
2155         cpu_buffer_b->buffer = buffer_a;
2156         cpu_buffer_a->buffer = buffer_b;
2157
2158         atomic_dec(&cpu_buffer_a->record_disabled);
2159         atomic_dec(&cpu_buffer_b->record_disabled);
2160
2161         return 0;
2162 }
2163
2164 static ssize_t
2165 rb_simple_read(struct file *filp, char __user *ubuf,
2166                size_t cnt, loff_t *ppos)
2167 {
2168         int *p = filp->private_data;
2169         char buf[64];
2170         int r;
2171
2172         /* !ring_buffers_off == tracing_on */
2173         r = sprintf(buf, "%d\n", !*p);
2174
2175         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2176 }
2177
2178 static ssize_t
2179 rb_simple_write(struct file *filp, const char __user *ubuf,
2180                 size_t cnt, loff_t *ppos)
2181 {
2182         int *p = filp->private_data;
2183         char buf[64];
2184         long val;
2185         int ret;
2186
2187         if (cnt >= sizeof(buf))
2188                 return -EINVAL;
2189
2190         if (copy_from_user(&buf, ubuf, cnt))
2191                 return -EFAULT;
2192
2193         buf[cnt] = 0;
2194
2195         ret = strict_strtoul(buf, 10, &val);
2196         if (ret < 0)
2197                 return ret;
2198
2199         /* !ring_buffers_off == tracing_on */
2200         *p = !val;
2201
2202         (*ppos)++;
2203
2204         return cnt;
2205 }
2206
2207 static struct file_operations rb_simple_fops = {
2208         .open           = tracing_open_generic,
2209         .read           = rb_simple_read,
2210         .write          = rb_simple_write,
2211 };
2212
2213
2214 static __init int rb_init_debugfs(void)
2215 {
2216         struct dentry *d_tracer;
2217         struct dentry *entry;
2218
2219         d_tracer = tracing_init_dentry();
2220
2221         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2222                                     &ring_buffers_off, &rb_simple_fops);
2223         if (!entry)
2224                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2225
2226         return 0;
2227 }
2228
2229 fs_initcall(rb_init_debugfs);