trace: introduce missing mutex_unlock()
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /* Global flag to disable all recording to ring buffers */
22 static int ring_buffers_off __read_mostly;
23
24 /**
25  * tracing_on - enable all tracing buffers
26  *
27  * This function enables all tracing buffers that may have been
28  * disabled with tracing_off.
29  */
30 void tracing_on(void)
31 {
32         ring_buffers_off = 0;
33 }
34
35 /**
36  * tracing_off - turn off all tracing buffers
37  *
38  * This function stops all tracing buffers from recording data.
39  * It does not disable any overhead the tracers themselves may
40  * be causing. This function simply causes all recording to
41  * the ring buffers to fail.
42  */
43 void tracing_off(void)
44 {
45         ring_buffers_off = 1;
46 }
47
48 /* Up this if you want to test the TIME_EXTENTS and normalization */
49 #define DEBUG_SHIFT 0
50
51 /* FIXME!!! */
52 u64 ring_buffer_time_stamp(int cpu)
53 {
54         u64 time;
55
56         preempt_disable_notrace();
57         /* shift to debug/test normalization and TIME_EXTENTS */
58         time = sched_clock() << DEBUG_SHIFT;
59         preempt_enable_notrace();
60
61         return time;
62 }
63
64 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
65 {
66         /* Just stupid testing the normalize function and deltas */
67         *ts >>= DEBUG_SHIFT;
68 }
69
70 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
71 #define RB_ALIGNMENT_SHIFT      2
72 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
73 #define RB_MAX_SMALL_DATA       28
74
75 enum {
76         RB_LEN_TIME_EXTEND = 8,
77         RB_LEN_TIME_STAMP = 16,
78 };
79
80 /* inline for ring buffer fast paths */
81 static inline unsigned
82 rb_event_length(struct ring_buffer_event *event)
83 {
84         unsigned length;
85
86         switch (event->type) {
87         case RINGBUF_TYPE_PADDING:
88                 /* undefined */
89                 return -1;
90
91         case RINGBUF_TYPE_TIME_EXTEND:
92                 return RB_LEN_TIME_EXTEND;
93
94         case RINGBUF_TYPE_TIME_STAMP:
95                 return RB_LEN_TIME_STAMP;
96
97         case RINGBUF_TYPE_DATA:
98                 if (event->len)
99                         length = event->len << RB_ALIGNMENT_SHIFT;
100                 else
101                         length = event->array[0];
102                 return length + RB_EVNT_HDR_SIZE;
103         default:
104                 BUG();
105         }
106         /* not hit */
107         return 0;
108 }
109
110 /**
111  * ring_buffer_event_length - return the length of the event
112  * @event: the event to get the length of
113  */
114 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
115 {
116         return rb_event_length(event);
117 }
118
119 /* inline for ring buffer fast paths */
120 static inline void *
121 rb_event_data(struct ring_buffer_event *event)
122 {
123         BUG_ON(event->type != RINGBUF_TYPE_DATA);
124         /* If length is in len field, then array[0] has the data */
125         if (event->len)
126                 return (void *)&event->array[0];
127         /* Otherwise length is in array[0] and array[1] has the data */
128         return (void *)&event->array[1];
129 }
130
131 /**
132  * ring_buffer_event_data - return the data of the event
133  * @event: the event to get the data from
134  */
135 void *ring_buffer_event_data(struct ring_buffer_event *event)
136 {
137         return rb_event_data(event);
138 }
139
140 #define for_each_buffer_cpu(buffer, cpu)                \
141         for_each_cpu_mask(cpu, buffer->cpumask)
142
143 #define TS_SHIFT        27
144 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
145 #define TS_DELTA_TEST   (~TS_MASK)
146
147 /*
148  * This hack stolen from mm/slob.c.
149  * We can store per page timing information in the page frame of the page.
150  * Thanks to Peter Zijlstra for suggesting this idea.
151  */
152 struct buffer_page {
153         u64              time_stamp;    /* page time stamp */
154         local_t          write;         /* index for next write */
155         local_t          commit;        /* write commited index */
156         unsigned         read;          /* index for next read */
157         struct list_head list;          /* list of free pages */
158         void *page;                     /* Actual data page */
159 };
160
161 /*
162  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
163  * this issue out.
164  */
165 static inline void free_buffer_page(struct buffer_page *bpage)
166 {
167         if (bpage->page)
168                 free_page((unsigned long)bpage->page);
169         kfree(bpage);
170 }
171
172 /*
173  * We need to fit the time_stamp delta into 27 bits.
174  */
175 static inline int test_time_stamp(u64 delta)
176 {
177         if (delta & TS_DELTA_TEST)
178                 return 1;
179         return 0;
180 }
181
182 #define BUF_PAGE_SIZE PAGE_SIZE
183
184 /*
185  * head_page == tail_page && head == tail then buffer is empty.
186  */
187 struct ring_buffer_per_cpu {
188         int                             cpu;
189         struct ring_buffer              *buffer;
190         spinlock_t                      lock;
191         struct lock_class_key           lock_key;
192         struct list_head                pages;
193         struct buffer_page              *head_page;     /* read from head */
194         struct buffer_page              *tail_page;     /* write to tail */
195         struct buffer_page              *commit_page;   /* commited pages */
196         struct buffer_page              *reader_page;
197         unsigned long                   overrun;
198         unsigned long                   entries;
199         u64                             write_stamp;
200         u64                             read_stamp;
201         atomic_t                        record_disabled;
202 };
203
204 struct ring_buffer {
205         unsigned long                   size;
206         unsigned                        pages;
207         unsigned                        flags;
208         int                             cpus;
209         cpumask_t                       cpumask;
210         atomic_t                        record_disabled;
211
212         struct mutex                    mutex;
213
214         struct ring_buffer_per_cpu      **buffers;
215 };
216
217 struct ring_buffer_iter {
218         struct ring_buffer_per_cpu      *cpu_buffer;
219         unsigned long                   head;
220         struct buffer_page              *head_page;
221         u64                             read_stamp;
222 };
223
224 #define RB_WARN_ON(buffer, cond)                                \
225         do {                                                    \
226                 if (unlikely(cond)) {                           \
227                         atomic_inc(&buffer->record_disabled);   \
228                         WARN_ON(1);                             \
229                 }                                               \
230         } while (0)
231
232 #define RB_WARN_ON_RET(buffer, cond)                            \
233         do {                                                    \
234                 if (unlikely(cond)) {                           \
235                         atomic_inc(&buffer->record_disabled);   \
236                         WARN_ON(1);                             \
237                         return -1;                              \
238                 }                                               \
239         } while (0)
240
241 #define RB_WARN_ON_ONCE(buffer, cond)                           \
242         do {                                                    \
243                 static int once;                                \
244                 if (unlikely(cond) && !once) {                  \
245                         once++;                                 \
246                         atomic_inc(&buffer->record_disabled);   \
247                         WARN_ON(1);                             \
248                 }                                               \
249         } while (0)
250
251 /**
252  * check_pages - integrity check of buffer pages
253  * @cpu_buffer: CPU buffer with pages to test
254  *
255  * As a safty measure we check to make sure the data pages have not
256  * been corrupted.
257  */
258 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
259 {
260         struct list_head *head = &cpu_buffer->pages;
261         struct buffer_page *page, *tmp;
262
263         RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
264         RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
265
266         list_for_each_entry_safe(page, tmp, head, list) {
267                 RB_WARN_ON_RET(cpu_buffer,
268                                page->list.next->prev != &page->list);
269                 RB_WARN_ON_RET(cpu_buffer,
270                                page->list.prev->next != &page->list);
271         }
272
273         return 0;
274 }
275
276 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
277                              unsigned nr_pages)
278 {
279         struct list_head *head = &cpu_buffer->pages;
280         struct buffer_page *page, *tmp;
281         unsigned long addr;
282         LIST_HEAD(pages);
283         unsigned i;
284
285         for (i = 0; i < nr_pages; i++) {
286                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
287                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
288                 if (!page)
289                         goto free_pages;
290                 list_add(&page->list, &pages);
291
292                 addr = __get_free_page(GFP_KERNEL);
293                 if (!addr)
294                         goto free_pages;
295                 page->page = (void *)addr;
296         }
297
298         list_splice(&pages, head);
299
300         rb_check_pages(cpu_buffer);
301
302         return 0;
303
304  free_pages:
305         list_for_each_entry_safe(page, tmp, &pages, list) {
306                 list_del_init(&page->list);
307                 free_buffer_page(page);
308         }
309         return -ENOMEM;
310 }
311
312 static struct ring_buffer_per_cpu *
313 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
314 {
315         struct ring_buffer_per_cpu *cpu_buffer;
316         struct buffer_page *page;
317         unsigned long addr;
318         int ret;
319
320         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
321                                   GFP_KERNEL, cpu_to_node(cpu));
322         if (!cpu_buffer)
323                 return NULL;
324
325         cpu_buffer->cpu = cpu;
326         cpu_buffer->buffer = buffer;
327         spin_lock_init(&cpu_buffer->lock);
328         INIT_LIST_HEAD(&cpu_buffer->pages);
329
330         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
331                             GFP_KERNEL, cpu_to_node(cpu));
332         if (!page)
333                 goto fail_free_buffer;
334
335         cpu_buffer->reader_page = page;
336         addr = __get_free_page(GFP_KERNEL);
337         if (!addr)
338                 goto fail_free_reader;
339         page->page = (void *)addr;
340
341         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
342
343         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
344         if (ret < 0)
345                 goto fail_free_reader;
346
347         cpu_buffer->head_page
348                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
349         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
350
351         return cpu_buffer;
352
353  fail_free_reader:
354         free_buffer_page(cpu_buffer->reader_page);
355
356  fail_free_buffer:
357         kfree(cpu_buffer);
358         return NULL;
359 }
360
361 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
362 {
363         struct list_head *head = &cpu_buffer->pages;
364         struct buffer_page *page, *tmp;
365
366         list_del_init(&cpu_buffer->reader_page->list);
367         free_buffer_page(cpu_buffer->reader_page);
368
369         list_for_each_entry_safe(page, tmp, head, list) {
370                 list_del_init(&page->list);
371                 free_buffer_page(page);
372         }
373         kfree(cpu_buffer);
374 }
375
376 /*
377  * Causes compile errors if the struct buffer_page gets bigger
378  * than the struct page.
379  */
380 extern int ring_buffer_page_too_big(void);
381
382 /**
383  * ring_buffer_alloc - allocate a new ring_buffer
384  * @size: the size in bytes that is needed.
385  * @flags: attributes to set for the ring buffer.
386  *
387  * Currently the only flag that is available is the RB_FL_OVERWRITE
388  * flag. This flag means that the buffer will overwrite old data
389  * when the buffer wraps. If this flag is not set, the buffer will
390  * drop data when the tail hits the head.
391  */
392 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
393 {
394         struct ring_buffer *buffer;
395         int bsize;
396         int cpu;
397
398         /* Paranoid! Optimizes out when all is well */
399         if (sizeof(struct buffer_page) > sizeof(struct page))
400                 ring_buffer_page_too_big();
401
402
403         /* keep it in its own cache line */
404         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
405                          GFP_KERNEL);
406         if (!buffer)
407                 return NULL;
408
409         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
410         buffer->flags = flags;
411
412         /* need at least two pages */
413         if (buffer->pages == 1)
414                 buffer->pages++;
415
416         buffer->cpumask = cpu_possible_map;
417         buffer->cpus = nr_cpu_ids;
418
419         bsize = sizeof(void *) * nr_cpu_ids;
420         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
421                                   GFP_KERNEL);
422         if (!buffer->buffers)
423                 goto fail_free_buffer;
424
425         for_each_buffer_cpu(buffer, cpu) {
426                 buffer->buffers[cpu] =
427                         rb_allocate_cpu_buffer(buffer, cpu);
428                 if (!buffer->buffers[cpu])
429                         goto fail_free_buffers;
430         }
431
432         mutex_init(&buffer->mutex);
433
434         return buffer;
435
436  fail_free_buffers:
437         for_each_buffer_cpu(buffer, cpu) {
438                 if (buffer->buffers[cpu])
439                         rb_free_cpu_buffer(buffer->buffers[cpu]);
440         }
441         kfree(buffer->buffers);
442
443  fail_free_buffer:
444         kfree(buffer);
445         return NULL;
446 }
447
448 /**
449  * ring_buffer_free - free a ring buffer.
450  * @buffer: the buffer to free.
451  */
452 void
453 ring_buffer_free(struct ring_buffer *buffer)
454 {
455         int cpu;
456
457         for_each_buffer_cpu(buffer, cpu)
458                 rb_free_cpu_buffer(buffer->buffers[cpu]);
459
460         kfree(buffer);
461 }
462
463 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
464
465 static void
466 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
467 {
468         struct buffer_page *page;
469         struct list_head *p;
470         unsigned i;
471
472         atomic_inc(&cpu_buffer->record_disabled);
473         synchronize_sched();
474
475         for (i = 0; i < nr_pages; i++) {
476                 BUG_ON(list_empty(&cpu_buffer->pages));
477                 p = cpu_buffer->pages.next;
478                 page = list_entry(p, struct buffer_page, list);
479                 list_del_init(&page->list);
480                 free_buffer_page(page);
481         }
482         BUG_ON(list_empty(&cpu_buffer->pages));
483
484         rb_reset_cpu(cpu_buffer);
485
486         rb_check_pages(cpu_buffer);
487
488         atomic_dec(&cpu_buffer->record_disabled);
489
490 }
491
492 static void
493 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
494                 struct list_head *pages, unsigned nr_pages)
495 {
496         struct buffer_page *page;
497         struct list_head *p;
498         unsigned i;
499
500         atomic_inc(&cpu_buffer->record_disabled);
501         synchronize_sched();
502
503         for (i = 0; i < nr_pages; i++) {
504                 BUG_ON(list_empty(pages));
505                 p = pages->next;
506                 page = list_entry(p, struct buffer_page, list);
507                 list_del_init(&page->list);
508                 list_add_tail(&page->list, &cpu_buffer->pages);
509         }
510         rb_reset_cpu(cpu_buffer);
511
512         rb_check_pages(cpu_buffer);
513
514         atomic_dec(&cpu_buffer->record_disabled);
515 }
516
517 /**
518  * ring_buffer_resize - resize the ring buffer
519  * @buffer: the buffer to resize.
520  * @size: the new size.
521  *
522  * The tracer is responsible for making sure that the buffer is
523  * not being used while changing the size.
524  * Note: We may be able to change the above requirement by using
525  *  RCU synchronizations.
526  *
527  * Minimum size is 2 * BUF_PAGE_SIZE.
528  *
529  * Returns -1 on failure.
530  */
531 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
532 {
533         struct ring_buffer_per_cpu *cpu_buffer;
534         unsigned nr_pages, rm_pages, new_pages;
535         struct buffer_page *page, *tmp;
536         unsigned long buffer_size;
537         unsigned long addr;
538         LIST_HEAD(pages);
539         int i, cpu;
540
541         /*
542          * Always succeed at resizing a non-existent buffer:
543          */
544         if (!buffer)
545                 return size;
546
547         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
548         size *= BUF_PAGE_SIZE;
549         buffer_size = buffer->pages * BUF_PAGE_SIZE;
550
551         /* we need a minimum of two pages */
552         if (size < BUF_PAGE_SIZE * 2)
553                 size = BUF_PAGE_SIZE * 2;
554
555         if (size == buffer_size)
556                 return size;
557
558         mutex_lock(&buffer->mutex);
559
560         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
561
562         if (size < buffer_size) {
563
564                 /* easy case, just free pages */
565                 BUG_ON(nr_pages >= buffer->pages);
566
567                 rm_pages = buffer->pages - nr_pages;
568
569                 for_each_buffer_cpu(buffer, cpu) {
570                         cpu_buffer = buffer->buffers[cpu];
571                         rb_remove_pages(cpu_buffer, rm_pages);
572                 }
573                 goto out;
574         }
575
576         /*
577          * This is a bit more difficult. We only want to add pages
578          * when we can allocate enough for all CPUs. We do this
579          * by allocating all the pages and storing them on a local
580          * link list. If we succeed in our allocation, then we
581          * add these pages to the cpu_buffers. Otherwise we just free
582          * them all and return -ENOMEM;
583          */
584         BUG_ON(nr_pages <= buffer->pages);
585         new_pages = nr_pages - buffer->pages;
586
587         for_each_buffer_cpu(buffer, cpu) {
588                 for (i = 0; i < new_pages; i++) {
589                         page = kzalloc_node(ALIGN(sizeof(*page),
590                                                   cache_line_size()),
591                                             GFP_KERNEL, cpu_to_node(cpu));
592                         if (!page)
593                                 goto free_pages;
594                         list_add(&page->list, &pages);
595                         addr = __get_free_page(GFP_KERNEL);
596                         if (!addr)
597                                 goto free_pages;
598                         page->page = (void *)addr;
599                 }
600         }
601
602         for_each_buffer_cpu(buffer, cpu) {
603                 cpu_buffer = buffer->buffers[cpu];
604                 rb_insert_pages(cpu_buffer, &pages, new_pages);
605         }
606
607         BUG_ON(!list_empty(&pages));
608
609  out:
610         buffer->pages = nr_pages;
611         mutex_unlock(&buffer->mutex);
612
613         return size;
614
615  free_pages:
616         list_for_each_entry_safe(page, tmp, &pages, list) {
617                 list_del_init(&page->list);
618                 free_buffer_page(page);
619         }
620         mutex_unlock(&buffer->mutex);
621         return -ENOMEM;
622 }
623
624 static inline int rb_null_event(struct ring_buffer_event *event)
625 {
626         return event->type == RINGBUF_TYPE_PADDING;
627 }
628
629 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
630 {
631         return page->page + index;
632 }
633
634 static inline struct ring_buffer_event *
635 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
636 {
637         return __rb_page_index(cpu_buffer->reader_page,
638                                cpu_buffer->reader_page->read);
639 }
640
641 static inline struct ring_buffer_event *
642 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
643 {
644         return __rb_page_index(cpu_buffer->head_page,
645                                cpu_buffer->head_page->read);
646 }
647
648 static inline struct ring_buffer_event *
649 rb_iter_head_event(struct ring_buffer_iter *iter)
650 {
651         return __rb_page_index(iter->head_page, iter->head);
652 }
653
654 static inline unsigned rb_page_write(struct buffer_page *bpage)
655 {
656         return local_read(&bpage->write);
657 }
658
659 static inline unsigned rb_page_commit(struct buffer_page *bpage)
660 {
661         return local_read(&bpage->commit);
662 }
663
664 /* Size is determined by what has been commited */
665 static inline unsigned rb_page_size(struct buffer_page *bpage)
666 {
667         return rb_page_commit(bpage);
668 }
669
670 static inline unsigned
671 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
672 {
673         return rb_page_commit(cpu_buffer->commit_page);
674 }
675
676 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
677 {
678         return rb_page_commit(cpu_buffer->head_page);
679 }
680
681 /*
682  * When the tail hits the head and the buffer is in overwrite mode,
683  * the head jumps to the next page and all content on the previous
684  * page is discarded. But before doing so, we update the overrun
685  * variable of the buffer.
686  */
687 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
688 {
689         struct ring_buffer_event *event;
690         unsigned long head;
691
692         for (head = 0; head < rb_head_size(cpu_buffer);
693              head += rb_event_length(event)) {
694
695                 event = __rb_page_index(cpu_buffer->head_page, head);
696                 BUG_ON(rb_null_event(event));
697                 /* Only count data entries */
698                 if (event->type != RINGBUF_TYPE_DATA)
699                         continue;
700                 cpu_buffer->overrun++;
701                 cpu_buffer->entries--;
702         }
703 }
704
705 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
706                                struct buffer_page **page)
707 {
708         struct list_head *p = (*page)->list.next;
709
710         if (p == &cpu_buffer->pages)
711                 p = p->next;
712
713         *page = list_entry(p, struct buffer_page, list);
714 }
715
716 static inline unsigned
717 rb_event_index(struct ring_buffer_event *event)
718 {
719         unsigned long addr = (unsigned long)event;
720
721         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
722 }
723
724 static inline int
725 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
726              struct ring_buffer_event *event)
727 {
728         unsigned long addr = (unsigned long)event;
729         unsigned long index;
730
731         index = rb_event_index(event);
732         addr &= PAGE_MASK;
733
734         return cpu_buffer->commit_page->page == (void *)addr &&
735                 rb_commit_index(cpu_buffer) == index;
736 }
737
738 static inline void
739 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
740                     struct ring_buffer_event *event)
741 {
742         unsigned long addr = (unsigned long)event;
743         unsigned long index;
744
745         index = rb_event_index(event);
746         addr &= PAGE_MASK;
747
748         while (cpu_buffer->commit_page->page != (void *)addr) {
749                 RB_WARN_ON(cpu_buffer,
750                            cpu_buffer->commit_page == cpu_buffer->tail_page);
751                 cpu_buffer->commit_page->commit =
752                         cpu_buffer->commit_page->write;
753                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
754                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
755         }
756
757         /* Now set the commit to the event's index */
758         local_set(&cpu_buffer->commit_page->commit, index);
759 }
760
761 static inline void
762 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
763 {
764         /*
765          * We only race with interrupts and NMIs on this CPU.
766          * If we own the commit event, then we can commit
767          * all others that interrupted us, since the interruptions
768          * are in stack format (they finish before they come
769          * back to us). This allows us to do a simple loop to
770          * assign the commit to the tail.
771          */
772         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
773                 cpu_buffer->commit_page->commit =
774                         cpu_buffer->commit_page->write;
775                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
776                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
777                 /* add barrier to keep gcc from optimizing too much */
778                 barrier();
779         }
780         while (rb_commit_index(cpu_buffer) !=
781                rb_page_write(cpu_buffer->commit_page)) {
782                 cpu_buffer->commit_page->commit =
783                         cpu_buffer->commit_page->write;
784                 barrier();
785         }
786 }
787
788 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
791         cpu_buffer->reader_page->read = 0;
792 }
793
794 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
795 {
796         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
797
798         /*
799          * The iterator could be on the reader page (it starts there).
800          * But the head could have moved, since the reader was
801          * found. Check for this case and assign the iterator
802          * to the head page instead of next.
803          */
804         if (iter->head_page == cpu_buffer->reader_page)
805                 iter->head_page = cpu_buffer->head_page;
806         else
807                 rb_inc_page(cpu_buffer, &iter->head_page);
808
809         iter->read_stamp = iter->head_page->time_stamp;
810         iter->head = 0;
811 }
812
813 /**
814  * ring_buffer_update_event - update event type and data
815  * @event: the even to update
816  * @type: the type of event
817  * @length: the size of the event field in the ring buffer
818  *
819  * Update the type and data fields of the event. The length
820  * is the actual size that is written to the ring buffer,
821  * and with this, we can determine what to place into the
822  * data field.
823  */
824 static inline void
825 rb_update_event(struct ring_buffer_event *event,
826                          unsigned type, unsigned length)
827 {
828         event->type = type;
829
830         switch (type) {
831
832         case RINGBUF_TYPE_PADDING:
833                 break;
834
835         case RINGBUF_TYPE_TIME_EXTEND:
836                 event->len =
837                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
838                         >> RB_ALIGNMENT_SHIFT;
839                 break;
840
841         case RINGBUF_TYPE_TIME_STAMP:
842                 event->len =
843                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
844                         >> RB_ALIGNMENT_SHIFT;
845                 break;
846
847         case RINGBUF_TYPE_DATA:
848                 length -= RB_EVNT_HDR_SIZE;
849                 if (length > RB_MAX_SMALL_DATA) {
850                         event->len = 0;
851                         event->array[0] = length;
852                 } else
853                         event->len =
854                                 (length + (RB_ALIGNMENT-1))
855                                 >> RB_ALIGNMENT_SHIFT;
856                 break;
857         default:
858                 BUG();
859         }
860 }
861
862 static inline unsigned rb_calculate_event_length(unsigned length)
863 {
864         struct ring_buffer_event event; /* Used only for sizeof array */
865
866         /* zero length can cause confusions */
867         if (!length)
868                 length = 1;
869
870         if (length > RB_MAX_SMALL_DATA)
871                 length += sizeof(event.array[0]);
872
873         length += RB_EVNT_HDR_SIZE;
874         length = ALIGN(length, RB_ALIGNMENT);
875
876         return length;
877 }
878
879 static struct ring_buffer_event *
880 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
881                   unsigned type, unsigned long length, u64 *ts)
882 {
883         struct buffer_page *tail_page, *head_page, *reader_page;
884         unsigned long tail, write;
885         struct ring_buffer *buffer = cpu_buffer->buffer;
886         struct ring_buffer_event *event;
887         unsigned long flags;
888
889         tail_page = cpu_buffer->tail_page;
890         write = local_add_return(length, &tail_page->write);
891         tail = write - length;
892
893         /* See if we shot pass the end of this buffer page */
894         if (write > BUF_PAGE_SIZE) {
895                 struct buffer_page *next_page = tail_page;
896
897                 spin_lock_irqsave(&cpu_buffer->lock, flags);
898
899                 rb_inc_page(cpu_buffer, &next_page);
900
901                 head_page = cpu_buffer->head_page;
902                 reader_page = cpu_buffer->reader_page;
903
904                 /* we grabbed the lock before incrementing */
905                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
906
907                 /*
908                  * If for some reason, we had an interrupt storm that made
909                  * it all the way around the buffer, bail, and warn
910                  * about it.
911                  */
912                 if (unlikely(next_page == cpu_buffer->commit_page)) {
913                         WARN_ON_ONCE(1);
914                         goto out_unlock;
915                 }
916
917                 if (next_page == head_page) {
918                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
919                                 /* reset write */
920                                 if (tail <= BUF_PAGE_SIZE)
921                                         local_set(&tail_page->write, tail);
922                                 goto out_unlock;
923                         }
924
925                         /* tail_page has not moved yet? */
926                         if (tail_page == cpu_buffer->tail_page) {
927                                 /* count overflows */
928                                 rb_update_overflow(cpu_buffer);
929
930                                 rb_inc_page(cpu_buffer, &head_page);
931                                 cpu_buffer->head_page = head_page;
932                                 cpu_buffer->head_page->read = 0;
933                         }
934                 }
935
936                 /*
937                  * If the tail page is still the same as what we think
938                  * it is, then it is up to us to update the tail
939                  * pointer.
940                  */
941                 if (tail_page == cpu_buffer->tail_page) {
942                         local_set(&next_page->write, 0);
943                         local_set(&next_page->commit, 0);
944                         cpu_buffer->tail_page = next_page;
945
946                         /* reread the time stamp */
947                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
948                         cpu_buffer->tail_page->time_stamp = *ts;
949                 }
950
951                 /*
952                  * The actual tail page has moved forward.
953                  */
954                 if (tail < BUF_PAGE_SIZE) {
955                         /* Mark the rest of the page with padding */
956                         event = __rb_page_index(tail_page, tail);
957                         event->type = RINGBUF_TYPE_PADDING;
958                 }
959
960                 if (tail <= BUF_PAGE_SIZE)
961                         /* Set the write back to the previous setting */
962                         local_set(&tail_page->write, tail);
963
964                 /*
965                  * If this was a commit entry that failed,
966                  * increment that too
967                  */
968                 if (tail_page == cpu_buffer->commit_page &&
969                     tail == rb_commit_index(cpu_buffer)) {
970                         rb_set_commit_to_write(cpu_buffer);
971                 }
972
973                 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
974
975                 /* fail and let the caller try again */
976                 return ERR_PTR(-EAGAIN);
977         }
978
979         /* We reserved something on the buffer */
980
981         BUG_ON(write > BUF_PAGE_SIZE);
982
983         event = __rb_page_index(tail_page, tail);
984         rb_update_event(event, type, length);
985
986         /*
987          * If this is a commit and the tail is zero, then update
988          * this page's time stamp.
989          */
990         if (!tail && rb_is_commit(cpu_buffer, event))
991                 cpu_buffer->commit_page->time_stamp = *ts;
992
993         return event;
994
995  out_unlock:
996         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
997         return NULL;
998 }
999
1000 static int
1001 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1002                   u64 *ts, u64 *delta)
1003 {
1004         struct ring_buffer_event *event;
1005         static int once;
1006         int ret;
1007
1008         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1009                 printk(KERN_WARNING "Delta way too big! %llu"
1010                        " ts=%llu write stamp = %llu\n",
1011                        (unsigned long long)*delta,
1012                        (unsigned long long)*ts,
1013                        (unsigned long long)cpu_buffer->write_stamp);
1014                 WARN_ON(1);
1015         }
1016
1017         /*
1018          * The delta is too big, we to add a
1019          * new timestamp.
1020          */
1021         event = __rb_reserve_next(cpu_buffer,
1022                                   RINGBUF_TYPE_TIME_EXTEND,
1023                                   RB_LEN_TIME_EXTEND,
1024                                   ts);
1025         if (!event)
1026                 return -EBUSY;
1027
1028         if (PTR_ERR(event) == -EAGAIN)
1029                 return -EAGAIN;
1030
1031         /* Only a commited time event can update the write stamp */
1032         if (rb_is_commit(cpu_buffer, event)) {
1033                 /*
1034                  * If this is the first on the page, then we need to
1035                  * update the page itself, and just put in a zero.
1036                  */
1037                 if (rb_event_index(event)) {
1038                         event->time_delta = *delta & TS_MASK;
1039                         event->array[0] = *delta >> TS_SHIFT;
1040                 } else {
1041                         cpu_buffer->commit_page->time_stamp = *ts;
1042                         event->time_delta = 0;
1043                         event->array[0] = 0;
1044                 }
1045                 cpu_buffer->write_stamp = *ts;
1046                 /* let the caller know this was the commit */
1047                 ret = 1;
1048         } else {
1049                 /* Darn, this is just wasted space */
1050                 event->time_delta = 0;
1051                 event->array[0] = 0;
1052                 ret = 0;
1053         }
1054
1055         *delta = 0;
1056
1057         return ret;
1058 }
1059
1060 static struct ring_buffer_event *
1061 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1062                       unsigned type, unsigned long length)
1063 {
1064         struct ring_buffer_event *event;
1065         u64 ts, delta;
1066         int commit = 0;
1067         int nr_loops = 0;
1068
1069  again:
1070         /*
1071          * We allow for interrupts to reenter here and do a trace.
1072          * If one does, it will cause this original code to loop
1073          * back here. Even with heavy interrupts happening, this
1074          * should only happen a few times in a row. If this happens
1075          * 1000 times in a row, there must be either an interrupt
1076          * storm or we have something buggy.
1077          * Bail!
1078          */
1079         if (unlikely(++nr_loops > 1000)) {
1080                 RB_WARN_ON(cpu_buffer, 1);
1081                 return NULL;
1082         }
1083
1084         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1085
1086         /*
1087          * Only the first commit can update the timestamp.
1088          * Yes there is a race here. If an interrupt comes in
1089          * just after the conditional and it traces too, then it
1090          * will also check the deltas. More than one timestamp may
1091          * also be made. But only the entry that did the actual
1092          * commit will be something other than zero.
1093          */
1094         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1095             rb_page_write(cpu_buffer->tail_page) ==
1096             rb_commit_index(cpu_buffer)) {
1097
1098                 delta = ts - cpu_buffer->write_stamp;
1099
1100                 /* make sure this delta is calculated here */
1101                 barrier();
1102
1103                 /* Did the write stamp get updated already? */
1104                 if (unlikely(ts < cpu_buffer->write_stamp))
1105                         delta = 0;
1106
1107                 if (test_time_stamp(delta)) {
1108
1109                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1110
1111                         if (commit == -EBUSY)
1112                                 return NULL;
1113
1114                         if (commit == -EAGAIN)
1115                                 goto again;
1116
1117                         RB_WARN_ON(cpu_buffer, commit < 0);
1118                 }
1119         } else
1120                 /* Non commits have zero deltas */
1121                 delta = 0;
1122
1123         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1124         if (PTR_ERR(event) == -EAGAIN)
1125                 goto again;
1126
1127         if (!event) {
1128                 if (unlikely(commit))
1129                         /*
1130                          * Ouch! We needed a timestamp and it was commited. But
1131                          * we didn't get our event reserved.
1132                          */
1133                         rb_set_commit_to_write(cpu_buffer);
1134                 return NULL;
1135         }
1136
1137         /*
1138          * If the timestamp was commited, make the commit our entry
1139          * now so that we will update it when needed.
1140          */
1141         if (commit)
1142                 rb_set_commit_event(cpu_buffer, event);
1143         else if (!rb_is_commit(cpu_buffer, event))
1144                 delta = 0;
1145
1146         event->time_delta = delta;
1147
1148         return event;
1149 }
1150
1151 static DEFINE_PER_CPU(int, rb_need_resched);
1152
1153 /**
1154  * ring_buffer_lock_reserve - reserve a part of the buffer
1155  * @buffer: the ring buffer to reserve from
1156  * @length: the length of the data to reserve (excluding event header)
1157  * @flags: a pointer to save the interrupt flags
1158  *
1159  * Returns a reseverd event on the ring buffer to copy directly to.
1160  * The user of this interface will need to get the body to write into
1161  * and can use the ring_buffer_event_data() interface.
1162  *
1163  * The length is the length of the data needed, not the event length
1164  * which also includes the event header.
1165  *
1166  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1167  * If NULL is returned, then nothing has been allocated or locked.
1168  */
1169 struct ring_buffer_event *
1170 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1171                          unsigned long length,
1172                          unsigned long *flags)
1173 {
1174         struct ring_buffer_per_cpu *cpu_buffer;
1175         struct ring_buffer_event *event;
1176         int cpu, resched;
1177
1178         if (ring_buffers_off)
1179                 return NULL;
1180
1181         if (atomic_read(&buffer->record_disabled))
1182                 return NULL;
1183
1184         /* If we are tracing schedule, we don't want to recurse */
1185         resched = need_resched();
1186         preempt_disable_notrace();
1187
1188         cpu = raw_smp_processor_id();
1189
1190         if (!cpu_isset(cpu, buffer->cpumask))
1191                 goto out;
1192
1193         cpu_buffer = buffer->buffers[cpu];
1194
1195         if (atomic_read(&cpu_buffer->record_disabled))
1196                 goto out;
1197
1198         length = rb_calculate_event_length(length);
1199         if (length > BUF_PAGE_SIZE)
1200                 goto out;
1201
1202         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1203         if (!event)
1204                 goto out;
1205
1206         /*
1207          * Need to store resched state on this cpu.
1208          * Only the first needs to.
1209          */
1210
1211         if (preempt_count() == 1)
1212                 per_cpu(rb_need_resched, cpu) = resched;
1213
1214         return event;
1215
1216  out:
1217         if (resched)
1218                 preempt_enable_notrace();
1219         else
1220                 preempt_enable_notrace();
1221         return NULL;
1222 }
1223
1224 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1225                       struct ring_buffer_event *event)
1226 {
1227         cpu_buffer->entries++;
1228
1229         /* Only process further if we own the commit */
1230         if (!rb_is_commit(cpu_buffer, event))
1231                 return;
1232
1233         cpu_buffer->write_stamp += event->time_delta;
1234
1235         rb_set_commit_to_write(cpu_buffer);
1236 }
1237
1238 /**
1239  * ring_buffer_unlock_commit - commit a reserved
1240  * @buffer: The buffer to commit to
1241  * @event: The event pointer to commit.
1242  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1243  *
1244  * This commits the data to the ring buffer, and releases any locks held.
1245  *
1246  * Must be paired with ring_buffer_lock_reserve.
1247  */
1248 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1249                               struct ring_buffer_event *event,
1250                               unsigned long flags)
1251 {
1252         struct ring_buffer_per_cpu *cpu_buffer;
1253         int cpu = raw_smp_processor_id();
1254
1255         cpu_buffer = buffer->buffers[cpu];
1256
1257         rb_commit(cpu_buffer, event);
1258
1259         /*
1260          * Only the last preempt count needs to restore preemption.
1261          */
1262         if (preempt_count() == 1) {
1263                 if (per_cpu(rb_need_resched, cpu))
1264                         preempt_enable_no_resched_notrace();
1265                 else
1266                         preempt_enable_notrace();
1267         } else
1268                 preempt_enable_no_resched_notrace();
1269
1270         return 0;
1271 }
1272
1273 /**
1274  * ring_buffer_write - write data to the buffer without reserving
1275  * @buffer: The ring buffer to write to.
1276  * @length: The length of the data being written (excluding the event header)
1277  * @data: The data to write to the buffer.
1278  *
1279  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1280  * one function. If you already have the data to write to the buffer, it
1281  * may be easier to simply call this function.
1282  *
1283  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1284  * and not the length of the event which would hold the header.
1285  */
1286 int ring_buffer_write(struct ring_buffer *buffer,
1287                         unsigned long length,
1288                         void *data)
1289 {
1290         struct ring_buffer_per_cpu *cpu_buffer;
1291         struct ring_buffer_event *event;
1292         unsigned long event_length;
1293         void *body;
1294         int ret = -EBUSY;
1295         int cpu, resched;
1296
1297         if (ring_buffers_off)
1298                 return -EBUSY;
1299
1300         if (atomic_read(&buffer->record_disabled))
1301                 return -EBUSY;
1302
1303         resched = need_resched();
1304         preempt_disable_notrace();
1305
1306         cpu = raw_smp_processor_id();
1307
1308         if (!cpu_isset(cpu, buffer->cpumask))
1309                 goto out;
1310
1311         cpu_buffer = buffer->buffers[cpu];
1312
1313         if (atomic_read(&cpu_buffer->record_disabled))
1314                 goto out;
1315
1316         event_length = rb_calculate_event_length(length);
1317         event = rb_reserve_next_event(cpu_buffer,
1318                                       RINGBUF_TYPE_DATA, event_length);
1319         if (!event)
1320                 goto out;
1321
1322         body = rb_event_data(event);
1323
1324         memcpy(body, data, length);
1325
1326         rb_commit(cpu_buffer, event);
1327
1328         ret = 0;
1329  out:
1330         if (resched)
1331                 preempt_enable_no_resched_notrace();
1332         else
1333                 preempt_enable_notrace();
1334
1335         return ret;
1336 }
1337
1338 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1339 {
1340         struct buffer_page *reader = cpu_buffer->reader_page;
1341         struct buffer_page *head = cpu_buffer->head_page;
1342         struct buffer_page *commit = cpu_buffer->commit_page;
1343
1344         return reader->read == rb_page_commit(reader) &&
1345                 (commit == reader ||
1346                  (commit == head &&
1347                   head->read == rb_page_commit(commit)));
1348 }
1349
1350 /**
1351  * ring_buffer_record_disable - stop all writes into the buffer
1352  * @buffer: The ring buffer to stop writes to.
1353  *
1354  * This prevents all writes to the buffer. Any attempt to write
1355  * to the buffer after this will fail and return NULL.
1356  *
1357  * The caller should call synchronize_sched() after this.
1358  */
1359 void ring_buffer_record_disable(struct ring_buffer *buffer)
1360 {
1361         atomic_inc(&buffer->record_disabled);
1362 }
1363
1364 /**
1365  * ring_buffer_record_enable - enable writes to the buffer
1366  * @buffer: The ring buffer to enable writes
1367  *
1368  * Note, multiple disables will need the same number of enables
1369  * to truely enable the writing (much like preempt_disable).
1370  */
1371 void ring_buffer_record_enable(struct ring_buffer *buffer)
1372 {
1373         atomic_dec(&buffer->record_disabled);
1374 }
1375
1376 /**
1377  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1378  * @buffer: The ring buffer to stop writes to.
1379  * @cpu: The CPU buffer to stop
1380  *
1381  * This prevents all writes to the buffer. Any attempt to write
1382  * to the buffer after this will fail and return NULL.
1383  *
1384  * The caller should call synchronize_sched() after this.
1385  */
1386 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1387 {
1388         struct ring_buffer_per_cpu *cpu_buffer;
1389
1390         if (!cpu_isset(cpu, buffer->cpumask))
1391                 return;
1392
1393         cpu_buffer = buffer->buffers[cpu];
1394         atomic_inc(&cpu_buffer->record_disabled);
1395 }
1396
1397 /**
1398  * ring_buffer_record_enable_cpu - enable writes to the buffer
1399  * @buffer: The ring buffer to enable writes
1400  * @cpu: The CPU to enable.
1401  *
1402  * Note, multiple disables will need the same number of enables
1403  * to truely enable the writing (much like preempt_disable).
1404  */
1405 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1406 {
1407         struct ring_buffer_per_cpu *cpu_buffer;
1408
1409         if (!cpu_isset(cpu, buffer->cpumask))
1410                 return;
1411
1412         cpu_buffer = buffer->buffers[cpu];
1413         atomic_dec(&cpu_buffer->record_disabled);
1414 }
1415
1416 /**
1417  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1418  * @buffer: The ring buffer
1419  * @cpu: The per CPU buffer to get the entries from.
1420  */
1421 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1422 {
1423         struct ring_buffer_per_cpu *cpu_buffer;
1424
1425         if (!cpu_isset(cpu, buffer->cpumask))
1426                 return 0;
1427
1428         cpu_buffer = buffer->buffers[cpu];
1429         return cpu_buffer->entries;
1430 }
1431
1432 /**
1433  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1434  * @buffer: The ring buffer
1435  * @cpu: The per CPU buffer to get the number of overruns from
1436  */
1437 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1438 {
1439         struct ring_buffer_per_cpu *cpu_buffer;
1440
1441         if (!cpu_isset(cpu, buffer->cpumask))
1442                 return 0;
1443
1444         cpu_buffer = buffer->buffers[cpu];
1445         return cpu_buffer->overrun;
1446 }
1447
1448 /**
1449  * ring_buffer_entries - get the number of entries in a buffer
1450  * @buffer: The ring buffer
1451  *
1452  * Returns the total number of entries in the ring buffer
1453  * (all CPU entries)
1454  */
1455 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1456 {
1457         struct ring_buffer_per_cpu *cpu_buffer;
1458         unsigned long entries = 0;
1459         int cpu;
1460
1461         /* if you care about this being correct, lock the buffer */
1462         for_each_buffer_cpu(buffer, cpu) {
1463                 cpu_buffer = buffer->buffers[cpu];
1464                 entries += cpu_buffer->entries;
1465         }
1466
1467         return entries;
1468 }
1469
1470 /**
1471  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1472  * @buffer: The ring buffer
1473  *
1474  * Returns the total number of overruns in the ring buffer
1475  * (all CPU entries)
1476  */
1477 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1478 {
1479         struct ring_buffer_per_cpu *cpu_buffer;
1480         unsigned long overruns = 0;
1481         int cpu;
1482
1483         /* if you care about this being correct, lock the buffer */
1484         for_each_buffer_cpu(buffer, cpu) {
1485                 cpu_buffer = buffer->buffers[cpu];
1486                 overruns += cpu_buffer->overrun;
1487         }
1488
1489         return overruns;
1490 }
1491
1492 /**
1493  * ring_buffer_iter_reset - reset an iterator
1494  * @iter: The iterator to reset
1495  *
1496  * Resets the iterator, so that it will start from the beginning
1497  * again.
1498  */
1499 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1500 {
1501         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1502
1503         /* Iterator usage is expected to have record disabled */
1504         if (list_empty(&cpu_buffer->reader_page->list)) {
1505                 iter->head_page = cpu_buffer->head_page;
1506                 iter->head = cpu_buffer->head_page->read;
1507         } else {
1508                 iter->head_page = cpu_buffer->reader_page;
1509                 iter->head = cpu_buffer->reader_page->read;
1510         }
1511         if (iter->head)
1512                 iter->read_stamp = cpu_buffer->read_stamp;
1513         else
1514                 iter->read_stamp = iter->head_page->time_stamp;
1515 }
1516
1517 /**
1518  * ring_buffer_iter_empty - check if an iterator has no more to read
1519  * @iter: The iterator to check
1520  */
1521 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1522 {
1523         struct ring_buffer_per_cpu *cpu_buffer;
1524
1525         cpu_buffer = iter->cpu_buffer;
1526
1527         return iter->head_page == cpu_buffer->commit_page &&
1528                 iter->head == rb_commit_index(cpu_buffer);
1529 }
1530
1531 static void
1532 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1533                      struct ring_buffer_event *event)
1534 {
1535         u64 delta;
1536
1537         switch (event->type) {
1538         case RINGBUF_TYPE_PADDING:
1539                 return;
1540
1541         case RINGBUF_TYPE_TIME_EXTEND:
1542                 delta = event->array[0];
1543                 delta <<= TS_SHIFT;
1544                 delta += event->time_delta;
1545                 cpu_buffer->read_stamp += delta;
1546                 return;
1547
1548         case RINGBUF_TYPE_TIME_STAMP:
1549                 /* FIXME: not implemented */
1550                 return;
1551
1552         case RINGBUF_TYPE_DATA:
1553                 cpu_buffer->read_stamp += event->time_delta;
1554                 return;
1555
1556         default:
1557                 BUG();
1558         }
1559         return;
1560 }
1561
1562 static void
1563 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1564                           struct ring_buffer_event *event)
1565 {
1566         u64 delta;
1567
1568         switch (event->type) {
1569         case RINGBUF_TYPE_PADDING:
1570                 return;
1571
1572         case RINGBUF_TYPE_TIME_EXTEND:
1573                 delta = event->array[0];
1574                 delta <<= TS_SHIFT;
1575                 delta += event->time_delta;
1576                 iter->read_stamp += delta;
1577                 return;
1578
1579         case RINGBUF_TYPE_TIME_STAMP:
1580                 /* FIXME: not implemented */
1581                 return;
1582
1583         case RINGBUF_TYPE_DATA:
1584                 iter->read_stamp += event->time_delta;
1585                 return;
1586
1587         default:
1588                 BUG();
1589         }
1590         return;
1591 }
1592
1593 static struct buffer_page *
1594 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1595 {
1596         struct buffer_page *reader = NULL;
1597         unsigned long flags;
1598         int nr_loops = 0;
1599
1600         spin_lock_irqsave(&cpu_buffer->lock, flags);
1601
1602  again:
1603         /*
1604          * This should normally only loop twice. But because the
1605          * start of the reader inserts an empty page, it causes
1606          * a case where we will loop three times. There should be no
1607          * reason to loop four times (that I know of).
1608          */
1609         if (unlikely(++nr_loops > 3)) {
1610                 RB_WARN_ON(cpu_buffer, 1);
1611                 reader = NULL;
1612                 goto out;
1613         }
1614
1615         reader = cpu_buffer->reader_page;
1616
1617         /* If there's more to read, return this page */
1618         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1619                 goto out;
1620
1621         /* Never should we have an index greater than the size */
1622         RB_WARN_ON(cpu_buffer,
1623                    cpu_buffer->reader_page->read > rb_page_size(reader));
1624
1625         /* check if we caught up to the tail */
1626         reader = NULL;
1627         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1628                 goto out;
1629
1630         /*
1631          * Splice the empty reader page into the list around the head.
1632          * Reset the reader page to size zero.
1633          */
1634
1635         reader = cpu_buffer->head_page;
1636         cpu_buffer->reader_page->list.next = reader->list.next;
1637         cpu_buffer->reader_page->list.prev = reader->list.prev;
1638
1639         local_set(&cpu_buffer->reader_page->write, 0);
1640         local_set(&cpu_buffer->reader_page->commit, 0);
1641
1642         /* Make the reader page now replace the head */
1643         reader->list.prev->next = &cpu_buffer->reader_page->list;
1644         reader->list.next->prev = &cpu_buffer->reader_page->list;
1645
1646         /*
1647          * If the tail is on the reader, then we must set the head
1648          * to the inserted page, otherwise we set it one before.
1649          */
1650         cpu_buffer->head_page = cpu_buffer->reader_page;
1651
1652         if (cpu_buffer->commit_page != reader)
1653                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1654
1655         /* Finally update the reader page to the new head */
1656         cpu_buffer->reader_page = reader;
1657         rb_reset_reader_page(cpu_buffer);
1658
1659         goto again;
1660
1661  out:
1662         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1663
1664         return reader;
1665 }
1666
1667 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1668 {
1669         struct ring_buffer_event *event;
1670         struct buffer_page *reader;
1671         unsigned length;
1672
1673         reader = rb_get_reader_page(cpu_buffer);
1674
1675         /* This function should not be called when buffer is empty */
1676         BUG_ON(!reader);
1677
1678         event = rb_reader_event(cpu_buffer);
1679
1680         if (event->type == RINGBUF_TYPE_DATA)
1681                 cpu_buffer->entries--;
1682
1683         rb_update_read_stamp(cpu_buffer, event);
1684
1685         length = rb_event_length(event);
1686         cpu_buffer->reader_page->read += length;
1687 }
1688
1689 static void rb_advance_iter(struct ring_buffer_iter *iter)
1690 {
1691         struct ring_buffer *buffer;
1692         struct ring_buffer_per_cpu *cpu_buffer;
1693         struct ring_buffer_event *event;
1694         unsigned length;
1695
1696         cpu_buffer = iter->cpu_buffer;
1697         buffer = cpu_buffer->buffer;
1698
1699         /*
1700          * Check if we are at the end of the buffer.
1701          */
1702         if (iter->head >= rb_page_size(iter->head_page)) {
1703                 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1704                 rb_inc_iter(iter);
1705                 return;
1706         }
1707
1708         event = rb_iter_head_event(iter);
1709
1710         length = rb_event_length(event);
1711
1712         /*
1713          * This should not be called to advance the header if we are
1714          * at the tail of the buffer.
1715          */
1716         BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1717                (iter->head + length > rb_commit_index(cpu_buffer)));
1718
1719         rb_update_iter_read_stamp(iter, event);
1720
1721         iter->head += length;
1722
1723         /* check for end of page padding */
1724         if ((iter->head >= rb_page_size(iter->head_page)) &&
1725             (iter->head_page != cpu_buffer->commit_page))
1726                 rb_advance_iter(iter);
1727 }
1728
1729 /**
1730  * ring_buffer_peek - peek at the next event to be read
1731  * @buffer: The ring buffer to read
1732  * @cpu: The cpu to peak at
1733  * @ts: The timestamp counter of this event.
1734  *
1735  * This will return the event that will be read next, but does
1736  * not consume the data.
1737  */
1738 struct ring_buffer_event *
1739 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1740 {
1741         struct ring_buffer_per_cpu *cpu_buffer;
1742         struct ring_buffer_event *event;
1743         struct buffer_page *reader;
1744         int nr_loops = 0;
1745
1746         if (!cpu_isset(cpu, buffer->cpumask))
1747                 return NULL;
1748
1749         cpu_buffer = buffer->buffers[cpu];
1750
1751  again:
1752         /*
1753          * We repeat when a timestamp is encountered. It is possible
1754          * to get multiple timestamps from an interrupt entering just
1755          * as one timestamp is about to be written. The max times
1756          * that this can happen is the number of nested interrupts we
1757          * can have.  Nesting 10 deep of interrupts is clearly
1758          * an anomaly.
1759          */
1760         if (unlikely(++nr_loops > 10)) {
1761                 RB_WARN_ON(cpu_buffer, 1);
1762                 return NULL;
1763         }
1764
1765         reader = rb_get_reader_page(cpu_buffer);
1766         if (!reader)
1767                 return NULL;
1768
1769         event = rb_reader_event(cpu_buffer);
1770
1771         switch (event->type) {
1772         case RINGBUF_TYPE_PADDING:
1773                 RB_WARN_ON(cpu_buffer, 1);
1774                 rb_advance_reader(cpu_buffer);
1775                 return NULL;
1776
1777         case RINGBUF_TYPE_TIME_EXTEND:
1778                 /* Internal data, OK to advance */
1779                 rb_advance_reader(cpu_buffer);
1780                 goto again;
1781
1782         case RINGBUF_TYPE_TIME_STAMP:
1783                 /* FIXME: not implemented */
1784                 rb_advance_reader(cpu_buffer);
1785                 goto again;
1786
1787         case RINGBUF_TYPE_DATA:
1788                 if (ts) {
1789                         *ts = cpu_buffer->read_stamp + event->time_delta;
1790                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1791                 }
1792                 return event;
1793
1794         default:
1795                 BUG();
1796         }
1797
1798         return NULL;
1799 }
1800
1801 /**
1802  * ring_buffer_iter_peek - peek at the next event to be read
1803  * @iter: The ring buffer iterator
1804  * @ts: The timestamp counter of this event.
1805  *
1806  * This will return the event that will be read next, but does
1807  * not increment the iterator.
1808  */
1809 struct ring_buffer_event *
1810 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1811 {
1812         struct ring_buffer *buffer;
1813         struct ring_buffer_per_cpu *cpu_buffer;
1814         struct ring_buffer_event *event;
1815         int nr_loops = 0;
1816
1817         if (ring_buffer_iter_empty(iter))
1818                 return NULL;
1819
1820         cpu_buffer = iter->cpu_buffer;
1821         buffer = cpu_buffer->buffer;
1822
1823  again:
1824         /*
1825          * We repeat when a timestamp is encountered. It is possible
1826          * to get multiple timestamps from an interrupt entering just
1827          * as one timestamp is about to be written. The max times
1828          * that this can happen is the number of nested interrupts we
1829          * can have. Nesting 10 deep of interrupts is clearly
1830          * an anomaly.
1831          */
1832         if (unlikely(++nr_loops > 10)) {
1833                 RB_WARN_ON(cpu_buffer, 1);
1834                 return NULL;
1835         }
1836
1837         if (rb_per_cpu_empty(cpu_buffer))
1838                 return NULL;
1839
1840         event = rb_iter_head_event(iter);
1841
1842         switch (event->type) {
1843         case RINGBUF_TYPE_PADDING:
1844                 rb_inc_iter(iter);
1845                 goto again;
1846
1847         case RINGBUF_TYPE_TIME_EXTEND:
1848                 /* Internal data, OK to advance */
1849                 rb_advance_iter(iter);
1850                 goto again;
1851
1852         case RINGBUF_TYPE_TIME_STAMP:
1853                 /* FIXME: not implemented */
1854                 rb_advance_iter(iter);
1855                 goto again;
1856
1857         case RINGBUF_TYPE_DATA:
1858                 if (ts) {
1859                         *ts = iter->read_stamp + event->time_delta;
1860                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1861                 }
1862                 return event;
1863
1864         default:
1865                 BUG();
1866         }
1867
1868         return NULL;
1869 }
1870
1871 /**
1872  * ring_buffer_consume - return an event and consume it
1873  * @buffer: The ring buffer to get the next event from
1874  *
1875  * Returns the next event in the ring buffer, and that event is consumed.
1876  * Meaning, that sequential reads will keep returning a different event,
1877  * and eventually empty the ring buffer if the producer is slower.
1878  */
1879 struct ring_buffer_event *
1880 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1881 {
1882         struct ring_buffer_per_cpu *cpu_buffer;
1883         struct ring_buffer_event *event;
1884
1885         if (!cpu_isset(cpu, buffer->cpumask))
1886                 return NULL;
1887
1888         event = ring_buffer_peek(buffer, cpu, ts);
1889         if (!event)
1890                 return NULL;
1891
1892         cpu_buffer = buffer->buffers[cpu];
1893         rb_advance_reader(cpu_buffer);
1894
1895         return event;
1896 }
1897
1898 /**
1899  * ring_buffer_read_start - start a non consuming read of the buffer
1900  * @buffer: The ring buffer to read from
1901  * @cpu: The cpu buffer to iterate over
1902  *
1903  * This starts up an iteration through the buffer. It also disables
1904  * the recording to the buffer until the reading is finished.
1905  * This prevents the reading from being corrupted. This is not
1906  * a consuming read, so a producer is not expected.
1907  *
1908  * Must be paired with ring_buffer_finish.
1909  */
1910 struct ring_buffer_iter *
1911 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1912 {
1913         struct ring_buffer_per_cpu *cpu_buffer;
1914         struct ring_buffer_iter *iter;
1915         unsigned long flags;
1916
1917         if (!cpu_isset(cpu, buffer->cpumask))
1918                 return NULL;
1919
1920         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1921         if (!iter)
1922                 return NULL;
1923
1924         cpu_buffer = buffer->buffers[cpu];
1925
1926         iter->cpu_buffer = cpu_buffer;
1927
1928         atomic_inc(&cpu_buffer->record_disabled);
1929         synchronize_sched();
1930
1931         spin_lock_irqsave(&cpu_buffer->lock, flags);
1932         ring_buffer_iter_reset(iter);
1933         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1934
1935         return iter;
1936 }
1937
1938 /**
1939  * ring_buffer_finish - finish reading the iterator of the buffer
1940  * @iter: The iterator retrieved by ring_buffer_start
1941  *
1942  * This re-enables the recording to the buffer, and frees the
1943  * iterator.
1944  */
1945 void
1946 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1947 {
1948         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1949
1950         atomic_dec(&cpu_buffer->record_disabled);
1951         kfree(iter);
1952 }
1953
1954 /**
1955  * ring_buffer_read - read the next item in the ring buffer by the iterator
1956  * @iter: The ring buffer iterator
1957  * @ts: The time stamp of the event read.
1958  *
1959  * This reads the next event in the ring buffer and increments the iterator.
1960  */
1961 struct ring_buffer_event *
1962 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1963 {
1964         struct ring_buffer_event *event;
1965
1966         event = ring_buffer_iter_peek(iter, ts);
1967         if (!event)
1968                 return NULL;
1969
1970         rb_advance_iter(iter);
1971
1972         return event;
1973 }
1974
1975 /**
1976  * ring_buffer_size - return the size of the ring buffer (in bytes)
1977  * @buffer: The ring buffer.
1978  */
1979 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1980 {
1981         return BUF_PAGE_SIZE * buffer->pages;
1982 }
1983
1984 static void
1985 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1986 {
1987         cpu_buffer->head_page
1988                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1989         local_set(&cpu_buffer->head_page->write, 0);
1990         local_set(&cpu_buffer->head_page->commit, 0);
1991
1992         cpu_buffer->head_page->read = 0;
1993
1994         cpu_buffer->tail_page = cpu_buffer->head_page;
1995         cpu_buffer->commit_page = cpu_buffer->head_page;
1996
1997         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1998         local_set(&cpu_buffer->reader_page->write, 0);
1999         local_set(&cpu_buffer->reader_page->commit, 0);
2000         cpu_buffer->reader_page->read = 0;
2001
2002         cpu_buffer->overrun = 0;
2003         cpu_buffer->entries = 0;
2004 }
2005
2006 /**
2007  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2008  * @buffer: The ring buffer to reset a per cpu buffer of
2009  * @cpu: The CPU buffer to be reset
2010  */
2011 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2012 {
2013         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2014         unsigned long flags;
2015
2016         if (!cpu_isset(cpu, buffer->cpumask))
2017                 return;
2018
2019         spin_lock_irqsave(&cpu_buffer->lock, flags);
2020
2021         rb_reset_cpu(cpu_buffer);
2022
2023         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
2024 }
2025
2026 /**
2027  * ring_buffer_reset - reset a ring buffer
2028  * @buffer: The ring buffer to reset all cpu buffers
2029  */
2030 void ring_buffer_reset(struct ring_buffer *buffer)
2031 {
2032         int cpu;
2033
2034         for_each_buffer_cpu(buffer, cpu)
2035                 ring_buffer_reset_cpu(buffer, cpu);
2036 }
2037
2038 /**
2039  * rind_buffer_empty - is the ring buffer empty?
2040  * @buffer: The ring buffer to test
2041  */
2042 int ring_buffer_empty(struct ring_buffer *buffer)
2043 {
2044         struct ring_buffer_per_cpu *cpu_buffer;
2045         int cpu;
2046
2047         /* yes this is racy, but if you don't like the race, lock the buffer */
2048         for_each_buffer_cpu(buffer, cpu) {
2049                 cpu_buffer = buffer->buffers[cpu];
2050                 if (!rb_per_cpu_empty(cpu_buffer))
2051                         return 0;
2052         }
2053         return 1;
2054 }
2055
2056 /**
2057  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2058  * @buffer: The ring buffer
2059  * @cpu: The CPU buffer to test
2060  */
2061 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2062 {
2063         struct ring_buffer_per_cpu *cpu_buffer;
2064
2065         if (!cpu_isset(cpu, buffer->cpumask))
2066                 return 1;
2067
2068         cpu_buffer = buffer->buffers[cpu];
2069         return rb_per_cpu_empty(cpu_buffer);
2070 }
2071
2072 /**
2073  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2074  * @buffer_a: One buffer to swap with
2075  * @buffer_b: The other buffer to swap with
2076  *
2077  * This function is useful for tracers that want to take a "snapshot"
2078  * of a CPU buffer and has another back up buffer lying around.
2079  * it is expected that the tracer handles the cpu buffer not being
2080  * used at the moment.
2081  */
2082 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2083                          struct ring_buffer *buffer_b, int cpu)
2084 {
2085         struct ring_buffer_per_cpu *cpu_buffer_a;
2086         struct ring_buffer_per_cpu *cpu_buffer_b;
2087
2088         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2089             !cpu_isset(cpu, buffer_b->cpumask))
2090                 return -EINVAL;
2091
2092         /* At least make sure the two buffers are somewhat the same */
2093         if (buffer_a->size != buffer_b->size ||
2094             buffer_a->pages != buffer_b->pages)
2095                 return -EINVAL;
2096
2097         cpu_buffer_a = buffer_a->buffers[cpu];
2098         cpu_buffer_b = buffer_b->buffers[cpu];
2099
2100         /*
2101          * We can't do a synchronize_sched here because this
2102          * function can be called in atomic context.
2103          * Normally this will be called from the same CPU as cpu.
2104          * If not it's up to the caller to protect this.
2105          */
2106         atomic_inc(&cpu_buffer_a->record_disabled);
2107         atomic_inc(&cpu_buffer_b->record_disabled);
2108
2109         buffer_a->buffers[cpu] = cpu_buffer_b;
2110         buffer_b->buffers[cpu] = cpu_buffer_a;
2111
2112         cpu_buffer_b->buffer = buffer_a;
2113         cpu_buffer_a->buffer = buffer_b;
2114
2115         atomic_dec(&cpu_buffer_a->record_disabled);
2116         atomic_dec(&cpu_buffer_b->record_disabled);
2117
2118         return 0;
2119 }
2120
2121 static ssize_t
2122 rb_simple_read(struct file *filp, char __user *ubuf,
2123                size_t cnt, loff_t *ppos)
2124 {
2125         int *p = filp->private_data;
2126         char buf[64];
2127         int r;
2128
2129         /* !ring_buffers_off == tracing_on */
2130         r = sprintf(buf, "%d\n", !*p);
2131
2132         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2133 }
2134
2135 static ssize_t
2136 rb_simple_write(struct file *filp, const char __user *ubuf,
2137                 size_t cnt, loff_t *ppos)
2138 {
2139         int *p = filp->private_data;
2140         char buf[64];
2141         long val;
2142         int ret;
2143
2144         if (cnt >= sizeof(buf))
2145                 return -EINVAL;
2146
2147         if (copy_from_user(&buf, ubuf, cnt))
2148                 return -EFAULT;
2149
2150         buf[cnt] = 0;
2151
2152         ret = strict_strtoul(buf, 10, &val);
2153         if (ret < 0)
2154                 return ret;
2155
2156         /* !ring_buffers_off == tracing_on */
2157         *p = !val;
2158
2159         (*ppos)++;
2160
2161         return cnt;
2162 }
2163
2164 static struct file_operations rb_simple_fops = {
2165         .open           = tracing_open_generic,
2166         .read           = rb_simple_read,
2167         .write          = rb_simple_write,
2168 };
2169
2170
2171 static __init int rb_init_debugfs(void)
2172 {
2173         struct dentry *d_tracer;
2174         struct dentry *entry;
2175
2176         d_tracer = tracing_init_dentry();
2177
2178         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2179                                     &ring_buffers_off, &rb_simple_fops);
2180         if (!entry)
2181                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2182
2183         return 0;
2184 }
2185
2186 fs_initcall(rb_init_debugfs);