ring-buffer: only allocate buffers for online cpus
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * A fast way to enable or disable all ring buffers is to
26  * call tracing_on or tracing_off. Turning off the ring buffers
27  * prevents all ring buffers from being recorded to.
28  * Turning this switch on, makes it OK to write to the
29  * ring buffer, if the ring buffer is enabled itself.
30  *
31  * There's three layers that must be on in order to write
32  * to the ring buffer.
33  *
34  * 1) This global flag must be set.
35  * 2) The ring buffer must be enabled for recording.
36  * 3) The per cpu buffer must be enabled for recording.
37  *
38  * In case of an anomaly, this global flag has a bit set that
39  * will permantly disable all ring buffers.
40  */
41
42 /*
43  * Global flag to disable all recording to ring buffers
44  *  This has two bits: ON, DISABLED
45  *
46  *  ON   DISABLED
47  * ---- ----------
48  *   0      0        : ring buffers are off
49  *   1      0        : ring buffers are on
50  *   X      1        : ring buffers are permanently disabled
51  */
52
53 enum {
54         RB_BUFFERS_ON_BIT       = 0,
55         RB_BUFFERS_DISABLED_BIT = 1,
56 };
57
58 enum {
59         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
60         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
61 };
62
63 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
64
65 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
66
67 /**
68  * tracing_on - enable all tracing buffers
69  *
70  * This function enables all tracing buffers that may have been
71  * disabled with tracing_off.
72  */
73 void tracing_on(void)
74 {
75         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
76 }
77 EXPORT_SYMBOL_GPL(tracing_on);
78
79 /**
80  * tracing_off - turn off all tracing buffers
81  *
82  * This function stops all tracing buffers from recording data.
83  * It does not disable any overhead the tracers themselves may
84  * be causing. This function simply causes all recording to
85  * the ring buffers to fail.
86  */
87 void tracing_off(void)
88 {
89         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
90 }
91 EXPORT_SYMBOL_GPL(tracing_off);
92
93 /**
94  * tracing_off_permanent - permanently disable ring buffers
95  *
96  * This function, once called, will disable all ring buffers
97  * permanently.
98  */
99 void tracing_off_permanent(void)
100 {
101         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
102 }
103
104 /**
105  * tracing_is_on - show state of ring buffers enabled
106  */
107 int tracing_is_on(void)
108 {
109         return ring_buffer_flags == RB_BUFFERS_ON;
110 }
111 EXPORT_SYMBOL_GPL(tracing_is_on);
112
113 #include "trace.h"
114
115 /* Up this if you want to test the TIME_EXTENTS and normalization */
116 #define DEBUG_SHIFT 0
117
118 u64 ring_buffer_time_stamp(int cpu)
119 {
120         u64 time;
121
122         preempt_disable_notrace();
123         /* shift to debug/test normalization and TIME_EXTENTS */
124         time = trace_clock_local() << DEBUG_SHIFT;
125         preempt_enable_no_resched_notrace();
126
127         return time;
128 }
129 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
130
131 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
132 {
133         /* Just stupid testing the normalize function and deltas */
134         *ts >>= DEBUG_SHIFT;
135 }
136 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
137
138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139 #define RB_ALIGNMENT            4U
140 #define RB_MAX_SMALL_DATA       28
141
142 enum {
143         RB_LEN_TIME_EXTEND = 8,
144         RB_LEN_TIME_STAMP = 16,
145 };
146
147 /* inline for ring buffer fast paths */
148 static unsigned
149 rb_event_length(struct ring_buffer_event *event)
150 {
151         unsigned length;
152
153         switch (event->type) {
154         case RINGBUF_TYPE_PADDING:
155                 /* undefined */
156                 return -1;
157
158         case RINGBUF_TYPE_TIME_EXTEND:
159                 return RB_LEN_TIME_EXTEND;
160
161         case RINGBUF_TYPE_TIME_STAMP:
162                 return RB_LEN_TIME_STAMP;
163
164         case RINGBUF_TYPE_DATA:
165                 if (event->len)
166                         length = event->len * RB_ALIGNMENT;
167                 else
168                         length = event->array[0];
169                 return length + RB_EVNT_HDR_SIZE;
170         default:
171                 BUG();
172         }
173         /* not hit */
174         return 0;
175 }
176
177 /**
178  * ring_buffer_event_length - return the length of the event
179  * @event: the event to get the length of
180  */
181 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
182 {
183         unsigned length = rb_event_length(event);
184         if (event->type != RINGBUF_TYPE_DATA)
185                 return length;
186         length -= RB_EVNT_HDR_SIZE;
187         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
188                 length -= sizeof(event->array[0]);
189         return length;
190 }
191 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
192
193 /* inline for ring buffer fast paths */
194 static void *
195 rb_event_data(struct ring_buffer_event *event)
196 {
197         BUG_ON(event->type != RINGBUF_TYPE_DATA);
198         /* If length is in len field, then array[0] has the data */
199         if (event->len)
200                 return (void *)&event->array[0];
201         /* Otherwise length is in array[0] and array[1] has the data */
202         return (void *)&event->array[1];
203 }
204
205 /**
206  * ring_buffer_event_data - return the data of the event
207  * @event: the event to get the data from
208  */
209 void *ring_buffer_event_data(struct ring_buffer_event *event)
210 {
211         return rb_event_data(event);
212 }
213 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
214
215 #define for_each_buffer_cpu(buffer, cpu)                \
216         for_each_cpu(cpu, buffer->cpumask)
217
218 #define TS_SHIFT        27
219 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
220 #define TS_DELTA_TEST   (~TS_MASK)
221
222 struct buffer_data_page {
223         u64              time_stamp;    /* page time stamp */
224         local_t          commit;        /* write committed index */
225         unsigned char    data[];        /* data of buffer page */
226 };
227
228 struct buffer_page {
229         local_t          write;         /* index for next write */
230         unsigned         read;          /* index for next read */
231         struct list_head list;          /* list of free pages */
232         struct buffer_data_page *page;  /* Actual data page */
233 };
234
235 static void rb_init_page(struct buffer_data_page *bpage)
236 {
237         local_set(&bpage->commit, 0);
238 }
239
240 /**
241  * ring_buffer_page_len - the size of data on the page.
242  * @page: The page to read
243  *
244  * Returns the amount of data on the page, including buffer page header.
245  */
246 size_t ring_buffer_page_len(void *page)
247 {
248         return local_read(&((struct buffer_data_page *)page)->commit)
249                 + BUF_PAGE_HDR_SIZE;
250 }
251
252 /*
253  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
254  * this issue out.
255  */
256 static void free_buffer_page(struct buffer_page *bpage)
257 {
258         free_page((unsigned long)bpage->page);
259         kfree(bpage);
260 }
261
262 /*
263  * We need to fit the time_stamp delta into 27 bits.
264  */
265 static inline int test_time_stamp(u64 delta)
266 {
267         if (delta & TS_DELTA_TEST)
268                 return 1;
269         return 0;
270 }
271
272 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
273
274 /*
275  * head_page == tail_page && head == tail then buffer is empty.
276  */
277 struct ring_buffer_per_cpu {
278         int                             cpu;
279         struct ring_buffer              *buffer;
280         spinlock_t                      reader_lock; /* serialize readers */
281         raw_spinlock_t                  lock;
282         struct lock_class_key           lock_key;
283         struct list_head                pages;
284         struct buffer_page              *head_page;     /* read from head */
285         struct buffer_page              *tail_page;     /* write to tail */
286         struct buffer_page              *commit_page;   /* committed pages */
287         struct buffer_page              *reader_page;
288         unsigned long                   overrun;
289         unsigned long                   entries;
290         u64                             write_stamp;
291         u64                             read_stamp;
292         atomic_t                        record_disabled;
293 };
294
295 struct ring_buffer {
296         unsigned                        pages;
297         unsigned                        flags;
298         int                             cpus;
299         atomic_t                        record_disabled;
300         cpumask_var_t                   cpumask;
301
302         struct mutex                    mutex;
303
304         struct ring_buffer_per_cpu      **buffers;
305
306 #ifdef CONFIG_HOTPLUG
307         struct notifier_block           cpu_notify;
308 #endif
309 };
310
311 struct ring_buffer_iter {
312         struct ring_buffer_per_cpu      *cpu_buffer;
313         unsigned long                   head;
314         struct buffer_page              *head_page;
315         u64                             read_stamp;
316 };
317
318 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
319 #define RB_WARN_ON(buffer, cond)                                \
320         ({                                                      \
321                 int _____ret = unlikely(cond);                  \
322                 if (_____ret) {                                 \
323                         atomic_inc(&buffer->record_disabled);   \
324                         WARN_ON(1);                             \
325                 }                                               \
326                 _____ret;                                       \
327         })
328
329 /**
330  * check_pages - integrity check of buffer pages
331  * @cpu_buffer: CPU buffer with pages to test
332  *
333  * As a safety measure we check to make sure the data pages have not
334  * been corrupted.
335  */
336 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
337 {
338         struct list_head *head = &cpu_buffer->pages;
339         struct buffer_page *bpage, *tmp;
340
341         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
342                 return -1;
343         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
344                 return -1;
345
346         list_for_each_entry_safe(bpage, tmp, head, list) {
347                 if (RB_WARN_ON(cpu_buffer,
348                                bpage->list.next->prev != &bpage->list))
349                         return -1;
350                 if (RB_WARN_ON(cpu_buffer,
351                                bpage->list.prev->next != &bpage->list))
352                         return -1;
353         }
354
355         return 0;
356 }
357
358 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
359                              unsigned nr_pages)
360 {
361         struct list_head *head = &cpu_buffer->pages;
362         struct buffer_page *bpage, *tmp;
363         unsigned long addr;
364         LIST_HEAD(pages);
365         unsigned i;
366
367         for (i = 0; i < nr_pages; i++) {
368                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
369                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
370                 if (!bpage)
371                         goto free_pages;
372                 list_add(&bpage->list, &pages);
373
374                 addr = __get_free_page(GFP_KERNEL);
375                 if (!addr)
376                         goto free_pages;
377                 bpage->page = (void *)addr;
378                 rb_init_page(bpage->page);
379         }
380
381         list_splice(&pages, head);
382
383         rb_check_pages(cpu_buffer);
384
385         return 0;
386
387  free_pages:
388         list_for_each_entry_safe(bpage, tmp, &pages, list) {
389                 list_del_init(&bpage->list);
390                 free_buffer_page(bpage);
391         }
392         return -ENOMEM;
393 }
394
395 static struct ring_buffer_per_cpu *
396 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
397 {
398         struct ring_buffer_per_cpu *cpu_buffer;
399         struct buffer_page *bpage;
400         unsigned long addr;
401         int ret;
402
403         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
404                                   GFP_KERNEL, cpu_to_node(cpu));
405         if (!cpu_buffer)
406                 return NULL;
407
408         cpu_buffer->cpu = cpu;
409         cpu_buffer->buffer = buffer;
410         spin_lock_init(&cpu_buffer->reader_lock);
411         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
412         INIT_LIST_HEAD(&cpu_buffer->pages);
413
414         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
415                             GFP_KERNEL, cpu_to_node(cpu));
416         if (!bpage)
417                 goto fail_free_buffer;
418
419         cpu_buffer->reader_page = bpage;
420         addr = __get_free_page(GFP_KERNEL);
421         if (!addr)
422                 goto fail_free_reader;
423         bpage->page = (void *)addr;
424         rb_init_page(bpage->page);
425
426         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
427
428         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
429         if (ret < 0)
430                 goto fail_free_reader;
431
432         cpu_buffer->head_page
433                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
434         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
435
436         return cpu_buffer;
437
438  fail_free_reader:
439         free_buffer_page(cpu_buffer->reader_page);
440
441  fail_free_buffer:
442         kfree(cpu_buffer);
443         return NULL;
444 }
445
446 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
447 {
448         struct list_head *head = &cpu_buffer->pages;
449         struct buffer_page *bpage, *tmp;
450
451         list_del_init(&cpu_buffer->reader_page->list);
452         free_buffer_page(cpu_buffer->reader_page);
453
454         list_for_each_entry_safe(bpage, tmp, head, list) {
455                 list_del_init(&bpage->list);
456                 free_buffer_page(bpage);
457         }
458         kfree(cpu_buffer);
459 }
460
461 /*
462  * Causes compile errors if the struct buffer_page gets bigger
463  * than the struct page.
464  */
465 extern int ring_buffer_page_too_big(void);
466
467 #ifdef CONFIG_HOTPLUG
468 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
469                                    unsigned long action, void *hcpu);
470 #endif
471
472 /**
473  * ring_buffer_alloc - allocate a new ring_buffer
474  * @size: the size in bytes per cpu that is needed.
475  * @flags: attributes to set for the ring buffer.
476  *
477  * Currently the only flag that is available is the RB_FL_OVERWRITE
478  * flag. This flag means that the buffer will overwrite old data
479  * when the buffer wraps. If this flag is not set, the buffer will
480  * drop data when the tail hits the head.
481  */
482 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
483 {
484         struct ring_buffer *buffer;
485         int bsize;
486         int cpu;
487
488         /* Paranoid! Optimizes out when all is well */
489         if (sizeof(struct buffer_page) > sizeof(struct page))
490                 ring_buffer_page_too_big();
491
492
493         /* keep it in its own cache line */
494         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
495                          GFP_KERNEL);
496         if (!buffer)
497                 return NULL;
498
499         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
500                 goto fail_free_buffer;
501
502         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
503         buffer->flags = flags;
504
505         /* need at least two pages */
506         if (buffer->pages == 1)
507                 buffer->pages++;
508
509         get_online_cpus();
510         cpumask_copy(buffer->cpumask, cpu_online_mask);
511         buffer->cpus = nr_cpu_ids;
512
513         bsize = sizeof(void *) * nr_cpu_ids;
514         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
515                                   GFP_KERNEL);
516         if (!buffer->buffers)
517                 goto fail_free_cpumask;
518
519         for_each_buffer_cpu(buffer, cpu) {
520                 buffer->buffers[cpu] =
521                         rb_allocate_cpu_buffer(buffer, cpu);
522                 if (!buffer->buffers[cpu])
523                         goto fail_free_buffers;
524         }
525
526 #ifdef CONFIG_HOTPLUG
527         buffer->cpu_notify.notifier_call = rb_cpu_notify;
528         buffer->cpu_notify.priority = 0;
529         register_cpu_notifier(&buffer->cpu_notify);
530 #endif
531
532         put_online_cpus();
533         mutex_init(&buffer->mutex);
534
535         return buffer;
536
537  fail_free_buffers:
538         for_each_buffer_cpu(buffer, cpu) {
539                 if (buffer->buffers[cpu])
540                         rb_free_cpu_buffer(buffer->buffers[cpu]);
541         }
542         kfree(buffer->buffers);
543
544  fail_free_cpumask:
545         free_cpumask_var(buffer->cpumask);
546         put_online_cpus();
547
548  fail_free_buffer:
549         kfree(buffer);
550         return NULL;
551 }
552 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
553
554 /**
555  * ring_buffer_free - free a ring buffer.
556  * @buffer: the buffer to free.
557  */
558 void
559 ring_buffer_free(struct ring_buffer *buffer)
560 {
561         int cpu;
562
563         get_online_cpus();
564
565 #ifdef CONFIG_HOTPLUG
566         unregister_cpu_notifier(&buffer->cpu_notify);
567 #endif
568
569         for_each_buffer_cpu(buffer, cpu)
570                 rb_free_cpu_buffer(buffer->buffers[cpu]);
571
572         put_online_cpus();
573
574         free_cpumask_var(buffer->cpumask);
575
576         kfree(buffer);
577 }
578 EXPORT_SYMBOL_GPL(ring_buffer_free);
579
580 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
581
582 static void
583 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
584 {
585         struct buffer_page *bpage;
586         struct list_head *p;
587         unsigned i;
588
589         atomic_inc(&cpu_buffer->record_disabled);
590         synchronize_sched();
591
592         for (i = 0; i < nr_pages; i++) {
593                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
594                         return;
595                 p = cpu_buffer->pages.next;
596                 bpage = list_entry(p, struct buffer_page, list);
597                 list_del_init(&bpage->list);
598                 free_buffer_page(bpage);
599         }
600         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
601                 return;
602
603         rb_reset_cpu(cpu_buffer);
604
605         rb_check_pages(cpu_buffer);
606
607         atomic_dec(&cpu_buffer->record_disabled);
608
609 }
610
611 static void
612 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
613                 struct list_head *pages, unsigned nr_pages)
614 {
615         struct buffer_page *bpage;
616         struct list_head *p;
617         unsigned i;
618
619         atomic_inc(&cpu_buffer->record_disabled);
620         synchronize_sched();
621
622         for (i = 0; i < nr_pages; i++) {
623                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
624                         return;
625                 p = pages->next;
626                 bpage = list_entry(p, struct buffer_page, list);
627                 list_del_init(&bpage->list);
628                 list_add_tail(&bpage->list, &cpu_buffer->pages);
629         }
630         rb_reset_cpu(cpu_buffer);
631
632         rb_check_pages(cpu_buffer);
633
634         atomic_dec(&cpu_buffer->record_disabled);
635 }
636
637 /**
638  * ring_buffer_resize - resize the ring buffer
639  * @buffer: the buffer to resize.
640  * @size: the new size.
641  *
642  * The tracer is responsible for making sure that the buffer is
643  * not being used while changing the size.
644  * Note: We may be able to change the above requirement by using
645  *  RCU synchronizations.
646  *
647  * Minimum size is 2 * BUF_PAGE_SIZE.
648  *
649  * Returns -1 on failure.
650  */
651 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
652 {
653         struct ring_buffer_per_cpu *cpu_buffer;
654         unsigned nr_pages, rm_pages, new_pages;
655         struct buffer_page *bpage, *tmp;
656         unsigned long buffer_size;
657         unsigned long addr;
658         LIST_HEAD(pages);
659         int i, cpu;
660
661         /*
662          * Always succeed at resizing a non-existent buffer:
663          */
664         if (!buffer)
665                 return size;
666
667         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
668         size *= BUF_PAGE_SIZE;
669         buffer_size = buffer->pages * BUF_PAGE_SIZE;
670
671         /* we need a minimum of two pages */
672         if (size < BUF_PAGE_SIZE * 2)
673                 size = BUF_PAGE_SIZE * 2;
674
675         if (size == buffer_size)
676                 return size;
677
678         mutex_lock(&buffer->mutex);
679         get_online_cpus();
680
681         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
682
683         if (size < buffer_size) {
684
685                 /* easy case, just free pages */
686                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
687                         goto out_fail;
688
689                 rm_pages = buffer->pages - nr_pages;
690
691                 for_each_buffer_cpu(buffer, cpu) {
692                         cpu_buffer = buffer->buffers[cpu];
693                         rb_remove_pages(cpu_buffer, rm_pages);
694                 }
695                 goto out;
696         }
697
698         /*
699          * This is a bit more difficult. We only want to add pages
700          * when we can allocate enough for all CPUs. We do this
701          * by allocating all the pages and storing them on a local
702          * link list. If we succeed in our allocation, then we
703          * add these pages to the cpu_buffers. Otherwise we just free
704          * them all and return -ENOMEM;
705          */
706         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
707                 goto out_fail;
708
709         new_pages = nr_pages - buffer->pages;
710
711         for_each_buffer_cpu(buffer, cpu) {
712                 for (i = 0; i < new_pages; i++) {
713                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
714                                                   cache_line_size()),
715                                             GFP_KERNEL, cpu_to_node(cpu));
716                         if (!bpage)
717                                 goto free_pages;
718                         list_add(&bpage->list, &pages);
719                         addr = __get_free_page(GFP_KERNEL);
720                         if (!addr)
721                                 goto free_pages;
722                         bpage->page = (void *)addr;
723                         rb_init_page(bpage->page);
724                 }
725         }
726
727         for_each_buffer_cpu(buffer, cpu) {
728                 cpu_buffer = buffer->buffers[cpu];
729                 rb_insert_pages(cpu_buffer, &pages, new_pages);
730         }
731
732         if (RB_WARN_ON(buffer, !list_empty(&pages)))
733                 goto out_fail;
734
735  out:
736         buffer->pages = nr_pages;
737         put_online_cpus();
738         mutex_unlock(&buffer->mutex);
739
740         return size;
741
742  free_pages:
743         list_for_each_entry_safe(bpage, tmp, &pages, list) {
744                 list_del_init(&bpage->list);
745                 free_buffer_page(bpage);
746         }
747         put_online_cpus();
748         mutex_unlock(&buffer->mutex);
749         return -ENOMEM;
750
751         /*
752          * Something went totally wrong, and we are too paranoid
753          * to even clean up the mess.
754          */
755  out_fail:
756         put_online_cpus();
757         mutex_unlock(&buffer->mutex);
758         return -1;
759 }
760 EXPORT_SYMBOL_GPL(ring_buffer_resize);
761
762 static inline int rb_null_event(struct ring_buffer_event *event)
763 {
764         return event->type == RINGBUF_TYPE_PADDING;
765 }
766
767 static inline void *
768 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
769 {
770         return bpage->data + index;
771 }
772
773 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
774 {
775         return bpage->page->data + index;
776 }
777
778 static inline struct ring_buffer_event *
779 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
780 {
781         return __rb_page_index(cpu_buffer->reader_page,
782                                cpu_buffer->reader_page->read);
783 }
784
785 static inline struct ring_buffer_event *
786 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
787 {
788         return __rb_page_index(cpu_buffer->head_page,
789                                cpu_buffer->head_page->read);
790 }
791
792 static inline struct ring_buffer_event *
793 rb_iter_head_event(struct ring_buffer_iter *iter)
794 {
795         return __rb_page_index(iter->head_page, iter->head);
796 }
797
798 static inline unsigned rb_page_write(struct buffer_page *bpage)
799 {
800         return local_read(&bpage->write);
801 }
802
803 static inline unsigned rb_page_commit(struct buffer_page *bpage)
804 {
805         return local_read(&bpage->page->commit);
806 }
807
808 /* Size is determined by what has been commited */
809 static inline unsigned rb_page_size(struct buffer_page *bpage)
810 {
811         return rb_page_commit(bpage);
812 }
813
814 static inline unsigned
815 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
816 {
817         return rb_page_commit(cpu_buffer->commit_page);
818 }
819
820 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
821 {
822         return rb_page_commit(cpu_buffer->head_page);
823 }
824
825 /*
826  * When the tail hits the head and the buffer is in overwrite mode,
827  * the head jumps to the next page and all content on the previous
828  * page is discarded. But before doing so, we update the overrun
829  * variable of the buffer.
830  */
831 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
832 {
833         struct ring_buffer_event *event;
834         unsigned long head;
835
836         for (head = 0; head < rb_head_size(cpu_buffer);
837              head += rb_event_length(event)) {
838
839                 event = __rb_page_index(cpu_buffer->head_page, head);
840                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
841                         return;
842                 /* Only count data entries */
843                 if (event->type != RINGBUF_TYPE_DATA)
844                         continue;
845                 cpu_buffer->overrun++;
846                 cpu_buffer->entries--;
847         }
848 }
849
850 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
851                                struct buffer_page **bpage)
852 {
853         struct list_head *p = (*bpage)->list.next;
854
855         if (p == &cpu_buffer->pages)
856                 p = p->next;
857
858         *bpage = list_entry(p, struct buffer_page, list);
859 }
860
861 static inline unsigned
862 rb_event_index(struct ring_buffer_event *event)
863 {
864         unsigned long addr = (unsigned long)event;
865
866         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
867 }
868
869 static int
870 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
871              struct ring_buffer_event *event)
872 {
873         unsigned long addr = (unsigned long)event;
874         unsigned long index;
875
876         index = rb_event_index(event);
877         addr &= PAGE_MASK;
878
879         return cpu_buffer->commit_page->page == (void *)addr &&
880                 rb_commit_index(cpu_buffer) == index;
881 }
882
883 static void
884 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
885                     struct ring_buffer_event *event)
886 {
887         unsigned long addr = (unsigned long)event;
888         unsigned long index;
889
890         index = rb_event_index(event);
891         addr &= PAGE_MASK;
892
893         while (cpu_buffer->commit_page->page != (void *)addr) {
894                 if (RB_WARN_ON(cpu_buffer,
895                           cpu_buffer->commit_page == cpu_buffer->tail_page))
896                         return;
897                 cpu_buffer->commit_page->page->commit =
898                         cpu_buffer->commit_page->write;
899                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
900                 cpu_buffer->write_stamp =
901                         cpu_buffer->commit_page->page->time_stamp;
902         }
903
904         /* Now set the commit to the event's index */
905         local_set(&cpu_buffer->commit_page->page->commit, index);
906 }
907
908 static void
909 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
910 {
911         /*
912          * We only race with interrupts and NMIs on this CPU.
913          * If we own the commit event, then we can commit
914          * all others that interrupted us, since the interruptions
915          * are in stack format (they finish before they come
916          * back to us). This allows us to do a simple loop to
917          * assign the commit to the tail.
918          */
919  again:
920         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
921                 cpu_buffer->commit_page->page->commit =
922                         cpu_buffer->commit_page->write;
923                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
924                 cpu_buffer->write_stamp =
925                         cpu_buffer->commit_page->page->time_stamp;
926                 /* add barrier to keep gcc from optimizing too much */
927                 barrier();
928         }
929         while (rb_commit_index(cpu_buffer) !=
930                rb_page_write(cpu_buffer->commit_page)) {
931                 cpu_buffer->commit_page->page->commit =
932                         cpu_buffer->commit_page->write;
933                 barrier();
934         }
935
936         /* again, keep gcc from optimizing */
937         barrier();
938
939         /*
940          * If an interrupt came in just after the first while loop
941          * and pushed the tail page forward, we will be left with
942          * a dangling commit that will never go forward.
943          */
944         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
945                 goto again;
946 }
947
948 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
949 {
950         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
951         cpu_buffer->reader_page->read = 0;
952 }
953
954 static void rb_inc_iter(struct ring_buffer_iter *iter)
955 {
956         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
957
958         /*
959          * The iterator could be on the reader page (it starts there).
960          * But the head could have moved, since the reader was
961          * found. Check for this case and assign the iterator
962          * to the head page instead of next.
963          */
964         if (iter->head_page == cpu_buffer->reader_page)
965                 iter->head_page = cpu_buffer->head_page;
966         else
967                 rb_inc_page(cpu_buffer, &iter->head_page);
968
969         iter->read_stamp = iter->head_page->page->time_stamp;
970         iter->head = 0;
971 }
972
973 /**
974  * ring_buffer_update_event - update event type and data
975  * @event: the even to update
976  * @type: the type of event
977  * @length: the size of the event field in the ring buffer
978  *
979  * Update the type and data fields of the event. The length
980  * is the actual size that is written to the ring buffer,
981  * and with this, we can determine what to place into the
982  * data field.
983  */
984 static void
985 rb_update_event(struct ring_buffer_event *event,
986                          unsigned type, unsigned length)
987 {
988         event->type = type;
989
990         switch (type) {
991
992         case RINGBUF_TYPE_PADDING:
993                 break;
994
995         case RINGBUF_TYPE_TIME_EXTEND:
996                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
997                 break;
998
999         case RINGBUF_TYPE_TIME_STAMP:
1000                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1001                 break;
1002
1003         case RINGBUF_TYPE_DATA:
1004                 length -= RB_EVNT_HDR_SIZE;
1005                 if (length > RB_MAX_SMALL_DATA) {
1006                         event->len = 0;
1007                         event->array[0] = length;
1008                 } else
1009                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1010                 break;
1011         default:
1012                 BUG();
1013         }
1014 }
1015
1016 static unsigned rb_calculate_event_length(unsigned length)
1017 {
1018         struct ring_buffer_event event; /* Used only for sizeof array */
1019
1020         /* zero length can cause confusions */
1021         if (!length)
1022                 length = 1;
1023
1024         if (length > RB_MAX_SMALL_DATA)
1025                 length += sizeof(event.array[0]);
1026
1027         length += RB_EVNT_HDR_SIZE;
1028         length = ALIGN(length, RB_ALIGNMENT);
1029
1030         return length;
1031 }
1032
1033 static struct ring_buffer_event *
1034 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1035                   unsigned type, unsigned long length, u64 *ts)
1036 {
1037         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1038         unsigned long tail, write;
1039         struct ring_buffer *buffer = cpu_buffer->buffer;
1040         struct ring_buffer_event *event;
1041         unsigned long flags;
1042         bool lock_taken = false;
1043
1044         commit_page = cpu_buffer->commit_page;
1045         /* we just need to protect against interrupts */
1046         barrier();
1047         tail_page = cpu_buffer->tail_page;
1048         write = local_add_return(length, &tail_page->write);
1049         tail = write - length;
1050
1051         /* See if we shot pass the end of this buffer page */
1052         if (write > BUF_PAGE_SIZE) {
1053                 struct buffer_page *next_page = tail_page;
1054
1055                 local_irq_save(flags);
1056                 /*
1057                  * Since the write to the buffer is still not
1058                  * fully lockless, we must be careful with NMIs.
1059                  * The locks in the writers are taken when a write
1060                  * crosses to a new page. The locks protect against
1061                  * races with the readers (this will soon be fixed
1062                  * with a lockless solution).
1063                  *
1064                  * Because we can not protect against NMIs, and we
1065                  * want to keep traces reentrant, we need to manage
1066                  * what happens when we are in an NMI.
1067                  *
1068                  * NMIs can happen after we take the lock.
1069                  * If we are in an NMI, only take the lock
1070                  * if it is not already taken. Otherwise
1071                  * simply fail.
1072                  */
1073                 if (unlikely(in_nmi())) {
1074                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1075                                 goto out_reset;
1076                 } else
1077                         __raw_spin_lock(&cpu_buffer->lock);
1078
1079                 lock_taken = true;
1080
1081                 rb_inc_page(cpu_buffer, &next_page);
1082
1083                 head_page = cpu_buffer->head_page;
1084                 reader_page = cpu_buffer->reader_page;
1085
1086                 /* we grabbed the lock before incrementing */
1087                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1088                         goto out_reset;
1089
1090                 /*
1091                  * If for some reason, we had an interrupt storm that made
1092                  * it all the way around the buffer, bail, and warn
1093                  * about it.
1094                  */
1095                 if (unlikely(next_page == commit_page)) {
1096                         WARN_ON_ONCE(1);
1097                         goto out_reset;
1098                 }
1099
1100                 if (next_page == head_page) {
1101                         if (!(buffer->flags & RB_FL_OVERWRITE))
1102                                 goto out_reset;
1103
1104                         /* tail_page has not moved yet? */
1105                         if (tail_page == cpu_buffer->tail_page) {
1106                                 /* count overflows */
1107                                 rb_update_overflow(cpu_buffer);
1108
1109                                 rb_inc_page(cpu_buffer, &head_page);
1110                                 cpu_buffer->head_page = head_page;
1111                                 cpu_buffer->head_page->read = 0;
1112                         }
1113                 }
1114
1115                 /*
1116                  * If the tail page is still the same as what we think
1117                  * it is, then it is up to us to update the tail
1118                  * pointer.
1119                  */
1120                 if (tail_page == cpu_buffer->tail_page) {
1121                         local_set(&next_page->write, 0);
1122                         local_set(&next_page->page->commit, 0);
1123                         cpu_buffer->tail_page = next_page;
1124
1125                         /* reread the time stamp */
1126                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1127                         cpu_buffer->tail_page->page->time_stamp = *ts;
1128                 }
1129
1130                 /*
1131                  * The actual tail page has moved forward.
1132                  */
1133                 if (tail < BUF_PAGE_SIZE) {
1134                         /* Mark the rest of the page with padding */
1135                         event = __rb_page_index(tail_page, tail);
1136                         event->type = RINGBUF_TYPE_PADDING;
1137                 }
1138
1139                 if (tail <= BUF_PAGE_SIZE)
1140                         /* Set the write back to the previous setting */
1141                         local_set(&tail_page->write, tail);
1142
1143                 /*
1144                  * If this was a commit entry that failed,
1145                  * increment that too
1146                  */
1147                 if (tail_page == cpu_buffer->commit_page &&
1148                     tail == rb_commit_index(cpu_buffer)) {
1149                         rb_set_commit_to_write(cpu_buffer);
1150                 }
1151
1152                 __raw_spin_unlock(&cpu_buffer->lock);
1153                 local_irq_restore(flags);
1154
1155                 /* fail and let the caller try again */
1156                 return ERR_PTR(-EAGAIN);
1157         }
1158
1159         /* We reserved something on the buffer */
1160
1161         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1162                 return NULL;
1163
1164         event = __rb_page_index(tail_page, tail);
1165         rb_update_event(event, type, length);
1166
1167         /*
1168          * If this is a commit and the tail is zero, then update
1169          * this page's time stamp.
1170          */
1171         if (!tail && rb_is_commit(cpu_buffer, event))
1172                 cpu_buffer->commit_page->page->time_stamp = *ts;
1173
1174         return event;
1175
1176  out_reset:
1177         /* reset write */
1178         if (tail <= BUF_PAGE_SIZE)
1179                 local_set(&tail_page->write, tail);
1180
1181         if (likely(lock_taken))
1182                 __raw_spin_unlock(&cpu_buffer->lock);
1183         local_irq_restore(flags);
1184         return NULL;
1185 }
1186
1187 static int
1188 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1189                   u64 *ts, u64 *delta)
1190 {
1191         struct ring_buffer_event *event;
1192         static int once;
1193         int ret;
1194
1195         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1196                 printk(KERN_WARNING "Delta way too big! %llu"
1197                        " ts=%llu write stamp = %llu\n",
1198                        (unsigned long long)*delta,
1199                        (unsigned long long)*ts,
1200                        (unsigned long long)cpu_buffer->write_stamp);
1201                 WARN_ON(1);
1202         }
1203
1204         /*
1205          * The delta is too big, we to add a
1206          * new timestamp.
1207          */
1208         event = __rb_reserve_next(cpu_buffer,
1209                                   RINGBUF_TYPE_TIME_EXTEND,
1210                                   RB_LEN_TIME_EXTEND,
1211                                   ts);
1212         if (!event)
1213                 return -EBUSY;
1214
1215         if (PTR_ERR(event) == -EAGAIN)
1216                 return -EAGAIN;
1217
1218         /* Only a commited time event can update the write stamp */
1219         if (rb_is_commit(cpu_buffer, event)) {
1220                 /*
1221                  * If this is the first on the page, then we need to
1222                  * update the page itself, and just put in a zero.
1223                  */
1224                 if (rb_event_index(event)) {
1225                         event->time_delta = *delta & TS_MASK;
1226                         event->array[0] = *delta >> TS_SHIFT;
1227                 } else {
1228                         cpu_buffer->commit_page->page->time_stamp = *ts;
1229                         event->time_delta = 0;
1230                         event->array[0] = 0;
1231                 }
1232                 cpu_buffer->write_stamp = *ts;
1233                 /* let the caller know this was the commit */
1234                 ret = 1;
1235         } else {
1236                 /* Darn, this is just wasted space */
1237                 event->time_delta = 0;
1238                 event->array[0] = 0;
1239                 ret = 0;
1240         }
1241
1242         *delta = 0;
1243
1244         return ret;
1245 }
1246
1247 static struct ring_buffer_event *
1248 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1249                       unsigned type, unsigned long length)
1250 {
1251         struct ring_buffer_event *event;
1252         u64 ts, delta;
1253         int commit = 0;
1254         int nr_loops = 0;
1255
1256  again:
1257         /*
1258          * We allow for interrupts to reenter here and do a trace.
1259          * If one does, it will cause this original code to loop
1260          * back here. Even with heavy interrupts happening, this
1261          * should only happen a few times in a row. If this happens
1262          * 1000 times in a row, there must be either an interrupt
1263          * storm or we have something buggy.
1264          * Bail!
1265          */
1266         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1267                 return NULL;
1268
1269         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1270
1271         /*
1272          * Only the first commit can update the timestamp.
1273          * Yes there is a race here. If an interrupt comes in
1274          * just after the conditional and it traces too, then it
1275          * will also check the deltas. More than one timestamp may
1276          * also be made. But only the entry that did the actual
1277          * commit will be something other than zero.
1278          */
1279         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1280             rb_page_write(cpu_buffer->tail_page) ==
1281             rb_commit_index(cpu_buffer)) {
1282
1283                 delta = ts - cpu_buffer->write_stamp;
1284
1285                 /* make sure this delta is calculated here */
1286                 barrier();
1287
1288                 /* Did the write stamp get updated already? */
1289                 if (unlikely(ts < cpu_buffer->write_stamp))
1290                         delta = 0;
1291
1292                 if (test_time_stamp(delta)) {
1293
1294                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1295
1296                         if (commit == -EBUSY)
1297                                 return NULL;
1298
1299                         if (commit == -EAGAIN)
1300                                 goto again;
1301
1302                         RB_WARN_ON(cpu_buffer, commit < 0);
1303                 }
1304         } else
1305                 /* Non commits have zero deltas */
1306                 delta = 0;
1307
1308         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1309         if (PTR_ERR(event) == -EAGAIN)
1310                 goto again;
1311
1312         if (!event) {
1313                 if (unlikely(commit))
1314                         /*
1315                          * Ouch! We needed a timestamp and it was commited. But
1316                          * we didn't get our event reserved.
1317                          */
1318                         rb_set_commit_to_write(cpu_buffer);
1319                 return NULL;
1320         }
1321
1322         /*
1323          * If the timestamp was commited, make the commit our entry
1324          * now so that we will update it when needed.
1325          */
1326         if (commit)
1327                 rb_set_commit_event(cpu_buffer, event);
1328         else if (!rb_is_commit(cpu_buffer, event))
1329                 delta = 0;
1330
1331         event->time_delta = delta;
1332
1333         return event;
1334 }
1335
1336 static DEFINE_PER_CPU(int, rb_need_resched);
1337
1338 /**
1339  * ring_buffer_lock_reserve - reserve a part of the buffer
1340  * @buffer: the ring buffer to reserve from
1341  * @length: the length of the data to reserve (excluding event header)
1342  *
1343  * Returns a reseverd event on the ring buffer to copy directly to.
1344  * The user of this interface will need to get the body to write into
1345  * and can use the ring_buffer_event_data() interface.
1346  *
1347  * The length is the length of the data needed, not the event length
1348  * which also includes the event header.
1349  *
1350  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1351  * If NULL is returned, then nothing has been allocated or locked.
1352  */
1353 struct ring_buffer_event *
1354 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1355 {
1356         struct ring_buffer_per_cpu *cpu_buffer;
1357         struct ring_buffer_event *event;
1358         int cpu, resched;
1359
1360         if (ring_buffer_flags != RB_BUFFERS_ON)
1361                 return NULL;
1362
1363         if (atomic_read(&buffer->record_disabled))
1364                 return NULL;
1365
1366         /* If we are tracing schedule, we don't want to recurse */
1367         resched = ftrace_preempt_disable();
1368
1369         cpu = raw_smp_processor_id();
1370
1371         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1372                 goto out;
1373
1374         cpu_buffer = buffer->buffers[cpu];
1375
1376         if (atomic_read(&cpu_buffer->record_disabled))
1377                 goto out;
1378
1379         length = rb_calculate_event_length(length);
1380         if (length > BUF_PAGE_SIZE)
1381                 goto out;
1382
1383         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1384         if (!event)
1385                 goto out;
1386
1387         /*
1388          * Need to store resched state on this cpu.
1389          * Only the first needs to.
1390          */
1391
1392         if (preempt_count() == 1)
1393                 per_cpu(rb_need_resched, cpu) = resched;
1394
1395         return event;
1396
1397  out:
1398         ftrace_preempt_enable(resched);
1399         return NULL;
1400 }
1401 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1402
1403 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1404                       struct ring_buffer_event *event)
1405 {
1406         cpu_buffer->entries++;
1407
1408         /* Only process further if we own the commit */
1409         if (!rb_is_commit(cpu_buffer, event))
1410                 return;
1411
1412         cpu_buffer->write_stamp += event->time_delta;
1413
1414         rb_set_commit_to_write(cpu_buffer);
1415 }
1416
1417 /**
1418  * ring_buffer_unlock_commit - commit a reserved
1419  * @buffer: The buffer to commit to
1420  * @event: The event pointer to commit.
1421  *
1422  * This commits the data to the ring buffer, and releases any locks held.
1423  *
1424  * Must be paired with ring_buffer_lock_reserve.
1425  */
1426 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1427                               struct ring_buffer_event *event)
1428 {
1429         struct ring_buffer_per_cpu *cpu_buffer;
1430         int cpu = raw_smp_processor_id();
1431
1432         cpu_buffer = buffer->buffers[cpu];
1433
1434         rb_commit(cpu_buffer, event);
1435
1436         /*
1437          * Only the last preempt count needs to restore preemption.
1438          */
1439         if (preempt_count() == 1)
1440                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1441         else
1442                 preempt_enable_no_resched_notrace();
1443
1444         return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1447
1448 /**
1449  * ring_buffer_write - write data to the buffer without reserving
1450  * @buffer: The ring buffer to write to.
1451  * @length: The length of the data being written (excluding the event header)
1452  * @data: The data to write to the buffer.
1453  *
1454  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1455  * one function. If you already have the data to write to the buffer, it
1456  * may be easier to simply call this function.
1457  *
1458  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1459  * and not the length of the event which would hold the header.
1460  */
1461 int ring_buffer_write(struct ring_buffer *buffer,
1462                         unsigned long length,
1463                         void *data)
1464 {
1465         struct ring_buffer_per_cpu *cpu_buffer;
1466         struct ring_buffer_event *event;
1467         unsigned long event_length;
1468         void *body;
1469         int ret = -EBUSY;
1470         int cpu, resched;
1471
1472         if (ring_buffer_flags != RB_BUFFERS_ON)
1473                 return -EBUSY;
1474
1475         if (atomic_read(&buffer->record_disabled))
1476                 return -EBUSY;
1477
1478         resched = ftrace_preempt_disable();
1479
1480         cpu = raw_smp_processor_id();
1481
1482         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1483                 goto out;
1484
1485         cpu_buffer = buffer->buffers[cpu];
1486
1487         if (atomic_read(&cpu_buffer->record_disabled))
1488                 goto out;
1489
1490         event_length = rb_calculate_event_length(length);
1491         event = rb_reserve_next_event(cpu_buffer,
1492                                       RINGBUF_TYPE_DATA, event_length);
1493         if (!event)
1494                 goto out;
1495
1496         body = rb_event_data(event);
1497
1498         memcpy(body, data, length);
1499
1500         rb_commit(cpu_buffer, event);
1501
1502         ret = 0;
1503  out:
1504         ftrace_preempt_enable(resched);
1505
1506         return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(ring_buffer_write);
1509
1510 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1511 {
1512         struct buffer_page *reader = cpu_buffer->reader_page;
1513         struct buffer_page *head = cpu_buffer->head_page;
1514         struct buffer_page *commit = cpu_buffer->commit_page;
1515
1516         return reader->read == rb_page_commit(reader) &&
1517                 (commit == reader ||
1518                  (commit == head &&
1519                   head->read == rb_page_commit(commit)));
1520 }
1521
1522 /**
1523  * ring_buffer_record_disable - stop all writes into the buffer
1524  * @buffer: The ring buffer to stop writes to.
1525  *
1526  * This prevents all writes to the buffer. Any attempt to write
1527  * to the buffer after this will fail and return NULL.
1528  *
1529  * The caller should call synchronize_sched() after this.
1530  */
1531 void ring_buffer_record_disable(struct ring_buffer *buffer)
1532 {
1533         atomic_inc(&buffer->record_disabled);
1534 }
1535 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1536
1537 /**
1538  * ring_buffer_record_enable - enable writes to the buffer
1539  * @buffer: The ring buffer to enable writes
1540  *
1541  * Note, multiple disables will need the same number of enables
1542  * to truely enable the writing (much like preempt_disable).
1543  */
1544 void ring_buffer_record_enable(struct ring_buffer *buffer)
1545 {
1546         atomic_dec(&buffer->record_disabled);
1547 }
1548 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1549
1550 /**
1551  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1552  * @buffer: The ring buffer to stop writes to.
1553  * @cpu: The CPU buffer to stop
1554  *
1555  * This prevents all writes to the buffer. Any attempt to write
1556  * to the buffer after this will fail and return NULL.
1557  *
1558  * The caller should call synchronize_sched() after this.
1559  */
1560 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1561 {
1562         struct ring_buffer_per_cpu *cpu_buffer;
1563
1564         get_online_cpus();
1565
1566         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1567                 goto out;
1568
1569         cpu_buffer = buffer->buffers[cpu];
1570         atomic_inc(&cpu_buffer->record_disabled);
1571  out:
1572         put_online_cpus();
1573 }
1574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1575
1576 /**
1577  * ring_buffer_record_enable_cpu - enable writes to the buffer
1578  * @buffer: The ring buffer to enable writes
1579  * @cpu: The CPU to enable.
1580  *
1581  * Note, multiple disables will need the same number of enables
1582  * to truely enable the writing (much like preempt_disable).
1583  */
1584 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1585 {
1586         struct ring_buffer_per_cpu *cpu_buffer;
1587
1588         get_online_cpus();
1589
1590         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1591                 goto out;
1592
1593         cpu_buffer = buffer->buffers[cpu];
1594         atomic_dec(&cpu_buffer->record_disabled);
1595  out:
1596         put_online_cpus();
1597 }
1598 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1599
1600 /**
1601  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1602  * @buffer: The ring buffer
1603  * @cpu: The per CPU buffer to get the entries from.
1604  */
1605 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1606 {
1607         struct ring_buffer_per_cpu *cpu_buffer;
1608         unsigned long ret = 0;
1609
1610         get_online_cpus();
1611
1612         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1613                 goto out;
1614
1615         cpu_buffer = buffer->buffers[cpu];
1616         ret = cpu_buffer->entries;
1617  out:
1618         put_online_cpus();
1619
1620         return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1623
1624 /**
1625  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1626  * @buffer: The ring buffer
1627  * @cpu: The per CPU buffer to get the number of overruns from
1628  */
1629 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1630 {
1631         struct ring_buffer_per_cpu *cpu_buffer;
1632         unsigned long ret = 0;
1633
1634         get_online_cpus();
1635
1636         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1637                 goto out;
1638
1639         cpu_buffer = buffer->buffers[cpu];
1640         ret = cpu_buffer->overrun;
1641  out:
1642         put_online_cpus();
1643
1644         return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1647
1648 /**
1649  * ring_buffer_entries - get the number of entries in a buffer
1650  * @buffer: The ring buffer
1651  *
1652  * Returns the total number of entries in the ring buffer
1653  * (all CPU entries)
1654  */
1655 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1656 {
1657         struct ring_buffer_per_cpu *cpu_buffer;
1658         unsigned long entries = 0;
1659         int cpu;
1660
1661         get_online_cpus();
1662
1663         /* if you care about this being correct, lock the buffer */
1664         for_each_buffer_cpu(buffer, cpu) {
1665                 cpu_buffer = buffer->buffers[cpu];
1666                 entries += cpu_buffer->entries;
1667         }
1668
1669         put_online_cpus();
1670
1671         return entries;
1672 }
1673 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1674
1675 /**
1676  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1677  * @buffer: The ring buffer
1678  *
1679  * Returns the total number of overruns in the ring buffer
1680  * (all CPU entries)
1681  */
1682 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1683 {
1684         struct ring_buffer_per_cpu *cpu_buffer;
1685         unsigned long overruns = 0;
1686         int cpu;
1687
1688         get_online_cpus();
1689
1690         /* if you care about this being correct, lock the buffer */
1691         for_each_buffer_cpu(buffer, cpu) {
1692                 cpu_buffer = buffer->buffers[cpu];
1693                 overruns += cpu_buffer->overrun;
1694         }
1695
1696         put_online_cpus();
1697
1698         return overruns;
1699 }
1700 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1701
1702 static void rb_iter_reset(struct ring_buffer_iter *iter)
1703 {
1704         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1705
1706         /* Iterator usage is expected to have record disabled */
1707         if (list_empty(&cpu_buffer->reader_page->list)) {
1708                 iter->head_page = cpu_buffer->head_page;
1709                 iter->head = cpu_buffer->head_page->read;
1710         } else {
1711                 iter->head_page = cpu_buffer->reader_page;
1712                 iter->head = cpu_buffer->reader_page->read;
1713         }
1714         if (iter->head)
1715                 iter->read_stamp = cpu_buffer->read_stamp;
1716         else
1717                 iter->read_stamp = iter->head_page->page->time_stamp;
1718 }
1719
1720 /**
1721  * ring_buffer_iter_reset - reset an iterator
1722  * @iter: The iterator to reset
1723  *
1724  * Resets the iterator, so that it will start from the beginning
1725  * again.
1726  */
1727 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1728 {
1729         struct ring_buffer_per_cpu *cpu_buffer;
1730         unsigned long flags;
1731
1732         if (!iter)
1733                 return;
1734
1735         cpu_buffer = iter->cpu_buffer;
1736
1737         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1738         rb_iter_reset(iter);
1739         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1740 }
1741 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1742
1743 /**
1744  * ring_buffer_iter_empty - check if an iterator has no more to read
1745  * @iter: The iterator to check
1746  */
1747 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1748 {
1749         struct ring_buffer_per_cpu *cpu_buffer;
1750
1751         cpu_buffer = iter->cpu_buffer;
1752
1753         return iter->head_page == cpu_buffer->commit_page &&
1754                 iter->head == rb_commit_index(cpu_buffer);
1755 }
1756 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1757
1758 static void
1759 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1760                      struct ring_buffer_event *event)
1761 {
1762         u64 delta;
1763
1764         switch (event->type) {
1765         case RINGBUF_TYPE_PADDING:
1766                 return;
1767
1768         case RINGBUF_TYPE_TIME_EXTEND:
1769                 delta = event->array[0];
1770                 delta <<= TS_SHIFT;
1771                 delta += event->time_delta;
1772                 cpu_buffer->read_stamp += delta;
1773                 return;
1774
1775         case RINGBUF_TYPE_TIME_STAMP:
1776                 /* FIXME: not implemented */
1777                 return;
1778
1779         case RINGBUF_TYPE_DATA:
1780                 cpu_buffer->read_stamp += event->time_delta;
1781                 return;
1782
1783         default:
1784                 BUG();
1785         }
1786         return;
1787 }
1788
1789 static void
1790 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1791                           struct ring_buffer_event *event)
1792 {
1793         u64 delta;
1794
1795         switch (event->type) {
1796         case RINGBUF_TYPE_PADDING:
1797                 return;
1798
1799         case RINGBUF_TYPE_TIME_EXTEND:
1800                 delta = event->array[0];
1801                 delta <<= TS_SHIFT;
1802                 delta += event->time_delta;
1803                 iter->read_stamp += delta;
1804                 return;
1805
1806         case RINGBUF_TYPE_TIME_STAMP:
1807                 /* FIXME: not implemented */
1808                 return;
1809
1810         case RINGBUF_TYPE_DATA:
1811                 iter->read_stamp += event->time_delta;
1812                 return;
1813
1814         default:
1815                 BUG();
1816         }
1817         return;
1818 }
1819
1820 static struct buffer_page *
1821 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1822 {
1823         struct buffer_page *reader = NULL;
1824         unsigned long flags;
1825         int nr_loops = 0;
1826
1827         local_irq_save(flags);
1828         __raw_spin_lock(&cpu_buffer->lock);
1829
1830  again:
1831         /*
1832          * This should normally only loop twice. But because the
1833          * start of the reader inserts an empty page, it causes
1834          * a case where we will loop three times. There should be no
1835          * reason to loop four times (that I know of).
1836          */
1837         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1838                 reader = NULL;
1839                 goto out;
1840         }
1841
1842         reader = cpu_buffer->reader_page;
1843
1844         /* If there's more to read, return this page */
1845         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1846                 goto out;
1847
1848         /* Never should we have an index greater than the size */
1849         if (RB_WARN_ON(cpu_buffer,
1850                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1851                 goto out;
1852
1853         /* check if we caught up to the tail */
1854         reader = NULL;
1855         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1856                 goto out;
1857
1858         /*
1859          * Splice the empty reader page into the list around the head.
1860          * Reset the reader page to size zero.
1861          */
1862
1863         reader = cpu_buffer->head_page;
1864         cpu_buffer->reader_page->list.next = reader->list.next;
1865         cpu_buffer->reader_page->list.prev = reader->list.prev;
1866
1867         local_set(&cpu_buffer->reader_page->write, 0);
1868         local_set(&cpu_buffer->reader_page->page->commit, 0);
1869
1870         /* Make the reader page now replace the head */
1871         reader->list.prev->next = &cpu_buffer->reader_page->list;
1872         reader->list.next->prev = &cpu_buffer->reader_page->list;
1873
1874         /*
1875          * If the tail is on the reader, then we must set the head
1876          * to the inserted page, otherwise we set it one before.
1877          */
1878         cpu_buffer->head_page = cpu_buffer->reader_page;
1879
1880         if (cpu_buffer->commit_page != reader)
1881                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1882
1883         /* Finally update the reader page to the new head */
1884         cpu_buffer->reader_page = reader;
1885         rb_reset_reader_page(cpu_buffer);
1886
1887         goto again;
1888
1889  out:
1890         __raw_spin_unlock(&cpu_buffer->lock);
1891         local_irq_restore(flags);
1892
1893         return reader;
1894 }
1895
1896 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1897 {
1898         struct ring_buffer_event *event;
1899         struct buffer_page *reader;
1900         unsigned length;
1901
1902         reader = rb_get_reader_page(cpu_buffer);
1903
1904         /* This function should not be called when buffer is empty */
1905         if (RB_WARN_ON(cpu_buffer, !reader))
1906                 return;
1907
1908         event = rb_reader_event(cpu_buffer);
1909
1910         if (event->type == RINGBUF_TYPE_DATA)
1911                 cpu_buffer->entries--;
1912
1913         rb_update_read_stamp(cpu_buffer, event);
1914
1915         length = rb_event_length(event);
1916         cpu_buffer->reader_page->read += length;
1917 }
1918
1919 static void rb_advance_iter(struct ring_buffer_iter *iter)
1920 {
1921         struct ring_buffer *buffer;
1922         struct ring_buffer_per_cpu *cpu_buffer;
1923         struct ring_buffer_event *event;
1924         unsigned length;
1925
1926         cpu_buffer = iter->cpu_buffer;
1927         buffer = cpu_buffer->buffer;
1928
1929         /*
1930          * Check if we are at the end of the buffer.
1931          */
1932         if (iter->head >= rb_page_size(iter->head_page)) {
1933                 if (RB_WARN_ON(buffer,
1934                                iter->head_page == cpu_buffer->commit_page))
1935                         return;
1936                 rb_inc_iter(iter);
1937                 return;
1938         }
1939
1940         event = rb_iter_head_event(iter);
1941
1942         length = rb_event_length(event);
1943
1944         /*
1945          * This should not be called to advance the header if we are
1946          * at the tail of the buffer.
1947          */
1948         if (RB_WARN_ON(cpu_buffer,
1949                        (iter->head_page == cpu_buffer->commit_page) &&
1950                        (iter->head + length > rb_commit_index(cpu_buffer))))
1951                 return;
1952
1953         rb_update_iter_read_stamp(iter, event);
1954
1955         iter->head += length;
1956
1957         /* check for end of page padding */
1958         if ((iter->head >= rb_page_size(iter->head_page)) &&
1959             (iter->head_page != cpu_buffer->commit_page))
1960                 rb_advance_iter(iter);
1961 }
1962
1963 static struct ring_buffer_event *
1964 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1965 {
1966         struct ring_buffer_per_cpu *cpu_buffer;
1967         struct ring_buffer_event *event;
1968         struct buffer_page *reader;
1969         int nr_loops = 0;
1970
1971         cpu_buffer = buffer->buffers[cpu];
1972
1973  again:
1974         /*
1975          * We repeat when a timestamp is encountered. It is possible
1976          * to get multiple timestamps from an interrupt entering just
1977          * as one timestamp is about to be written. The max times
1978          * that this can happen is the number of nested interrupts we
1979          * can have.  Nesting 10 deep of interrupts is clearly
1980          * an anomaly.
1981          */
1982         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1983                 return NULL;
1984
1985         reader = rb_get_reader_page(cpu_buffer);
1986         if (!reader)
1987                 return NULL;
1988
1989         event = rb_reader_event(cpu_buffer);
1990
1991         switch (event->type) {
1992         case RINGBUF_TYPE_PADDING:
1993                 RB_WARN_ON(cpu_buffer, 1);
1994                 rb_advance_reader(cpu_buffer);
1995                 return NULL;
1996
1997         case RINGBUF_TYPE_TIME_EXTEND:
1998                 /* Internal data, OK to advance */
1999                 rb_advance_reader(cpu_buffer);
2000                 goto again;
2001
2002         case RINGBUF_TYPE_TIME_STAMP:
2003                 /* FIXME: not implemented */
2004                 rb_advance_reader(cpu_buffer);
2005                 goto again;
2006
2007         case RINGBUF_TYPE_DATA:
2008                 if (ts) {
2009                         *ts = cpu_buffer->read_stamp + event->time_delta;
2010                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2011                 }
2012                 return event;
2013
2014         default:
2015                 BUG();
2016         }
2017
2018         return NULL;
2019 }
2020 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2021
2022 static struct ring_buffer_event *
2023 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2024 {
2025         struct ring_buffer *buffer;
2026         struct ring_buffer_per_cpu *cpu_buffer;
2027         struct ring_buffer_event *event;
2028         int nr_loops = 0;
2029
2030         if (ring_buffer_iter_empty(iter))
2031                 return NULL;
2032
2033         cpu_buffer = iter->cpu_buffer;
2034         buffer = cpu_buffer->buffer;
2035
2036  again:
2037         /*
2038          * We repeat when a timestamp is encountered. It is possible
2039          * to get multiple timestamps from an interrupt entering just
2040          * as one timestamp is about to be written. The max times
2041          * that this can happen is the number of nested interrupts we
2042          * can have. Nesting 10 deep of interrupts is clearly
2043          * an anomaly.
2044          */
2045         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2046                 return NULL;
2047
2048         if (rb_per_cpu_empty(cpu_buffer))
2049                 return NULL;
2050
2051         event = rb_iter_head_event(iter);
2052
2053         switch (event->type) {
2054         case RINGBUF_TYPE_PADDING:
2055                 rb_inc_iter(iter);
2056                 goto again;
2057
2058         case RINGBUF_TYPE_TIME_EXTEND:
2059                 /* Internal data, OK to advance */
2060                 rb_advance_iter(iter);
2061                 goto again;
2062
2063         case RINGBUF_TYPE_TIME_STAMP:
2064                 /* FIXME: not implemented */
2065                 rb_advance_iter(iter);
2066                 goto again;
2067
2068         case RINGBUF_TYPE_DATA:
2069                 if (ts) {
2070                         *ts = iter->read_stamp + event->time_delta;
2071                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2072                 }
2073                 return event;
2074
2075         default:
2076                 BUG();
2077         }
2078
2079         return NULL;
2080 }
2081 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2082
2083 /**
2084  * ring_buffer_peek - peek at the next event to be read
2085  * @buffer: The ring buffer to read
2086  * @cpu: The cpu to peak at
2087  * @ts: The timestamp counter of this event.
2088  *
2089  * This will return the event that will be read next, but does
2090  * not consume the data.
2091  */
2092 struct ring_buffer_event *
2093 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2094 {
2095         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2096         struct ring_buffer_event *event = NULL;
2097         unsigned long flags;
2098
2099         get_online_cpus();
2100
2101         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2102                 goto out;
2103
2104         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2105         event = rb_buffer_peek(buffer, cpu, ts);
2106         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2107
2108  out:
2109         put_online_cpus();
2110
2111         return event;
2112 }
2113
2114 /**
2115  * ring_buffer_iter_peek - peek at the next event to be read
2116  * @iter: The ring buffer iterator
2117  * @ts: The timestamp counter of this event.
2118  *
2119  * This will return the event that will be read next, but does
2120  * not increment the iterator.
2121  */
2122 struct ring_buffer_event *
2123 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2124 {
2125         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2126         struct ring_buffer_event *event;
2127         unsigned long flags;
2128
2129         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2130         event = rb_iter_peek(iter, ts);
2131         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2132
2133         return event;
2134 }
2135
2136 /**
2137  * ring_buffer_consume - return an event and consume it
2138  * @buffer: The ring buffer to get the next event from
2139  *
2140  * Returns the next event in the ring buffer, and that event is consumed.
2141  * Meaning, that sequential reads will keep returning a different event,
2142  * and eventually empty the ring buffer if the producer is slower.
2143  */
2144 struct ring_buffer_event *
2145 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2146 {
2147         struct ring_buffer_per_cpu *cpu_buffer;
2148         struct ring_buffer_event *event = NULL;
2149         unsigned long flags;
2150
2151         /* might be called in atomic */
2152         preempt_disable();
2153
2154         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2155                 goto out;
2156
2157         cpu_buffer = buffer->buffers[cpu];
2158         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2159
2160         event = rb_buffer_peek(buffer, cpu, ts);
2161         if (!event)
2162                 goto out_unlock;
2163
2164         rb_advance_reader(cpu_buffer);
2165
2166  out_unlock:
2167         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2168
2169  out:
2170         preempt_enable();
2171
2172         return event;
2173 }
2174 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2175
2176 /**
2177  * ring_buffer_read_start - start a non consuming read of the buffer
2178  * @buffer: The ring buffer to read from
2179  * @cpu: The cpu buffer to iterate over
2180  *
2181  * This starts up an iteration through the buffer. It also disables
2182  * the recording to the buffer until the reading is finished.
2183  * This prevents the reading from being corrupted. This is not
2184  * a consuming read, so a producer is not expected.
2185  *
2186  * Must be paired with ring_buffer_finish.
2187  */
2188 struct ring_buffer_iter *
2189 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2190 {
2191         struct ring_buffer_per_cpu *cpu_buffer;
2192         struct ring_buffer_iter *iter = NULL;
2193         unsigned long flags;
2194
2195         get_online_cpus();
2196
2197         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2198                 goto out;
2199
2200         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2201         if (!iter)
2202                 goto out;
2203
2204         cpu_buffer = buffer->buffers[cpu];
2205
2206         iter->cpu_buffer = cpu_buffer;
2207
2208         atomic_inc(&cpu_buffer->record_disabled);
2209         synchronize_sched();
2210
2211         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2212         __raw_spin_lock(&cpu_buffer->lock);
2213         rb_iter_reset(iter);
2214         __raw_spin_unlock(&cpu_buffer->lock);
2215         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2216
2217  out:
2218         put_online_cpus();
2219
2220         return iter;
2221 }
2222 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2223
2224 /**
2225  * ring_buffer_finish - finish reading the iterator of the buffer
2226  * @iter: The iterator retrieved by ring_buffer_start
2227  *
2228  * This re-enables the recording to the buffer, and frees the
2229  * iterator.
2230  */
2231 void
2232 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2233 {
2234         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2235
2236         atomic_dec(&cpu_buffer->record_disabled);
2237         kfree(iter);
2238 }
2239 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2240
2241 /**
2242  * ring_buffer_read - read the next item in the ring buffer by the iterator
2243  * @iter: The ring buffer iterator
2244  * @ts: The time stamp of the event read.
2245  *
2246  * This reads the next event in the ring buffer and increments the iterator.
2247  */
2248 struct ring_buffer_event *
2249 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2250 {
2251         struct ring_buffer_event *event;
2252         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2253         unsigned long flags;
2254
2255         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2256         event = rb_iter_peek(iter, ts);
2257         if (!event)
2258                 goto out;
2259
2260         rb_advance_iter(iter);
2261  out:
2262         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2263
2264         return event;
2265 }
2266 EXPORT_SYMBOL_GPL(ring_buffer_read);
2267
2268 /**
2269  * ring_buffer_size - return the size of the ring buffer (in bytes)
2270  * @buffer: The ring buffer.
2271  */
2272 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2273 {
2274         return BUF_PAGE_SIZE * buffer->pages;
2275 }
2276 EXPORT_SYMBOL_GPL(ring_buffer_size);
2277
2278 static void
2279 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2280 {
2281         cpu_buffer->head_page
2282                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2283         local_set(&cpu_buffer->head_page->write, 0);
2284         local_set(&cpu_buffer->head_page->page->commit, 0);
2285
2286         cpu_buffer->head_page->read = 0;
2287
2288         cpu_buffer->tail_page = cpu_buffer->head_page;
2289         cpu_buffer->commit_page = cpu_buffer->head_page;
2290
2291         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2292         local_set(&cpu_buffer->reader_page->write, 0);
2293         local_set(&cpu_buffer->reader_page->page->commit, 0);
2294         cpu_buffer->reader_page->read = 0;
2295
2296         cpu_buffer->overrun = 0;
2297         cpu_buffer->entries = 0;
2298
2299         cpu_buffer->write_stamp = 0;
2300         cpu_buffer->read_stamp = 0;
2301 }
2302
2303 /**
2304  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2305  * @buffer: The ring buffer to reset a per cpu buffer of
2306  * @cpu: The CPU buffer to be reset
2307  */
2308 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2309 {
2310         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2311         unsigned long flags;
2312         int resched;
2313
2314         /* Can't use get_online_cpus because this can be in atomic */
2315         resched = ftrace_preempt_disable();
2316
2317         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2318                 goto out;
2319
2320         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2321
2322         __raw_spin_lock(&cpu_buffer->lock);
2323
2324         rb_reset_cpu(cpu_buffer);
2325
2326         __raw_spin_unlock(&cpu_buffer->lock);
2327
2328         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2329  out:
2330         ftrace_preempt_enable(resched);
2331 }
2332 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2333
2334 /**
2335  * ring_buffer_reset - reset a ring buffer
2336  * @buffer: The ring buffer to reset all cpu buffers
2337  */
2338 void ring_buffer_reset(struct ring_buffer *buffer)
2339 {
2340         int resched;
2341         int cpu;
2342
2343         /* Can't use get_online_cpus because this can be in atomic */
2344         resched = ftrace_preempt_disable();
2345
2346         for_each_buffer_cpu(buffer, cpu)
2347                 ring_buffer_reset_cpu(buffer, cpu);
2348
2349         ftrace_preempt_enable(resched);
2350 }
2351 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2352
2353 /**
2354  * rind_buffer_empty - is the ring buffer empty?
2355  * @buffer: The ring buffer to test
2356  */
2357 int ring_buffer_empty(struct ring_buffer *buffer)
2358 {
2359         struct ring_buffer_per_cpu *cpu_buffer;
2360         int cpu;
2361
2362         get_online_cpus();
2363
2364         /* yes this is racy, but if you don't like the race, lock the buffer */
2365         for_each_buffer_cpu(buffer, cpu) {
2366                 cpu_buffer = buffer->buffers[cpu];
2367                 if (!rb_per_cpu_empty(cpu_buffer))
2368                         return 0;
2369         }
2370
2371         put_online_cpus();
2372
2373         return 1;
2374 }
2375 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2376
2377 /**
2378  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2379  * @buffer: The ring buffer
2380  * @cpu: The CPU buffer to test
2381  */
2382 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2383 {
2384         struct ring_buffer_per_cpu *cpu_buffer;
2385         int ret = 1;
2386
2387         get_online_cpus();
2388
2389         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2390                 goto out;
2391
2392         cpu_buffer = buffer->buffers[cpu];
2393         ret = rb_per_cpu_empty(cpu_buffer);
2394
2395  out:
2396         put_online_cpus();
2397
2398         return ret;
2399 }
2400 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2401
2402 /**
2403  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2404  * @buffer_a: One buffer to swap with
2405  * @buffer_b: The other buffer to swap with
2406  *
2407  * This function is useful for tracers that want to take a "snapshot"
2408  * of a CPU buffer and has another back up buffer lying around.
2409  * it is expected that the tracer handles the cpu buffer not being
2410  * used at the moment.
2411  */
2412 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2413                          struct ring_buffer *buffer_b, int cpu)
2414 {
2415         struct ring_buffer_per_cpu *cpu_buffer_a;
2416         struct ring_buffer_per_cpu *cpu_buffer_b;
2417         int ret = -EINVAL;
2418
2419         get_online_cpus();
2420
2421         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2422             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2423                 goto out;
2424
2425         /* At least make sure the two buffers are somewhat the same */
2426         if (buffer_a->pages != buffer_b->pages)
2427                 goto out;
2428
2429         ret = -EAGAIN;
2430
2431         if (ring_buffer_flags != RB_BUFFERS_ON)
2432                 goto out;
2433
2434         if (atomic_read(&buffer_a->record_disabled))
2435                 goto out;
2436
2437         if (atomic_read(&buffer_b->record_disabled))
2438                 goto out;
2439
2440         cpu_buffer_a = buffer_a->buffers[cpu];
2441         cpu_buffer_b = buffer_b->buffers[cpu];
2442
2443         if (atomic_read(&cpu_buffer_a->record_disabled))
2444                 goto out;
2445
2446         if (atomic_read(&cpu_buffer_b->record_disabled))
2447                 goto out;
2448
2449         /*
2450          * We can't do a synchronize_sched here because this
2451          * function can be called in atomic context.
2452          * Normally this will be called from the same CPU as cpu.
2453          * If not it's up to the caller to protect this.
2454          */
2455         atomic_inc(&cpu_buffer_a->record_disabled);
2456         atomic_inc(&cpu_buffer_b->record_disabled);
2457
2458         buffer_a->buffers[cpu] = cpu_buffer_b;
2459         buffer_b->buffers[cpu] = cpu_buffer_a;
2460
2461         cpu_buffer_b->buffer = buffer_a;
2462         cpu_buffer_a->buffer = buffer_b;
2463
2464         atomic_dec(&cpu_buffer_a->record_disabled);
2465         atomic_dec(&cpu_buffer_b->record_disabled);
2466
2467         ret = 0;
2468 out:
2469         put_online_cpus();
2470
2471         return ret;
2472 }
2473 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2474
2475 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2476                               struct buffer_data_page *bpage,
2477                               unsigned int offset)
2478 {
2479         struct ring_buffer_event *event;
2480         unsigned long head;
2481
2482         __raw_spin_lock(&cpu_buffer->lock);
2483         for (head = offset; head < local_read(&bpage->commit);
2484              head += rb_event_length(event)) {
2485
2486                 event = __rb_data_page_index(bpage, head);
2487                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2488                         return;
2489                 /* Only count data entries */
2490                 if (event->type != RINGBUF_TYPE_DATA)
2491                         continue;
2492                 cpu_buffer->entries--;
2493         }
2494         __raw_spin_unlock(&cpu_buffer->lock);
2495 }
2496
2497 /**
2498  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2499  * @buffer: the buffer to allocate for.
2500  *
2501  * This function is used in conjunction with ring_buffer_read_page.
2502  * When reading a full page from the ring buffer, these functions
2503  * can be used to speed up the process. The calling function should
2504  * allocate a few pages first with this function. Then when it
2505  * needs to get pages from the ring buffer, it passes the result
2506  * of this function into ring_buffer_read_page, which will swap
2507  * the page that was allocated, with the read page of the buffer.
2508  *
2509  * Returns:
2510  *  The page allocated, or NULL on error.
2511  */
2512 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2513 {
2514         struct buffer_data_page *bpage;
2515         unsigned long addr;
2516
2517         addr = __get_free_page(GFP_KERNEL);
2518         if (!addr)
2519                 return NULL;
2520
2521         bpage = (void *)addr;
2522
2523         rb_init_page(bpage);
2524
2525         return bpage;
2526 }
2527
2528 /**
2529  * ring_buffer_free_read_page - free an allocated read page
2530  * @buffer: the buffer the page was allocate for
2531  * @data: the page to free
2532  *
2533  * Free a page allocated from ring_buffer_alloc_read_page.
2534  */
2535 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2536 {
2537         free_page((unsigned long)data);
2538 }
2539
2540 /**
2541  * ring_buffer_read_page - extract a page from the ring buffer
2542  * @buffer: buffer to extract from
2543  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2544  * @len: amount to extract
2545  * @cpu: the cpu of the buffer to extract
2546  * @full: should the extraction only happen when the page is full.
2547  *
2548  * This function will pull out a page from the ring buffer and consume it.
2549  * @data_page must be the address of the variable that was returned
2550  * from ring_buffer_alloc_read_page. This is because the page might be used
2551  * to swap with a page in the ring buffer.
2552  *
2553  * for example:
2554  *      rpage = ring_buffer_alloc_read_page(buffer);
2555  *      if (!rpage)
2556  *              return error;
2557  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2558  *      if (ret >= 0)
2559  *              process_page(rpage, ret);
2560  *
2561  * When @full is set, the function will not return true unless
2562  * the writer is off the reader page.
2563  *
2564  * Note: it is up to the calling functions to handle sleeps and wakeups.
2565  *  The ring buffer can be used anywhere in the kernel and can not
2566  *  blindly call wake_up. The layer that uses the ring buffer must be
2567  *  responsible for that.
2568  *
2569  * Returns:
2570  *  >=0 if data has been transferred, returns the offset of consumed data.
2571  *  <0 if no data has been transferred.
2572  */
2573 int ring_buffer_read_page(struct ring_buffer *buffer,
2574                           void **data_page, size_t len, int cpu, int full)
2575 {
2576         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2577         struct ring_buffer_event *event;
2578         struct buffer_data_page *bpage;
2579         struct buffer_page *reader;
2580         unsigned long flags;
2581         unsigned int commit;
2582         unsigned int read;
2583         u64 save_timestamp;
2584         int ret = -1;
2585
2586         get_online_cpus();
2587
2588         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2589                 goto out;
2590
2591         /*
2592          * If len is not big enough to hold the page header, then
2593          * we can not copy anything.
2594          */
2595         if (len <= BUF_PAGE_HDR_SIZE)
2596                 goto out;
2597
2598         len -= BUF_PAGE_HDR_SIZE;
2599
2600         if (!data_page)
2601                 goto out;
2602
2603         bpage = *data_page;
2604         if (!bpage)
2605                 goto out;
2606
2607         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2608
2609         reader = rb_get_reader_page(cpu_buffer);
2610         if (!reader)
2611                 goto out_unlock;
2612
2613         event = rb_reader_event(cpu_buffer);
2614
2615         read = reader->read;
2616         commit = rb_page_commit(reader);
2617
2618         /*
2619          * If this page has been partially read or
2620          * if len is not big enough to read the rest of the page or
2621          * a writer is still on the page, then
2622          * we must copy the data from the page to the buffer.
2623          * Otherwise, we can simply swap the page with the one passed in.
2624          */
2625         if (read || (len < (commit - read)) ||
2626             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2627                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2628                 unsigned int rpos = read;
2629                 unsigned int pos = 0;
2630                 unsigned int size;
2631
2632                 if (full)
2633                         goto out_unlock;
2634
2635                 if (len > (commit - read))
2636                         len = (commit - read);
2637
2638                 size = rb_event_length(event);
2639
2640                 if (len < size)
2641                         goto out_unlock;
2642
2643                 /* save the current timestamp, since the user will need it */
2644                 save_timestamp = cpu_buffer->read_stamp;
2645
2646                 /* Need to copy one event at a time */
2647                 do {
2648                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2649
2650                         len -= size;
2651
2652                         rb_advance_reader(cpu_buffer);
2653                         rpos = reader->read;
2654                         pos += size;
2655
2656                         event = rb_reader_event(cpu_buffer);
2657                         size = rb_event_length(event);
2658                 } while (len > size);
2659
2660                 /* update bpage */
2661                 local_set(&bpage->commit, pos);
2662                 bpage->time_stamp = save_timestamp;
2663
2664                 /* we copied everything to the beginning */
2665                 read = 0;
2666         } else {
2667                 /* swap the pages */
2668                 rb_init_page(bpage);
2669                 bpage = reader->page;
2670                 reader->page = *data_page;
2671                 local_set(&reader->write, 0);
2672                 reader->read = 0;
2673                 *data_page = bpage;
2674
2675                 /* update the entry counter */
2676                 rb_remove_entries(cpu_buffer, bpage, read);
2677         }
2678         ret = read;
2679
2680  out_unlock:
2681         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2682
2683  out:
2684         put_online_cpus();
2685
2686         return ret;
2687 }
2688
2689 static ssize_t
2690 rb_simple_read(struct file *filp, char __user *ubuf,
2691                size_t cnt, loff_t *ppos)
2692 {
2693         unsigned long *p = filp->private_data;
2694         char buf[64];
2695         int r;
2696
2697         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2698                 r = sprintf(buf, "permanently disabled\n");
2699         else
2700                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2701
2702         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2703 }
2704
2705 static ssize_t
2706 rb_simple_write(struct file *filp, const char __user *ubuf,
2707                 size_t cnt, loff_t *ppos)
2708 {
2709         unsigned long *p = filp->private_data;
2710         char buf[64];
2711         unsigned long val;
2712         int ret;
2713
2714         if (cnt >= sizeof(buf))
2715                 return -EINVAL;
2716
2717         if (copy_from_user(&buf, ubuf, cnt))
2718                 return -EFAULT;
2719
2720         buf[cnt] = 0;
2721
2722         ret = strict_strtoul(buf, 10, &val);
2723         if (ret < 0)
2724                 return ret;
2725
2726         if (val)
2727                 set_bit(RB_BUFFERS_ON_BIT, p);
2728         else
2729                 clear_bit(RB_BUFFERS_ON_BIT, p);
2730
2731         (*ppos)++;
2732
2733         return cnt;
2734 }
2735
2736 static const struct file_operations rb_simple_fops = {
2737         .open           = tracing_open_generic,
2738         .read           = rb_simple_read,
2739         .write          = rb_simple_write,
2740 };
2741
2742
2743 static __init int rb_init_debugfs(void)
2744 {
2745         struct dentry *d_tracer;
2746         struct dentry *entry;
2747
2748         d_tracer = tracing_init_dentry();
2749
2750         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2751                                     &ring_buffer_flags, &rb_simple_fops);
2752         if (!entry)
2753                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2754
2755         return 0;
2756 }
2757
2758 fs_initcall(rb_init_debugfs);
2759
2760 #ifdef CONFIG_HOTPLUG
2761 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2762                                    unsigned long action, void *hcpu)
2763 {
2764         struct ring_buffer *buffer =
2765                 container_of(self, struct ring_buffer, cpu_notify);
2766         long cpu = (long)hcpu;
2767
2768         switch (action) {
2769         case CPU_UP_PREPARE:
2770         case CPU_UP_PREPARE_FROZEN:
2771                 if (cpu_isset(cpu, *buffer->cpumask))
2772                         return NOTIFY_OK;
2773
2774                 buffer->buffers[cpu] =
2775                         rb_allocate_cpu_buffer(buffer, cpu);
2776                 if (!buffer->buffers[cpu]) {
2777                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2778                              cpu);
2779                         return NOTIFY_OK;
2780                 }
2781                 smp_wmb();
2782                 cpu_set(cpu, *buffer->cpumask);
2783                 break;
2784         case CPU_DOWN_PREPARE:
2785         case CPU_DOWN_PREPARE_FROZEN:
2786                 /*
2787                  * Do nothing.
2788                  *  If we were to free the buffer, then the user would
2789                  *  lose any trace that was in the buffer.
2790                  */
2791                 break;
2792         default:
2793                 break;
2794         }
2795         return NOTIFY_OK;
2796 }
2797 #endif