ring-buffer: make ring_buffer_read_page read from start on partial page
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/fs.h>
20
21 #include "trace.h"
22
23 /*
24  * A fast way to enable or disable all ring buffers is to
25  * call tracing_on or tracing_off. Turning off the ring buffers
26  * prevents all ring buffers from being recorded to.
27  * Turning this switch on, makes it OK to write to the
28  * ring buffer, if the ring buffer is enabled itself.
29  *
30  * There's three layers that must be on in order to write
31  * to the ring buffer.
32  *
33  * 1) This global flag must be set.
34  * 2) The ring buffer must be enabled for recording.
35  * 3) The per cpu buffer must be enabled for recording.
36  *
37  * In case of an anomaly, this global flag has a bit set that
38  * will permantly disable all ring buffers.
39  */
40
41 /*
42  * Global flag to disable all recording to ring buffers
43  *  This has two bits: ON, DISABLED
44  *
45  *  ON   DISABLED
46  * ---- ----------
47  *   0      0        : ring buffers are off
48  *   1      0        : ring buffers are on
49  *   X      1        : ring buffers are permanently disabled
50  */
51
52 enum {
53         RB_BUFFERS_ON_BIT       = 0,
54         RB_BUFFERS_DISABLED_BIT = 1,
55 };
56
57 enum {
58         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
59         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
60 };
61
62 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
63
64 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
65
66 /**
67  * tracing_on - enable all tracing buffers
68  *
69  * This function enables all tracing buffers that may have been
70  * disabled with tracing_off.
71  */
72 void tracing_on(void)
73 {
74         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
75 }
76 EXPORT_SYMBOL_GPL(tracing_on);
77
78 /**
79  * tracing_off - turn off all tracing buffers
80  *
81  * This function stops all tracing buffers from recording data.
82  * It does not disable any overhead the tracers themselves may
83  * be causing. This function simply causes all recording to
84  * the ring buffers to fail.
85  */
86 void tracing_off(void)
87 {
88         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
89 }
90 EXPORT_SYMBOL_GPL(tracing_off);
91
92 /**
93  * tracing_off_permanent - permanently disable ring buffers
94  *
95  * This function, once called, will disable all ring buffers
96  * permanently.
97  */
98 void tracing_off_permanent(void)
99 {
100         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
101 }
102
103 /**
104  * tracing_is_on - show state of ring buffers enabled
105  */
106 int tracing_is_on(void)
107 {
108         return ring_buffer_flags == RB_BUFFERS_ON;
109 }
110 EXPORT_SYMBOL_GPL(tracing_is_on);
111
112 #include "trace.h"
113
114 /* Up this if you want to test the TIME_EXTENTS and normalization */
115 #define DEBUG_SHIFT 0
116
117 u64 ring_buffer_time_stamp(int cpu)
118 {
119         u64 time;
120
121         preempt_disable_notrace();
122         /* shift to debug/test normalization and TIME_EXTENTS */
123         time = trace_clock_local() << DEBUG_SHIFT;
124         preempt_enable_no_resched_notrace();
125
126         return time;
127 }
128 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
129
130 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
131 {
132         /* Just stupid testing the normalize function and deltas */
133         *ts >>= DEBUG_SHIFT;
134 }
135 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       28
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 /* inline for ring buffer fast paths */
147 static unsigned
148 rb_event_length(struct ring_buffer_event *event)
149 {
150         unsigned length;
151
152         switch (event->type) {
153         case RINGBUF_TYPE_PADDING:
154                 /* undefined */
155                 return -1;
156
157         case RINGBUF_TYPE_TIME_EXTEND:
158                 return RB_LEN_TIME_EXTEND;
159
160         case RINGBUF_TYPE_TIME_STAMP:
161                 return RB_LEN_TIME_STAMP;
162
163         case RINGBUF_TYPE_DATA:
164                 if (event->len)
165                         length = event->len * RB_ALIGNMENT;
166                 else
167                         length = event->array[0];
168                 return length + RB_EVNT_HDR_SIZE;
169         default:
170                 BUG();
171         }
172         /* not hit */
173         return 0;
174 }
175
176 /**
177  * ring_buffer_event_length - return the length of the event
178  * @event: the event to get the length of
179  */
180 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
181 {
182         unsigned length = rb_event_length(event);
183         if (event->type != RINGBUF_TYPE_DATA)
184                 return length;
185         length -= RB_EVNT_HDR_SIZE;
186         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
187                 length -= sizeof(event->array[0]);
188         return length;
189 }
190 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
191
192 /* inline for ring buffer fast paths */
193 static void *
194 rb_event_data(struct ring_buffer_event *event)
195 {
196         BUG_ON(event->type != RINGBUF_TYPE_DATA);
197         /* If length is in len field, then array[0] has the data */
198         if (event->len)
199                 return (void *)&event->array[0];
200         /* Otherwise length is in array[0] and array[1] has the data */
201         return (void *)&event->array[1];
202 }
203
204 /**
205  * ring_buffer_event_data - return the data of the event
206  * @event: the event to get the data from
207  */
208 void *ring_buffer_event_data(struct ring_buffer_event *event)
209 {
210         return rb_event_data(event);
211 }
212 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
213
214 #define for_each_buffer_cpu(buffer, cpu)                \
215         for_each_cpu(cpu, buffer->cpumask)
216
217 #define TS_SHIFT        27
218 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
219 #define TS_DELTA_TEST   (~TS_MASK)
220
221 struct buffer_data_page {
222         u64              time_stamp;    /* page time stamp */
223         local_t          commit;        /* write committed index */
224         unsigned char    data[];        /* data of buffer page */
225 };
226
227 struct buffer_page {
228         local_t          write;         /* index for next write */
229         unsigned         read;          /* index for next read */
230         struct list_head list;          /* list of free pages */
231         struct buffer_data_page *page;  /* Actual data page */
232 };
233
234 static void rb_init_page(struct buffer_data_page *bpage)
235 {
236         local_set(&bpage->commit, 0);
237 }
238
239 /**
240  * ring_buffer_page_len - the size of data on the page.
241  * @page: The page to read
242  *
243  * Returns the amount of data on the page, including buffer page header.
244  */
245 size_t ring_buffer_page_len(void *page)
246 {
247         return local_read(&((struct buffer_data_page *)page)->commit)
248                 + BUF_PAGE_HDR_SIZE;
249 }
250
251 /*
252  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
253  * this issue out.
254  */
255 static void free_buffer_page(struct buffer_page *bpage)
256 {
257         free_page((unsigned long)bpage->page);
258         kfree(bpage);
259 }
260
261 /*
262  * We need to fit the time_stamp delta into 27 bits.
263  */
264 static inline int test_time_stamp(u64 delta)
265 {
266         if (delta & TS_DELTA_TEST)
267                 return 1;
268         return 0;
269 }
270
271 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
272
273 /*
274  * head_page == tail_page && head == tail then buffer is empty.
275  */
276 struct ring_buffer_per_cpu {
277         int                             cpu;
278         struct ring_buffer              *buffer;
279         spinlock_t                      reader_lock; /* serialize readers */
280         raw_spinlock_t                  lock;
281         struct lock_class_key           lock_key;
282         struct list_head                pages;
283         struct buffer_page              *head_page;     /* read from head */
284         struct buffer_page              *tail_page;     /* write to tail */
285         struct buffer_page              *commit_page;   /* committed pages */
286         struct buffer_page              *reader_page;
287         unsigned long                   overrun;
288         unsigned long                   entries;
289         u64                             write_stamp;
290         u64                             read_stamp;
291         atomic_t                        record_disabled;
292 };
293
294 struct ring_buffer {
295         unsigned                        pages;
296         unsigned                        flags;
297         int                             cpus;
298         atomic_t                        record_disabled;
299         cpumask_var_t                   cpumask;
300
301         struct mutex                    mutex;
302
303         struct ring_buffer_per_cpu      **buffers;
304 };
305
306 struct ring_buffer_iter {
307         struct ring_buffer_per_cpu      *cpu_buffer;
308         unsigned long                   head;
309         struct buffer_page              *head_page;
310         u64                             read_stamp;
311 };
312
313 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
314 #define RB_WARN_ON(buffer, cond)                                \
315         ({                                                      \
316                 int _____ret = unlikely(cond);                  \
317                 if (_____ret) {                                 \
318                         atomic_inc(&buffer->record_disabled);   \
319                         WARN_ON(1);                             \
320                 }                                               \
321                 _____ret;                                       \
322         })
323
324 /**
325  * check_pages - integrity check of buffer pages
326  * @cpu_buffer: CPU buffer with pages to test
327  *
328  * As a safety measure we check to make sure the data pages have not
329  * been corrupted.
330  */
331 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
332 {
333         struct list_head *head = &cpu_buffer->pages;
334         struct buffer_page *bpage, *tmp;
335
336         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
337                 return -1;
338         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
339                 return -1;
340
341         list_for_each_entry_safe(bpage, tmp, head, list) {
342                 if (RB_WARN_ON(cpu_buffer,
343                                bpage->list.next->prev != &bpage->list))
344                         return -1;
345                 if (RB_WARN_ON(cpu_buffer,
346                                bpage->list.prev->next != &bpage->list))
347                         return -1;
348         }
349
350         return 0;
351 }
352
353 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
354                              unsigned nr_pages)
355 {
356         struct list_head *head = &cpu_buffer->pages;
357         struct buffer_page *bpage, *tmp;
358         unsigned long addr;
359         LIST_HEAD(pages);
360         unsigned i;
361
362         for (i = 0; i < nr_pages; i++) {
363                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
364                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
365                 if (!bpage)
366                         goto free_pages;
367                 list_add(&bpage->list, &pages);
368
369                 addr = __get_free_page(GFP_KERNEL);
370                 if (!addr)
371                         goto free_pages;
372                 bpage->page = (void *)addr;
373                 rb_init_page(bpage->page);
374         }
375
376         list_splice(&pages, head);
377
378         rb_check_pages(cpu_buffer);
379
380         return 0;
381
382  free_pages:
383         list_for_each_entry_safe(bpage, tmp, &pages, list) {
384                 list_del_init(&bpage->list);
385                 free_buffer_page(bpage);
386         }
387         return -ENOMEM;
388 }
389
390 static struct ring_buffer_per_cpu *
391 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
392 {
393         struct ring_buffer_per_cpu *cpu_buffer;
394         struct buffer_page *bpage;
395         unsigned long addr;
396         int ret;
397
398         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
399                                   GFP_KERNEL, cpu_to_node(cpu));
400         if (!cpu_buffer)
401                 return NULL;
402
403         cpu_buffer->cpu = cpu;
404         cpu_buffer->buffer = buffer;
405         spin_lock_init(&cpu_buffer->reader_lock);
406         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
407         INIT_LIST_HEAD(&cpu_buffer->pages);
408
409         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
410                             GFP_KERNEL, cpu_to_node(cpu));
411         if (!bpage)
412                 goto fail_free_buffer;
413
414         cpu_buffer->reader_page = bpage;
415         addr = __get_free_page(GFP_KERNEL);
416         if (!addr)
417                 goto fail_free_reader;
418         bpage->page = (void *)addr;
419         rb_init_page(bpage->page);
420
421         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
422
423         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
424         if (ret < 0)
425                 goto fail_free_reader;
426
427         cpu_buffer->head_page
428                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
429         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
430
431         return cpu_buffer;
432
433  fail_free_reader:
434         free_buffer_page(cpu_buffer->reader_page);
435
436  fail_free_buffer:
437         kfree(cpu_buffer);
438         return NULL;
439 }
440
441 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
442 {
443         struct list_head *head = &cpu_buffer->pages;
444         struct buffer_page *bpage, *tmp;
445
446         list_del_init(&cpu_buffer->reader_page->list);
447         free_buffer_page(cpu_buffer->reader_page);
448
449         list_for_each_entry_safe(bpage, tmp, head, list) {
450                 list_del_init(&bpage->list);
451                 free_buffer_page(bpage);
452         }
453         kfree(cpu_buffer);
454 }
455
456 /*
457  * Causes compile errors if the struct buffer_page gets bigger
458  * than the struct page.
459  */
460 extern int ring_buffer_page_too_big(void);
461
462 /**
463  * ring_buffer_alloc - allocate a new ring_buffer
464  * @size: the size in bytes per cpu that is needed.
465  * @flags: attributes to set for the ring buffer.
466  *
467  * Currently the only flag that is available is the RB_FL_OVERWRITE
468  * flag. This flag means that the buffer will overwrite old data
469  * when the buffer wraps. If this flag is not set, the buffer will
470  * drop data when the tail hits the head.
471  */
472 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
473 {
474         struct ring_buffer *buffer;
475         int bsize;
476         int cpu;
477
478         /* Paranoid! Optimizes out when all is well */
479         if (sizeof(struct buffer_page) > sizeof(struct page))
480                 ring_buffer_page_too_big();
481
482
483         /* keep it in its own cache line */
484         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
485                          GFP_KERNEL);
486         if (!buffer)
487                 return NULL;
488
489         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
490                 goto fail_free_buffer;
491
492         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
493         buffer->flags = flags;
494
495         /* need at least two pages */
496         if (buffer->pages == 1)
497                 buffer->pages++;
498
499         cpumask_copy(buffer->cpumask, cpu_possible_mask);
500         buffer->cpus = nr_cpu_ids;
501
502         bsize = sizeof(void *) * nr_cpu_ids;
503         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
504                                   GFP_KERNEL);
505         if (!buffer->buffers)
506                 goto fail_free_cpumask;
507
508         for_each_buffer_cpu(buffer, cpu) {
509                 buffer->buffers[cpu] =
510                         rb_allocate_cpu_buffer(buffer, cpu);
511                 if (!buffer->buffers[cpu])
512                         goto fail_free_buffers;
513         }
514
515         mutex_init(&buffer->mutex);
516
517         return buffer;
518
519  fail_free_buffers:
520         for_each_buffer_cpu(buffer, cpu) {
521                 if (buffer->buffers[cpu])
522                         rb_free_cpu_buffer(buffer->buffers[cpu]);
523         }
524         kfree(buffer->buffers);
525
526  fail_free_cpumask:
527         free_cpumask_var(buffer->cpumask);
528
529  fail_free_buffer:
530         kfree(buffer);
531         return NULL;
532 }
533 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
534
535 /**
536  * ring_buffer_free - free a ring buffer.
537  * @buffer: the buffer to free.
538  */
539 void
540 ring_buffer_free(struct ring_buffer *buffer)
541 {
542         int cpu;
543
544         for_each_buffer_cpu(buffer, cpu)
545                 rb_free_cpu_buffer(buffer->buffers[cpu]);
546
547         free_cpumask_var(buffer->cpumask);
548
549         kfree(buffer);
550 }
551 EXPORT_SYMBOL_GPL(ring_buffer_free);
552
553 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
554
555 static void
556 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
557 {
558         struct buffer_page *bpage;
559         struct list_head *p;
560         unsigned i;
561
562         atomic_inc(&cpu_buffer->record_disabled);
563         synchronize_sched();
564
565         for (i = 0; i < nr_pages; i++) {
566                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
567                         return;
568                 p = cpu_buffer->pages.next;
569                 bpage = list_entry(p, struct buffer_page, list);
570                 list_del_init(&bpage->list);
571                 free_buffer_page(bpage);
572         }
573         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
574                 return;
575
576         rb_reset_cpu(cpu_buffer);
577
578         rb_check_pages(cpu_buffer);
579
580         atomic_dec(&cpu_buffer->record_disabled);
581
582 }
583
584 static void
585 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
586                 struct list_head *pages, unsigned nr_pages)
587 {
588         struct buffer_page *bpage;
589         struct list_head *p;
590         unsigned i;
591
592         atomic_inc(&cpu_buffer->record_disabled);
593         synchronize_sched();
594
595         for (i = 0; i < nr_pages; i++) {
596                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
597                         return;
598                 p = pages->next;
599                 bpage = list_entry(p, struct buffer_page, list);
600                 list_del_init(&bpage->list);
601                 list_add_tail(&bpage->list, &cpu_buffer->pages);
602         }
603         rb_reset_cpu(cpu_buffer);
604
605         rb_check_pages(cpu_buffer);
606
607         atomic_dec(&cpu_buffer->record_disabled);
608 }
609
610 /**
611  * ring_buffer_resize - resize the ring buffer
612  * @buffer: the buffer to resize.
613  * @size: the new size.
614  *
615  * The tracer is responsible for making sure that the buffer is
616  * not being used while changing the size.
617  * Note: We may be able to change the above requirement by using
618  *  RCU synchronizations.
619  *
620  * Minimum size is 2 * BUF_PAGE_SIZE.
621  *
622  * Returns -1 on failure.
623  */
624 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
625 {
626         struct ring_buffer_per_cpu *cpu_buffer;
627         unsigned nr_pages, rm_pages, new_pages;
628         struct buffer_page *bpage, *tmp;
629         unsigned long buffer_size;
630         unsigned long addr;
631         LIST_HEAD(pages);
632         int i, cpu;
633
634         /*
635          * Always succeed at resizing a non-existent buffer:
636          */
637         if (!buffer)
638                 return size;
639
640         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
641         size *= BUF_PAGE_SIZE;
642         buffer_size = buffer->pages * BUF_PAGE_SIZE;
643
644         /* we need a minimum of two pages */
645         if (size < BUF_PAGE_SIZE * 2)
646                 size = BUF_PAGE_SIZE * 2;
647
648         if (size == buffer_size)
649                 return size;
650
651         mutex_lock(&buffer->mutex);
652
653         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
654
655         if (size < buffer_size) {
656
657                 /* easy case, just free pages */
658                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
659                         mutex_unlock(&buffer->mutex);
660                         return -1;
661                 }
662
663                 rm_pages = buffer->pages - nr_pages;
664
665                 for_each_buffer_cpu(buffer, cpu) {
666                         cpu_buffer = buffer->buffers[cpu];
667                         rb_remove_pages(cpu_buffer, rm_pages);
668                 }
669                 goto out;
670         }
671
672         /*
673          * This is a bit more difficult. We only want to add pages
674          * when we can allocate enough for all CPUs. We do this
675          * by allocating all the pages and storing them on a local
676          * link list. If we succeed in our allocation, then we
677          * add these pages to the cpu_buffers. Otherwise we just free
678          * them all and return -ENOMEM;
679          */
680         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
681                 mutex_unlock(&buffer->mutex);
682                 return -1;
683         }
684
685         new_pages = nr_pages - buffer->pages;
686
687         for_each_buffer_cpu(buffer, cpu) {
688                 for (i = 0; i < new_pages; i++) {
689                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
690                                                   cache_line_size()),
691                                             GFP_KERNEL, cpu_to_node(cpu));
692                         if (!bpage)
693                                 goto free_pages;
694                         list_add(&bpage->list, &pages);
695                         addr = __get_free_page(GFP_KERNEL);
696                         if (!addr)
697                                 goto free_pages;
698                         bpage->page = (void *)addr;
699                         rb_init_page(bpage->page);
700                 }
701         }
702
703         for_each_buffer_cpu(buffer, cpu) {
704                 cpu_buffer = buffer->buffers[cpu];
705                 rb_insert_pages(cpu_buffer, &pages, new_pages);
706         }
707
708         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
709                 mutex_unlock(&buffer->mutex);
710                 return -1;
711         }
712
713  out:
714         buffer->pages = nr_pages;
715         mutex_unlock(&buffer->mutex);
716
717         return size;
718
719  free_pages:
720         list_for_each_entry_safe(bpage, tmp, &pages, list) {
721                 list_del_init(&bpage->list);
722                 free_buffer_page(bpage);
723         }
724         mutex_unlock(&buffer->mutex);
725         return -ENOMEM;
726 }
727 EXPORT_SYMBOL_GPL(ring_buffer_resize);
728
729 static inline int rb_null_event(struct ring_buffer_event *event)
730 {
731         return event->type == RINGBUF_TYPE_PADDING;
732 }
733
734 static inline void *
735 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
736 {
737         return bpage->data + index;
738 }
739
740 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
741 {
742         return bpage->page->data + index;
743 }
744
745 static inline struct ring_buffer_event *
746 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
747 {
748         return __rb_page_index(cpu_buffer->reader_page,
749                                cpu_buffer->reader_page->read);
750 }
751
752 static inline struct ring_buffer_event *
753 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
754 {
755         return __rb_page_index(cpu_buffer->head_page,
756                                cpu_buffer->head_page->read);
757 }
758
759 static inline struct ring_buffer_event *
760 rb_iter_head_event(struct ring_buffer_iter *iter)
761 {
762         return __rb_page_index(iter->head_page, iter->head);
763 }
764
765 static inline unsigned rb_page_write(struct buffer_page *bpage)
766 {
767         return local_read(&bpage->write);
768 }
769
770 static inline unsigned rb_page_commit(struct buffer_page *bpage)
771 {
772         return local_read(&bpage->page->commit);
773 }
774
775 /* Size is determined by what has been commited */
776 static inline unsigned rb_page_size(struct buffer_page *bpage)
777 {
778         return rb_page_commit(bpage);
779 }
780
781 static inline unsigned
782 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
783 {
784         return rb_page_commit(cpu_buffer->commit_page);
785 }
786
787 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
788 {
789         return rb_page_commit(cpu_buffer->head_page);
790 }
791
792 /*
793  * When the tail hits the head and the buffer is in overwrite mode,
794  * the head jumps to the next page and all content on the previous
795  * page is discarded. But before doing so, we update the overrun
796  * variable of the buffer.
797  */
798 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
799 {
800         struct ring_buffer_event *event;
801         unsigned long head;
802
803         for (head = 0; head < rb_head_size(cpu_buffer);
804              head += rb_event_length(event)) {
805
806                 event = __rb_page_index(cpu_buffer->head_page, head);
807                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
808                         return;
809                 /* Only count data entries */
810                 if (event->type != RINGBUF_TYPE_DATA)
811                         continue;
812                 cpu_buffer->overrun++;
813                 cpu_buffer->entries--;
814         }
815 }
816
817 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
818                                struct buffer_page **bpage)
819 {
820         struct list_head *p = (*bpage)->list.next;
821
822         if (p == &cpu_buffer->pages)
823                 p = p->next;
824
825         *bpage = list_entry(p, struct buffer_page, list);
826 }
827
828 static inline unsigned
829 rb_event_index(struct ring_buffer_event *event)
830 {
831         unsigned long addr = (unsigned long)event;
832
833         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
834 }
835
836 static int
837 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
838              struct ring_buffer_event *event)
839 {
840         unsigned long addr = (unsigned long)event;
841         unsigned long index;
842
843         index = rb_event_index(event);
844         addr &= PAGE_MASK;
845
846         return cpu_buffer->commit_page->page == (void *)addr &&
847                 rb_commit_index(cpu_buffer) == index;
848 }
849
850 static void
851 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
852                     struct ring_buffer_event *event)
853 {
854         unsigned long addr = (unsigned long)event;
855         unsigned long index;
856
857         index = rb_event_index(event);
858         addr &= PAGE_MASK;
859
860         while (cpu_buffer->commit_page->page != (void *)addr) {
861                 if (RB_WARN_ON(cpu_buffer,
862                           cpu_buffer->commit_page == cpu_buffer->tail_page))
863                         return;
864                 cpu_buffer->commit_page->page->commit =
865                         cpu_buffer->commit_page->write;
866                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
867                 cpu_buffer->write_stamp =
868                         cpu_buffer->commit_page->page->time_stamp;
869         }
870
871         /* Now set the commit to the event's index */
872         local_set(&cpu_buffer->commit_page->page->commit, index);
873 }
874
875 static void
876 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
877 {
878         /*
879          * We only race with interrupts and NMIs on this CPU.
880          * If we own the commit event, then we can commit
881          * all others that interrupted us, since the interruptions
882          * are in stack format (they finish before they come
883          * back to us). This allows us to do a simple loop to
884          * assign the commit to the tail.
885          */
886  again:
887         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
888                 cpu_buffer->commit_page->page->commit =
889                         cpu_buffer->commit_page->write;
890                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
891                 cpu_buffer->write_stamp =
892                         cpu_buffer->commit_page->page->time_stamp;
893                 /* add barrier to keep gcc from optimizing too much */
894                 barrier();
895         }
896         while (rb_commit_index(cpu_buffer) !=
897                rb_page_write(cpu_buffer->commit_page)) {
898                 cpu_buffer->commit_page->page->commit =
899                         cpu_buffer->commit_page->write;
900                 barrier();
901         }
902
903         /* again, keep gcc from optimizing */
904         barrier();
905
906         /*
907          * If an interrupt came in just after the first while loop
908          * and pushed the tail page forward, we will be left with
909          * a dangling commit that will never go forward.
910          */
911         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
912                 goto again;
913 }
914
915 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
916 {
917         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
918         cpu_buffer->reader_page->read = 0;
919 }
920
921 static void rb_inc_iter(struct ring_buffer_iter *iter)
922 {
923         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
924
925         /*
926          * The iterator could be on the reader page (it starts there).
927          * But the head could have moved, since the reader was
928          * found. Check for this case and assign the iterator
929          * to the head page instead of next.
930          */
931         if (iter->head_page == cpu_buffer->reader_page)
932                 iter->head_page = cpu_buffer->head_page;
933         else
934                 rb_inc_page(cpu_buffer, &iter->head_page);
935
936         iter->read_stamp = iter->head_page->page->time_stamp;
937         iter->head = 0;
938 }
939
940 /**
941  * ring_buffer_update_event - update event type and data
942  * @event: the even to update
943  * @type: the type of event
944  * @length: the size of the event field in the ring buffer
945  *
946  * Update the type and data fields of the event. The length
947  * is the actual size that is written to the ring buffer,
948  * and with this, we can determine what to place into the
949  * data field.
950  */
951 static void
952 rb_update_event(struct ring_buffer_event *event,
953                          unsigned type, unsigned length)
954 {
955         event->type = type;
956
957         switch (type) {
958
959         case RINGBUF_TYPE_PADDING:
960                 break;
961
962         case RINGBUF_TYPE_TIME_EXTEND:
963                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
964                 break;
965
966         case RINGBUF_TYPE_TIME_STAMP:
967                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
968                 break;
969
970         case RINGBUF_TYPE_DATA:
971                 length -= RB_EVNT_HDR_SIZE;
972                 if (length > RB_MAX_SMALL_DATA) {
973                         event->len = 0;
974                         event->array[0] = length;
975                 } else
976                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
977                 break;
978         default:
979                 BUG();
980         }
981 }
982
983 static unsigned rb_calculate_event_length(unsigned length)
984 {
985         struct ring_buffer_event event; /* Used only for sizeof array */
986
987         /* zero length can cause confusions */
988         if (!length)
989                 length = 1;
990
991         if (length > RB_MAX_SMALL_DATA)
992                 length += sizeof(event.array[0]);
993
994         length += RB_EVNT_HDR_SIZE;
995         length = ALIGN(length, RB_ALIGNMENT);
996
997         return length;
998 }
999
1000 static struct ring_buffer_event *
1001 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1002                   unsigned type, unsigned long length, u64 *ts)
1003 {
1004         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1005         unsigned long tail, write;
1006         struct ring_buffer *buffer = cpu_buffer->buffer;
1007         struct ring_buffer_event *event;
1008         unsigned long flags;
1009         bool lock_taken = false;
1010
1011         commit_page = cpu_buffer->commit_page;
1012         /* we just need to protect against interrupts */
1013         barrier();
1014         tail_page = cpu_buffer->tail_page;
1015         write = local_add_return(length, &tail_page->write);
1016         tail = write - length;
1017
1018         /* See if we shot pass the end of this buffer page */
1019         if (write > BUF_PAGE_SIZE) {
1020                 struct buffer_page *next_page = tail_page;
1021
1022                 local_irq_save(flags);
1023                 /*
1024                  * Since the write to the buffer is still not
1025                  * fully lockless, we must be careful with NMIs.
1026                  * The locks in the writers are taken when a write
1027                  * crosses to a new page. The locks protect against
1028                  * races with the readers (this will soon be fixed
1029                  * with a lockless solution).
1030                  *
1031                  * Because we can not protect against NMIs, and we
1032                  * want to keep traces reentrant, we need to manage
1033                  * what happens when we are in an NMI.
1034                  *
1035                  * NMIs can happen after we take the lock.
1036                  * If we are in an NMI, only take the lock
1037                  * if it is not already taken. Otherwise
1038                  * simply fail.
1039                  */
1040                 if (unlikely(in_nmi())) {
1041                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1042                                 goto out_reset;
1043                 } else
1044                         __raw_spin_lock(&cpu_buffer->lock);
1045
1046                 lock_taken = true;
1047
1048                 rb_inc_page(cpu_buffer, &next_page);
1049
1050                 head_page = cpu_buffer->head_page;
1051                 reader_page = cpu_buffer->reader_page;
1052
1053                 /* we grabbed the lock before incrementing */
1054                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1055                         goto out_reset;
1056
1057                 /*
1058                  * If for some reason, we had an interrupt storm that made
1059                  * it all the way around the buffer, bail, and warn
1060                  * about it.
1061                  */
1062                 if (unlikely(next_page == commit_page)) {
1063                         WARN_ON_ONCE(1);
1064                         goto out_reset;
1065                 }
1066
1067                 if (next_page == head_page) {
1068                         if (!(buffer->flags & RB_FL_OVERWRITE))
1069                                 goto out_reset;
1070
1071                         /* tail_page has not moved yet? */
1072                         if (tail_page == cpu_buffer->tail_page) {
1073                                 /* count overflows */
1074                                 rb_update_overflow(cpu_buffer);
1075
1076                                 rb_inc_page(cpu_buffer, &head_page);
1077                                 cpu_buffer->head_page = head_page;
1078                                 cpu_buffer->head_page->read = 0;
1079                         }
1080                 }
1081
1082                 /*
1083                  * If the tail page is still the same as what we think
1084                  * it is, then it is up to us to update the tail
1085                  * pointer.
1086                  */
1087                 if (tail_page == cpu_buffer->tail_page) {
1088                         local_set(&next_page->write, 0);
1089                         local_set(&next_page->page->commit, 0);
1090                         cpu_buffer->tail_page = next_page;
1091
1092                         /* reread the time stamp */
1093                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1094                         cpu_buffer->tail_page->page->time_stamp = *ts;
1095                 }
1096
1097                 /*
1098                  * The actual tail page has moved forward.
1099                  */
1100                 if (tail < BUF_PAGE_SIZE) {
1101                         /* Mark the rest of the page with padding */
1102                         event = __rb_page_index(tail_page, tail);
1103                         event->type = RINGBUF_TYPE_PADDING;
1104                 }
1105
1106                 if (tail <= BUF_PAGE_SIZE)
1107                         /* Set the write back to the previous setting */
1108                         local_set(&tail_page->write, tail);
1109
1110                 /*
1111                  * If this was a commit entry that failed,
1112                  * increment that too
1113                  */
1114                 if (tail_page == cpu_buffer->commit_page &&
1115                     tail == rb_commit_index(cpu_buffer)) {
1116                         rb_set_commit_to_write(cpu_buffer);
1117                 }
1118
1119                 __raw_spin_unlock(&cpu_buffer->lock);
1120                 local_irq_restore(flags);
1121
1122                 /* fail and let the caller try again */
1123                 return ERR_PTR(-EAGAIN);
1124         }
1125
1126         /* We reserved something on the buffer */
1127
1128         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1129                 return NULL;
1130
1131         event = __rb_page_index(tail_page, tail);
1132         rb_update_event(event, type, length);
1133
1134         /*
1135          * If this is a commit and the tail is zero, then update
1136          * this page's time stamp.
1137          */
1138         if (!tail && rb_is_commit(cpu_buffer, event))
1139                 cpu_buffer->commit_page->page->time_stamp = *ts;
1140
1141         return event;
1142
1143  out_reset:
1144         /* reset write */
1145         if (tail <= BUF_PAGE_SIZE)
1146                 local_set(&tail_page->write, tail);
1147
1148         if (likely(lock_taken))
1149                 __raw_spin_unlock(&cpu_buffer->lock);
1150         local_irq_restore(flags);
1151         return NULL;
1152 }
1153
1154 static int
1155 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1156                   u64 *ts, u64 *delta)
1157 {
1158         struct ring_buffer_event *event;
1159         static int once;
1160         int ret;
1161
1162         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1163                 printk(KERN_WARNING "Delta way too big! %llu"
1164                        " ts=%llu write stamp = %llu\n",
1165                        (unsigned long long)*delta,
1166                        (unsigned long long)*ts,
1167                        (unsigned long long)cpu_buffer->write_stamp);
1168                 WARN_ON(1);
1169         }
1170
1171         /*
1172          * The delta is too big, we to add a
1173          * new timestamp.
1174          */
1175         event = __rb_reserve_next(cpu_buffer,
1176                                   RINGBUF_TYPE_TIME_EXTEND,
1177                                   RB_LEN_TIME_EXTEND,
1178                                   ts);
1179         if (!event)
1180                 return -EBUSY;
1181
1182         if (PTR_ERR(event) == -EAGAIN)
1183                 return -EAGAIN;
1184
1185         /* Only a commited time event can update the write stamp */
1186         if (rb_is_commit(cpu_buffer, event)) {
1187                 /*
1188                  * If this is the first on the page, then we need to
1189                  * update the page itself, and just put in a zero.
1190                  */
1191                 if (rb_event_index(event)) {
1192                         event->time_delta = *delta & TS_MASK;
1193                         event->array[0] = *delta >> TS_SHIFT;
1194                 } else {
1195                         cpu_buffer->commit_page->page->time_stamp = *ts;
1196                         event->time_delta = 0;
1197                         event->array[0] = 0;
1198                 }
1199                 cpu_buffer->write_stamp = *ts;
1200                 /* let the caller know this was the commit */
1201                 ret = 1;
1202         } else {
1203                 /* Darn, this is just wasted space */
1204                 event->time_delta = 0;
1205                 event->array[0] = 0;
1206                 ret = 0;
1207         }
1208
1209         *delta = 0;
1210
1211         return ret;
1212 }
1213
1214 static struct ring_buffer_event *
1215 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1216                       unsigned type, unsigned long length)
1217 {
1218         struct ring_buffer_event *event;
1219         u64 ts, delta;
1220         int commit = 0;
1221         int nr_loops = 0;
1222
1223  again:
1224         /*
1225          * We allow for interrupts to reenter here and do a trace.
1226          * If one does, it will cause this original code to loop
1227          * back here. Even with heavy interrupts happening, this
1228          * should only happen a few times in a row. If this happens
1229          * 1000 times in a row, there must be either an interrupt
1230          * storm or we have something buggy.
1231          * Bail!
1232          */
1233         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1234                 return NULL;
1235
1236         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1237
1238         /*
1239          * Only the first commit can update the timestamp.
1240          * Yes there is a race here. If an interrupt comes in
1241          * just after the conditional and it traces too, then it
1242          * will also check the deltas. More than one timestamp may
1243          * also be made. But only the entry that did the actual
1244          * commit will be something other than zero.
1245          */
1246         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1247             rb_page_write(cpu_buffer->tail_page) ==
1248             rb_commit_index(cpu_buffer)) {
1249
1250                 delta = ts - cpu_buffer->write_stamp;
1251
1252                 /* make sure this delta is calculated here */
1253                 barrier();
1254
1255                 /* Did the write stamp get updated already? */
1256                 if (unlikely(ts < cpu_buffer->write_stamp))
1257                         delta = 0;
1258
1259                 if (test_time_stamp(delta)) {
1260
1261                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1262
1263                         if (commit == -EBUSY)
1264                                 return NULL;
1265
1266                         if (commit == -EAGAIN)
1267                                 goto again;
1268
1269                         RB_WARN_ON(cpu_buffer, commit < 0);
1270                 }
1271         } else
1272                 /* Non commits have zero deltas */
1273                 delta = 0;
1274
1275         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1276         if (PTR_ERR(event) == -EAGAIN)
1277                 goto again;
1278
1279         if (!event) {
1280                 if (unlikely(commit))
1281                         /*
1282                          * Ouch! We needed a timestamp and it was commited. But
1283                          * we didn't get our event reserved.
1284                          */
1285                         rb_set_commit_to_write(cpu_buffer);
1286                 return NULL;
1287         }
1288
1289         /*
1290          * If the timestamp was commited, make the commit our entry
1291          * now so that we will update it when needed.
1292          */
1293         if (commit)
1294                 rb_set_commit_event(cpu_buffer, event);
1295         else if (!rb_is_commit(cpu_buffer, event))
1296                 delta = 0;
1297
1298         event->time_delta = delta;
1299
1300         return event;
1301 }
1302
1303 static DEFINE_PER_CPU(int, rb_need_resched);
1304
1305 /**
1306  * ring_buffer_lock_reserve - reserve a part of the buffer
1307  * @buffer: the ring buffer to reserve from
1308  * @length: the length of the data to reserve (excluding event header)
1309  *
1310  * Returns a reseverd event on the ring buffer to copy directly to.
1311  * The user of this interface will need to get the body to write into
1312  * and can use the ring_buffer_event_data() interface.
1313  *
1314  * The length is the length of the data needed, not the event length
1315  * which also includes the event header.
1316  *
1317  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1318  * If NULL is returned, then nothing has been allocated or locked.
1319  */
1320 struct ring_buffer_event *
1321 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1322 {
1323         struct ring_buffer_per_cpu *cpu_buffer;
1324         struct ring_buffer_event *event;
1325         int cpu, resched;
1326
1327         if (ring_buffer_flags != RB_BUFFERS_ON)
1328                 return NULL;
1329
1330         if (atomic_read(&buffer->record_disabled))
1331                 return NULL;
1332
1333         /* If we are tracing schedule, we don't want to recurse */
1334         resched = ftrace_preempt_disable();
1335
1336         cpu = raw_smp_processor_id();
1337
1338         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1339                 goto out;
1340
1341         cpu_buffer = buffer->buffers[cpu];
1342
1343         if (atomic_read(&cpu_buffer->record_disabled))
1344                 goto out;
1345
1346         length = rb_calculate_event_length(length);
1347         if (length > BUF_PAGE_SIZE)
1348                 goto out;
1349
1350         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1351         if (!event)
1352                 goto out;
1353
1354         /*
1355          * Need to store resched state on this cpu.
1356          * Only the first needs to.
1357          */
1358
1359         if (preempt_count() == 1)
1360                 per_cpu(rb_need_resched, cpu) = resched;
1361
1362         return event;
1363
1364  out:
1365         ftrace_preempt_enable(resched);
1366         return NULL;
1367 }
1368 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1369
1370 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1371                       struct ring_buffer_event *event)
1372 {
1373         cpu_buffer->entries++;
1374
1375         /* Only process further if we own the commit */
1376         if (!rb_is_commit(cpu_buffer, event))
1377                 return;
1378
1379         cpu_buffer->write_stamp += event->time_delta;
1380
1381         rb_set_commit_to_write(cpu_buffer);
1382 }
1383
1384 /**
1385  * ring_buffer_unlock_commit - commit a reserved
1386  * @buffer: The buffer to commit to
1387  * @event: The event pointer to commit.
1388  *
1389  * This commits the data to the ring buffer, and releases any locks held.
1390  *
1391  * Must be paired with ring_buffer_lock_reserve.
1392  */
1393 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1394                               struct ring_buffer_event *event)
1395 {
1396         struct ring_buffer_per_cpu *cpu_buffer;
1397         int cpu = raw_smp_processor_id();
1398
1399         cpu_buffer = buffer->buffers[cpu];
1400
1401         rb_commit(cpu_buffer, event);
1402
1403         /*
1404          * Only the last preempt count needs to restore preemption.
1405          */
1406         if (preempt_count() == 1)
1407                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1408         else
1409                 preempt_enable_no_resched_notrace();
1410
1411         return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1414
1415 /**
1416  * ring_buffer_write - write data to the buffer without reserving
1417  * @buffer: The ring buffer to write to.
1418  * @length: The length of the data being written (excluding the event header)
1419  * @data: The data to write to the buffer.
1420  *
1421  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1422  * one function. If you already have the data to write to the buffer, it
1423  * may be easier to simply call this function.
1424  *
1425  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1426  * and not the length of the event which would hold the header.
1427  */
1428 int ring_buffer_write(struct ring_buffer *buffer,
1429                         unsigned long length,
1430                         void *data)
1431 {
1432         struct ring_buffer_per_cpu *cpu_buffer;
1433         struct ring_buffer_event *event;
1434         unsigned long event_length;
1435         void *body;
1436         int ret = -EBUSY;
1437         int cpu, resched;
1438
1439         if (ring_buffer_flags != RB_BUFFERS_ON)
1440                 return -EBUSY;
1441
1442         if (atomic_read(&buffer->record_disabled))
1443                 return -EBUSY;
1444
1445         resched = ftrace_preempt_disable();
1446
1447         cpu = raw_smp_processor_id();
1448
1449         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1450                 goto out;
1451
1452         cpu_buffer = buffer->buffers[cpu];
1453
1454         if (atomic_read(&cpu_buffer->record_disabled))
1455                 goto out;
1456
1457         event_length = rb_calculate_event_length(length);
1458         event = rb_reserve_next_event(cpu_buffer,
1459                                       RINGBUF_TYPE_DATA, event_length);
1460         if (!event)
1461                 goto out;
1462
1463         body = rb_event_data(event);
1464
1465         memcpy(body, data, length);
1466
1467         rb_commit(cpu_buffer, event);
1468
1469         ret = 0;
1470  out:
1471         ftrace_preempt_enable(resched);
1472
1473         return ret;
1474 }
1475 EXPORT_SYMBOL_GPL(ring_buffer_write);
1476
1477 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1478 {
1479         struct buffer_page *reader = cpu_buffer->reader_page;
1480         struct buffer_page *head = cpu_buffer->head_page;
1481         struct buffer_page *commit = cpu_buffer->commit_page;
1482
1483         return reader->read == rb_page_commit(reader) &&
1484                 (commit == reader ||
1485                  (commit == head &&
1486                   head->read == rb_page_commit(commit)));
1487 }
1488
1489 /**
1490  * ring_buffer_record_disable - stop all writes into the buffer
1491  * @buffer: The ring buffer to stop writes to.
1492  *
1493  * This prevents all writes to the buffer. Any attempt to write
1494  * to the buffer after this will fail and return NULL.
1495  *
1496  * The caller should call synchronize_sched() after this.
1497  */
1498 void ring_buffer_record_disable(struct ring_buffer *buffer)
1499 {
1500         atomic_inc(&buffer->record_disabled);
1501 }
1502 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1503
1504 /**
1505  * ring_buffer_record_enable - enable writes to the buffer
1506  * @buffer: The ring buffer to enable writes
1507  *
1508  * Note, multiple disables will need the same number of enables
1509  * to truely enable the writing (much like preempt_disable).
1510  */
1511 void ring_buffer_record_enable(struct ring_buffer *buffer)
1512 {
1513         atomic_dec(&buffer->record_disabled);
1514 }
1515 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1516
1517 /**
1518  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1519  * @buffer: The ring buffer to stop writes to.
1520  * @cpu: The CPU buffer to stop
1521  *
1522  * This prevents all writes to the buffer. Any attempt to write
1523  * to the buffer after this will fail and return NULL.
1524  *
1525  * The caller should call synchronize_sched() after this.
1526  */
1527 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1528 {
1529         struct ring_buffer_per_cpu *cpu_buffer;
1530
1531         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1532                 return;
1533
1534         cpu_buffer = buffer->buffers[cpu];
1535         atomic_inc(&cpu_buffer->record_disabled);
1536 }
1537 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1538
1539 /**
1540  * ring_buffer_record_enable_cpu - enable writes to the buffer
1541  * @buffer: The ring buffer to enable writes
1542  * @cpu: The CPU to enable.
1543  *
1544  * Note, multiple disables will need the same number of enables
1545  * to truely enable the writing (much like preempt_disable).
1546  */
1547 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1548 {
1549         struct ring_buffer_per_cpu *cpu_buffer;
1550
1551         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1552                 return;
1553
1554         cpu_buffer = buffer->buffers[cpu];
1555         atomic_dec(&cpu_buffer->record_disabled);
1556 }
1557 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1558
1559 /**
1560  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1561  * @buffer: The ring buffer
1562  * @cpu: The per CPU buffer to get the entries from.
1563  */
1564 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1565 {
1566         struct ring_buffer_per_cpu *cpu_buffer;
1567
1568         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1569                 return 0;
1570
1571         cpu_buffer = buffer->buffers[cpu];
1572         return cpu_buffer->entries;
1573 }
1574 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1575
1576 /**
1577  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1578  * @buffer: The ring buffer
1579  * @cpu: The per CPU buffer to get the number of overruns from
1580  */
1581 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1582 {
1583         struct ring_buffer_per_cpu *cpu_buffer;
1584
1585         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1586                 return 0;
1587
1588         cpu_buffer = buffer->buffers[cpu];
1589         return cpu_buffer->overrun;
1590 }
1591 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1592
1593 /**
1594  * ring_buffer_entries - get the number of entries in a buffer
1595  * @buffer: The ring buffer
1596  *
1597  * Returns the total number of entries in the ring buffer
1598  * (all CPU entries)
1599  */
1600 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1601 {
1602         struct ring_buffer_per_cpu *cpu_buffer;
1603         unsigned long entries = 0;
1604         int cpu;
1605
1606         /* if you care about this being correct, lock the buffer */
1607         for_each_buffer_cpu(buffer, cpu) {
1608                 cpu_buffer = buffer->buffers[cpu];
1609                 entries += cpu_buffer->entries;
1610         }
1611
1612         return entries;
1613 }
1614 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1615
1616 /**
1617  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1618  * @buffer: The ring buffer
1619  *
1620  * Returns the total number of overruns in the ring buffer
1621  * (all CPU entries)
1622  */
1623 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1624 {
1625         struct ring_buffer_per_cpu *cpu_buffer;
1626         unsigned long overruns = 0;
1627         int cpu;
1628
1629         /* if you care about this being correct, lock the buffer */
1630         for_each_buffer_cpu(buffer, cpu) {
1631                 cpu_buffer = buffer->buffers[cpu];
1632                 overruns += cpu_buffer->overrun;
1633         }
1634
1635         return overruns;
1636 }
1637 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1638
1639 static void rb_iter_reset(struct ring_buffer_iter *iter)
1640 {
1641         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1642
1643         /* Iterator usage is expected to have record disabled */
1644         if (list_empty(&cpu_buffer->reader_page->list)) {
1645                 iter->head_page = cpu_buffer->head_page;
1646                 iter->head = cpu_buffer->head_page->read;
1647         } else {
1648                 iter->head_page = cpu_buffer->reader_page;
1649                 iter->head = cpu_buffer->reader_page->read;
1650         }
1651         if (iter->head)
1652                 iter->read_stamp = cpu_buffer->read_stamp;
1653         else
1654                 iter->read_stamp = iter->head_page->page->time_stamp;
1655 }
1656
1657 /**
1658  * ring_buffer_iter_reset - reset an iterator
1659  * @iter: The iterator to reset
1660  *
1661  * Resets the iterator, so that it will start from the beginning
1662  * again.
1663  */
1664 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1665 {
1666         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1667         unsigned long flags;
1668
1669         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1670         rb_iter_reset(iter);
1671         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1672 }
1673 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1674
1675 /**
1676  * ring_buffer_iter_empty - check if an iterator has no more to read
1677  * @iter: The iterator to check
1678  */
1679 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1680 {
1681         struct ring_buffer_per_cpu *cpu_buffer;
1682
1683         cpu_buffer = iter->cpu_buffer;
1684
1685         return iter->head_page == cpu_buffer->commit_page &&
1686                 iter->head == rb_commit_index(cpu_buffer);
1687 }
1688 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1689
1690 static void
1691 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1692                      struct ring_buffer_event *event)
1693 {
1694         u64 delta;
1695
1696         switch (event->type) {
1697         case RINGBUF_TYPE_PADDING:
1698                 return;
1699
1700         case RINGBUF_TYPE_TIME_EXTEND:
1701                 delta = event->array[0];
1702                 delta <<= TS_SHIFT;
1703                 delta += event->time_delta;
1704                 cpu_buffer->read_stamp += delta;
1705                 return;
1706
1707         case RINGBUF_TYPE_TIME_STAMP:
1708                 /* FIXME: not implemented */
1709                 return;
1710
1711         case RINGBUF_TYPE_DATA:
1712                 cpu_buffer->read_stamp += event->time_delta;
1713                 return;
1714
1715         default:
1716                 BUG();
1717         }
1718         return;
1719 }
1720
1721 static void
1722 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1723                           struct ring_buffer_event *event)
1724 {
1725         u64 delta;
1726
1727         switch (event->type) {
1728         case RINGBUF_TYPE_PADDING:
1729                 return;
1730
1731         case RINGBUF_TYPE_TIME_EXTEND:
1732                 delta = event->array[0];
1733                 delta <<= TS_SHIFT;
1734                 delta += event->time_delta;
1735                 iter->read_stamp += delta;
1736                 return;
1737
1738         case RINGBUF_TYPE_TIME_STAMP:
1739                 /* FIXME: not implemented */
1740                 return;
1741
1742         case RINGBUF_TYPE_DATA:
1743                 iter->read_stamp += event->time_delta;
1744                 return;
1745
1746         default:
1747                 BUG();
1748         }
1749         return;
1750 }
1751
1752 static struct buffer_page *
1753 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1754 {
1755         struct buffer_page *reader = NULL;
1756         unsigned long flags;
1757         int nr_loops = 0;
1758
1759         local_irq_save(flags);
1760         __raw_spin_lock(&cpu_buffer->lock);
1761
1762  again:
1763         /*
1764          * This should normally only loop twice. But because the
1765          * start of the reader inserts an empty page, it causes
1766          * a case where we will loop three times. There should be no
1767          * reason to loop four times (that I know of).
1768          */
1769         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1770                 reader = NULL;
1771                 goto out;
1772         }
1773
1774         reader = cpu_buffer->reader_page;
1775
1776         /* If there's more to read, return this page */
1777         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1778                 goto out;
1779
1780         /* Never should we have an index greater than the size */
1781         if (RB_WARN_ON(cpu_buffer,
1782                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1783                 goto out;
1784
1785         /* check if we caught up to the tail */
1786         reader = NULL;
1787         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1788                 goto out;
1789
1790         /*
1791          * Splice the empty reader page into the list around the head.
1792          * Reset the reader page to size zero.
1793          */
1794
1795         reader = cpu_buffer->head_page;
1796         cpu_buffer->reader_page->list.next = reader->list.next;
1797         cpu_buffer->reader_page->list.prev = reader->list.prev;
1798
1799         local_set(&cpu_buffer->reader_page->write, 0);
1800         local_set(&cpu_buffer->reader_page->page->commit, 0);
1801
1802         /* Make the reader page now replace the head */
1803         reader->list.prev->next = &cpu_buffer->reader_page->list;
1804         reader->list.next->prev = &cpu_buffer->reader_page->list;
1805
1806         /*
1807          * If the tail is on the reader, then we must set the head
1808          * to the inserted page, otherwise we set it one before.
1809          */
1810         cpu_buffer->head_page = cpu_buffer->reader_page;
1811
1812         if (cpu_buffer->commit_page != reader)
1813                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1814
1815         /* Finally update the reader page to the new head */
1816         cpu_buffer->reader_page = reader;
1817         rb_reset_reader_page(cpu_buffer);
1818
1819         goto again;
1820
1821  out:
1822         __raw_spin_unlock(&cpu_buffer->lock);
1823         local_irq_restore(flags);
1824
1825         return reader;
1826 }
1827
1828 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1829 {
1830         struct ring_buffer_event *event;
1831         struct buffer_page *reader;
1832         unsigned length;
1833
1834         reader = rb_get_reader_page(cpu_buffer);
1835
1836         /* This function should not be called when buffer is empty */
1837         if (RB_WARN_ON(cpu_buffer, !reader))
1838                 return;
1839
1840         event = rb_reader_event(cpu_buffer);
1841
1842         if (event->type == RINGBUF_TYPE_DATA)
1843                 cpu_buffer->entries--;
1844
1845         rb_update_read_stamp(cpu_buffer, event);
1846
1847         length = rb_event_length(event);
1848         cpu_buffer->reader_page->read += length;
1849 }
1850
1851 static void rb_advance_iter(struct ring_buffer_iter *iter)
1852 {
1853         struct ring_buffer *buffer;
1854         struct ring_buffer_per_cpu *cpu_buffer;
1855         struct ring_buffer_event *event;
1856         unsigned length;
1857
1858         cpu_buffer = iter->cpu_buffer;
1859         buffer = cpu_buffer->buffer;
1860
1861         /*
1862          * Check if we are at the end of the buffer.
1863          */
1864         if (iter->head >= rb_page_size(iter->head_page)) {
1865                 if (RB_WARN_ON(buffer,
1866                                iter->head_page == cpu_buffer->commit_page))
1867                         return;
1868                 rb_inc_iter(iter);
1869                 return;
1870         }
1871
1872         event = rb_iter_head_event(iter);
1873
1874         length = rb_event_length(event);
1875
1876         /*
1877          * This should not be called to advance the header if we are
1878          * at the tail of the buffer.
1879          */
1880         if (RB_WARN_ON(cpu_buffer,
1881                        (iter->head_page == cpu_buffer->commit_page) &&
1882                        (iter->head + length > rb_commit_index(cpu_buffer))))
1883                 return;
1884
1885         rb_update_iter_read_stamp(iter, event);
1886
1887         iter->head += length;
1888
1889         /* check for end of page padding */
1890         if ((iter->head >= rb_page_size(iter->head_page)) &&
1891             (iter->head_page != cpu_buffer->commit_page))
1892                 rb_advance_iter(iter);
1893 }
1894
1895 static struct ring_buffer_event *
1896 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1897 {
1898         struct ring_buffer_per_cpu *cpu_buffer;
1899         struct ring_buffer_event *event;
1900         struct buffer_page *reader;
1901         int nr_loops = 0;
1902
1903         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1904                 return NULL;
1905
1906         cpu_buffer = buffer->buffers[cpu];
1907
1908  again:
1909         /*
1910          * We repeat when a timestamp is encountered. It is possible
1911          * to get multiple timestamps from an interrupt entering just
1912          * as one timestamp is about to be written. The max times
1913          * that this can happen is the number of nested interrupts we
1914          * can have.  Nesting 10 deep of interrupts is clearly
1915          * an anomaly.
1916          */
1917         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1918                 return NULL;
1919
1920         reader = rb_get_reader_page(cpu_buffer);
1921         if (!reader)
1922                 return NULL;
1923
1924         event = rb_reader_event(cpu_buffer);
1925
1926         switch (event->type) {
1927         case RINGBUF_TYPE_PADDING:
1928                 RB_WARN_ON(cpu_buffer, 1);
1929                 rb_advance_reader(cpu_buffer);
1930                 return NULL;
1931
1932         case RINGBUF_TYPE_TIME_EXTEND:
1933                 /* Internal data, OK to advance */
1934                 rb_advance_reader(cpu_buffer);
1935                 goto again;
1936
1937         case RINGBUF_TYPE_TIME_STAMP:
1938                 /* FIXME: not implemented */
1939                 rb_advance_reader(cpu_buffer);
1940                 goto again;
1941
1942         case RINGBUF_TYPE_DATA:
1943                 if (ts) {
1944                         *ts = cpu_buffer->read_stamp + event->time_delta;
1945                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1946                 }
1947                 return event;
1948
1949         default:
1950                 BUG();
1951         }
1952
1953         return NULL;
1954 }
1955 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1956
1957 static struct ring_buffer_event *
1958 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1959 {
1960         struct ring_buffer *buffer;
1961         struct ring_buffer_per_cpu *cpu_buffer;
1962         struct ring_buffer_event *event;
1963         int nr_loops = 0;
1964
1965         if (ring_buffer_iter_empty(iter))
1966                 return NULL;
1967
1968         cpu_buffer = iter->cpu_buffer;
1969         buffer = cpu_buffer->buffer;
1970
1971  again:
1972         /*
1973          * We repeat when a timestamp is encountered. It is possible
1974          * to get multiple timestamps from an interrupt entering just
1975          * as one timestamp is about to be written. The max times
1976          * that this can happen is the number of nested interrupts we
1977          * can have. Nesting 10 deep of interrupts is clearly
1978          * an anomaly.
1979          */
1980         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1981                 return NULL;
1982
1983         if (rb_per_cpu_empty(cpu_buffer))
1984                 return NULL;
1985
1986         event = rb_iter_head_event(iter);
1987
1988         switch (event->type) {
1989         case RINGBUF_TYPE_PADDING:
1990                 rb_inc_iter(iter);
1991                 goto again;
1992
1993         case RINGBUF_TYPE_TIME_EXTEND:
1994                 /* Internal data, OK to advance */
1995                 rb_advance_iter(iter);
1996                 goto again;
1997
1998         case RINGBUF_TYPE_TIME_STAMP:
1999                 /* FIXME: not implemented */
2000                 rb_advance_iter(iter);
2001                 goto again;
2002
2003         case RINGBUF_TYPE_DATA:
2004                 if (ts) {
2005                         *ts = iter->read_stamp + event->time_delta;
2006                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2007                 }
2008                 return event;
2009
2010         default:
2011                 BUG();
2012         }
2013
2014         return NULL;
2015 }
2016 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2017
2018 /**
2019  * ring_buffer_peek - peek at the next event to be read
2020  * @buffer: The ring buffer to read
2021  * @cpu: The cpu to peak at
2022  * @ts: The timestamp counter of this event.
2023  *
2024  * This will return the event that will be read next, but does
2025  * not consume the data.
2026  */
2027 struct ring_buffer_event *
2028 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2029 {
2030         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2031         struct ring_buffer_event *event;
2032         unsigned long flags;
2033
2034         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2035         event = rb_buffer_peek(buffer, cpu, ts);
2036         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2037
2038         return event;
2039 }
2040
2041 /**
2042  * ring_buffer_iter_peek - peek at the next event to be read
2043  * @iter: The ring buffer iterator
2044  * @ts: The timestamp counter of this event.
2045  *
2046  * This will return the event that will be read next, but does
2047  * not increment the iterator.
2048  */
2049 struct ring_buffer_event *
2050 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2051 {
2052         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2053         struct ring_buffer_event *event;
2054         unsigned long flags;
2055
2056         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2057         event = rb_iter_peek(iter, ts);
2058         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2059
2060         return event;
2061 }
2062
2063 /**
2064  * ring_buffer_consume - return an event and consume it
2065  * @buffer: The ring buffer to get the next event from
2066  *
2067  * Returns the next event in the ring buffer, and that event is consumed.
2068  * Meaning, that sequential reads will keep returning a different event,
2069  * and eventually empty the ring buffer if the producer is slower.
2070  */
2071 struct ring_buffer_event *
2072 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2073 {
2074         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2075         struct ring_buffer_event *event;
2076         unsigned long flags;
2077
2078         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2079                 return NULL;
2080
2081         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2082
2083         event = rb_buffer_peek(buffer, cpu, ts);
2084         if (!event)
2085                 goto out;
2086
2087         rb_advance_reader(cpu_buffer);
2088
2089  out:
2090         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2091
2092         return event;
2093 }
2094 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2095
2096 /**
2097  * ring_buffer_read_start - start a non consuming read of the buffer
2098  * @buffer: The ring buffer to read from
2099  * @cpu: The cpu buffer to iterate over
2100  *
2101  * This starts up an iteration through the buffer. It also disables
2102  * the recording to the buffer until the reading is finished.
2103  * This prevents the reading from being corrupted. This is not
2104  * a consuming read, so a producer is not expected.
2105  *
2106  * Must be paired with ring_buffer_finish.
2107  */
2108 struct ring_buffer_iter *
2109 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2110 {
2111         struct ring_buffer_per_cpu *cpu_buffer;
2112         struct ring_buffer_iter *iter;
2113         unsigned long flags;
2114
2115         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2116                 return NULL;
2117
2118         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2119         if (!iter)
2120                 return NULL;
2121
2122         cpu_buffer = buffer->buffers[cpu];
2123
2124         iter->cpu_buffer = cpu_buffer;
2125
2126         atomic_inc(&cpu_buffer->record_disabled);
2127         synchronize_sched();
2128
2129         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2130         __raw_spin_lock(&cpu_buffer->lock);
2131         rb_iter_reset(iter);
2132         __raw_spin_unlock(&cpu_buffer->lock);
2133         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2134
2135         return iter;
2136 }
2137 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2138
2139 /**
2140  * ring_buffer_finish - finish reading the iterator of the buffer
2141  * @iter: The iterator retrieved by ring_buffer_start
2142  *
2143  * This re-enables the recording to the buffer, and frees the
2144  * iterator.
2145  */
2146 void
2147 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2148 {
2149         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2150
2151         atomic_dec(&cpu_buffer->record_disabled);
2152         kfree(iter);
2153 }
2154 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2155
2156 /**
2157  * ring_buffer_read - read the next item in the ring buffer by the iterator
2158  * @iter: The ring buffer iterator
2159  * @ts: The time stamp of the event read.
2160  *
2161  * This reads the next event in the ring buffer and increments the iterator.
2162  */
2163 struct ring_buffer_event *
2164 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2165 {
2166         struct ring_buffer_event *event;
2167         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2168         unsigned long flags;
2169
2170         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2171         event = rb_iter_peek(iter, ts);
2172         if (!event)
2173                 goto out;
2174
2175         rb_advance_iter(iter);
2176  out:
2177         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2178
2179         return event;
2180 }
2181 EXPORT_SYMBOL_GPL(ring_buffer_read);
2182
2183 /**
2184  * ring_buffer_size - return the size of the ring buffer (in bytes)
2185  * @buffer: The ring buffer.
2186  */
2187 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2188 {
2189         return BUF_PAGE_SIZE * buffer->pages;
2190 }
2191 EXPORT_SYMBOL_GPL(ring_buffer_size);
2192
2193 static void
2194 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2195 {
2196         cpu_buffer->head_page
2197                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2198         local_set(&cpu_buffer->head_page->write, 0);
2199         local_set(&cpu_buffer->head_page->page->commit, 0);
2200
2201         cpu_buffer->head_page->read = 0;
2202
2203         cpu_buffer->tail_page = cpu_buffer->head_page;
2204         cpu_buffer->commit_page = cpu_buffer->head_page;
2205
2206         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2207         local_set(&cpu_buffer->reader_page->write, 0);
2208         local_set(&cpu_buffer->reader_page->page->commit, 0);
2209         cpu_buffer->reader_page->read = 0;
2210
2211         cpu_buffer->overrun = 0;
2212         cpu_buffer->entries = 0;
2213
2214         cpu_buffer->write_stamp = 0;
2215         cpu_buffer->read_stamp = 0;
2216 }
2217
2218 /**
2219  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2220  * @buffer: The ring buffer to reset a per cpu buffer of
2221  * @cpu: The CPU buffer to be reset
2222  */
2223 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2224 {
2225         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2226         unsigned long flags;
2227
2228         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2229                 return;
2230
2231         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2232
2233         __raw_spin_lock(&cpu_buffer->lock);
2234
2235         rb_reset_cpu(cpu_buffer);
2236
2237         __raw_spin_unlock(&cpu_buffer->lock);
2238
2239         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2240 }
2241 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2242
2243 /**
2244  * ring_buffer_reset - reset a ring buffer
2245  * @buffer: The ring buffer to reset all cpu buffers
2246  */
2247 void ring_buffer_reset(struct ring_buffer *buffer)
2248 {
2249         int cpu;
2250
2251         for_each_buffer_cpu(buffer, cpu)
2252                 ring_buffer_reset_cpu(buffer, cpu);
2253 }
2254 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2255
2256 /**
2257  * rind_buffer_empty - is the ring buffer empty?
2258  * @buffer: The ring buffer to test
2259  */
2260 int ring_buffer_empty(struct ring_buffer *buffer)
2261 {
2262         struct ring_buffer_per_cpu *cpu_buffer;
2263         int cpu;
2264
2265         /* yes this is racy, but if you don't like the race, lock the buffer */
2266         for_each_buffer_cpu(buffer, cpu) {
2267                 cpu_buffer = buffer->buffers[cpu];
2268                 if (!rb_per_cpu_empty(cpu_buffer))
2269                         return 0;
2270         }
2271         return 1;
2272 }
2273 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2274
2275 /**
2276  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2277  * @buffer: The ring buffer
2278  * @cpu: The CPU buffer to test
2279  */
2280 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2281 {
2282         struct ring_buffer_per_cpu *cpu_buffer;
2283
2284         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2285                 return 1;
2286
2287         cpu_buffer = buffer->buffers[cpu];
2288         return rb_per_cpu_empty(cpu_buffer);
2289 }
2290 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2291
2292 /**
2293  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2294  * @buffer_a: One buffer to swap with
2295  * @buffer_b: The other buffer to swap with
2296  *
2297  * This function is useful for tracers that want to take a "snapshot"
2298  * of a CPU buffer and has another back up buffer lying around.
2299  * it is expected that the tracer handles the cpu buffer not being
2300  * used at the moment.
2301  */
2302 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2303                          struct ring_buffer *buffer_b, int cpu)
2304 {
2305         struct ring_buffer_per_cpu *cpu_buffer_a;
2306         struct ring_buffer_per_cpu *cpu_buffer_b;
2307
2308         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2309             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2310                 return -EINVAL;
2311
2312         /* At least make sure the two buffers are somewhat the same */
2313         if (buffer_a->pages != buffer_b->pages)
2314                 return -EINVAL;
2315
2316         if (ring_buffer_flags != RB_BUFFERS_ON)
2317                 return -EAGAIN;
2318
2319         if (atomic_read(&buffer_a->record_disabled))
2320                 return -EAGAIN;
2321
2322         if (atomic_read(&buffer_b->record_disabled))
2323                 return -EAGAIN;
2324
2325         cpu_buffer_a = buffer_a->buffers[cpu];
2326         cpu_buffer_b = buffer_b->buffers[cpu];
2327
2328         if (atomic_read(&cpu_buffer_a->record_disabled))
2329                 return -EAGAIN;
2330
2331         if (atomic_read(&cpu_buffer_b->record_disabled))
2332                 return -EAGAIN;
2333
2334         /*
2335          * We can't do a synchronize_sched here because this
2336          * function can be called in atomic context.
2337          * Normally this will be called from the same CPU as cpu.
2338          * If not it's up to the caller to protect this.
2339          */
2340         atomic_inc(&cpu_buffer_a->record_disabled);
2341         atomic_inc(&cpu_buffer_b->record_disabled);
2342
2343         buffer_a->buffers[cpu] = cpu_buffer_b;
2344         buffer_b->buffers[cpu] = cpu_buffer_a;
2345
2346         cpu_buffer_b->buffer = buffer_a;
2347         cpu_buffer_a->buffer = buffer_b;
2348
2349         atomic_dec(&cpu_buffer_a->record_disabled);
2350         atomic_dec(&cpu_buffer_b->record_disabled);
2351
2352         return 0;
2353 }
2354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2355
2356 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2357                               struct buffer_data_page *bpage,
2358                               unsigned int offset)
2359 {
2360         struct ring_buffer_event *event;
2361         unsigned long head;
2362
2363         __raw_spin_lock(&cpu_buffer->lock);
2364         for (head = offset; head < local_read(&bpage->commit);
2365              head += rb_event_length(event)) {
2366
2367                 event = __rb_data_page_index(bpage, head);
2368                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2369                         return;
2370                 /* Only count data entries */
2371                 if (event->type != RINGBUF_TYPE_DATA)
2372                         continue;
2373                 cpu_buffer->entries--;
2374         }
2375         __raw_spin_unlock(&cpu_buffer->lock);
2376 }
2377
2378 /**
2379  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2380  * @buffer: the buffer to allocate for.
2381  *
2382  * This function is used in conjunction with ring_buffer_read_page.
2383  * When reading a full page from the ring buffer, these functions
2384  * can be used to speed up the process. The calling function should
2385  * allocate a few pages first with this function. Then when it
2386  * needs to get pages from the ring buffer, it passes the result
2387  * of this function into ring_buffer_read_page, which will swap
2388  * the page that was allocated, with the read page of the buffer.
2389  *
2390  * Returns:
2391  *  The page allocated, or NULL on error.
2392  */
2393 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2394 {
2395         struct buffer_data_page *bpage;
2396         unsigned long addr;
2397
2398         addr = __get_free_page(GFP_KERNEL);
2399         if (!addr)
2400                 return NULL;
2401
2402         bpage = (void *)addr;
2403
2404         rb_init_page(bpage);
2405
2406         return bpage;
2407 }
2408
2409 /**
2410  * ring_buffer_free_read_page - free an allocated read page
2411  * @buffer: the buffer the page was allocate for
2412  * @data: the page to free
2413  *
2414  * Free a page allocated from ring_buffer_alloc_read_page.
2415  */
2416 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2417 {
2418         free_page((unsigned long)data);
2419 }
2420
2421 /**
2422  * ring_buffer_read_page - extract a page from the ring buffer
2423  * @buffer: buffer to extract from
2424  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2425  * @len: amount to extract
2426  * @cpu: the cpu of the buffer to extract
2427  * @full: should the extraction only happen when the page is full.
2428  *
2429  * This function will pull out a page from the ring buffer and consume it.
2430  * @data_page must be the address of the variable that was returned
2431  * from ring_buffer_alloc_read_page. This is because the page might be used
2432  * to swap with a page in the ring buffer.
2433  *
2434  * for example:
2435  *      rpage = ring_buffer_alloc_read_page(buffer);
2436  *      if (!rpage)
2437  *              return error;
2438  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2439  *      if (ret >= 0)
2440  *              process_page(rpage, ret);
2441  *
2442  * When @full is set, the function will not return true unless
2443  * the writer is off the reader page.
2444  *
2445  * Note: it is up to the calling functions to handle sleeps and wakeups.
2446  *  The ring buffer can be used anywhere in the kernel and can not
2447  *  blindly call wake_up. The layer that uses the ring buffer must be
2448  *  responsible for that.
2449  *
2450  * Returns:
2451  *  >=0 if data has been transferred, returns the offset of consumed data.
2452  *  <0 if no data has been transferred.
2453  */
2454 int ring_buffer_read_page(struct ring_buffer *buffer,
2455                           void **data_page, size_t len, int cpu, int full)
2456 {
2457         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2458         struct ring_buffer_event *event;
2459         struct buffer_data_page *bpage;
2460         struct buffer_page *reader;
2461         unsigned long flags;
2462         unsigned int commit;
2463         unsigned int read;
2464         int ret = -1;
2465
2466         /*
2467          * If len is not big enough to hold the page header, then
2468          * we can not copy anything.
2469          */
2470         if (len <= BUF_PAGE_HDR_SIZE)
2471                 return -1;
2472
2473         len -= BUF_PAGE_HDR_SIZE;
2474
2475         if (!data_page)
2476                 return -1;
2477
2478         bpage = *data_page;
2479         if (!bpage)
2480                 return -1;
2481
2482         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2483
2484         reader = rb_get_reader_page(cpu_buffer);
2485         if (!reader)
2486                 goto out;
2487
2488         event = rb_reader_event(cpu_buffer);
2489
2490         read = reader->read;
2491         commit = rb_page_commit(reader);
2492
2493         /*
2494          * If this page has been partially read or
2495          * if len is not big enough to read the rest of the page or
2496          * a writer is still on the page, then
2497          * we must copy the data from the page to the buffer.
2498          * Otherwise, we can simply swap the page with the one passed in.
2499          */
2500         if (read || (len < (commit - read)) ||
2501             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2502                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2503                 unsigned int rpos = read;
2504                 unsigned int pos = 0;
2505                 unsigned int size;
2506
2507                 if (full)
2508                         goto out;
2509
2510                 if (len > (commit - read))
2511                         len = (commit - read);
2512
2513                 size = rb_event_length(event);
2514
2515                 if (len < size)
2516                         goto out;
2517
2518                 /* Need to copy one event at a time */
2519                 do {
2520                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2521
2522                         len -= size;
2523
2524                         rb_advance_reader(cpu_buffer);
2525                         rpos = reader->read;
2526                         pos += size;
2527
2528                         event = rb_reader_event(cpu_buffer);
2529                         size = rb_event_length(event);
2530                 } while (len > size);
2531
2532                 /* update bpage */
2533                 local_set(&bpage->commit, pos);
2534                 bpage->time_stamp = rpage->time_stamp;
2535
2536                 /* we copied everything to the beginning */
2537                 read = 0;
2538         } else {
2539                 /* swap the pages */
2540                 rb_init_page(bpage);
2541                 bpage = reader->page;
2542                 reader->page = *data_page;
2543                 local_set(&reader->write, 0);
2544                 reader->read = 0;
2545                 *data_page = bpage;
2546
2547                 /* update the entry counter */
2548                 rb_remove_entries(cpu_buffer, bpage, read);
2549         }
2550         ret = read;
2551
2552  out:
2553         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2554
2555         return ret;
2556 }
2557
2558 static ssize_t
2559 rb_simple_read(struct file *filp, char __user *ubuf,
2560                size_t cnt, loff_t *ppos)
2561 {
2562         unsigned long *p = filp->private_data;
2563         char buf[64];
2564         int r;
2565
2566         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2567                 r = sprintf(buf, "permanently disabled\n");
2568         else
2569                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2570
2571         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2572 }
2573
2574 static ssize_t
2575 rb_simple_write(struct file *filp, const char __user *ubuf,
2576                 size_t cnt, loff_t *ppos)
2577 {
2578         unsigned long *p = filp->private_data;
2579         char buf[64];
2580         unsigned long val;
2581         int ret;
2582
2583         if (cnt >= sizeof(buf))
2584                 return -EINVAL;
2585
2586         if (copy_from_user(&buf, ubuf, cnt))
2587                 return -EFAULT;
2588
2589         buf[cnt] = 0;
2590
2591         ret = strict_strtoul(buf, 10, &val);
2592         if (ret < 0)
2593                 return ret;
2594
2595         if (val)
2596                 set_bit(RB_BUFFERS_ON_BIT, p);
2597         else
2598                 clear_bit(RB_BUFFERS_ON_BIT, p);
2599
2600         (*ppos)++;
2601
2602         return cnt;
2603 }
2604
2605 static struct file_operations rb_simple_fops = {
2606         .open           = tracing_open_generic,
2607         .read           = rb_simple_read,
2608         .write          = rb_simple_write,
2609 };
2610
2611
2612 static __init int rb_init_debugfs(void)
2613 {
2614         struct dentry *d_tracer;
2615         struct dentry *entry;
2616
2617         d_tracer = tracing_init_dentry();
2618
2619         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2620                                     &ring_buffer_flags, &rb_simple_fops);
2621         if (!entry)
2622                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2623
2624         return 0;
2625 }
2626
2627 fs_initcall(rb_init_debugfs);