ring-buffer: convert to raw spinlocks
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /* Up this if you want to test the TIME_EXTENTS and normalization */
22 #define DEBUG_SHIFT 0
23
24 /* FIXME!!! */
25 u64 ring_buffer_time_stamp(int cpu)
26 {
27         /* shift to debug/test normalization and TIME_EXTENTS */
28         return sched_clock() << DEBUG_SHIFT;
29 }
30
31 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
32 {
33         /* Just stupid testing the normalize function and deltas */
34         *ts >>= DEBUG_SHIFT;
35 }
36
37 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
38 #define RB_ALIGNMENT_SHIFT      2
39 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
40 #define RB_MAX_SMALL_DATA       28
41
42 enum {
43         RB_LEN_TIME_EXTEND = 8,
44         RB_LEN_TIME_STAMP = 16,
45 };
46
47 /* inline for ring buffer fast paths */
48 static inline unsigned
49 rb_event_length(struct ring_buffer_event *event)
50 {
51         unsigned length;
52
53         switch (event->type) {
54         case RINGBUF_TYPE_PADDING:
55                 /* undefined */
56                 return -1;
57
58         case RINGBUF_TYPE_TIME_EXTEND:
59                 return RB_LEN_TIME_EXTEND;
60
61         case RINGBUF_TYPE_TIME_STAMP:
62                 return RB_LEN_TIME_STAMP;
63
64         case RINGBUF_TYPE_DATA:
65                 if (event->len)
66                         length = event->len << RB_ALIGNMENT_SHIFT;
67                 else
68                         length = event->array[0];
69                 return length + RB_EVNT_HDR_SIZE;
70         default:
71                 BUG();
72         }
73         /* not hit */
74         return 0;
75 }
76
77 /**
78  * ring_buffer_event_length - return the length of the event
79  * @event: the event to get the length of
80  */
81 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
82 {
83         return rb_event_length(event);
84 }
85
86 /* inline for ring buffer fast paths */
87 static inline void *
88 rb_event_data(struct ring_buffer_event *event)
89 {
90         BUG_ON(event->type != RINGBUF_TYPE_DATA);
91         /* If length is in len field, then array[0] has the data */
92         if (event->len)
93                 return (void *)&event->array[0];
94         /* Otherwise length is in array[0] and array[1] has the data */
95         return (void *)&event->array[1];
96 }
97
98 /**
99  * ring_buffer_event_data - return the data of the event
100  * @event: the event to get the data from
101  */
102 void *ring_buffer_event_data(struct ring_buffer_event *event)
103 {
104         return rb_event_data(event);
105 }
106
107 #define for_each_buffer_cpu(buffer, cpu)                \
108         for_each_cpu_mask(cpu, buffer->cpumask)
109
110 #define TS_SHIFT        27
111 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
112 #define TS_DELTA_TEST   (~TS_MASK)
113
114 /*
115  * This hack stolen from mm/slob.c.
116  * We can store per page timing information in the page frame of the page.
117  * Thanks to Peter Zijlstra for suggesting this idea.
118  */
119 struct buffer_page {
120         u64              time_stamp;    /* page time stamp */
121         local_t          write;         /* index for next write */
122         local_t          commit;        /* write commited index */
123         unsigned         read;          /* index for next read */
124         struct list_head list;          /* list of free pages */
125         void *page;                     /* Actual data page */
126 };
127
128 /*
129  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
130  * this issue out.
131  */
132 static inline void free_buffer_page(struct buffer_page *bpage)
133 {
134         if (bpage->page)
135                 free_page((unsigned long)bpage->page);
136         kfree(bpage);
137 }
138
139 /*
140  * We need to fit the time_stamp delta into 27 bits.
141  */
142 static inline int test_time_stamp(u64 delta)
143 {
144         if (delta & TS_DELTA_TEST)
145                 return 1;
146         return 0;
147 }
148
149 #define BUF_PAGE_SIZE PAGE_SIZE
150
151 /*
152  * head_page == tail_page && head == tail then buffer is empty.
153  */
154 struct ring_buffer_per_cpu {
155         int                             cpu;
156         struct ring_buffer              *buffer;
157         raw_spinlock_t                  lock;
158         struct lock_class_key           lock_key;
159         struct list_head                pages;
160         struct buffer_page              *head_page;     /* read from head */
161         struct buffer_page              *tail_page;     /* write to tail */
162         struct buffer_page              *commit_page;   /* commited pages */
163         struct buffer_page              *reader_page;
164         unsigned long                   overrun;
165         unsigned long                   entries;
166         u64                             write_stamp;
167         u64                             read_stamp;
168         atomic_t                        record_disabled;
169 };
170
171 struct ring_buffer {
172         unsigned long                   size;
173         unsigned                        pages;
174         unsigned                        flags;
175         int                             cpus;
176         cpumask_t                       cpumask;
177         atomic_t                        record_disabled;
178
179         struct mutex                    mutex;
180
181         struct ring_buffer_per_cpu      **buffers;
182 };
183
184 struct ring_buffer_iter {
185         struct ring_buffer_per_cpu      *cpu_buffer;
186         unsigned long                   head;
187         struct buffer_page              *head_page;
188         u64                             read_stamp;
189 };
190
191 #define RB_WARN_ON(buffer, cond)                                \
192         do {                                                    \
193                 if (unlikely(cond)) {                           \
194                         atomic_inc(&buffer->record_disabled);   \
195                         WARN_ON(1);                             \
196                 }                                               \
197         } while (0)
198
199 #define RB_WARN_ON_RET(buffer, cond)                            \
200         do {                                                    \
201                 if (unlikely(cond)) {                           \
202                         atomic_inc(&buffer->record_disabled);   \
203                         WARN_ON(1);                             \
204                         return -1;                              \
205                 }                                               \
206         } while (0)
207
208 #define RB_WARN_ON_ONCE(buffer, cond)                           \
209         do {                                                    \
210                 static int once;                                \
211                 if (unlikely(cond) && !once) {                  \
212                         once++;                                 \
213                         atomic_inc(&buffer->record_disabled);   \
214                         WARN_ON(1);                             \
215                 }                                               \
216         } while (0)
217
218 /**
219  * check_pages - integrity check of buffer pages
220  * @cpu_buffer: CPU buffer with pages to test
221  *
222  * As a safty measure we check to make sure the data pages have not
223  * been corrupted.
224  */
225 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
226 {
227         struct list_head *head = &cpu_buffer->pages;
228         struct buffer_page *page, *tmp;
229
230         RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
231         RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
232
233         list_for_each_entry_safe(page, tmp, head, list) {
234                 RB_WARN_ON_RET(cpu_buffer,
235                                page->list.next->prev != &page->list);
236                 RB_WARN_ON_RET(cpu_buffer,
237                                page->list.prev->next != &page->list);
238         }
239
240         return 0;
241 }
242
243 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
244                              unsigned nr_pages)
245 {
246         struct list_head *head = &cpu_buffer->pages;
247         struct buffer_page *page, *tmp;
248         unsigned long addr;
249         LIST_HEAD(pages);
250         unsigned i;
251
252         for (i = 0; i < nr_pages; i++) {
253                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
254                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
255                 if (!page)
256                         goto free_pages;
257                 list_add(&page->list, &pages);
258
259                 addr = __get_free_page(GFP_KERNEL);
260                 if (!addr)
261                         goto free_pages;
262                 page->page = (void *)addr;
263         }
264
265         list_splice(&pages, head);
266
267         rb_check_pages(cpu_buffer);
268
269         return 0;
270
271  free_pages:
272         list_for_each_entry_safe(page, tmp, &pages, list) {
273                 list_del_init(&page->list);
274                 free_buffer_page(page);
275         }
276         return -ENOMEM;
277 }
278
279 static struct ring_buffer_per_cpu *
280 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
281 {
282         struct ring_buffer_per_cpu *cpu_buffer;
283         struct buffer_page *page;
284         unsigned long addr;
285         int ret;
286
287         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
288                                   GFP_KERNEL, cpu_to_node(cpu));
289         if (!cpu_buffer)
290                 return NULL;
291
292         cpu_buffer->cpu = cpu;
293         cpu_buffer->buffer = buffer;
294         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
295         INIT_LIST_HEAD(&cpu_buffer->pages);
296
297         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
298                             GFP_KERNEL, cpu_to_node(cpu));
299         if (!page)
300                 goto fail_free_buffer;
301
302         cpu_buffer->reader_page = page;
303         addr = __get_free_page(GFP_KERNEL);
304         if (!addr)
305                 goto fail_free_reader;
306         page->page = (void *)addr;
307
308         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
309
310         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
311         if (ret < 0)
312                 goto fail_free_reader;
313
314         cpu_buffer->head_page
315                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
316         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
317
318         return cpu_buffer;
319
320  fail_free_reader:
321         free_buffer_page(cpu_buffer->reader_page);
322
323  fail_free_buffer:
324         kfree(cpu_buffer);
325         return NULL;
326 }
327
328 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
329 {
330         struct list_head *head = &cpu_buffer->pages;
331         struct buffer_page *page, *tmp;
332
333         list_del_init(&cpu_buffer->reader_page->list);
334         free_buffer_page(cpu_buffer->reader_page);
335
336         list_for_each_entry_safe(page, tmp, head, list) {
337                 list_del_init(&page->list);
338                 free_buffer_page(page);
339         }
340         kfree(cpu_buffer);
341 }
342
343 /*
344  * Causes compile errors if the struct buffer_page gets bigger
345  * than the struct page.
346  */
347 extern int ring_buffer_page_too_big(void);
348
349 /**
350  * ring_buffer_alloc - allocate a new ring_buffer
351  * @size: the size in bytes that is needed.
352  * @flags: attributes to set for the ring buffer.
353  *
354  * Currently the only flag that is available is the RB_FL_OVERWRITE
355  * flag. This flag means that the buffer will overwrite old data
356  * when the buffer wraps. If this flag is not set, the buffer will
357  * drop data when the tail hits the head.
358  */
359 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
360 {
361         struct ring_buffer *buffer;
362         int bsize;
363         int cpu;
364
365         /* Paranoid! Optimizes out when all is well */
366         if (sizeof(struct buffer_page) > sizeof(struct page))
367                 ring_buffer_page_too_big();
368
369
370         /* keep it in its own cache line */
371         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
372                          GFP_KERNEL);
373         if (!buffer)
374                 return NULL;
375
376         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
377         buffer->flags = flags;
378
379         /* need at least two pages */
380         if (buffer->pages == 1)
381                 buffer->pages++;
382
383         buffer->cpumask = cpu_possible_map;
384         buffer->cpus = nr_cpu_ids;
385
386         bsize = sizeof(void *) * nr_cpu_ids;
387         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
388                                   GFP_KERNEL);
389         if (!buffer->buffers)
390                 goto fail_free_buffer;
391
392         for_each_buffer_cpu(buffer, cpu) {
393                 buffer->buffers[cpu] =
394                         rb_allocate_cpu_buffer(buffer, cpu);
395                 if (!buffer->buffers[cpu])
396                         goto fail_free_buffers;
397         }
398
399         mutex_init(&buffer->mutex);
400
401         return buffer;
402
403  fail_free_buffers:
404         for_each_buffer_cpu(buffer, cpu) {
405                 if (buffer->buffers[cpu])
406                         rb_free_cpu_buffer(buffer->buffers[cpu]);
407         }
408         kfree(buffer->buffers);
409
410  fail_free_buffer:
411         kfree(buffer);
412         return NULL;
413 }
414
415 /**
416  * ring_buffer_free - free a ring buffer.
417  * @buffer: the buffer to free.
418  */
419 void
420 ring_buffer_free(struct ring_buffer *buffer)
421 {
422         int cpu;
423
424         for_each_buffer_cpu(buffer, cpu)
425                 rb_free_cpu_buffer(buffer->buffers[cpu]);
426
427         kfree(buffer);
428 }
429
430 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
431
432 static void
433 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
434 {
435         struct buffer_page *page;
436         struct list_head *p;
437         unsigned i;
438
439         atomic_inc(&cpu_buffer->record_disabled);
440         synchronize_sched();
441
442         for (i = 0; i < nr_pages; i++) {
443                 BUG_ON(list_empty(&cpu_buffer->pages));
444                 p = cpu_buffer->pages.next;
445                 page = list_entry(p, struct buffer_page, list);
446                 list_del_init(&page->list);
447                 free_buffer_page(page);
448         }
449         BUG_ON(list_empty(&cpu_buffer->pages));
450
451         rb_reset_cpu(cpu_buffer);
452
453         rb_check_pages(cpu_buffer);
454
455         atomic_dec(&cpu_buffer->record_disabled);
456
457 }
458
459 static void
460 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
461                 struct list_head *pages, unsigned nr_pages)
462 {
463         struct buffer_page *page;
464         struct list_head *p;
465         unsigned i;
466
467         atomic_inc(&cpu_buffer->record_disabled);
468         synchronize_sched();
469
470         for (i = 0; i < nr_pages; i++) {
471                 BUG_ON(list_empty(pages));
472                 p = pages->next;
473                 page = list_entry(p, struct buffer_page, list);
474                 list_del_init(&page->list);
475                 list_add_tail(&page->list, &cpu_buffer->pages);
476         }
477         rb_reset_cpu(cpu_buffer);
478
479         rb_check_pages(cpu_buffer);
480
481         atomic_dec(&cpu_buffer->record_disabled);
482 }
483
484 /**
485  * ring_buffer_resize - resize the ring buffer
486  * @buffer: the buffer to resize.
487  * @size: the new size.
488  *
489  * The tracer is responsible for making sure that the buffer is
490  * not being used while changing the size.
491  * Note: We may be able to change the above requirement by using
492  *  RCU synchronizations.
493  *
494  * Minimum size is 2 * BUF_PAGE_SIZE.
495  *
496  * Returns -1 on failure.
497  */
498 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
499 {
500         struct ring_buffer_per_cpu *cpu_buffer;
501         unsigned nr_pages, rm_pages, new_pages;
502         struct buffer_page *page, *tmp;
503         unsigned long buffer_size;
504         unsigned long addr;
505         LIST_HEAD(pages);
506         int i, cpu;
507
508         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
509         size *= BUF_PAGE_SIZE;
510         buffer_size = buffer->pages * BUF_PAGE_SIZE;
511
512         /* we need a minimum of two pages */
513         if (size < BUF_PAGE_SIZE * 2)
514                 size = BUF_PAGE_SIZE * 2;
515
516         if (size == buffer_size)
517                 return size;
518
519         mutex_lock(&buffer->mutex);
520
521         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
522
523         if (size < buffer_size) {
524
525                 /* easy case, just free pages */
526                 BUG_ON(nr_pages >= buffer->pages);
527
528                 rm_pages = buffer->pages - nr_pages;
529
530                 for_each_buffer_cpu(buffer, cpu) {
531                         cpu_buffer = buffer->buffers[cpu];
532                         rb_remove_pages(cpu_buffer, rm_pages);
533                 }
534                 goto out;
535         }
536
537         /*
538          * This is a bit more difficult. We only want to add pages
539          * when we can allocate enough for all CPUs. We do this
540          * by allocating all the pages and storing them on a local
541          * link list. If we succeed in our allocation, then we
542          * add these pages to the cpu_buffers. Otherwise we just free
543          * them all and return -ENOMEM;
544          */
545         BUG_ON(nr_pages <= buffer->pages);
546         new_pages = nr_pages - buffer->pages;
547
548         for_each_buffer_cpu(buffer, cpu) {
549                 for (i = 0; i < new_pages; i++) {
550                         page = kzalloc_node(ALIGN(sizeof(*page),
551                                                   cache_line_size()),
552                                             GFP_KERNEL, cpu_to_node(cpu));
553                         if (!page)
554                                 goto free_pages;
555                         list_add(&page->list, &pages);
556                         addr = __get_free_page(GFP_KERNEL);
557                         if (!addr)
558                                 goto free_pages;
559                         page->page = (void *)addr;
560                 }
561         }
562
563         for_each_buffer_cpu(buffer, cpu) {
564                 cpu_buffer = buffer->buffers[cpu];
565                 rb_insert_pages(cpu_buffer, &pages, new_pages);
566         }
567
568         BUG_ON(!list_empty(&pages));
569
570  out:
571         buffer->pages = nr_pages;
572         mutex_unlock(&buffer->mutex);
573
574         return size;
575
576  free_pages:
577         list_for_each_entry_safe(page, tmp, &pages, list) {
578                 list_del_init(&page->list);
579                 free_buffer_page(page);
580         }
581         return -ENOMEM;
582 }
583
584 static inline int rb_null_event(struct ring_buffer_event *event)
585 {
586         return event->type == RINGBUF_TYPE_PADDING;
587 }
588
589 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
590 {
591         return page->page + index;
592 }
593
594 static inline struct ring_buffer_event *
595 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
596 {
597         return __rb_page_index(cpu_buffer->reader_page,
598                                cpu_buffer->reader_page->read);
599 }
600
601 static inline struct ring_buffer_event *
602 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
603 {
604         return __rb_page_index(cpu_buffer->head_page,
605                                cpu_buffer->head_page->read);
606 }
607
608 static inline struct ring_buffer_event *
609 rb_iter_head_event(struct ring_buffer_iter *iter)
610 {
611         return __rb_page_index(iter->head_page, iter->head);
612 }
613
614 static inline unsigned rb_page_write(struct buffer_page *bpage)
615 {
616         return local_read(&bpage->write);
617 }
618
619 static inline unsigned rb_page_commit(struct buffer_page *bpage)
620 {
621         return local_read(&bpage->commit);
622 }
623
624 /* Size is determined by what has been commited */
625 static inline unsigned rb_page_size(struct buffer_page *bpage)
626 {
627         return rb_page_commit(bpage);
628 }
629
630 static inline unsigned
631 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
632 {
633         return rb_page_commit(cpu_buffer->commit_page);
634 }
635
636 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
637 {
638         return rb_page_commit(cpu_buffer->head_page);
639 }
640
641 /*
642  * When the tail hits the head and the buffer is in overwrite mode,
643  * the head jumps to the next page and all content on the previous
644  * page is discarded. But before doing so, we update the overrun
645  * variable of the buffer.
646  */
647 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
648 {
649         struct ring_buffer_event *event;
650         unsigned long head;
651
652         for (head = 0; head < rb_head_size(cpu_buffer);
653              head += rb_event_length(event)) {
654
655                 event = __rb_page_index(cpu_buffer->head_page, head);
656                 BUG_ON(rb_null_event(event));
657                 /* Only count data entries */
658                 if (event->type != RINGBUF_TYPE_DATA)
659                         continue;
660                 cpu_buffer->overrun++;
661                 cpu_buffer->entries--;
662         }
663 }
664
665 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
666                                struct buffer_page **page)
667 {
668         struct list_head *p = (*page)->list.next;
669
670         if (p == &cpu_buffer->pages)
671                 p = p->next;
672
673         *page = list_entry(p, struct buffer_page, list);
674 }
675
676 static inline unsigned
677 rb_event_index(struct ring_buffer_event *event)
678 {
679         unsigned long addr = (unsigned long)event;
680
681         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
682 }
683
684 static inline int
685 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
686              struct ring_buffer_event *event)
687 {
688         unsigned long addr = (unsigned long)event;
689         unsigned long index;
690
691         index = rb_event_index(event);
692         addr &= PAGE_MASK;
693
694         return cpu_buffer->commit_page->page == (void *)addr &&
695                 rb_commit_index(cpu_buffer) == index;
696 }
697
698 static inline void
699 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
700                     struct ring_buffer_event *event)
701 {
702         unsigned long addr = (unsigned long)event;
703         unsigned long index;
704
705         index = rb_event_index(event);
706         addr &= PAGE_MASK;
707
708         while (cpu_buffer->commit_page->page != (void *)addr) {
709                 RB_WARN_ON(cpu_buffer,
710                            cpu_buffer->commit_page == cpu_buffer->tail_page);
711                 cpu_buffer->commit_page->commit =
712                         cpu_buffer->commit_page->write;
713                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
714                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
715         }
716
717         /* Now set the commit to the event's index */
718         local_set(&cpu_buffer->commit_page->commit, index);
719 }
720
721 static inline void
722 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
723 {
724         /*
725          * We only race with interrupts and NMIs on this CPU.
726          * If we own the commit event, then we can commit
727          * all others that interrupted us, since the interruptions
728          * are in stack format (they finish before they come
729          * back to us). This allows us to do a simple loop to
730          * assign the commit to the tail.
731          */
732         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
733                 cpu_buffer->commit_page->commit =
734                         cpu_buffer->commit_page->write;
735                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
736                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
737                 /* add barrier to keep gcc from optimizing too much */
738                 barrier();
739         }
740         while (rb_commit_index(cpu_buffer) !=
741                rb_page_write(cpu_buffer->commit_page)) {
742                 cpu_buffer->commit_page->commit =
743                         cpu_buffer->commit_page->write;
744                 barrier();
745         }
746 }
747
748 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
749 {
750         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
751         cpu_buffer->reader_page->read = 0;
752 }
753
754 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
755 {
756         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
757
758         /*
759          * The iterator could be on the reader page (it starts there).
760          * But the head could have moved, since the reader was
761          * found. Check for this case and assign the iterator
762          * to the head page instead of next.
763          */
764         if (iter->head_page == cpu_buffer->reader_page)
765                 iter->head_page = cpu_buffer->head_page;
766         else
767                 rb_inc_page(cpu_buffer, &iter->head_page);
768
769         iter->read_stamp = iter->head_page->time_stamp;
770         iter->head = 0;
771 }
772
773 /**
774  * ring_buffer_update_event - update event type and data
775  * @event: the even to update
776  * @type: the type of event
777  * @length: the size of the event field in the ring buffer
778  *
779  * Update the type and data fields of the event. The length
780  * is the actual size that is written to the ring buffer,
781  * and with this, we can determine what to place into the
782  * data field.
783  */
784 static inline void
785 rb_update_event(struct ring_buffer_event *event,
786                          unsigned type, unsigned length)
787 {
788         event->type = type;
789
790         switch (type) {
791
792         case RINGBUF_TYPE_PADDING:
793                 break;
794
795         case RINGBUF_TYPE_TIME_EXTEND:
796                 event->len =
797                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
798                         >> RB_ALIGNMENT_SHIFT;
799                 break;
800
801         case RINGBUF_TYPE_TIME_STAMP:
802                 event->len =
803                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
804                         >> RB_ALIGNMENT_SHIFT;
805                 break;
806
807         case RINGBUF_TYPE_DATA:
808                 length -= RB_EVNT_HDR_SIZE;
809                 if (length > RB_MAX_SMALL_DATA) {
810                         event->len = 0;
811                         event->array[0] = length;
812                 } else
813                         event->len =
814                                 (length + (RB_ALIGNMENT-1))
815                                 >> RB_ALIGNMENT_SHIFT;
816                 break;
817         default:
818                 BUG();
819         }
820 }
821
822 static inline unsigned rb_calculate_event_length(unsigned length)
823 {
824         struct ring_buffer_event event; /* Used only for sizeof array */
825
826         /* zero length can cause confusions */
827         if (!length)
828                 length = 1;
829
830         if (length > RB_MAX_SMALL_DATA)
831                 length += sizeof(event.array[0]);
832
833         length += RB_EVNT_HDR_SIZE;
834         length = ALIGN(length, RB_ALIGNMENT);
835
836         return length;
837 }
838
839 static struct ring_buffer_event *
840 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
841                   unsigned type, unsigned long length, u64 *ts)
842 {
843         struct buffer_page *tail_page, *head_page, *reader_page;
844         unsigned long tail, write;
845         struct ring_buffer *buffer = cpu_buffer->buffer;
846         struct ring_buffer_event *event;
847         unsigned long flags;
848
849         tail_page = cpu_buffer->tail_page;
850         write = local_add_return(length, &tail_page->write);
851         tail = write - length;
852
853         /* See if we shot pass the end of this buffer page */
854         if (write > BUF_PAGE_SIZE) {
855                 struct buffer_page *next_page = tail_page;
856
857                 local_irq_save(flags);
858                 __raw_spin_lock(&cpu_buffer->lock);
859
860                 rb_inc_page(cpu_buffer, &next_page);
861
862                 head_page = cpu_buffer->head_page;
863                 reader_page = cpu_buffer->reader_page;
864
865                 /* we grabbed the lock before incrementing */
866                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
867
868                 /*
869                  * If for some reason, we had an interrupt storm that made
870                  * it all the way around the buffer, bail, and warn
871                  * about it.
872                  */
873                 if (unlikely(next_page == cpu_buffer->commit_page)) {
874                         WARN_ON_ONCE(1);
875                         goto out_unlock;
876                 }
877
878                 if (next_page == head_page) {
879                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
880                                 /* reset write */
881                                 if (tail <= BUF_PAGE_SIZE)
882                                         local_set(&tail_page->write, tail);
883                                 goto out_unlock;
884                         }
885
886                         /* tail_page has not moved yet? */
887                         if (tail_page == cpu_buffer->tail_page) {
888                                 /* count overflows */
889                                 rb_update_overflow(cpu_buffer);
890
891                                 rb_inc_page(cpu_buffer, &head_page);
892                                 cpu_buffer->head_page = head_page;
893                                 cpu_buffer->head_page->read = 0;
894                         }
895                 }
896
897                 /*
898                  * If the tail page is still the same as what we think
899                  * it is, then it is up to us to update the tail
900                  * pointer.
901                  */
902                 if (tail_page == cpu_buffer->tail_page) {
903                         local_set(&next_page->write, 0);
904                         local_set(&next_page->commit, 0);
905                         cpu_buffer->tail_page = next_page;
906
907                         /* reread the time stamp */
908                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
909                         cpu_buffer->tail_page->time_stamp = *ts;
910                 }
911
912                 /*
913                  * The actual tail page has moved forward.
914                  */
915                 if (tail < BUF_PAGE_SIZE) {
916                         /* Mark the rest of the page with padding */
917                         event = __rb_page_index(tail_page, tail);
918                         event->type = RINGBUF_TYPE_PADDING;
919                 }
920
921                 if (tail <= BUF_PAGE_SIZE)
922                         /* Set the write back to the previous setting */
923                         local_set(&tail_page->write, tail);
924
925                 /*
926                  * If this was a commit entry that failed,
927                  * increment that too
928                  */
929                 if (tail_page == cpu_buffer->commit_page &&
930                     tail == rb_commit_index(cpu_buffer)) {
931                         rb_set_commit_to_write(cpu_buffer);
932                 }
933
934                 __raw_spin_unlock(&cpu_buffer->lock);
935                 local_irq_restore(flags);
936
937                 /* fail and let the caller try again */
938                 return ERR_PTR(-EAGAIN);
939         }
940
941         /* We reserved something on the buffer */
942
943         BUG_ON(write > BUF_PAGE_SIZE);
944
945         event = __rb_page_index(tail_page, tail);
946         rb_update_event(event, type, length);
947
948         /*
949          * If this is a commit and the tail is zero, then update
950          * this page's time stamp.
951          */
952         if (!tail && rb_is_commit(cpu_buffer, event))
953                 cpu_buffer->commit_page->time_stamp = *ts;
954
955         return event;
956
957  out_unlock:
958         __raw_spin_unlock(&cpu_buffer->lock);
959         local_irq_restore(flags);
960         return NULL;
961 }
962
963 static int
964 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
965                   u64 *ts, u64 *delta)
966 {
967         struct ring_buffer_event *event;
968         static int once;
969         int ret;
970
971         if (unlikely(*delta > (1ULL << 59) && !once++)) {
972                 printk(KERN_WARNING "Delta way too big! %llu"
973                        " ts=%llu write stamp = %llu\n",
974                        (unsigned long long)*delta,
975                        (unsigned long long)*ts,
976                        (unsigned long long)cpu_buffer->write_stamp);
977                 WARN_ON(1);
978         }
979
980         /*
981          * The delta is too big, we to add a
982          * new timestamp.
983          */
984         event = __rb_reserve_next(cpu_buffer,
985                                   RINGBUF_TYPE_TIME_EXTEND,
986                                   RB_LEN_TIME_EXTEND,
987                                   ts);
988         if (!event)
989                 return -EBUSY;
990
991         if (PTR_ERR(event) == -EAGAIN)
992                 return -EAGAIN;
993
994         /* Only a commited time event can update the write stamp */
995         if (rb_is_commit(cpu_buffer, event)) {
996                 /*
997                  * If this is the first on the page, then we need to
998                  * update the page itself, and just put in a zero.
999                  */
1000                 if (rb_event_index(event)) {
1001                         event->time_delta = *delta & TS_MASK;
1002                         event->array[0] = *delta >> TS_SHIFT;
1003                 } else {
1004                         cpu_buffer->commit_page->time_stamp = *ts;
1005                         event->time_delta = 0;
1006                         event->array[0] = 0;
1007                 }
1008                 cpu_buffer->write_stamp = *ts;
1009                 /* let the caller know this was the commit */
1010                 ret = 1;
1011         } else {
1012                 /* Darn, this is just wasted space */
1013                 event->time_delta = 0;
1014                 event->array[0] = 0;
1015                 ret = 0;
1016         }
1017
1018         *delta = 0;
1019
1020         return ret;
1021 }
1022
1023 static struct ring_buffer_event *
1024 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1025                       unsigned type, unsigned long length)
1026 {
1027         struct ring_buffer_event *event;
1028         u64 ts, delta;
1029         int commit = 0;
1030
1031  again:
1032         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1033
1034         /*
1035          * Only the first commit can update the timestamp.
1036          * Yes there is a race here. If an interrupt comes in
1037          * just after the conditional and it traces too, then it
1038          * will also check the deltas. More than one timestamp may
1039          * also be made. But only the entry that did the actual
1040          * commit will be something other than zero.
1041          */
1042         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1043             rb_page_write(cpu_buffer->tail_page) ==
1044             rb_commit_index(cpu_buffer)) {
1045
1046                 delta = ts - cpu_buffer->write_stamp;
1047
1048                 /* make sure this delta is calculated here */
1049                 barrier();
1050
1051                 /* Did the write stamp get updated already? */
1052                 if (unlikely(ts < cpu_buffer->write_stamp))
1053                         goto again;
1054
1055                 if (test_time_stamp(delta)) {
1056
1057                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1058
1059                         if (commit == -EBUSY)
1060                                 return NULL;
1061
1062                         if (commit == -EAGAIN)
1063                                 goto again;
1064
1065                         RB_WARN_ON(cpu_buffer, commit < 0);
1066                 }
1067         } else
1068                 /* Non commits have zero deltas */
1069                 delta = 0;
1070
1071         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1072         if (PTR_ERR(event) == -EAGAIN)
1073                 goto again;
1074
1075         if (!event) {
1076                 if (unlikely(commit))
1077                         /*
1078                          * Ouch! We needed a timestamp and it was commited. But
1079                          * we didn't get our event reserved.
1080                          */
1081                         rb_set_commit_to_write(cpu_buffer);
1082                 return NULL;
1083         }
1084
1085         /*
1086          * If the timestamp was commited, make the commit our entry
1087          * now so that we will update it when needed.
1088          */
1089         if (commit)
1090                 rb_set_commit_event(cpu_buffer, event);
1091         else if (!rb_is_commit(cpu_buffer, event))
1092                 delta = 0;
1093
1094         event->time_delta = delta;
1095
1096         return event;
1097 }
1098
1099 static DEFINE_PER_CPU(int, rb_need_resched);
1100
1101 /**
1102  * ring_buffer_lock_reserve - reserve a part of the buffer
1103  * @buffer: the ring buffer to reserve from
1104  * @length: the length of the data to reserve (excluding event header)
1105  * @flags: a pointer to save the interrupt flags
1106  *
1107  * Returns a reseverd event on the ring buffer to copy directly to.
1108  * The user of this interface will need to get the body to write into
1109  * and can use the ring_buffer_event_data() interface.
1110  *
1111  * The length is the length of the data needed, not the event length
1112  * which also includes the event header.
1113  *
1114  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1115  * If NULL is returned, then nothing has been allocated or locked.
1116  */
1117 struct ring_buffer_event *
1118 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1119                          unsigned long length,
1120                          unsigned long *flags)
1121 {
1122         struct ring_buffer_per_cpu *cpu_buffer;
1123         struct ring_buffer_event *event;
1124         int cpu, resched;
1125
1126         if (atomic_read(&buffer->record_disabled))
1127                 return NULL;
1128
1129         /* If we are tracing schedule, we don't want to recurse */
1130         resched = ftrace_preempt_disable();
1131
1132         cpu = raw_smp_processor_id();
1133
1134         if (!cpu_isset(cpu, buffer->cpumask))
1135                 goto out;
1136
1137         cpu_buffer = buffer->buffers[cpu];
1138
1139         if (atomic_read(&cpu_buffer->record_disabled))
1140                 goto out;
1141
1142         length = rb_calculate_event_length(length);
1143         if (length > BUF_PAGE_SIZE)
1144                 goto out;
1145
1146         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1147         if (!event)
1148                 goto out;
1149
1150         /*
1151          * Need to store resched state on this cpu.
1152          * Only the first needs to.
1153          */
1154
1155         if (preempt_count() == 1)
1156                 per_cpu(rb_need_resched, cpu) = resched;
1157
1158         return event;
1159
1160  out:
1161         ftrace_preempt_enable(resched);
1162         return NULL;
1163 }
1164
1165 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1166                       struct ring_buffer_event *event)
1167 {
1168         cpu_buffer->entries++;
1169
1170         /* Only process further if we own the commit */
1171         if (!rb_is_commit(cpu_buffer, event))
1172                 return;
1173
1174         cpu_buffer->write_stamp += event->time_delta;
1175
1176         rb_set_commit_to_write(cpu_buffer);
1177 }
1178
1179 /**
1180  * ring_buffer_unlock_commit - commit a reserved
1181  * @buffer: The buffer to commit to
1182  * @event: The event pointer to commit.
1183  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1184  *
1185  * This commits the data to the ring buffer, and releases any locks held.
1186  *
1187  * Must be paired with ring_buffer_lock_reserve.
1188  */
1189 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1190                               struct ring_buffer_event *event,
1191                               unsigned long flags)
1192 {
1193         struct ring_buffer_per_cpu *cpu_buffer;
1194         int cpu = raw_smp_processor_id();
1195
1196         cpu_buffer = buffer->buffers[cpu];
1197
1198         rb_commit(cpu_buffer, event);
1199
1200         /*
1201          * Only the last preempt count needs to restore preemption.
1202          */
1203         if (preempt_count() == 1)
1204                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1205         else
1206                 preempt_enable_no_resched_notrace();
1207
1208         return 0;
1209 }
1210
1211 /**
1212  * ring_buffer_write - write data to the buffer without reserving
1213  * @buffer: The ring buffer to write to.
1214  * @length: The length of the data being written (excluding the event header)
1215  * @data: The data to write to the buffer.
1216  *
1217  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1218  * one function. If you already have the data to write to the buffer, it
1219  * may be easier to simply call this function.
1220  *
1221  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1222  * and not the length of the event which would hold the header.
1223  */
1224 int ring_buffer_write(struct ring_buffer *buffer,
1225                         unsigned long length,
1226                         void *data)
1227 {
1228         struct ring_buffer_per_cpu *cpu_buffer;
1229         struct ring_buffer_event *event;
1230         unsigned long event_length;
1231         void *body;
1232         int ret = -EBUSY;
1233         int cpu, resched;
1234
1235         if (atomic_read(&buffer->record_disabled))
1236                 return -EBUSY;
1237
1238         resched = ftrace_preempt_disable();
1239
1240         cpu = raw_smp_processor_id();
1241
1242         if (!cpu_isset(cpu, buffer->cpumask))
1243                 goto out;
1244
1245         cpu_buffer = buffer->buffers[cpu];
1246
1247         if (atomic_read(&cpu_buffer->record_disabled))
1248                 goto out;
1249
1250         event_length = rb_calculate_event_length(length);
1251         event = rb_reserve_next_event(cpu_buffer,
1252                                       RINGBUF_TYPE_DATA, event_length);
1253         if (!event)
1254                 goto out;
1255
1256         body = rb_event_data(event);
1257
1258         memcpy(body, data, length);
1259
1260         rb_commit(cpu_buffer, event);
1261
1262         ret = 0;
1263  out:
1264         ftrace_preempt_enable(resched);
1265
1266         return ret;
1267 }
1268
1269 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1270 {
1271         struct buffer_page *reader = cpu_buffer->reader_page;
1272         struct buffer_page *head = cpu_buffer->head_page;
1273         struct buffer_page *commit = cpu_buffer->commit_page;
1274
1275         return reader->read == rb_page_commit(reader) &&
1276                 (commit == reader ||
1277                  (commit == head &&
1278                   head->read == rb_page_commit(commit)));
1279 }
1280
1281 /**
1282  * ring_buffer_record_disable - stop all writes into the buffer
1283  * @buffer: The ring buffer to stop writes to.
1284  *
1285  * This prevents all writes to the buffer. Any attempt to write
1286  * to the buffer after this will fail and return NULL.
1287  *
1288  * The caller should call synchronize_sched() after this.
1289  */
1290 void ring_buffer_record_disable(struct ring_buffer *buffer)
1291 {
1292         atomic_inc(&buffer->record_disabled);
1293 }
1294
1295 /**
1296  * ring_buffer_record_enable - enable writes to the buffer
1297  * @buffer: The ring buffer to enable writes
1298  *
1299  * Note, multiple disables will need the same number of enables
1300  * to truely enable the writing (much like preempt_disable).
1301  */
1302 void ring_buffer_record_enable(struct ring_buffer *buffer)
1303 {
1304         atomic_dec(&buffer->record_disabled);
1305 }
1306
1307 /**
1308  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1309  * @buffer: The ring buffer to stop writes to.
1310  * @cpu: The CPU buffer to stop
1311  *
1312  * This prevents all writes to the buffer. Any attempt to write
1313  * to the buffer after this will fail and return NULL.
1314  *
1315  * The caller should call synchronize_sched() after this.
1316  */
1317 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1318 {
1319         struct ring_buffer_per_cpu *cpu_buffer;
1320
1321         if (!cpu_isset(cpu, buffer->cpumask))
1322                 return;
1323
1324         cpu_buffer = buffer->buffers[cpu];
1325         atomic_inc(&cpu_buffer->record_disabled);
1326 }
1327
1328 /**
1329  * ring_buffer_record_enable_cpu - enable writes to the buffer
1330  * @buffer: The ring buffer to enable writes
1331  * @cpu: The CPU to enable.
1332  *
1333  * Note, multiple disables will need the same number of enables
1334  * to truely enable the writing (much like preempt_disable).
1335  */
1336 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1337 {
1338         struct ring_buffer_per_cpu *cpu_buffer;
1339
1340         if (!cpu_isset(cpu, buffer->cpumask))
1341                 return;
1342
1343         cpu_buffer = buffer->buffers[cpu];
1344         atomic_dec(&cpu_buffer->record_disabled);
1345 }
1346
1347 /**
1348  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1349  * @buffer: The ring buffer
1350  * @cpu: The per CPU buffer to get the entries from.
1351  */
1352 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1353 {
1354         struct ring_buffer_per_cpu *cpu_buffer;
1355
1356         if (!cpu_isset(cpu, buffer->cpumask))
1357                 return 0;
1358
1359         cpu_buffer = buffer->buffers[cpu];
1360         return cpu_buffer->entries;
1361 }
1362
1363 /**
1364  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1365  * @buffer: The ring buffer
1366  * @cpu: The per CPU buffer to get the number of overruns from
1367  */
1368 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1369 {
1370         struct ring_buffer_per_cpu *cpu_buffer;
1371
1372         if (!cpu_isset(cpu, buffer->cpumask))
1373                 return 0;
1374
1375         cpu_buffer = buffer->buffers[cpu];
1376         return cpu_buffer->overrun;
1377 }
1378
1379 /**
1380  * ring_buffer_entries - get the number of entries in a buffer
1381  * @buffer: The ring buffer
1382  *
1383  * Returns the total number of entries in the ring buffer
1384  * (all CPU entries)
1385  */
1386 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1387 {
1388         struct ring_buffer_per_cpu *cpu_buffer;
1389         unsigned long entries = 0;
1390         int cpu;
1391
1392         /* if you care about this being correct, lock the buffer */
1393         for_each_buffer_cpu(buffer, cpu) {
1394                 cpu_buffer = buffer->buffers[cpu];
1395                 entries += cpu_buffer->entries;
1396         }
1397
1398         return entries;
1399 }
1400
1401 /**
1402  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1403  * @buffer: The ring buffer
1404  *
1405  * Returns the total number of overruns in the ring buffer
1406  * (all CPU entries)
1407  */
1408 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1409 {
1410         struct ring_buffer_per_cpu *cpu_buffer;
1411         unsigned long overruns = 0;
1412         int cpu;
1413
1414         /* if you care about this being correct, lock the buffer */
1415         for_each_buffer_cpu(buffer, cpu) {
1416                 cpu_buffer = buffer->buffers[cpu];
1417                 overruns += cpu_buffer->overrun;
1418         }
1419
1420         return overruns;
1421 }
1422
1423 /**
1424  * ring_buffer_iter_reset - reset an iterator
1425  * @iter: The iterator to reset
1426  *
1427  * Resets the iterator, so that it will start from the beginning
1428  * again.
1429  */
1430 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1431 {
1432         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1433
1434         /* Iterator usage is expected to have record disabled */
1435         if (list_empty(&cpu_buffer->reader_page->list)) {
1436                 iter->head_page = cpu_buffer->head_page;
1437                 iter->head = cpu_buffer->head_page->read;
1438         } else {
1439                 iter->head_page = cpu_buffer->reader_page;
1440                 iter->head = cpu_buffer->reader_page->read;
1441         }
1442         if (iter->head)
1443                 iter->read_stamp = cpu_buffer->read_stamp;
1444         else
1445                 iter->read_stamp = iter->head_page->time_stamp;
1446 }
1447
1448 /**
1449  * ring_buffer_iter_empty - check if an iterator has no more to read
1450  * @iter: The iterator to check
1451  */
1452 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1453 {
1454         struct ring_buffer_per_cpu *cpu_buffer;
1455
1456         cpu_buffer = iter->cpu_buffer;
1457
1458         return iter->head_page == cpu_buffer->commit_page &&
1459                 iter->head == rb_commit_index(cpu_buffer);
1460 }
1461
1462 static void
1463 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1464                      struct ring_buffer_event *event)
1465 {
1466         u64 delta;
1467
1468         switch (event->type) {
1469         case RINGBUF_TYPE_PADDING:
1470                 return;
1471
1472         case RINGBUF_TYPE_TIME_EXTEND:
1473                 delta = event->array[0];
1474                 delta <<= TS_SHIFT;
1475                 delta += event->time_delta;
1476                 cpu_buffer->read_stamp += delta;
1477                 return;
1478
1479         case RINGBUF_TYPE_TIME_STAMP:
1480                 /* FIXME: not implemented */
1481                 return;
1482
1483         case RINGBUF_TYPE_DATA:
1484                 cpu_buffer->read_stamp += event->time_delta;
1485                 return;
1486
1487         default:
1488                 BUG();
1489         }
1490         return;
1491 }
1492
1493 static void
1494 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1495                           struct ring_buffer_event *event)
1496 {
1497         u64 delta;
1498
1499         switch (event->type) {
1500         case RINGBUF_TYPE_PADDING:
1501                 return;
1502
1503         case RINGBUF_TYPE_TIME_EXTEND:
1504                 delta = event->array[0];
1505                 delta <<= TS_SHIFT;
1506                 delta += event->time_delta;
1507                 iter->read_stamp += delta;
1508                 return;
1509
1510         case RINGBUF_TYPE_TIME_STAMP:
1511                 /* FIXME: not implemented */
1512                 return;
1513
1514         case RINGBUF_TYPE_DATA:
1515                 iter->read_stamp += event->time_delta;
1516                 return;
1517
1518         default:
1519                 BUG();
1520         }
1521         return;
1522 }
1523
1524 static struct buffer_page *
1525 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1526 {
1527         struct buffer_page *reader = NULL;
1528         unsigned long flags;
1529
1530         local_irq_save(flags);
1531         __raw_spin_lock(&cpu_buffer->lock);
1532
1533  again:
1534         reader = cpu_buffer->reader_page;
1535
1536         /* If there's more to read, return this page */
1537         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1538                 goto out;
1539
1540         /* Never should we have an index greater than the size */
1541         RB_WARN_ON(cpu_buffer,
1542                    cpu_buffer->reader_page->read > rb_page_size(reader));
1543
1544         /* check if we caught up to the tail */
1545         reader = NULL;
1546         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1547                 goto out;
1548
1549         /*
1550          * Splice the empty reader page into the list around the head.
1551          * Reset the reader page to size zero.
1552          */
1553
1554         reader = cpu_buffer->head_page;
1555         cpu_buffer->reader_page->list.next = reader->list.next;
1556         cpu_buffer->reader_page->list.prev = reader->list.prev;
1557
1558         local_set(&cpu_buffer->reader_page->write, 0);
1559         local_set(&cpu_buffer->reader_page->commit, 0);
1560
1561         /* Make the reader page now replace the head */
1562         reader->list.prev->next = &cpu_buffer->reader_page->list;
1563         reader->list.next->prev = &cpu_buffer->reader_page->list;
1564
1565         /*
1566          * If the tail is on the reader, then we must set the head
1567          * to the inserted page, otherwise we set it one before.
1568          */
1569         cpu_buffer->head_page = cpu_buffer->reader_page;
1570
1571         if (cpu_buffer->commit_page != reader)
1572                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1573
1574         /* Finally update the reader page to the new head */
1575         cpu_buffer->reader_page = reader;
1576         rb_reset_reader_page(cpu_buffer);
1577
1578         goto again;
1579
1580  out:
1581         __raw_spin_unlock(&cpu_buffer->lock);
1582         local_irq_restore(flags);
1583
1584         return reader;
1585 }
1586
1587 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1588 {
1589         struct ring_buffer_event *event;
1590         struct buffer_page *reader;
1591         unsigned length;
1592
1593         reader = rb_get_reader_page(cpu_buffer);
1594
1595         /* This function should not be called when buffer is empty */
1596         BUG_ON(!reader);
1597
1598         event = rb_reader_event(cpu_buffer);
1599
1600         if (event->type == RINGBUF_TYPE_DATA)
1601                 cpu_buffer->entries--;
1602
1603         rb_update_read_stamp(cpu_buffer, event);
1604
1605         length = rb_event_length(event);
1606         cpu_buffer->reader_page->read += length;
1607 }
1608
1609 static void rb_advance_iter(struct ring_buffer_iter *iter)
1610 {
1611         struct ring_buffer *buffer;
1612         struct ring_buffer_per_cpu *cpu_buffer;
1613         struct ring_buffer_event *event;
1614         unsigned length;
1615
1616         cpu_buffer = iter->cpu_buffer;
1617         buffer = cpu_buffer->buffer;
1618
1619         /*
1620          * Check if we are at the end of the buffer.
1621          */
1622         if (iter->head >= rb_page_size(iter->head_page)) {
1623                 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1624                 rb_inc_iter(iter);
1625                 return;
1626         }
1627
1628         event = rb_iter_head_event(iter);
1629
1630         length = rb_event_length(event);
1631
1632         /*
1633          * This should not be called to advance the header if we are
1634          * at the tail of the buffer.
1635          */
1636         BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1637                (iter->head + length > rb_commit_index(cpu_buffer)));
1638
1639         rb_update_iter_read_stamp(iter, event);
1640
1641         iter->head += length;
1642
1643         /* check for end of page padding */
1644         if ((iter->head >= rb_page_size(iter->head_page)) &&
1645             (iter->head_page != cpu_buffer->commit_page))
1646                 rb_advance_iter(iter);
1647 }
1648
1649 /**
1650  * ring_buffer_peek - peek at the next event to be read
1651  * @buffer: The ring buffer to read
1652  * @cpu: The cpu to peak at
1653  * @ts: The timestamp counter of this event.
1654  *
1655  * This will return the event that will be read next, but does
1656  * not consume the data.
1657  */
1658 struct ring_buffer_event *
1659 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1660 {
1661         struct ring_buffer_per_cpu *cpu_buffer;
1662         struct ring_buffer_event *event;
1663         struct buffer_page *reader;
1664
1665         if (!cpu_isset(cpu, buffer->cpumask))
1666                 return NULL;
1667
1668         cpu_buffer = buffer->buffers[cpu];
1669
1670  again:
1671         reader = rb_get_reader_page(cpu_buffer);
1672         if (!reader)
1673                 return NULL;
1674
1675         event = rb_reader_event(cpu_buffer);
1676
1677         switch (event->type) {
1678         case RINGBUF_TYPE_PADDING:
1679                 RB_WARN_ON(cpu_buffer, 1);
1680                 rb_advance_reader(cpu_buffer);
1681                 return NULL;
1682
1683         case RINGBUF_TYPE_TIME_EXTEND:
1684                 /* Internal data, OK to advance */
1685                 rb_advance_reader(cpu_buffer);
1686                 goto again;
1687
1688         case RINGBUF_TYPE_TIME_STAMP:
1689                 /* FIXME: not implemented */
1690                 rb_advance_reader(cpu_buffer);
1691                 goto again;
1692
1693         case RINGBUF_TYPE_DATA:
1694                 if (ts) {
1695                         *ts = cpu_buffer->read_stamp + event->time_delta;
1696                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1697                 }
1698                 return event;
1699
1700         default:
1701                 BUG();
1702         }
1703
1704         return NULL;
1705 }
1706
1707 /**
1708  * ring_buffer_iter_peek - peek at the next event to be read
1709  * @iter: The ring buffer iterator
1710  * @ts: The timestamp counter of this event.
1711  *
1712  * This will return the event that will be read next, but does
1713  * not increment the iterator.
1714  */
1715 struct ring_buffer_event *
1716 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1717 {
1718         struct ring_buffer *buffer;
1719         struct ring_buffer_per_cpu *cpu_buffer;
1720         struct ring_buffer_event *event;
1721
1722         if (ring_buffer_iter_empty(iter))
1723                 return NULL;
1724
1725         cpu_buffer = iter->cpu_buffer;
1726         buffer = cpu_buffer->buffer;
1727
1728  again:
1729         if (rb_per_cpu_empty(cpu_buffer))
1730                 return NULL;
1731
1732         event = rb_iter_head_event(iter);
1733
1734         switch (event->type) {
1735         case RINGBUF_TYPE_PADDING:
1736                 rb_inc_iter(iter);
1737                 goto again;
1738
1739         case RINGBUF_TYPE_TIME_EXTEND:
1740                 /* Internal data, OK to advance */
1741                 rb_advance_iter(iter);
1742                 goto again;
1743
1744         case RINGBUF_TYPE_TIME_STAMP:
1745                 /* FIXME: not implemented */
1746                 rb_advance_iter(iter);
1747                 goto again;
1748
1749         case RINGBUF_TYPE_DATA:
1750                 if (ts) {
1751                         *ts = iter->read_stamp + event->time_delta;
1752                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1753                 }
1754                 return event;
1755
1756         default:
1757                 BUG();
1758         }
1759
1760         return NULL;
1761 }
1762
1763 /**
1764  * ring_buffer_consume - return an event and consume it
1765  * @buffer: The ring buffer to get the next event from
1766  *
1767  * Returns the next event in the ring buffer, and that event is consumed.
1768  * Meaning, that sequential reads will keep returning a different event,
1769  * and eventually empty the ring buffer if the producer is slower.
1770  */
1771 struct ring_buffer_event *
1772 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1773 {
1774         struct ring_buffer_per_cpu *cpu_buffer;
1775         struct ring_buffer_event *event;
1776
1777         if (!cpu_isset(cpu, buffer->cpumask))
1778                 return NULL;
1779
1780         event = ring_buffer_peek(buffer, cpu, ts);
1781         if (!event)
1782                 return NULL;
1783
1784         cpu_buffer = buffer->buffers[cpu];
1785         rb_advance_reader(cpu_buffer);
1786
1787         return event;
1788 }
1789
1790 /**
1791  * ring_buffer_read_start - start a non consuming read of the buffer
1792  * @buffer: The ring buffer to read from
1793  * @cpu: The cpu buffer to iterate over
1794  *
1795  * This starts up an iteration through the buffer. It also disables
1796  * the recording to the buffer until the reading is finished.
1797  * This prevents the reading from being corrupted. This is not
1798  * a consuming read, so a producer is not expected.
1799  *
1800  * Must be paired with ring_buffer_finish.
1801  */
1802 struct ring_buffer_iter *
1803 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1804 {
1805         struct ring_buffer_per_cpu *cpu_buffer;
1806         struct ring_buffer_iter *iter;
1807         unsigned long flags;
1808
1809         if (!cpu_isset(cpu, buffer->cpumask))
1810                 return NULL;
1811
1812         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1813         if (!iter)
1814                 return NULL;
1815
1816         cpu_buffer = buffer->buffers[cpu];
1817
1818         iter->cpu_buffer = cpu_buffer;
1819
1820         atomic_inc(&cpu_buffer->record_disabled);
1821         synchronize_sched();
1822
1823         local_irq_save(flags);
1824         __raw_spin_lock(&cpu_buffer->lock);
1825         ring_buffer_iter_reset(iter);
1826         __raw_spin_unlock(&cpu_buffer->lock);
1827         local_irq_restore(flags);
1828
1829         return iter;
1830 }
1831
1832 /**
1833  * ring_buffer_finish - finish reading the iterator of the buffer
1834  * @iter: The iterator retrieved by ring_buffer_start
1835  *
1836  * This re-enables the recording to the buffer, and frees the
1837  * iterator.
1838  */
1839 void
1840 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1841 {
1842         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1843
1844         atomic_dec(&cpu_buffer->record_disabled);
1845         kfree(iter);
1846 }
1847
1848 /**
1849  * ring_buffer_read - read the next item in the ring buffer by the iterator
1850  * @iter: The ring buffer iterator
1851  * @ts: The time stamp of the event read.
1852  *
1853  * This reads the next event in the ring buffer and increments the iterator.
1854  */
1855 struct ring_buffer_event *
1856 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1857 {
1858         struct ring_buffer_event *event;
1859
1860         event = ring_buffer_iter_peek(iter, ts);
1861         if (!event)
1862                 return NULL;
1863
1864         rb_advance_iter(iter);
1865
1866         return event;
1867 }
1868
1869 /**
1870  * ring_buffer_size - return the size of the ring buffer (in bytes)
1871  * @buffer: The ring buffer.
1872  */
1873 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1874 {
1875         return BUF_PAGE_SIZE * buffer->pages;
1876 }
1877
1878 static void
1879 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1880 {
1881         cpu_buffer->head_page
1882                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1883         local_set(&cpu_buffer->head_page->write, 0);
1884         local_set(&cpu_buffer->head_page->commit, 0);
1885
1886         cpu_buffer->head_page->read = 0;
1887
1888         cpu_buffer->tail_page = cpu_buffer->head_page;
1889         cpu_buffer->commit_page = cpu_buffer->head_page;
1890
1891         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1892         local_set(&cpu_buffer->reader_page->write, 0);
1893         local_set(&cpu_buffer->reader_page->commit, 0);
1894         cpu_buffer->reader_page->read = 0;
1895
1896         cpu_buffer->overrun = 0;
1897         cpu_buffer->entries = 0;
1898 }
1899
1900 /**
1901  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1902  * @buffer: The ring buffer to reset a per cpu buffer of
1903  * @cpu: The CPU buffer to be reset
1904  */
1905 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1906 {
1907         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1908         unsigned long flags;
1909
1910         if (!cpu_isset(cpu, buffer->cpumask))
1911                 return;
1912
1913         local_irq_save(flags);
1914         __raw_spin_lock(&cpu_buffer->lock);
1915
1916         rb_reset_cpu(cpu_buffer);
1917
1918         __raw_spin_unlock(&cpu_buffer->lock);
1919         local_irq_restore(flags);
1920 }
1921
1922 /**
1923  * ring_buffer_reset - reset a ring buffer
1924  * @buffer: The ring buffer to reset all cpu buffers
1925  */
1926 void ring_buffer_reset(struct ring_buffer *buffer)
1927 {
1928         int cpu;
1929
1930         for_each_buffer_cpu(buffer, cpu)
1931                 ring_buffer_reset_cpu(buffer, cpu);
1932 }
1933
1934 /**
1935  * rind_buffer_empty - is the ring buffer empty?
1936  * @buffer: The ring buffer to test
1937  */
1938 int ring_buffer_empty(struct ring_buffer *buffer)
1939 {
1940         struct ring_buffer_per_cpu *cpu_buffer;
1941         int cpu;
1942
1943         /* yes this is racy, but if you don't like the race, lock the buffer */
1944         for_each_buffer_cpu(buffer, cpu) {
1945                 cpu_buffer = buffer->buffers[cpu];
1946                 if (!rb_per_cpu_empty(cpu_buffer))
1947                         return 0;
1948         }
1949         return 1;
1950 }
1951
1952 /**
1953  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
1954  * @buffer: The ring buffer
1955  * @cpu: The CPU buffer to test
1956  */
1957 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
1958 {
1959         struct ring_buffer_per_cpu *cpu_buffer;
1960
1961         if (!cpu_isset(cpu, buffer->cpumask))
1962                 return 1;
1963
1964         cpu_buffer = buffer->buffers[cpu];
1965         return rb_per_cpu_empty(cpu_buffer);
1966 }
1967
1968 /**
1969  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
1970  * @buffer_a: One buffer to swap with
1971  * @buffer_b: The other buffer to swap with
1972  *
1973  * This function is useful for tracers that want to take a "snapshot"
1974  * of a CPU buffer and has another back up buffer lying around.
1975  * it is expected that the tracer handles the cpu buffer not being
1976  * used at the moment.
1977  */
1978 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
1979                          struct ring_buffer *buffer_b, int cpu)
1980 {
1981         struct ring_buffer_per_cpu *cpu_buffer_a;
1982         struct ring_buffer_per_cpu *cpu_buffer_b;
1983
1984         if (!cpu_isset(cpu, buffer_a->cpumask) ||
1985             !cpu_isset(cpu, buffer_b->cpumask))
1986                 return -EINVAL;
1987
1988         /* At least make sure the two buffers are somewhat the same */
1989         if (buffer_a->size != buffer_b->size ||
1990             buffer_a->pages != buffer_b->pages)
1991                 return -EINVAL;
1992
1993         cpu_buffer_a = buffer_a->buffers[cpu];
1994         cpu_buffer_b = buffer_b->buffers[cpu];
1995
1996         /*
1997          * We can't do a synchronize_sched here because this
1998          * function can be called in atomic context.
1999          * Normally this will be called from the same CPU as cpu.
2000          * If not it's up to the caller to protect this.
2001          */
2002         atomic_inc(&cpu_buffer_a->record_disabled);
2003         atomic_inc(&cpu_buffer_b->record_disabled);
2004
2005         buffer_a->buffers[cpu] = cpu_buffer_b;
2006         buffer_b->buffers[cpu] = cpu_buffer_a;
2007
2008         cpu_buffer_b->buffer = buffer_a;
2009         cpu_buffer_a->buffer = buffer_b;
2010
2011         atomic_dec(&cpu_buffer_a->record_disabled);
2012         atomic_dec(&cpu_buffer_b->record_disabled);
2013
2014         return 0;
2015 }
2016