ring-buffer: disable all cpu buffers when one finds a problem
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #include "trace.h"
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213
214 enum {
215         RB_LEN_TIME_EXTEND = 8,
216         RB_LEN_TIME_STAMP = 16,
217 };
218
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
222 }
223
224 static void rb_event_set_padding(struct ring_buffer_event *event)
225 {
226         /* padding has a NULL time_delta */
227         event->type_len = RINGBUF_TYPE_PADDING;
228         event->time_delta = 0;
229 }
230
231 static unsigned
232 rb_event_data_length(struct ring_buffer_event *event)
233 {
234         unsigned length;
235
236         if (event->type_len)
237                 length = event->type_len * RB_ALIGNMENT;
238         else
239                 length = event->array[0];
240         return length + RB_EVNT_HDR_SIZE;
241 }
242
243 /* inline for ring buffer fast paths */
244 static unsigned
245 rb_event_length(struct ring_buffer_event *event)
246 {
247         switch (event->type_len) {
248         case RINGBUF_TYPE_PADDING:
249                 if (rb_null_event(event))
250                         /* undefined */
251                         return -1;
252                 return  event->array[0] + RB_EVNT_HDR_SIZE;
253
254         case RINGBUF_TYPE_TIME_EXTEND:
255                 return RB_LEN_TIME_EXTEND;
256
257         case RINGBUF_TYPE_TIME_STAMP:
258                 return RB_LEN_TIME_STAMP;
259
260         case RINGBUF_TYPE_DATA:
261                 return rb_event_data_length(event);
262         default:
263                 BUG();
264         }
265         /* not hit */
266         return 0;
267 }
268
269 /**
270  * ring_buffer_event_length - return the length of the event
271  * @event: the event to get the length of
272  */
273 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
274 {
275         unsigned length = rb_event_length(event);
276         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
277                 return length;
278         length -= RB_EVNT_HDR_SIZE;
279         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
280                 length -= sizeof(event->array[0]);
281         return length;
282 }
283 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
284
285 /* inline for ring buffer fast paths */
286 static void *
287 rb_event_data(struct ring_buffer_event *event)
288 {
289         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
290         /* If length is in len field, then array[0] has the data */
291         if (event->type_len)
292                 return (void *)&event->array[0];
293         /* Otherwise length is in array[0] and array[1] has the data */
294         return (void *)&event->array[1];
295 }
296
297 /**
298  * ring_buffer_event_data - return the data of the event
299  * @event: the event to get the data from
300  */
301 void *ring_buffer_event_data(struct ring_buffer_event *event)
302 {
303         return rb_event_data(event);
304 }
305 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
306
307 #define for_each_buffer_cpu(buffer, cpu)                \
308         for_each_cpu(cpu, buffer->cpumask)
309
310 #define TS_SHIFT        27
311 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
312 #define TS_DELTA_TEST   (~TS_MASK)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[];        /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         struct buffer_data_page *page;  /* Actual data page */
334 };
335
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK           0xfffff
349 #define RB_WRITE_INTCNT         (1 << 20)
350
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353         local_set(&bpage->commit, 0);
354 }
355
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364         return local_read(&((struct buffer_data_page *)page)->commit)
365                 + BUF_PAGE_HDR_SIZE;
366 }
367
368 /*
369  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
370  * this issue out.
371  */
372 static void free_buffer_page(struct buffer_page *bpage)
373 {
374         free_page((unsigned long)bpage->page);
375         kfree(bpage);
376 }
377
378 /*
379  * We need to fit the time_stamp delta into 27 bits.
380  */
381 static inline int test_time_stamp(u64 delta)
382 {
383         if (delta & TS_DELTA_TEST)
384                 return 1;
385         return 0;
386 }
387
388 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
389
390 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
391 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
392
393 /* Max number of timestamps that can fit on a page */
394 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
395
396 int ring_buffer_print_page_header(struct trace_seq *s)
397 {
398         struct buffer_data_page field;
399         int ret;
400
401         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
402                                "offset:0;\tsize:%u;\n",
403                                (unsigned int)sizeof(field.time_stamp));
404
405         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
406                                "offset:%u;\tsize:%u;\n",
407                                (unsigned int)offsetof(typeof(field), commit),
408                                (unsigned int)sizeof(field.commit));
409
410         ret = trace_seq_printf(s, "\tfield: char data;\t"
411                                "offset:%u;\tsize:%u;\n",
412                                (unsigned int)offsetof(typeof(field), data),
413                                (unsigned int)BUF_PAGE_SIZE);
414
415         return ret;
416 }
417
418 /*
419  * head_page == tail_page && head == tail then buffer is empty.
420  */
421 struct ring_buffer_per_cpu {
422         int                             cpu;
423         struct ring_buffer              *buffer;
424         spinlock_t                      reader_lock;    /* serialize readers */
425         raw_spinlock_t                  lock;
426         struct lock_class_key           lock_key;
427         struct list_head                *pages;
428         struct buffer_page              *head_page;     /* read from head */
429         struct buffer_page              *tail_page;     /* write to tail */
430         struct buffer_page              *commit_page;   /* committed pages */
431         struct buffer_page              *reader_page;
432         local_t                         commit_overrun;
433         local_t                         overrun;
434         local_t                         entries;
435         local_t                         committing;
436         local_t                         commits;
437         unsigned long                   read;
438         u64                             write_stamp;
439         u64                             read_stamp;
440         atomic_t                        record_disabled;
441 };
442
443 struct ring_buffer {
444         unsigned                        pages;
445         unsigned                        flags;
446         int                             cpus;
447         atomic_t                        record_disabled;
448         cpumask_var_t                   cpumask;
449
450         struct lock_class_key           *reader_lock_key;
451
452         struct mutex                    mutex;
453
454         struct ring_buffer_per_cpu      **buffers;
455
456 #ifdef CONFIG_HOTPLUG_CPU
457         struct notifier_block           cpu_notify;
458 #endif
459         u64                             (*clock)(void);
460 };
461
462 struct ring_buffer_iter {
463         struct ring_buffer_per_cpu      *cpu_buffer;
464         unsigned long                   head;
465         struct buffer_page              *head_page;
466         u64                             read_stamp;
467 };
468
469 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
470 #define RB_WARN_ON(b, cond)                                             \
471         ({                                                              \
472                 int _____ret = unlikely(cond);                          \
473                 if (_____ret) {                                         \
474                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
475                                 struct ring_buffer_per_cpu *__b =       \
476                                         (void *)b;                      \
477                                 atomic_inc(&__b->buffer->record_disabled); \
478                         } else                                          \
479                                 atomic_inc(&b->record_disabled);        \
480                         WARN_ON(1);                                     \
481                 }                                                       \
482                 _____ret;                                               \
483         })
484
485 /* Up this if you want to test the TIME_EXTENTS and normalization */
486 #define DEBUG_SHIFT 0
487
488 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
489 {
490         /* shift to debug/test normalization and TIME_EXTENTS */
491         return buffer->clock() << DEBUG_SHIFT;
492 }
493
494 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
495 {
496         u64 time;
497
498         preempt_disable_notrace();
499         time = rb_time_stamp(buffer, cpu);
500         preempt_enable_no_resched_notrace();
501
502         return time;
503 }
504 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
505
506 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
507                                       int cpu, u64 *ts)
508 {
509         /* Just stupid testing the normalize function and deltas */
510         *ts >>= DEBUG_SHIFT;
511 }
512 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
513
514 /*
515  * Making the ring buffer lockless makes things tricky.
516  * Although writes only happen on the CPU that they are on,
517  * and they only need to worry about interrupts. Reads can
518  * happen on any CPU.
519  *
520  * The reader page is always off the ring buffer, but when the
521  * reader finishes with a page, it needs to swap its page with
522  * a new one from the buffer. The reader needs to take from
523  * the head (writes go to the tail). But if a writer is in overwrite
524  * mode and wraps, it must push the head page forward.
525  *
526  * Here lies the problem.
527  *
528  * The reader must be careful to replace only the head page, and
529  * not another one. As described at the top of the file in the
530  * ASCII art, the reader sets its old page to point to the next
531  * page after head. It then sets the page after head to point to
532  * the old reader page. But if the writer moves the head page
533  * during this operation, the reader could end up with the tail.
534  *
535  * We use cmpxchg to help prevent this race. We also do something
536  * special with the page before head. We set the LSB to 1.
537  *
538  * When the writer must push the page forward, it will clear the
539  * bit that points to the head page, move the head, and then set
540  * the bit that points to the new head page.
541  *
542  * We also don't want an interrupt coming in and moving the head
543  * page on another writer. Thus we use the second LSB to catch
544  * that too. Thus:
545  *
546  * head->list->prev->next        bit 1          bit 0
547  *                              -------        -------
548  * Normal page                     0              0
549  * Points to head page             0              1
550  * New head page                   1              0
551  *
552  * Note we can not trust the prev pointer of the head page, because:
553  *
554  * +----+       +-----+        +-----+
555  * |    |------>|  T  |---X--->|  N  |
556  * |    |<------|     |        |     |
557  * +----+       +-----+        +-----+
558  *   ^                           ^ |
559  *   |          +-----+          | |
560  *   +----------|  R  |----------+ |
561  *              |     |<-----------+
562  *              +-----+
563  *
564  * Key:  ---X-->  HEAD flag set in pointer
565  *         T      Tail page
566  *         R      Reader page
567  *         N      Next page
568  *
569  * (see __rb_reserve_next() to see where this happens)
570  *
571  *  What the above shows is that the reader just swapped out
572  *  the reader page with a page in the buffer, but before it
573  *  could make the new header point back to the new page added
574  *  it was preempted by a writer. The writer moved forward onto
575  *  the new page added by the reader and is about to move forward
576  *  again.
577  *
578  *  You can see, it is legitimate for the previous pointer of
579  *  the head (or any page) not to point back to itself. But only
580  *  temporarially.
581  */
582
583 #define RB_PAGE_NORMAL          0UL
584 #define RB_PAGE_HEAD            1UL
585 #define RB_PAGE_UPDATE          2UL
586
587
588 #define RB_FLAG_MASK            3UL
589
590 /* PAGE_MOVED is not part of the mask */
591 #define RB_PAGE_MOVED           4UL
592
593 /*
594  * rb_list_head - remove any bit
595  */
596 static struct list_head *rb_list_head(struct list_head *list)
597 {
598         unsigned long val = (unsigned long)list;
599
600         return (struct list_head *)(val & ~RB_FLAG_MASK);
601 }
602
603 /*
604  * rb_is_head_page - test if the give page is the head page
605  *
606  * Because the reader may move the head_page pointer, we can
607  * not trust what the head page is (it may be pointing to
608  * the reader page). But if the next page is a header page,
609  * its flags will be non zero.
610  */
611 static int inline
612 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
613                 struct buffer_page *page, struct list_head *list)
614 {
615         unsigned long val;
616
617         val = (unsigned long)list->next;
618
619         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
620                 return RB_PAGE_MOVED;
621
622         return val & RB_FLAG_MASK;
623 }
624
625 /*
626  * rb_is_reader_page
627  *
628  * The unique thing about the reader page, is that, if the
629  * writer is ever on it, the previous pointer never points
630  * back to the reader page.
631  */
632 static int rb_is_reader_page(struct buffer_page *page)
633 {
634         struct list_head *list = page->list.prev;
635
636         return rb_list_head(list->next) != &page->list;
637 }
638
639 /*
640  * rb_set_list_to_head - set a list_head to be pointing to head.
641  */
642 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
643                                 struct list_head *list)
644 {
645         unsigned long *ptr;
646
647         ptr = (unsigned long *)&list->next;
648         *ptr |= RB_PAGE_HEAD;
649         *ptr &= ~RB_PAGE_UPDATE;
650 }
651
652 /*
653  * rb_head_page_activate - sets up head page
654  */
655 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
656 {
657         struct buffer_page *head;
658
659         head = cpu_buffer->head_page;
660         if (!head)
661                 return;
662
663         /*
664          * Set the previous list pointer to have the HEAD flag.
665          */
666         rb_set_list_to_head(cpu_buffer, head->list.prev);
667 }
668
669 static void rb_list_head_clear(struct list_head *list)
670 {
671         unsigned long *ptr = (unsigned long *)&list->next;
672
673         *ptr &= ~RB_FLAG_MASK;
674 }
675
676 /*
677  * rb_head_page_dactivate - clears head page ptr (for free list)
678  */
679 static void
680 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
681 {
682         struct list_head *hd;
683
684         /* Go through the whole list and clear any pointers found. */
685         rb_list_head_clear(cpu_buffer->pages);
686
687         list_for_each(hd, cpu_buffer->pages)
688                 rb_list_head_clear(hd);
689 }
690
691 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
692                             struct buffer_page *head,
693                             struct buffer_page *prev,
694                             int old_flag, int new_flag)
695 {
696         struct list_head *list;
697         unsigned long val = (unsigned long)&head->list;
698         unsigned long ret;
699
700         list = &prev->list;
701
702         val &= ~RB_FLAG_MASK;
703
704         ret = (unsigned long)cmpxchg(&list->next,
705                                      val | old_flag, val | new_flag);
706
707         /* check if the reader took the page */
708         if ((ret & ~RB_FLAG_MASK) != val)
709                 return RB_PAGE_MOVED;
710
711         return ret & RB_FLAG_MASK;
712 }
713
714 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
715                                    struct buffer_page *head,
716                                    struct buffer_page *prev,
717                                    int old_flag)
718 {
719         return rb_head_page_set(cpu_buffer, head, prev,
720                                 old_flag, RB_PAGE_UPDATE);
721 }
722
723 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
724                                  struct buffer_page *head,
725                                  struct buffer_page *prev,
726                                  int old_flag)
727 {
728         return rb_head_page_set(cpu_buffer, head, prev,
729                                 old_flag, RB_PAGE_HEAD);
730 }
731
732 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
733                                    struct buffer_page *head,
734                                    struct buffer_page *prev,
735                                    int old_flag)
736 {
737         return rb_head_page_set(cpu_buffer, head, prev,
738                                 old_flag, RB_PAGE_NORMAL);
739 }
740
741 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
742                                struct buffer_page **bpage)
743 {
744         struct list_head *p = rb_list_head((*bpage)->list.next);
745
746         *bpage = list_entry(p, struct buffer_page, list);
747 }
748
749 static struct buffer_page *
750 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
751 {
752         struct buffer_page *head;
753         struct buffer_page *page;
754         struct list_head *list;
755         int i;
756
757         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
758                 return NULL;
759
760         /* sanity check */
761         list = cpu_buffer->pages;
762         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
763                 return NULL;
764
765         page = head = cpu_buffer->head_page;
766         /*
767          * It is possible that the writer moves the header behind
768          * where we started, and we miss in one loop.
769          * A second loop should grab the header, but we'll do
770          * three loops just because I'm paranoid.
771          */
772         for (i = 0; i < 3; i++) {
773                 do {
774                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
775                                 cpu_buffer->head_page = page;
776                                 return page;
777                         }
778                         rb_inc_page(cpu_buffer, &page);
779                 } while (page != head);
780         }
781
782         RB_WARN_ON(cpu_buffer, 1);
783
784         return NULL;
785 }
786
787 static int rb_head_page_replace(struct buffer_page *old,
788                                 struct buffer_page *new)
789 {
790         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
791         unsigned long val;
792         unsigned long ret;
793
794         val = *ptr & ~RB_FLAG_MASK;
795         val |= RB_PAGE_HEAD;
796
797         ret = cmpxchg(ptr, val, &new->list);
798
799         return ret == val;
800 }
801
802 /*
803  * rb_tail_page_update - move the tail page forward
804  *
805  * Returns 1 if moved tail page, 0 if someone else did.
806  */
807 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
808                                struct buffer_page *tail_page,
809                                struct buffer_page *next_page)
810 {
811         struct buffer_page *old_tail;
812         unsigned long old_entries;
813         unsigned long old_write;
814         int ret = 0;
815
816         /*
817          * The tail page now needs to be moved forward.
818          *
819          * We need to reset the tail page, but without messing
820          * with possible erasing of data brought in by interrupts
821          * that have moved the tail page and are currently on it.
822          *
823          * We add a counter to the write field to denote this.
824          */
825         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
826         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
827
828         /*
829          * Just make sure we have seen our old_write and synchronize
830          * with any interrupts that come in.
831          */
832         barrier();
833
834         /*
835          * If the tail page is still the same as what we think
836          * it is, then it is up to us to update the tail
837          * pointer.
838          */
839         if (tail_page == cpu_buffer->tail_page) {
840                 /* Zero the write counter */
841                 unsigned long val = old_write & ~RB_WRITE_MASK;
842                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
843
844                 /*
845                  * This will only succeed if an interrupt did
846                  * not come in and change it. In which case, we
847                  * do not want to modify it.
848                  *
849                  * We add (void) to let the compiler know that we do not care
850                  * about the return value of these functions. We use the
851                  * cmpxchg to only update if an interrupt did not already
852                  * do it for us. If the cmpxchg fails, we don't care.
853                  */
854                 (void)local_cmpxchg(&next_page->write, old_write, val);
855                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
856
857                 /*
858                  * No need to worry about races with clearing out the commit.
859                  * it only can increment when a commit takes place. But that
860                  * only happens in the outer most nested commit.
861                  */
862                 local_set(&next_page->page->commit, 0);
863
864                 old_tail = cmpxchg(&cpu_buffer->tail_page,
865                                    tail_page, next_page);
866
867                 if (old_tail == tail_page)
868                         ret = 1;
869         }
870
871         return ret;
872 }
873
874 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
875                           struct buffer_page *bpage)
876 {
877         unsigned long val = (unsigned long)bpage;
878
879         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
880                 return 1;
881
882         return 0;
883 }
884
885 /**
886  * rb_check_list - make sure a pointer to a list has the last bits zero
887  */
888 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
889                          struct list_head *list)
890 {
891         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
892                 return 1;
893         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
894                 return 1;
895         return 0;
896 }
897
898 /**
899  * check_pages - integrity check of buffer pages
900  * @cpu_buffer: CPU buffer with pages to test
901  *
902  * As a safety measure we check to make sure the data pages have not
903  * been corrupted.
904  */
905 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
906 {
907         struct list_head *head = cpu_buffer->pages;
908         struct buffer_page *bpage, *tmp;
909
910         rb_head_page_deactivate(cpu_buffer);
911
912         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
913                 return -1;
914         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
915                 return -1;
916
917         if (rb_check_list(cpu_buffer, head))
918                 return -1;
919
920         list_for_each_entry_safe(bpage, tmp, head, list) {
921                 if (RB_WARN_ON(cpu_buffer,
922                                bpage->list.next->prev != &bpage->list))
923                         return -1;
924                 if (RB_WARN_ON(cpu_buffer,
925                                bpage->list.prev->next != &bpage->list))
926                         return -1;
927                 if (rb_check_list(cpu_buffer, &bpage->list))
928                         return -1;
929         }
930
931         rb_head_page_activate(cpu_buffer);
932
933         return 0;
934 }
935
936 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
937                              unsigned nr_pages)
938 {
939         struct buffer_page *bpage, *tmp;
940         unsigned long addr;
941         LIST_HEAD(pages);
942         unsigned i;
943
944         WARN_ON(!nr_pages);
945
946         for (i = 0; i < nr_pages; i++) {
947                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
948                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
949                 if (!bpage)
950                         goto free_pages;
951
952                 rb_check_bpage(cpu_buffer, bpage);
953
954                 list_add(&bpage->list, &pages);
955
956                 addr = __get_free_page(GFP_KERNEL);
957                 if (!addr)
958                         goto free_pages;
959                 bpage->page = (void *)addr;
960                 rb_init_page(bpage->page);
961         }
962
963         /*
964          * The ring buffer page list is a circular list that does not
965          * start and end with a list head. All page list items point to
966          * other pages.
967          */
968         cpu_buffer->pages = pages.next;
969         list_del(&pages);
970
971         rb_check_pages(cpu_buffer);
972
973         return 0;
974
975  free_pages:
976         list_for_each_entry_safe(bpage, tmp, &pages, list) {
977                 list_del_init(&bpage->list);
978                 free_buffer_page(bpage);
979         }
980         return -ENOMEM;
981 }
982
983 static struct ring_buffer_per_cpu *
984 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
985 {
986         struct ring_buffer_per_cpu *cpu_buffer;
987         struct buffer_page *bpage;
988         unsigned long addr;
989         int ret;
990
991         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
992                                   GFP_KERNEL, cpu_to_node(cpu));
993         if (!cpu_buffer)
994                 return NULL;
995
996         cpu_buffer->cpu = cpu;
997         cpu_buffer->buffer = buffer;
998         spin_lock_init(&cpu_buffer->reader_lock);
999         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1000         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
1001
1002         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1003                             GFP_KERNEL, cpu_to_node(cpu));
1004         if (!bpage)
1005                 goto fail_free_buffer;
1006
1007         rb_check_bpage(cpu_buffer, bpage);
1008
1009         cpu_buffer->reader_page = bpage;
1010         addr = __get_free_page(GFP_KERNEL);
1011         if (!addr)
1012                 goto fail_free_reader;
1013         bpage->page = (void *)addr;
1014         rb_init_page(bpage->page);
1015
1016         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1017
1018         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1019         if (ret < 0)
1020                 goto fail_free_reader;
1021
1022         cpu_buffer->head_page
1023                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1024         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1025
1026         rb_head_page_activate(cpu_buffer);
1027
1028         return cpu_buffer;
1029
1030  fail_free_reader:
1031         free_buffer_page(cpu_buffer->reader_page);
1032
1033  fail_free_buffer:
1034         kfree(cpu_buffer);
1035         return NULL;
1036 }
1037
1038 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1039 {
1040         struct list_head *head = cpu_buffer->pages;
1041         struct buffer_page *bpage, *tmp;
1042
1043         free_buffer_page(cpu_buffer->reader_page);
1044
1045         rb_head_page_deactivate(cpu_buffer);
1046
1047         if (head) {
1048                 list_for_each_entry_safe(bpage, tmp, head, list) {
1049                         list_del_init(&bpage->list);
1050                         free_buffer_page(bpage);
1051                 }
1052                 bpage = list_entry(head, struct buffer_page, list);
1053                 free_buffer_page(bpage);
1054         }
1055
1056         kfree(cpu_buffer);
1057 }
1058
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 static int rb_cpu_notify(struct notifier_block *self,
1061                          unsigned long action, void *hcpu);
1062 #endif
1063
1064 /**
1065  * ring_buffer_alloc - allocate a new ring_buffer
1066  * @size: the size in bytes per cpu that is needed.
1067  * @flags: attributes to set for the ring buffer.
1068  *
1069  * Currently the only flag that is available is the RB_FL_OVERWRITE
1070  * flag. This flag means that the buffer will overwrite old data
1071  * when the buffer wraps. If this flag is not set, the buffer will
1072  * drop data when the tail hits the head.
1073  */
1074 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1075                                         struct lock_class_key *key)
1076 {
1077         struct ring_buffer *buffer;
1078         int bsize;
1079         int cpu;
1080
1081         /* keep it in its own cache line */
1082         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1083                          GFP_KERNEL);
1084         if (!buffer)
1085                 return NULL;
1086
1087         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1088                 goto fail_free_buffer;
1089
1090         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1091         buffer->flags = flags;
1092         buffer->clock = trace_clock_local;
1093         buffer->reader_lock_key = key;
1094
1095         /* need at least two pages */
1096         if (buffer->pages < 2)
1097                 buffer->pages = 2;
1098
1099         /*
1100          * In case of non-hotplug cpu, if the ring-buffer is allocated
1101          * in early initcall, it will not be notified of secondary cpus.
1102          * In that off case, we need to allocate for all possible cpus.
1103          */
1104 #ifdef CONFIG_HOTPLUG_CPU
1105         get_online_cpus();
1106         cpumask_copy(buffer->cpumask, cpu_online_mask);
1107 #else
1108         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1109 #endif
1110         buffer->cpus = nr_cpu_ids;
1111
1112         bsize = sizeof(void *) * nr_cpu_ids;
1113         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1114                                   GFP_KERNEL);
1115         if (!buffer->buffers)
1116                 goto fail_free_cpumask;
1117
1118         for_each_buffer_cpu(buffer, cpu) {
1119                 buffer->buffers[cpu] =
1120                         rb_allocate_cpu_buffer(buffer, cpu);
1121                 if (!buffer->buffers[cpu])
1122                         goto fail_free_buffers;
1123         }
1124
1125 #ifdef CONFIG_HOTPLUG_CPU
1126         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1127         buffer->cpu_notify.priority = 0;
1128         register_cpu_notifier(&buffer->cpu_notify);
1129 #endif
1130
1131         put_online_cpus();
1132         mutex_init(&buffer->mutex);
1133
1134         return buffer;
1135
1136  fail_free_buffers:
1137         for_each_buffer_cpu(buffer, cpu) {
1138                 if (buffer->buffers[cpu])
1139                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1140         }
1141         kfree(buffer->buffers);
1142
1143  fail_free_cpumask:
1144         free_cpumask_var(buffer->cpumask);
1145         put_online_cpus();
1146
1147  fail_free_buffer:
1148         kfree(buffer);
1149         return NULL;
1150 }
1151 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1152
1153 /**
1154  * ring_buffer_free - free a ring buffer.
1155  * @buffer: the buffer to free.
1156  */
1157 void
1158 ring_buffer_free(struct ring_buffer *buffer)
1159 {
1160         int cpu;
1161
1162         get_online_cpus();
1163
1164 #ifdef CONFIG_HOTPLUG_CPU
1165         unregister_cpu_notifier(&buffer->cpu_notify);
1166 #endif
1167
1168         for_each_buffer_cpu(buffer, cpu)
1169                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1170
1171         put_online_cpus();
1172
1173         kfree(buffer->buffers);
1174         free_cpumask_var(buffer->cpumask);
1175
1176         kfree(buffer);
1177 }
1178 EXPORT_SYMBOL_GPL(ring_buffer_free);
1179
1180 void ring_buffer_set_clock(struct ring_buffer *buffer,
1181                            u64 (*clock)(void))
1182 {
1183         buffer->clock = clock;
1184 }
1185
1186 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1187
1188 static void
1189 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1190 {
1191         struct buffer_page *bpage;
1192         struct list_head *p;
1193         unsigned i;
1194
1195         atomic_inc(&cpu_buffer->record_disabled);
1196         synchronize_sched();
1197
1198         rb_head_page_deactivate(cpu_buffer);
1199
1200         for (i = 0; i < nr_pages; i++) {
1201                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1202                         return;
1203                 p = cpu_buffer->pages->next;
1204                 bpage = list_entry(p, struct buffer_page, list);
1205                 list_del_init(&bpage->list);
1206                 free_buffer_page(bpage);
1207         }
1208         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1209                 return;
1210
1211         rb_reset_cpu(cpu_buffer);
1212
1213         rb_check_pages(cpu_buffer);
1214
1215         atomic_dec(&cpu_buffer->record_disabled);
1216
1217 }
1218
1219 static void
1220 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221                 struct list_head *pages, unsigned nr_pages)
1222 {
1223         struct buffer_page *bpage;
1224         struct list_head *p;
1225         unsigned i;
1226
1227         atomic_inc(&cpu_buffer->record_disabled);
1228         synchronize_sched();
1229
1230         spin_lock_irq(&cpu_buffer->reader_lock);
1231         rb_head_page_deactivate(cpu_buffer);
1232
1233         for (i = 0; i < nr_pages; i++) {
1234                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1235                         return;
1236                 p = pages->next;
1237                 bpage = list_entry(p, struct buffer_page, list);
1238                 list_del_init(&bpage->list);
1239                 list_add_tail(&bpage->list, cpu_buffer->pages);
1240         }
1241         rb_reset_cpu(cpu_buffer);
1242         spin_unlock_irq(&cpu_buffer->reader_lock);
1243
1244         rb_check_pages(cpu_buffer);
1245
1246         atomic_dec(&cpu_buffer->record_disabled);
1247 }
1248
1249 /**
1250  * ring_buffer_resize - resize the ring buffer
1251  * @buffer: the buffer to resize.
1252  * @size: the new size.
1253  *
1254  * The tracer is responsible for making sure that the buffer is
1255  * not being used while changing the size.
1256  * Note: We may be able to change the above requirement by using
1257  *  RCU synchronizations.
1258  *
1259  * Minimum size is 2 * BUF_PAGE_SIZE.
1260  *
1261  * Returns -1 on failure.
1262  */
1263 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1264 {
1265         struct ring_buffer_per_cpu *cpu_buffer;
1266         unsigned nr_pages, rm_pages, new_pages;
1267         struct buffer_page *bpage, *tmp;
1268         unsigned long buffer_size;
1269         unsigned long addr;
1270         LIST_HEAD(pages);
1271         int i, cpu;
1272
1273         /*
1274          * Always succeed at resizing a non-existent buffer:
1275          */
1276         if (!buffer)
1277                 return size;
1278
1279         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280         size *= BUF_PAGE_SIZE;
1281         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1282
1283         /* we need a minimum of two pages */
1284         if (size < BUF_PAGE_SIZE * 2)
1285                 size = BUF_PAGE_SIZE * 2;
1286
1287         if (size == buffer_size)
1288                 return size;
1289
1290         mutex_lock(&buffer->mutex);
1291         get_online_cpus();
1292
1293         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1294
1295         if (size < buffer_size) {
1296
1297                 /* easy case, just free pages */
1298                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1299                         goto out_fail;
1300
1301                 rm_pages = buffer->pages - nr_pages;
1302
1303                 for_each_buffer_cpu(buffer, cpu) {
1304                         cpu_buffer = buffer->buffers[cpu];
1305                         rb_remove_pages(cpu_buffer, rm_pages);
1306                 }
1307                 goto out;
1308         }
1309
1310         /*
1311          * This is a bit more difficult. We only want to add pages
1312          * when we can allocate enough for all CPUs. We do this
1313          * by allocating all the pages and storing them on a local
1314          * link list. If we succeed in our allocation, then we
1315          * add these pages to the cpu_buffers. Otherwise we just free
1316          * them all and return -ENOMEM;
1317          */
1318         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1319                 goto out_fail;
1320
1321         new_pages = nr_pages - buffer->pages;
1322
1323         for_each_buffer_cpu(buffer, cpu) {
1324                 for (i = 0; i < new_pages; i++) {
1325                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1326                                                   cache_line_size()),
1327                                             GFP_KERNEL, cpu_to_node(cpu));
1328                         if (!bpage)
1329                                 goto free_pages;
1330                         list_add(&bpage->list, &pages);
1331                         addr = __get_free_page(GFP_KERNEL);
1332                         if (!addr)
1333                                 goto free_pages;
1334                         bpage->page = (void *)addr;
1335                         rb_init_page(bpage->page);
1336                 }
1337         }
1338
1339         for_each_buffer_cpu(buffer, cpu) {
1340                 cpu_buffer = buffer->buffers[cpu];
1341                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1342         }
1343
1344         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1345                 goto out_fail;
1346
1347  out:
1348         buffer->pages = nr_pages;
1349         put_online_cpus();
1350         mutex_unlock(&buffer->mutex);
1351
1352         return size;
1353
1354  free_pages:
1355         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1356                 list_del_init(&bpage->list);
1357                 free_buffer_page(bpage);
1358         }
1359         put_online_cpus();
1360         mutex_unlock(&buffer->mutex);
1361         return -ENOMEM;
1362
1363         /*
1364          * Something went totally wrong, and we are too paranoid
1365          * to even clean up the mess.
1366          */
1367  out_fail:
1368         put_online_cpus();
1369         mutex_unlock(&buffer->mutex);
1370         return -1;
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1373
1374 static inline void *
1375 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1376 {
1377         return bpage->data + index;
1378 }
1379
1380 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1381 {
1382         return bpage->page->data + index;
1383 }
1384
1385 static inline struct ring_buffer_event *
1386 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1387 {
1388         return __rb_page_index(cpu_buffer->reader_page,
1389                                cpu_buffer->reader_page->read);
1390 }
1391
1392 static inline struct ring_buffer_event *
1393 rb_iter_head_event(struct ring_buffer_iter *iter)
1394 {
1395         return __rb_page_index(iter->head_page, iter->head);
1396 }
1397
1398 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1399 {
1400         return local_read(&bpage->write) & RB_WRITE_MASK;
1401 }
1402
1403 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1404 {
1405         return local_read(&bpage->page->commit);
1406 }
1407
1408 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409 {
1410         return local_read(&bpage->entries) & RB_WRITE_MASK;
1411 }
1412
1413 /* Size is determined by what has been commited */
1414 static inline unsigned rb_page_size(struct buffer_page *bpage)
1415 {
1416         return rb_page_commit(bpage);
1417 }
1418
1419 static inline unsigned
1420 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1421 {
1422         return rb_page_commit(cpu_buffer->commit_page);
1423 }
1424
1425 static inline unsigned
1426 rb_event_index(struct ring_buffer_event *event)
1427 {
1428         unsigned long addr = (unsigned long)event;
1429
1430         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1431 }
1432
1433 static inline int
1434 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1435                    struct ring_buffer_event *event)
1436 {
1437         unsigned long addr = (unsigned long)event;
1438         unsigned long index;
1439
1440         index = rb_event_index(event);
1441         addr &= PAGE_MASK;
1442
1443         return cpu_buffer->commit_page->page == (void *)addr &&
1444                 rb_commit_index(cpu_buffer) == index;
1445 }
1446
1447 static void
1448 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450         unsigned long max_count;
1451
1452         /*
1453          * We only race with interrupts and NMIs on this CPU.
1454          * If we own the commit event, then we can commit
1455          * all others that interrupted us, since the interruptions
1456          * are in stack format (they finish before they come
1457          * back to us). This allows us to do a simple loop to
1458          * assign the commit to the tail.
1459          */
1460  again:
1461         max_count = cpu_buffer->buffer->pages * 100;
1462
1463         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1464                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1465                         return;
1466                 if (RB_WARN_ON(cpu_buffer,
1467                                rb_is_reader_page(cpu_buffer->tail_page)))
1468                         return;
1469                 local_set(&cpu_buffer->commit_page->page->commit,
1470                           rb_page_write(cpu_buffer->commit_page));
1471                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1472                 cpu_buffer->write_stamp =
1473                         cpu_buffer->commit_page->page->time_stamp;
1474                 /* add barrier to keep gcc from optimizing too much */
1475                 barrier();
1476         }
1477         while (rb_commit_index(cpu_buffer) !=
1478                rb_page_write(cpu_buffer->commit_page)) {
1479
1480                 local_set(&cpu_buffer->commit_page->page->commit,
1481                           rb_page_write(cpu_buffer->commit_page));
1482                 RB_WARN_ON(cpu_buffer,
1483                            local_read(&cpu_buffer->commit_page->page->commit) &
1484                            ~RB_WRITE_MASK);
1485                 barrier();
1486         }
1487
1488         /* again, keep gcc from optimizing */
1489         barrier();
1490
1491         /*
1492          * If an interrupt came in just after the first while loop
1493          * and pushed the tail page forward, we will be left with
1494          * a dangling commit that will never go forward.
1495          */
1496         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1497                 goto again;
1498 }
1499
1500 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1501 {
1502         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1503         cpu_buffer->reader_page->read = 0;
1504 }
1505
1506 static void rb_inc_iter(struct ring_buffer_iter *iter)
1507 {
1508         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509
1510         /*
1511          * The iterator could be on the reader page (it starts there).
1512          * But the head could have moved, since the reader was
1513          * found. Check for this case and assign the iterator
1514          * to the head page instead of next.
1515          */
1516         if (iter->head_page == cpu_buffer->reader_page)
1517                 iter->head_page = rb_set_head_page(cpu_buffer);
1518         else
1519                 rb_inc_page(cpu_buffer, &iter->head_page);
1520
1521         iter->read_stamp = iter->head_page->page->time_stamp;
1522         iter->head = 0;
1523 }
1524
1525 /**
1526  * ring_buffer_update_event - update event type and data
1527  * @event: the even to update
1528  * @type: the type of event
1529  * @length: the size of the event field in the ring buffer
1530  *
1531  * Update the type and data fields of the event. The length
1532  * is the actual size that is written to the ring buffer,
1533  * and with this, we can determine what to place into the
1534  * data field.
1535  */
1536 static void
1537 rb_update_event(struct ring_buffer_event *event,
1538                          unsigned type, unsigned length)
1539 {
1540         event->type_len = type;
1541
1542         switch (type) {
1543
1544         case RINGBUF_TYPE_PADDING:
1545         case RINGBUF_TYPE_TIME_EXTEND:
1546         case RINGBUF_TYPE_TIME_STAMP:
1547                 break;
1548
1549         case 0:
1550                 length -= RB_EVNT_HDR_SIZE;
1551                 if (length > RB_MAX_SMALL_DATA)
1552                         event->array[0] = length;
1553                 else
1554                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1555                 break;
1556         default:
1557                 BUG();
1558         }
1559 }
1560
1561 /*
1562  * rb_handle_head_page - writer hit the head page
1563  *
1564  * Returns: +1 to retry page
1565  *           0 to continue
1566  *          -1 on error
1567  */
1568 static int
1569 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570                     struct buffer_page *tail_page,
1571                     struct buffer_page *next_page)
1572 {
1573         struct buffer_page *new_head;
1574         int entries;
1575         int type;
1576         int ret;
1577
1578         entries = rb_page_entries(next_page);
1579
1580         /*
1581          * The hard part is here. We need to move the head
1582          * forward, and protect against both readers on
1583          * other CPUs and writers coming in via interrupts.
1584          */
1585         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586                                        RB_PAGE_HEAD);
1587
1588         /*
1589          * type can be one of four:
1590          *  NORMAL - an interrupt already moved it for us
1591          *  HEAD   - we are the first to get here.
1592          *  UPDATE - we are the interrupt interrupting
1593          *           a current move.
1594          *  MOVED  - a reader on another CPU moved the next
1595          *           pointer to its reader page. Give up
1596          *           and try again.
1597          */
1598
1599         switch (type) {
1600         case RB_PAGE_HEAD:
1601                 /*
1602                  * We changed the head to UPDATE, thus
1603                  * it is our responsibility to update
1604                  * the counters.
1605                  */
1606                 local_add(entries, &cpu_buffer->overrun);
1607
1608                 /*
1609                  * The entries will be zeroed out when we move the
1610                  * tail page.
1611                  */
1612
1613                 /* still more to do */
1614                 break;
1615
1616         case RB_PAGE_UPDATE:
1617                 /*
1618                  * This is an interrupt that interrupt the
1619                  * previous update. Still more to do.
1620                  */
1621                 break;
1622         case RB_PAGE_NORMAL:
1623                 /*
1624                  * An interrupt came in before the update
1625                  * and processed this for us.
1626                  * Nothing left to do.
1627                  */
1628                 return 1;
1629         case RB_PAGE_MOVED:
1630                 /*
1631                  * The reader is on another CPU and just did
1632                  * a swap with our next_page.
1633                  * Try again.
1634                  */
1635                 return 1;
1636         default:
1637                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638                 return -1;
1639         }
1640
1641         /*
1642          * Now that we are here, the old head pointer is
1643          * set to UPDATE. This will keep the reader from
1644          * swapping the head page with the reader page.
1645          * The reader (on another CPU) will spin till
1646          * we are finished.
1647          *
1648          * We just need to protect against interrupts
1649          * doing the job. We will set the next pointer
1650          * to HEAD. After that, we set the old pointer
1651          * to NORMAL, but only if it was HEAD before.
1652          * otherwise we are an interrupt, and only
1653          * want the outer most commit to reset it.
1654          */
1655         new_head = next_page;
1656         rb_inc_page(cpu_buffer, &new_head);
1657
1658         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659                                     RB_PAGE_NORMAL);
1660
1661         /*
1662          * Valid returns are:
1663          *  HEAD   - an interrupt came in and already set it.
1664          *  NORMAL - One of two things:
1665          *            1) We really set it.
1666          *            2) A bunch of interrupts came in and moved
1667          *               the page forward again.
1668          */
1669         switch (ret) {
1670         case RB_PAGE_HEAD:
1671         case RB_PAGE_NORMAL:
1672                 /* OK */
1673                 break;
1674         default:
1675                 RB_WARN_ON(cpu_buffer, 1);
1676                 return -1;
1677         }
1678
1679         /*
1680          * It is possible that an interrupt came in,
1681          * set the head up, then more interrupts came in
1682          * and moved it again. When we get back here,
1683          * the page would have been set to NORMAL but we
1684          * just set it back to HEAD.
1685          *
1686          * How do you detect this? Well, if that happened
1687          * the tail page would have moved.
1688          */
1689         if (ret == RB_PAGE_NORMAL) {
1690                 /*
1691                  * If the tail had moved passed next, then we need
1692                  * to reset the pointer.
1693                  */
1694                 if (cpu_buffer->tail_page != tail_page &&
1695                     cpu_buffer->tail_page != next_page)
1696                         rb_head_page_set_normal(cpu_buffer, new_head,
1697                                                 next_page,
1698                                                 RB_PAGE_HEAD);
1699         }
1700
1701         /*
1702          * If this was the outer most commit (the one that
1703          * changed the original pointer from HEAD to UPDATE),
1704          * then it is up to us to reset it to NORMAL.
1705          */
1706         if (type == RB_PAGE_HEAD) {
1707                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708                                               tail_page,
1709                                               RB_PAGE_UPDATE);
1710                 if (RB_WARN_ON(cpu_buffer,
1711                                ret != RB_PAGE_UPDATE))
1712                         return -1;
1713         }
1714
1715         return 0;
1716 }
1717
1718 static unsigned rb_calculate_event_length(unsigned length)
1719 {
1720         struct ring_buffer_event event; /* Used only for sizeof array */
1721
1722         /* zero length can cause confusions */
1723         if (!length)
1724                 length = 1;
1725
1726         if (length > RB_MAX_SMALL_DATA)
1727                 length += sizeof(event.array[0]);
1728
1729         length += RB_EVNT_HDR_SIZE;
1730         length = ALIGN(length, RB_ALIGNMENT);
1731
1732         return length;
1733 }
1734
1735 static inline void
1736 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1737               struct buffer_page *tail_page,
1738               unsigned long tail, unsigned long length)
1739 {
1740         struct ring_buffer_event *event;
1741
1742         /*
1743          * Only the event that crossed the page boundary
1744          * must fill the old tail_page with padding.
1745          */
1746         if (tail >= BUF_PAGE_SIZE) {
1747                 local_sub(length, &tail_page->write);
1748                 return;
1749         }
1750
1751         event = __rb_page_index(tail_page, tail);
1752         kmemcheck_annotate_bitfield(event, bitfield);
1753
1754         /*
1755          * If this event is bigger than the minimum size, then
1756          * we need to be careful that we don't subtract the
1757          * write counter enough to allow another writer to slip
1758          * in on this page.
1759          * We put in a discarded commit instead, to make sure
1760          * that this space is not used again.
1761          *
1762          * If we are less than the minimum size, we don't need to
1763          * worry about it.
1764          */
1765         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1766                 /* No room for any events */
1767
1768                 /* Mark the rest of the page with padding */
1769                 rb_event_set_padding(event);
1770
1771                 /* Set the write back to the previous setting */
1772                 local_sub(length, &tail_page->write);
1773                 return;
1774         }
1775
1776         /* Put in a discarded event */
1777         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1778         event->type_len = RINGBUF_TYPE_PADDING;
1779         /* time delta must be non zero */
1780         event->time_delta = 1;
1781
1782         /* Set write to end of buffer */
1783         length = (tail + length) - BUF_PAGE_SIZE;
1784         local_sub(length, &tail_page->write);
1785 }
1786
1787 static struct ring_buffer_event *
1788 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1789              unsigned long length, unsigned long tail,
1790              struct buffer_page *commit_page,
1791              struct buffer_page *tail_page, u64 *ts)
1792 {
1793         struct ring_buffer *buffer = cpu_buffer->buffer;
1794         struct buffer_page *next_page;
1795         int ret;
1796
1797         next_page = tail_page;
1798
1799         rb_inc_page(cpu_buffer, &next_page);
1800
1801         /*
1802          * If for some reason, we had an interrupt storm that made
1803          * it all the way around the buffer, bail, and warn
1804          * about it.
1805          */
1806         if (unlikely(next_page == commit_page)) {
1807                 local_inc(&cpu_buffer->commit_overrun);
1808                 goto out_reset;
1809         }
1810
1811         /*
1812          * This is where the fun begins!
1813          *
1814          * We are fighting against races between a reader that
1815          * could be on another CPU trying to swap its reader
1816          * page with the buffer head.
1817          *
1818          * We are also fighting against interrupts coming in and
1819          * moving the head or tail on us as well.
1820          *
1821          * If the next page is the head page then we have filled
1822          * the buffer, unless the commit page is still on the
1823          * reader page.
1824          */
1825         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1826
1827                 /*
1828                  * If the commit is not on the reader page, then
1829                  * move the header page.
1830                  */
1831                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1832                         /*
1833                          * If we are not in overwrite mode,
1834                          * this is easy, just stop here.
1835                          */
1836                         if (!(buffer->flags & RB_FL_OVERWRITE))
1837                                 goto out_reset;
1838
1839                         ret = rb_handle_head_page(cpu_buffer,
1840                                                   tail_page,
1841                                                   next_page);
1842                         if (ret < 0)
1843                                 goto out_reset;
1844                         if (ret)
1845                                 goto out_again;
1846                 } else {
1847                         /*
1848                          * We need to be careful here too. The
1849                          * commit page could still be on the reader
1850                          * page. We could have a small buffer, and
1851                          * have filled up the buffer with events
1852                          * from interrupts and such, and wrapped.
1853                          *
1854                          * Note, if the tail page is also the on the
1855                          * reader_page, we let it move out.
1856                          */
1857                         if (unlikely((cpu_buffer->commit_page !=
1858                                       cpu_buffer->tail_page) &&
1859                                      (cpu_buffer->commit_page ==
1860                                       cpu_buffer->reader_page))) {
1861                                 local_inc(&cpu_buffer->commit_overrun);
1862                                 goto out_reset;
1863                         }
1864                 }
1865         }
1866
1867         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1868         if (ret) {
1869                 /*
1870                  * Nested commits always have zero deltas, so
1871                  * just reread the time stamp
1872                  */
1873                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1874                 next_page->page->time_stamp = *ts;
1875         }
1876
1877  out_again:
1878
1879         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1880
1881         /* fail and let the caller try again */
1882         return ERR_PTR(-EAGAIN);
1883
1884  out_reset:
1885         /* reset write */
1886         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1887
1888         return NULL;
1889 }
1890
1891 static struct ring_buffer_event *
1892 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1893                   unsigned type, unsigned long length, u64 *ts)
1894 {
1895         struct buffer_page *tail_page, *commit_page;
1896         struct ring_buffer_event *event;
1897         unsigned long tail, write;
1898
1899         commit_page = cpu_buffer->commit_page;
1900         /* we just need to protect against interrupts */
1901         barrier();
1902         tail_page = cpu_buffer->tail_page;
1903         write = local_add_return(length, &tail_page->write);
1904
1905         /* set write to only the index of the write */
1906         write &= RB_WRITE_MASK;
1907         tail = write - length;
1908
1909         /* See if we shot pass the end of this buffer page */
1910         if (write > BUF_PAGE_SIZE)
1911                 return rb_move_tail(cpu_buffer, length, tail,
1912                                     commit_page, tail_page, ts);
1913
1914         /* We reserved something on the buffer */
1915
1916         event = __rb_page_index(tail_page, tail);
1917         kmemcheck_annotate_bitfield(event, bitfield);
1918         rb_update_event(event, type, length);
1919
1920         /* The passed in type is zero for DATA */
1921         if (likely(!type))
1922                 local_inc(&tail_page->entries);
1923
1924         /*
1925          * If this is the first commit on the page, then update
1926          * its timestamp.
1927          */
1928         if (!tail)
1929                 tail_page->page->time_stamp = *ts;
1930
1931         return event;
1932 }
1933
1934 static inline int
1935 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1936                   struct ring_buffer_event *event)
1937 {
1938         unsigned long new_index, old_index;
1939         struct buffer_page *bpage;
1940         unsigned long index;
1941         unsigned long addr;
1942
1943         new_index = rb_event_index(event);
1944         old_index = new_index + rb_event_length(event);
1945         addr = (unsigned long)event;
1946         addr &= PAGE_MASK;
1947
1948         bpage = cpu_buffer->tail_page;
1949
1950         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1951                 unsigned long write_mask =
1952                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1953                 /*
1954                  * This is on the tail page. It is possible that
1955                  * a write could come in and move the tail page
1956                  * and write to the next page. That is fine
1957                  * because we just shorten what is on this page.
1958                  */
1959                 old_index += write_mask;
1960                 new_index += write_mask;
1961                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1962                 if (index == old_index)
1963                         return 1;
1964         }
1965
1966         /* could not discard */
1967         return 0;
1968 }
1969
1970 static int
1971 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1972                   u64 *ts, u64 *delta)
1973 {
1974         struct ring_buffer_event *event;
1975         static int once;
1976         int ret;
1977
1978         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1979                 printk(KERN_WARNING "Delta way too big! %llu"
1980                        " ts=%llu write stamp = %llu\n",
1981                        (unsigned long long)*delta,
1982                        (unsigned long long)*ts,
1983                        (unsigned long long)cpu_buffer->write_stamp);
1984                 WARN_ON(1);
1985         }
1986
1987         /*
1988          * The delta is too big, we to add a
1989          * new timestamp.
1990          */
1991         event = __rb_reserve_next(cpu_buffer,
1992                                   RINGBUF_TYPE_TIME_EXTEND,
1993                                   RB_LEN_TIME_EXTEND,
1994                                   ts);
1995         if (!event)
1996                 return -EBUSY;
1997
1998         if (PTR_ERR(event) == -EAGAIN)
1999                 return -EAGAIN;
2000
2001         /* Only a commited time event can update the write stamp */
2002         if (rb_event_is_commit(cpu_buffer, event)) {
2003                 /*
2004                  * If this is the first on the page, then it was
2005                  * updated with the page itself. Try to discard it
2006                  * and if we can't just make it zero.
2007                  */
2008                 if (rb_event_index(event)) {
2009                         event->time_delta = *delta & TS_MASK;
2010                         event->array[0] = *delta >> TS_SHIFT;
2011                 } else {
2012                         /* try to discard, since we do not need this */
2013                         if (!rb_try_to_discard(cpu_buffer, event)) {
2014                                 /* nope, just zero it */
2015                                 event->time_delta = 0;
2016                                 event->array[0] = 0;
2017                         }
2018                 }
2019                 cpu_buffer->write_stamp = *ts;
2020                 /* let the caller know this was the commit */
2021                 ret = 1;
2022         } else {
2023                 /* Try to discard the event */
2024                 if (!rb_try_to_discard(cpu_buffer, event)) {
2025                         /* Darn, this is just wasted space */
2026                         event->time_delta = 0;
2027                         event->array[0] = 0;
2028                 }
2029                 ret = 0;
2030         }
2031
2032         *delta = 0;
2033
2034         return ret;
2035 }
2036
2037 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2038 {
2039         local_inc(&cpu_buffer->committing);
2040         local_inc(&cpu_buffer->commits);
2041 }
2042
2043 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2044 {
2045         unsigned long commits;
2046
2047         if (RB_WARN_ON(cpu_buffer,
2048                        !local_read(&cpu_buffer->committing)))
2049                 return;
2050
2051  again:
2052         commits = local_read(&cpu_buffer->commits);
2053         /* synchronize with interrupts */
2054         barrier();
2055         if (local_read(&cpu_buffer->committing) == 1)
2056                 rb_set_commit_to_write(cpu_buffer);
2057
2058         local_dec(&cpu_buffer->committing);
2059
2060         /* synchronize with interrupts */
2061         barrier();
2062
2063         /*
2064          * Need to account for interrupts coming in between the
2065          * updating of the commit page and the clearing of the
2066          * committing counter.
2067          */
2068         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2069             !local_read(&cpu_buffer->committing)) {
2070                 local_inc(&cpu_buffer->committing);
2071                 goto again;
2072         }
2073 }
2074
2075 static struct ring_buffer_event *
2076 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
2077                       unsigned long length)
2078 {
2079         struct ring_buffer_event *event;
2080         u64 ts, delta = 0;
2081         int commit = 0;
2082         int nr_loops = 0;
2083
2084         rb_start_commit(cpu_buffer);
2085
2086         length = rb_calculate_event_length(length);
2087  again:
2088         /*
2089          * We allow for interrupts to reenter here and do a trace.
2090          * If one does, it will cause this original code to loop
2091          * back here. Even with heavy interrupts happening, this
2092          * should only happen a few times in a row. If this happens
2093          * 1000 times in a row, there must be either an interrupt
2094          * storm or we have something buggy.
2095          * Bail!
2096          */
2097         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2098                 goto out_fail;
2099
2100         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
2101
2102         /*
2103          * Only the first commit can update the timestamp.
2104          * Yes there is a race here. If an interrupt comes in
2105          * just after the conditional and it traces too, then it
2106          * will also check the deltas. More than one timestamp may
2107          * also be made. But only the entry that did the actual
2108          * commit will be something other than zero.
2109          */
2110         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2111                    rb_page_write(cpu_buffer->tail_page) ==
2112                    rb_commit_index(cpu_buffer))) {
2113                 u64 diff;
2114
2115                 diff = ts - cpu_buffer->write_stamp;
2116
2117                 /* make sure this diff is calculated here */
2118                 barrier();
2119
2120                 /* Did the write stamp get updated already? */
2121                 if (unlikely(ts < cpu_buffer->write_stamp))
2122                         goto get_event;
2123
2124                 delta = diff;
2125                 if (unlikely(test_time_stamp(delta))) {
2126
2127                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2128                         if (commit == -EBUSY)
2129                                 goto out_fail;
2130
2131                         if (commit == -EAGAIN)
2132                                 goto again;
2133
2134                         RB_WARN_ON(cpu_buffer, commit < 0);
2135                 }
2136         }
2137
2138  get_event:
2139         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2140         if (unlikely(PTR_ERR(event) == -EAGAIN))
2141                 goto again;
2142
2143         if (!event)
2144                 goto out_fail;
2145
2146         if (!rb_event_is_commit(cpu_buffer, event))
2147                 delta = 0;
2148
2149         event->time_delta = delta;
2150
2151         return event;
2152
2153  out_fail:
2154         rb_end_commit(cpu_buffer);
2155         return NULL;
2156 }
2157
2158 #ifdef CONFIG_TRACING
2159
2160 #define TRACE_RECURSIVE_DEPTH 16
2161
2162 static int trace_recursive_lock(void)
2163 {
2164         current->trace_recursion++;
2165
2166         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2167                 return 0;
2168
2169         /* Disable all tracing before we do anything else */
2170         tracing_off_permanent();
2171
2172         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2173                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2174                     current->trace_recursion,
2175                     hardirq_count() >> HARDIRQ_SHIFT,
2176                     softirq_count() >> SOFTIRQ_SHIFT,
2177                     in_nmi());
2178
2179         WARN_ON_ONCE(1);
2180         return -1;
2181 }
2182
2183 static void trace_recursive_unlock(void)
2184 {
2185         WARN_ON_ONCE(!current->trace_recursion);
2186
2187         current->trace_recursion--;
2188 }
2189
2190 #else
2191
2192 #define trace_recursive_lock()          (0)
2193 #define trace_recursive_unlock()        do { } while (0)
2194
2195 #endif
2196
2197 static DEFINE_PER_CPU(int, rb_need_resched);
2198
2199 /**
2200  * ring_buffer_lock_reserve - reserve a part of the buffer
2201  * @buffer: the ring buffer to reserve from
2202  * @length: the length of the data to reserve (excluding event header)
2203  *
2204  * Returns a reseverd event on the ring buffer to copy directly to.
2205  * The user of this interface will need to get the body to write into
2206  * and can use the ring_buffer_event_data() interface.
2207  *
2208  * The length is the length of the data needed, not the event length
2209  * which also includes the event header.
2210  *
2211  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2212  * If NULL is returned, then nothing has been allocated or locked.
2213  */
2214 struct ring_buffer_event *
2215 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2216 {
2217         struct ring_buffer_per_cpu *cpu_buffer;
2218         struct ring_buffer_event *event;
2219         int cpu, resched;
2220
2221         if (ring_buffer_flags != RB_BUFFERS_ON)
2222                 return NULL;
2223
2224         if (atomic_read(&buffer->record_disabled))
2225                 return NULL;
2226
2227         /* If we are tracing schedule, we don't want to recurse */
2228         resched = ftrace_preempt_disable();
2229
2230         if (trace_recursive_lock())
2231                 goto out_nocheck;
2232
2233         cpu = raw_smp_processor_id();
2234
2235         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2236                 goto out;
2237
2238         cpu_buffer = buffer->buffers[cpu];
2239
2240         if (atomic_read(&cpu_buffer->record_disabled))
2241                 goto out;
2242
2243         if (length > BUF_MAX_DATA_SIZE)
2244                 goto out;
2245
2246         event = rb_reserve_next_event(cpu_buffer, length);
2247         if (!event)
2248                 goto out;
2249
2250         /*
2251          * Need to store resched state on this cpu.
2252          * Only the first needs to.
2253          */
2254
2255         if (preempt_count() == 1)
2256                 per_cpu(rb_need_resched, cpu) = resched;
2257
2258         return event;
2259
2260  out:
2261         trace_recursive_unlock();
2262
2263  out_nocheck:
2264         ftrace_preempt_enable(resched);
2265         return NULL;
2266 }
2267 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2268
2269 static void
2270 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2271                       struct ring_buffer_event *event)
2272 {
2273         /*
2274          * The event first in the commit queue updates the
2275          * time stamp.
2276          */
2277         if (rb_event_is_commit(cpu_buffer, event))
2278                 cpu_buffer->write_stamp += event->time_delta;
2279 }
2280
2281 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2282                       struct ring_buffer_event *event)
2283 {
2284         local_inc(&cpu_buffer->entries);
2285         rb_update_write_stamp(cpu_buffer, event);
2286         rb_end_commit(cpu_buffer);
2287 }
2288
2289 /**
2290  * ring_buffer_unlock_commit - commit a reserved
2291  * @buffer: The buffer to commit to
2292  * @event: The event pointer to commit.
2293  *
2294  * This commits the data to the ring buffer, and releases any locks held.
2295  *
2296  * Must be paired with ring_buffer_lock_reserve.
2297  */
2298 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2299                               struct ring_buffer_event *event)
2300 {
2301         struct ring_buffer_per_cpu *cpu_buffer;
2302         int cpu = raw_smp_processor_id();
2303
2304         cpu_buffer = buffer->buffers[cpu];
2305
2306         rb_commit(cpu_buffer, event);
2307
2308         trace_recursive_unlock();
2309
2310         /*
2311          * Only the last preempt count needs to restore preemption.
2312          */
2313         if (preempt_count() == 1)
2314                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2315         else
2316                 preempt_enable_no_resched_notrace();
2317
2318         return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2321
2322 static inline void rb_event_discard(struct ring_buffer_event *event)
2323 {
2324         /* array[0] holds the actual length for the discarded event */
2325         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2326         event->type_len = RINGBUF_TYPE_PADDING;
2327         /* time delta must be non zero */
2328         if (!event->time_delta)
2329                 event->time_delta = 1;
2330 }
2331
2332 /*
2333  * Decrement the entries to the page that an event is on.
2334  * The event does not even need to exist, only the pointer
2335  * to the page it is on. This may only be called before the commit
2336  * takes place.
2337  */
2338 static inline void
2339 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2340                    struct ring_buffer_event *event)
2341 {
2342         unsigned long addr = (unsigned long)event;
2343         struct buffer_page *bpage = cpu_buffer->commit_page;
2344         struct buffer_page *start;
2345
2346         addr &= PAGE_MASK;
2347
2348         /* Do the likely case first */
2349         if (likely(bpage->page == (void *)addr)) {
2350                 local_dec(&bpage->entries);
2351                 return;
2352         }
2353
2354         /*
2355          * Because the commit page may be on the reader page we
2356          * start with the next page and check the end loop there.
2357          */
2358         rb_inc_page(cpu_buffer, &bpage);
2359         start = bpage;
2360         do {
2361                 if (bpage->page == (void *)addr) {
2362                         local_dec(&bpage->entries);
2363                         return;
2364                 }
2365                 rb_inc_page(cpu_buffer, &bpage);
2366         } while (bpage != start);
2367
2368         /* commit not part of this buffer?? */
2369         RB_WARN_ON(cpu_buffer, 1);
2370 }
2371
2372 /**
2373  * ring_buffer_commit_discard - discard an event that has not been committed
2374  * @buffer: the ring buffer
2375  * @event: non committed event to discard
2376  *
2377  * Sometimes an event that is in the ring buffer needs to be ignored.
2378  * This function lets the user discard an event in the ring buffer
2379  * and then that event will not be read later.
2380  *
2381  * This function only works if it is called before the the item has been
2382  * committed. It will try to free the event from the ring buffer
2383  * if another event has not been added behind it.
2384  *
2385  * If another event has been added behind it, it will set the event
2386  * up as discarded, and perform the commit.
2387  *
2388  * If this function is called, do not call ring_buffer_unlock_commit on
2389  * the event.
2390  */
2391 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2392                                 struct ring_buffer_event *event)
2393 {
2394         struct ring_buffer_per_cpu *cpu_buffer;
2395         int cpu;
2396
2397         /* The event is discarded regardless */
2398         rb_event_discard(event);
2399
2400         cpu = smp_processor_id();
2401         cpu_buffer = buffer->buffers[cpu];
2402
2403         /*
2404          * This must only be called if the event has not been
2405          * committed yet. Thus we can assume that preemption
2406          * is still disabled.
2407          */
2408         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2409
2410         rb_decrement_entry(cpu_buffer, event);
2411         if (rb_try_to_discard(cpu_buffer, event))
2412                 goto out;
2413
2414         /*
2415          * The commit is still visible by the reader, so we
2416          * must still update the timestamp.
2417          */
2418         rb_update_write_stamp(cpu_buffer, event);
2419  out:
2420         rb_end_commit(cpu_buffer);
2421
2422         trace_recursive_unlock();
2423
2424         /*
2425          * Only the last preempt count needs to restore preemption.
2426          */
2427         if (preempt_count() == 1)
2428                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2429         else
2430                 preempt_enable_no_resched_notrace();
2431
2432 }
2433 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2434
2435 /**
2436  * ring_buffer_write - write data to the buffer without reserving
2437  * @buffer: The ring buffer to write to.
2438  * @length: The length of the data being written (excluding the event header)
2439  * @data: The data to write to the buffer.
2440  *
2441  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2442  * one function. If you already have the data to write to the buffer, it
2443  * may be easier to simply call this function.
2444  *
2445  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2446  * and not the length of the event which would hold the header.
2447  */
2448 int ring_buffer_write(struct ring_buffer *buffer,
2449                         unsigned long length,
2450                         void *data)
2451 {
2452         struct ring_buffer_per_cpu *cpu_buffer;
2453         struct ring_buffer_event *event;
2454         void *body;
2455         int ret = -EBUSY;
2456         int cpu, resched;
2457
2458         if (ring_buffer_flags != RB_BUFFERS_ON)
2459                 return -EBUSY;
2460
2461         if (atomic_read(&buffer->record_disabled))
2462                 return -EBUSY;
2463
2464         resched = ftrace_preempt_disable();
2465
2466         cpu = raw_smp_processor_id();
2467
2468         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2469                 goto out;
2470
2471         cpu_buffer = buffer->buffers[cpu];
2472
2473         if (atomic_read(&cpu_buffer->record_disabled))
2474                 goto out;
2475
2476         if (length > BUF_MAX_DATA_SIZE)
2477                 goto out;
2478
2479         event = rb_reserve_next_event(cpu_buffer, length);
2480         if (!event)
2481                 goto out;
2482
2483         body = rb_event_data(event);
2484
2485         memcpy(body, data, length);
2486
2487         rb_commit(cpu_buffer, event);
2488
2489         ret = 0;
2490  out:
2491         ftrace_preempt_enable(resched);
2492
2493         return ret;
2494 }
2495 EXPORT_SYMBOL_GPL(ring_buffer_write);
2496
2497 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2498 {
2499         struct buffer_page *reader = cpu_buffer->reader_page;
2500         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2501         struct buffer_page *commit = cpu_buffer->commit_page;
2502
2503         /* In case of error, head will be NULL */
2504         if (unlikely(!head))
2505                 return 1;
2506
2507         return reader->read == rb_page_commit(reader) &&
2508                 (commit == reader ||
2509                  (commit == head &&
2510                   head->read == rb_page_commit(commit)));
2511 }
2512
2513 /**
2514  * ring_buffer_record_disable - stop all writes into the buffer
2515  * @buffer: The ring buffer to stop writes to.
2516  *
2517  * This prevents all writes to the buffer. Any attempt to write
2518  * to the buffer after this will fail and return NULL.
2519  *
2520  * The caller should call synchronize_sched() after this.
2521  */
2522 void ring_buffer_record_disable(struct ring_buffer *buffer)
2523 {
2524         atomic_inc(&buffer->record_disabled);
2525 }
2526 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2527
2528 /**
2529  * ring_buffer_record_enable - enable writes to the buffer
2530  * @buffer: The ring buffer to enable writes
2531  *
2532  * Note, multiple disables will need the same number of enables
2533  * to truely enable the writing (much like preempt_disable).
2534  */
2535 void ring_buffer_record_enable(struct ring_buffer *buffer)
2536 {
2537         atomic_dec(&buffer->record_disabled);
2538 }
2539 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2540
2541 /**
2542  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2543  * @buffer: The ring buffer to stop writes to.
2544  * @cpu: The CPU buffer to stop
2545  *
2546  * This prevents all writes to the buffer. Any attempt to write
2547  * to the buffer after this will fail and return NULL.
2548  *
2549  * The caller should call synchronize_sched() after this.
2550  */
2551 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2552 {
2553         struct ring_buffer_per_cpu *cpu_buffer;
2554
2555         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2556                 return;
2557
2558         cpu_buffer = buffer->buffers[cpu];
2559         atomic_inc(&cpu_buffer->record_disabled);
2560 }
2561 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2562
2563 /**
2564  * ring_buffer_record_enable_cpu - enable writes to the buffer
2565  * @buffer: The ring buffer to enable writes
2566  * @cpu: The CPU to enable.
2567  *
2568  * Note, multiple disables will need the same number of enables
2569  * to truely enable the writing (much like preempt_disable).
2570  */
2571 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2572 {
2573         struct ring_buffer_per_cpu *cpu_buffer;
2574
2575         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2576                 return;
2577
2578         cpu_buffer = buffer->buffers[cpu];
2579         atomic_dec(&cpu_buffer->record_disabled);
2580 }
2581 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2582
2583 /**
2584  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2585  * @buffer: The ring buffer
2586  * @cpu: The per CPU buffer to get the entries from.
2587  */
2588 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2589 {
2590         struct ring_buffer_per_cpu *cpu_buffer;
2591         unsigned long ret;
2592
2593         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2594                 return 0;
2595
2596         cpu_buffer = buffer->buffers[cpu];
2597         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2598                 - cpu_buffer->read;
2599
2600         return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2603
2604 /**
2605  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2606  * @buffer: The ring buffer
2607  * @cpu: The per CPU buffer to get the number of overruns from
2608  */
2609 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2610 {
2611         struct ring_buffer_per_cpu *cpu_buffer;
2612         unsigned long ret;
2613
2614         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2615                 return 0;
2616
2617         cpu_buffer = buffer->buffers[cpu];
2618         ret = local_read(&cpu_buffer->overrun);
2619
2620         return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2623
2624 /**
2625  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2626  * @buffer: The ring buffer
2627  * @cpu: The per CPU buffer to get the number of overruns from
2628  */
2629 unsigned long
2630 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2631 {
2632         struct ring_buffer_per_cpu *cpu_buffer;
2633         unsigned long ret;
2634
2635         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2636                 return 0;
2637
2638         cpu_buffer = buffer->buffers[cpu];
2639         ret = local_read(&cpu_buffer->commit_overrun);
2640
2641         return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2644
2645 /**
2646  * ring_buffer_entries - get the number of entries in a buffer
2647  * @buffer: The ring buffer
2648  *
2649  * Returns the total number of entries in the ring buffer
2650  * (all CPU entries)
2651  */
2652 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2653 {
2654         struct ring_buffer_per_cpu *cpu_buffer;
2655         unsigned long entries = 0;
2656         int cpu;
2657
2658         /* if you care about this being correct, lock the buffer */
2659         for_each_buffer_cpu(buffer, cpu) {
2660                 cpu_buffer = buffer->buffers[cpu];
2661                 entries += (local_read(&cpu_buffer->entries) -
2662                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2663         }
2664
2665         return entries;
2666 }
2667 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2668
2669 /**
2670  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2671  * @buffer: The ring buffer
2672  *
2673  * Returns the total number of overruns in the ring buffer
2674  * (all CPU entries)
2675  */
2676 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2677 {
2678         struct ring_buffer_per_cpu *cpu_buffer;
2679         unsigned long overruns = 0;
2680         int cpu;
2681
2682         /* if you care about this being correct, lock the buffer */
2683         for_each_buffer_cpu(buffer, cpu) {
2684                 cpu_buffer = buffer->buffers[cpu];
2685                 overruns += local_read(&cpu_buffer->overrun);
2686         }
2687
2688         return overruns;
2689 }
2690 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2691
2692 static void rb_iter_reset(struct ring_buffer_iter *iter)
2693 {
2694         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2695
2696         /* Iterator usage is expected to have record disabled */
2697         if (list_empty(&cpu_buffer->reader_page->list)) {
2698                 iter->head_page = rb_set_head_page(cpu_buffer);
2699                 if (unlikely(!iter->head_page))
2700                         return;
2701                 iter->head = iter->head_page->read;
2702         } else {
2703                 iter->head_page = cpu_buffer->reader_page;
2704                 iter->head = cpu_buffer->reader_page->read;
2705         }
2706         if (iter->head)
2707                 iter->read_stamp = cpu_buffer->read_stamp;
2708         else
2709                 iter->read_stamp = iter->head_page->page->time_stamp;
2710 }
2711
2712 /**
2713  * ring_buffer_iter_reset - reset an iterator
2714  * @iter: The iterator to reset
2715  *
2716  * Resets the iterator, so that it will start from the beginning
2717  * again.
2718  */
2719 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2720 {
2721         struct ring_buffer_per_cpu *cpu_buffer;
2722         unsigned long flags;
2723
2724         if (!iter)
2725                 return;
2726
2727         cpu_buffer = iter->cpu_buffer;
2728
2729         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2730         rb_iter_reset(iter);
2731         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2732 }
2733 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2734
2735 /**
2736  * ring_buffer_iter_empty - check if an iterator has no more to read
2737  * @iter: The iterator to check
2738  */
2739 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2740 {
2741         struct ring_buffer_per_cpu *cpu_buffer;
2742
2743         cpu_buffer = iter->cpu_buffer;
2744
2745         return iter->head_page == cpu_buffer->commit_page &&
2746                 iter->head == rb_commit_index(cpu_buffer);
2747 }
2748 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2749
2750 static void
2751 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2752                      struct ring_buffer_event *event)
2753 {
2754         u64 delta;
2755
2756         switch (event->type_len) {
2757         case RINGBUF_TYPE_PADDING:
2758                 return;
2759
2760         case RINGBUF_TYPE_TIME_EXTEND:
2761                 delta = event->array[0];
2762                 delta <<= TS_SHIFT;
2763                 delta += event->time_delta;
2764                 cpu_buffer->read_stamp += delta;
2765                 return;
2766
2767         case RINGBUF_TYPE_TIME_STAMP:
2768                 /* FIXME: not implemented */
2769                 return;
2770
2771         case RINGBUF_TYPE_DATA:
2772                 cpu_buffer->read_stamp += event->time_delta;
2773                 return;
2774
2775         default:
2776                 BUG();
2777         }
2778         return;
2779 }
2780
2781 static void
2782 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2783                           struct ring_buffer_event *event)
2784 {
2785         u64 delta;
2786
2787         switch (event->type_len) {
2788         case RINGBUF_TYPE_PADDING:
2789                 return;
2790
2791         case RINGBUF_TYPE_TIME_EXTEND:
2792                 delta = event->array[0];
2793                 delta <<= TS_SHIFT;
2794                 delta += event->time_delta;
2795                 iter->read_stamp += delta;
2796                 return;
2797
2798         case RINGBUF_TYPE_TIME_STAMP:
2799                 /* FIXME: not implemented */
2800                 return;
2801
2802         case RINGBUF_TYPE_DATA:
2803                 iter->read_stamp += event->time_delta;
2804                 return;
2805
2806         default:
2807                 BUG();
2808         }
2809         return;
2810 }
2811
2812 static struct buffer_page *
2813 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2814 {
2815         struct buffer_page *reader = NULL;
2816         unsigned long flags;
2817         int nr_loops = 0;
2818         int ret;
2819
2820         local_irq_save(flags);
2821         __raw_spin_lock(&cpu_buffer->lock);
2822
2823  again:
2824         /*
2825          * This should normally only loop twice. But because the
2826          * start of the reader inserts an empty page, it causes
2827          * a case where we will loop three times. There should be no
2828          * reason to loop four times (that I know of).
2829          */
2830         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2831                 reader = NULL;
2832                 goto out;
2833         }
2834
2835         reader = cpu_buffer->reader_page;
2836
2837         /* If there's more to read, return this page */
2838         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2839                 goto out;
2840
2841         /* Never should we have an index greater than the size */
2842         if (RB_WARN_ON(cpu_buffer,
2843                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2844                 goto out;
2845
2846         /* check if we caught up to the tail */
2847         reader = NULL;
2848         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2849                 goto out;
2850
2851         /*
2852          * Reset the reader page to size zero.
2853          */
2854         local_set(&cpu_buffer->reader_page->write, 0);
2855         local_set(&cpu_buffer->reader_page->entries, 0);
2856         local_set(&cpu_buffer->reader_page->page->commit, 0);
2857
2858  spin:
2859         /*
2860          * Splice the empty reader page into the list around the head.
2861          */
2862         reader = rb_set_head_page(cpu_buffer);
2863         cpu_buffer->reader_page->list.next = reader->list.next;
2864         cpu_buffer->reader_page->list.prev = reader->list.prev;
2865
2866         /*
2867          * cpu_buffer->pages just needs to point to the buffer, it
2868          *  has no specific buffer page to point to. Lets move it out
2869          *  of our way so we don't accidently swap it.
2870          */
2871         cpu_buffer->pages = reader->list.prev;
2872
2873         /* The reader page will be pointing to the new head */
2874         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2875
2876         /*
2877          * Here's the tricky part.
2878          *
2879          * We need to move the pointer past the header page.
2880          * But we can only do that if a writer is not currently
2881          * moving it. The page before the header page has the
2882          * flag bit '1' set if it is pointing to the page we want.
2883          * but if the writer is in the process of moving it
2884          * than it will be '2' or already moved '0'.
2885          */
2886
2887         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2888
2889         /*
2890          * If we did not convert it, then we must try again.
2891          */
2892         if (!ret)
2893                 goto spin;
2894
2895         /*
2896          * Yeah! We succeeded in replacing the page.
2897          *
2898          * Now make the new head point back to the reader page.
2899          */
2900         reader->list.next->prev = &cpu_buffer->reader_page->list;
2901         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2902
2903         /* Finally update the reader page to the new head */
2904         cpu_buffer->reader_page = reader;
2905         rb_reset_reader_page(cpu_buffer);
2906
2907         goto again;
2908
2909  out:
2910         __raw_spin_unlock(&cpu_buffer->lock);
2911         local_irq_restore(flags);
2912
2913         return reader;
2914 }
2915
2916 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2917 {
2918         struct ring_buffer_event *event;
2919         struct buffer_page *reader;
2920         unsigned length;
2921
2922         reader = rb_get_reader_page(cpu_buffer);
2923
2924         /* This function should not be called when buffer is empty */
2925         if (RB_WARN_ON(cpu_buffer, !reader))
2926                 return;
2927
2928         event = rb_reader_event(cpu_buffer);
2929
2930         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2931                 cpu_buffer->read++;
2932
2933         rb_update_read_stamp(cpu_buffer, event);
2934
2935         length = rb_event_length(event);
2936         cpu_buffer->reader_page->read += length;
2937 }
2938
2939 static void rb_advance_iter(struct ring_buffer_iter *iter)
2940 {
2941         struct ring_buffer *buffer;
2942         struct ring_buffer_per_cpu *cpu_buffer;
2943         struct ring_buffer_event *event;
2944         unsigned length;
2945
2946         cpu_buffer = iter->cpu_buffer;
2947         buffer = cpu_buffer->buffer;
2948
2949         /*
2950          * Check if we are at the end of the buffer.
2951          */
2952         if (iter->head >= rb_page_size(iter->head_page)) {
2953                 /* discarded commits can make the page empty */
2954                 if (iter->head_page == cpu_buffer->commit_page)
2955                         return;
2956                 rb_inc_iter(iter);
2957                 return;
2958         }
2959
2960         event = rb_iter_head_event(iter);
2961
2962         length = rb_event_length(event);
2963
2964         /*
2965          * This should not be called to advance the header if we are
2966          * at the tail of the buffer.
2967          */
2968         if (RB_WARN_ON(cpu_buffer,
2969                        (iter->head_page == cpu_buffer->commit_page) &&
2970                        (iter->head + length > rb_commit_index(cpu_buffer))))
2971                 return;
2972
2973         rb_update_iter_read_stamp(iter, event);
2974
2975         iter->head += length;
2976
2977         /* check for end of page padding */
2978         if ((iter->head >= rb_page_size(iter->head_page)) &&
2979             (iter->head_page != cpu_buffer->commit_page))
2980                 rb_advance_iter(iter);
2981 }
2982
2983 static struct ring_buffer_event *
2984 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2985 {
2986         struct ring_buffer_per_cpu *cpu_buffer;
2987         struct ring_buffer_event *event;
2988         struct buffer_page *reader;
2989         int nr_loops = 0;
2990
2991         cpu_buffer = buffer->buffers[cpu];
2992
2993  again:
2994         /*
2995          * We repeat when a timestamp is encountered. It is possible
2996          * to get multiple timestamps from an interrupt entering just
2997          * as one timestamp is about to be written, or from discarded
2998          * commits. The most that we can have is the number on a single page.
2999          */
3000         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3001                 return NULL;
3002
3003         reader = rb_get_reader_page(cpu_buffer);
3004         if (!reader)
3005                 return NULL;
3006
3007         event = rb_reader_event(cpu_buffer);
3008
3009         switch (event->type_len) {
3010         case RINGBUF_TYPE_PADDING:
3011                 if (rb_null_event(event))
3012                         RB_WARN_ON(cpu_buffer, 1);
3013                 /*
3014                  * Because the writer could be discarding every
3015                  * event it creates (which would probably be bad)
3016                  * if we were to go back to "again" then we may never
3017                  * catch up, and will trigger the warn on, or lock
3018                  * the box. Return the padding, and we will release
3019                  * the current locks, and try again.
3020                  */
3021                 return event;
3022
3023         case RINGBUF_TYPE_TIME_EXTEND:
3024                 /* Internal data, OK to advance */
3025                 rb_advance_reader(cpu_buffer);
3026                 goto again;
3027
3028         case RINGBUF_TYPE_TIME_STAMP:
3029                 /* FIXME: not implemented */
3030                 rb_advance_reader(cpu_buffer);
3031                 goto again;
3032
3033         case RINGBUF_TYPE_DATA:
3034                 if (ts) {
3035                         *ts = cpu_buffer->read_stamp + event->time_delta;
3036                         ring_buffer_normalize_time_stamp(buffer,
3037                                                          cpu_buffer->cpu, ts);
3038                 }
3039                 return event;
3040
3041         default:
3042                 BUG();
3043         }
3044
3045         return NULL;
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3048
3049 static struct ring_buffer_event *
3050 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3051 {
3052         struct ring_buffer *buffer;
3053         struct ring_buffer_per_cpu *cpu_buffer;
3054         struct ring_buffer_event *event;
3055         int nr_loops = 0;
3056
3057         if (ring_buffer_iter_empty(iter))
3058                 return NULL;
3059
3060         cpu_buffer = iter->cpu_buffer;
3061         buffer = cpu_buffer->buffer;
3062
3063  again:
3064         /*
3065          * We repeat when a timestamp is encountered.
3066          * We can get multiple timestamps by nested interrupts or also
3067          * if filtering is on (discarding commits). Since discarding
3068          * commits can be frequent we can get a lot of timestamps.
3069          * But we limit them by not adding timestamps if they begin
3070          * at the start of a page.
3071          */
3072         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3073                 return NULL;
3074
3075         if (rb_per_cpu_empty(cpu_buffer))
3076                 return NULL;
3077
3078         event = rb_iter_head_event(iter);
3079
3080         switch (event->type_len) {
3081         case RINGBUF_TYPE_PADDING:
3082                 if (rb_null_event(event)) {
3083                         rb_inc_iter(iter);
3084                         goto again;
3085                 }
3086                 rb_advance_iter(iter);
3087                 return event;
3088
3089         case RINGBUF_TYPE_TIME_EXTEND:
3090                 /* Internal data, OK to advance */
3091                 rb_advance_iter(iter);
3092                 goto again;
3093
3094         case RINGBUF_TYPE_TIME_STAMP:
3095                 /* FIXME: not implemented */
3096                 rb_advance_iter(iter);
3097                 goto again;
3098
3099         case RINGBUF_TYPE_DATA:
3100                 if (ts) {
3101                         *ts = iter->read_stamp + event->time_delta;
3102                         ring_buffer_normalize_time_stamp(buffer,
3103                                                          cpu_buffer->cpu, ts);
3104                 }
3105                 return event;
3106
3107         default:
3108                 BUG();
3109         }
3110
3111         return NULL;
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3114
3115 static inline int rb_ok_to_lock(void)
3116 {
3117         /*
3118          * If an NMI die dumps out the content of the ring buffer
3119          * do not grab locks. We also permanently disable the ring
3120          * buffer too. A one time deal is all you get from reading
3121          * the ring buffer from an NMI.
3122          */
3123         if (likely(!in_nmi()))
3124                 return 1;
3125
3126         tracing_off_permanent();
3127         return 0;
3128 }
3129
3130 /**
3131  * ring_buffer_peek - peek at the next event to be read
3132  * @buffer: The ring buffer to read
3133  * @cpu: The cpu to peak at
3134  * @ts: The timestamp counter of this event.
3135  *
3136  * This will return the event that will be read next, but does
3137  * not consume the data.
3138  */
3139 struct ring_buffer_event *
3140 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3141 {
3142         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3143         struct ring_buffer_event *event;
3144         unsigned long flags;
3145         int dolock;
3146
3147         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3148                 return NULL;
3149
3150         dolock = rb_ok_to_lock();
3151  again:
3152         local_irq_save(flags);
3153         if (dolock)
3154                 spin_lock(&cpu_buffer->reader_lock);
3155         event = rb_buffer_peek(buffer, cpu, ts);
3156         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3157                 rb_advance_reader(cpu_buffer);
3158         if (dolock)
3159                 spin_unlock(&cpu_buffer->reader_lock);
3160         local_irq_restore(flags);
3161
3162         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3163                 goto again;
3164
3165         return event;
3166 }
3167
3168 /**
3169  * ring_buffer_iter_peek - peek at the next event to be read
3170  * @iter: The ring buffer iterator
3171  * @ts: The timestamp counter of this event.
3172  *
3173  * This will return the event that will be read next, but does
3174  * not increment the iterator.
3175  */
3176 struct ring_buffer_event *
3177 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3178 {
3179         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3180         struct ring_buffer_event *event;
3181         unsigned long flags;
3182
3183  again:
3184         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3185         event = rb_iter_peek(iter, ts);
3186         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3187
3188         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3189                 goto again;
3190
3191         return event;
3192 }
3193
3194 /**
3195  * ring_buffer_consume - return an event and consume it
3196  * @buffer: The ring buffer to get the next event from
3197  *
3198  * Returns the next event in the ring buffer, and that event is consumed.
3199  * Meaning, that sequential reads will keep returning a different event,
3200  * and eventually empty the ring buffer if the producer is slower.
3201  */
3202 struct ring_buffer_event *
3203 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3204 {
3205         struct ring_buffer_per_cpu *cpu_buffer;
3206         struct ring_buffer_event *event = NULL;
3207         unsigned long flags;
3208         int dolock;
3209
3210         dolock = rb_ok_to_lock();
3211
3212  again:
3213         /* might be called in atomic */
3214         preempt_disable();
3215
3216         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217                 goto out;
3218
3219         cpu_buffer = buffer->buffers[cpu];
3220         local_irq_save(flags);
3221         if (dolock)
3222                 spin_lock(&cpu_buffer->reader_lock);
3223
3224         event = rb_buffer_peek(buffer, cpu, ts);
3225         if (event)
3226                 rb_advance_reader(cpu_buffer);
3227
3228         if (dolock)
3229                 spin_unlock(&cpu_buffer->reader_lock);
3230         local_irq_restore(flags);
3231
3232  out:
3233         preempt_enable();
3234
3235         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3236                 goto again;
3237
3238         return event;
3239 }
3240 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3241
3242 /**
3243  * ring_buffer_read_start - start a non consuming read of the buffer
3244  * @buffer: The ring buffer to read from
3245  * @cpu: The cpu buffer to iterate over
3246  *
3247  * This starts up an iteration through the buffer. It also disables
3248  * the recording to the buffer until the reading is finished.
3249  * This prevents the reading from being corrupted. This is not
3250  * a consuming read, so a producer is not expected.
3251  *
3252  * Must be paired with ring_buffer_finish.
3253  */
3254 struct ring_buffer_iter *
3255 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3256 {
3257         struct ring_buffer_per_cpu *cpu_buffer;
3258         struct ring_buffer_iter *iter;
3259         unsigned long flags;
3260
3261         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262                 return NULL;
3263
3264         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3265         if (!iter)
3266                 return NULL;
3267
3268         cpu_buffer = buffer->buffers[cpu];
3269
3270         iter->cpu_buffer = cpu_buffer;
3271
3272         atomic_inc(&cpu_buffer->record_disabled);
3273         synchronize_sched();
3274
3275         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3276         __raw_spin_lock(&cpu_buffer->lock);
3277         rb_iter_reset(iter);
3278         __raw_spin_unlock(&cpu_buffer->lock);
3279         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3280
3281         return iter;
3282 }
3283 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3284
3285 /**
3286  * ring_buffer_finish - finish reading the iterator of the buffer
3287  * @iter: The iterator retrieved by ring_buffer_start
3288  *
3289  * This re-enables the recording to the buffer, and frees the
3290  * iterator.
3291  */
3292 void
3293 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3294 {
3295         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3296
3297         atomic_dec(&cpu_buffer->record_disabled);
3298         kfree(iter);
3299 }
3300 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3301
3302 /**
3303  * ring_buffer_read - read the next item in the ring buffer by the iterator
3304  * @iter: The ring buffer iterator
3305  * @ts: The time stamp of the event read.
3306  *
3307  * This reads the next event in the ring buffer and increments the iterator.
3308  */
3309 struct ring_buffer_event *
3310 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3311 {
3312         struct ring_buffer_event *event;
3313         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3314         unsigned long flags;
3315
3316         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3317  again:
3318         event = rb_iter_peek(iter, ts);
3319         if (!event)
3320                 goto out;
3321
3322         if (event->type_len == RINGBUF_TYPE_PADDING)
3323                 goto again;
3324
3325         rb_advance_iter(iter);
3326  out:
3327         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3328
3329         return event;
3330 }
3331 EXPORT_SYMBOL_GPL(ring_buffer_read);
3332
3333 /**
3334  * ring_buffer_size - return the size of the ring buffer (in bytes)
3335  * @buffer: The ring buffer.
3336  */
3337 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3338 {
3339         return BUF_PAGE_SIZE * buffer->pages;
3340 }
3341 EXPORT_SYMBOL_GPL(ring_buffer_size);
3342
3343 static void
3344 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3345 {
3346         rb_head_page_deactivate(cpu_buffer);
3347
3348         cpu_buffer->head_page
3349                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3350         local_set(&cpu_buffer->head_page->write, 0);
3351         local_set(&cpu_buffer->head_page->entries, 0);
3352         local_set(&cpu_buffer->head_page->page->commit, 0);
3353
3354         cpu_buffer->head_page->read = 0;
3355
3356         cpu_buffer->tail_page = cpu_buffer->head_page;
3357         cpu_buffer->commit_page = cpu_buffer->head_page;
3358
3359         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3360         local_set(&cpu_buffer->reader_page->write, 0);
3361         local_set(&cpu_buffer->reader_page->entries, 0);
3362         local_set(&cpu_buffer->reader_page->page->commit, 0);
3363         cpu_buffer->reader_page->read = 0;
3364
3365         local_set(&cpu_buffer->commit_overrun, 0);
3366         local_set(&cpu_buffer->overrun, 0);
3367         local_set(&cpu_buffer->entries, 0);
3368         local_set(&cpu_buffer->committing, 0);
3369         local_set(&cpu_buffer->commits, 0);
3370         cpu_buffer->read = 0;
3371
3372         cpu_buffer->write_stamp = 0;
3373         cpu_buffer->read_stamp = 0;
3374
3375         rb_head_page_activate(cpu_buffer);
3376 }
3377
3378 /**
3379  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3380  * @buffer: The ring buffer to reset a per cpu buffer of
3381  * @cpu: The CPU buffer to be reset
3382  */
3383 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3384 {
3385         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3386         unsigned long flags;
3387
3388         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3389                 return;
3390
3391         atomic_inc(&cpu_buffer->record_disabled);
3392
3393         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3394
3395         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3396                 goto out;
3397
3398         __raw_spin_lock(&cpu_buffer->lock);
3399
3400         rb_reset_cpu(cpu_buffer);
3401
3402         __raw_spin_unlock(&cpu_buffer->lock);
3403
3404  out:
3405         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3406
3407         atomic_dec(&cpu_buffer->record_disabled);
3408 }
3409 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3410
3411 /**
3412  * ring_buffer_reset - reset a ring buffer
3413  * @buffer: The ring buffer to reset all cpu buffers
3414  */
3415 void ring_buffer_reset(struct ring_buffer *buffer)
3416 {
3417         int cpu;
3418
3419         for_each_buffer_cpu(buffer, cpu)
3420                 ring_buffer_reset_cpu(buffer, cpu);
3421 }
3422 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3423
3424 /**
3425  * rind_buffer_empty - is the ring buffer empty?
3426  * @buffer: The ring buffer to test
3427  */
3428 int ring_buffer_empty(struct ring_buffer *buffer)
3429 {
3430         struct ring_buffer_per_cpu *cpu_buffer;
3431         unsigned long flags;
3432         int dolock;
3433         int cpu;
3434         int ret;
3435
3436         dolock = rb_ok_to_lock();
3437
3438         /* yes this is racy, but if you don't like the race, lock the buffer */
3439         for_each_buffer_cpu(buffer, cpu) {
3440                 cpu_buffer = buffer->buffers[cpu];
3441                 local_irq_save(flags);
3442                 if (dolock)
3443                         spin_lock(&cpu_buffer->reader_lock);
3444                 ret = rb_per_cpu_empty(cpu_buffer);
3445                 if (dolock)
3446                         spin_unlock(&cpu_buffer->reader_lock);
3447                 local_irq_restore(flags);
3448
3449                 if (!ret)
3450                         return 0;
3451         }
3452
3453         return 1;
3454 }
3455 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3456
3457 /**
3458  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3459  * @buffer: The ring buffer
3460  * @cpu: The CPU buffer to test
3461  */
3462 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3463 {
3464         struct ring_buffer_per_cpu *cpu_buffer;
3465         unsigned long flags;
3466         int dolock;
3467         int ret;
3468
3469         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470                 return 1;
3471
3472         dolock = rb_ok_to_lock();
3473
3474         cpu_buffer = buffer->buffers[cpu];
3475         local_irq_save(flags);
3476         if (dolock)
3477                 spin_lock(&cpu_buffer->reader_lock);
3478         ret = rb_per_cpu_empty(cpu_buffer);
3479         if (dolock)
3480                 spin_unlock(&cpu_buffer->reader_lock);
3481         local_irq_restore(flags);
3482
3483         return ret;
3484 }
3485 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3486
3487 /**
3488  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3489  * @buffer_a: One buffer to swap with
3490  * @buffer_b: The other buffer to swap with
3491  *
3492  * This function is useful for tracers that want to take a "snapshot"
3493  * of a CPU buffer and has another back up buffer lying around.
3494  * it is expected that the tracer handles the cpu buffer not being
3495  * used at the moment.
3496  */
3497 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3498                          struct ring_buffer *buffer_b, int cpu)
3499 {
3500         struct ring_buffer_per_cpu *cpu_buffer_a;
3501         struct ring_buffer_per_cpu *cpu_buffer_b;
3502         int ret = -EINVAL;
3503
3504         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3505             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3506                 goto out;
3507
3508         /* At least make sure the two buffers are somewhat the same */
3509         if (buffer_a->pages != buffer_b->pages)
3510                 goto out;
3511
3512         ret = -EAGAIN;
3513
3514         if (ring_buffer_flags != RB_BUFFERS_ON)
3515                 goto out;
3516
3517         if (atomic_read(&buffer_a->record_disabled))
3518                 goto out;
3519
3520         if (atomic_read(&buffer_b->record_disabled))
3521                 goto out;
3522
3523         cpu_buffer_a = buffer_a->buffers[cpu];
3524         cpu_buffer_b = buffer_b->buffers[cpu];
3525
3526         if (atomic_read(&cpu_buffer_a->record_disabled))
3527                 goto out;
3528
3529         if (atomic_read(&cpu_buffer_b->record_disabled))
3530                 goto out;
3531
3532         /*
3533          * We can't do a synchronize_sched here because this
3534          * function can be called in atomic context.
3535          * Normally this will be called from the same CPU as cpu.
3536          * If not it's up to the caller to protect this.
3537          */
3538         atomic_inc(&cpu_buffer_a->record_disabled);
3539         atomic_inc(&cpu_buffer_b->record_disabled);
3540
3541         ret = -EBUSY;
3542         if (local_read(&cpu_buffer_a->committing))
3543                 goto out_dec;
3544         if (local_read(&cpu_buffer_b->committing))
3545                 goto out_dec;
3546
3547         buffer_a->buffers[cpu] = cpu_buffer_b;
3548         buffer_b->buffers[cpu] = cpu_buffer_a;
3549
3550         cpu_buffer_b->buffer = buffer_a;
3551         cpu_buffer_a->buffer = buffer_b;
3552
3553         ret = 0;
3554
3555 out_dec:
3556         atomic_dec(&cpu_buffer_a->record_disabled);
3557         atomic_dec(&cpu_buffer_b->record_disabled);
3558 out:
3559         return ret;
3560 }
3561 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3562
3563 /**
3564  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3565  * @buffer: the buffer to allocate for.
3566  *
3567  * This function is used in conjunction with ring_buffer_read_page.
3568  * When reading a full page from the ring buffer, these functions
3569  * can be used to speed up the process. The calling function should
3570  * allocate a few pages first with this function. Then when it
3571  * needs to get pages from the ring buffer, it passes the result
3572  * of this function into ring_buffer_read_page, which will swap
3573  * the page that was allocated, with the read page of the buffer.
3574  *
3575  * Returns:
3576  *  The page allocated, or NULL on error.
3577  */
3578 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3579 {
3580         struct buffer_data_page *bpage;
3581         unsigned long addr;
3582
3583         addr = __get_free_page(GFP_KERNEL);
3584         if (!addr)
3585                 return NULL;
3586
3587         bpage = (void *)addr;
3588
3589         rb_init_page(bpage);
3590
3591         return bpage;
3592 }
3593 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3594
3595 /**
3596  * ring_buffer_free_read_page - free an allocated read page
3597  * @buffer: the buffer the page was allocate for
3598  * @data: the page to free
3599  *
3600  * Free a page allocated from ring_buffer_alloc_read_page.
3601  */
3602 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3603 {
3604         free_page((unsigned long)data);
3605 }
3606 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3607
3608 /**
3609  * ring_buffer_read_page - extract a page from the ring buffer
3610  * @buffer: buffer to extract from
3611  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3612  * @len: amount to extract
3613  * @cpu: the cpu of the buffer to extract
3614  * @full: should the extraction only happen when the page is full.
3615  *
3616  * This function will pull out a page from the ring buffer and consume it.
3617  * @data_page must be the address of the variable that was returned
3618  * from ring_buffer_alloc_read_page. This is because the page might be used
3619  * to swap with a page in the ring buffer.
3620  *
3621  * for example:
3622  *      rpage = ring_buffer_alloc_read_page(buffer);
3623  *      if (!rpage)
3624  *              return error;
3625  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3626  *      if (ret >= 0)
3627  *              process_page(rpage, ret);
3628  *
3629  * When @full is set, the function will not return true unless
3630  * the writer is off the reader page.
3631  *
3632  * Note: it is up to the calling functions to handle sleeps and wakeups.
3633  *  The ring buffer can be used anywhere in the kernel and can not
3634  *  blindly call wake_up. The layer that uses the ring buffer must be
3635  *  responsible for that.
3636  *
3637  * Returns:
3638  *  >=0 if data has been transferred, returns the offset of consumed data.
3639  *  <0 if no data has been transferred.
3640  */
3641 int ring_buffer_read_page(struct ring_buffer *buffer,
3642                           void **data_page, size_t len, int cpu, int full)
3643 {
3644         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3645         struct ring_buffer_event *event;
3646         struct buffer_data_page *bpage;
3647         struct buffer_page *reader;
3648         unsigned long flags;
3649         unsigned int commit;
3650         unsigned int read;
3651         u64 save_timestamp;
3652         int ret = -1;
3653
3654         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3655                 goto out;
3656
3657         /*
3658          * If len is not big enough to hold the page header, then
3659          * we can not copy anything.
3660          */
3661         if (len <= BUF_PAGE_HDR_SIZE)
3662                 goto out;
3663
3664         len -= BUF_PAGE_HDR_SIZE;
3665
3666         if (!data_page)
3667                 goto out;
3668
3669         bpage = *data_page;
3670         if (!bpage)
3671                 goto out;
3672
3673         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3674
3675         reader = rb_get_reader_page(cpu_buffer);
3676         if (!reader)
3677                 goto out_unlock;
3678
3679         event = rb_reader_event(cpu_buffer);
3680
3681         read = reader->read;
3682         commit = rb_page_commit(reader);
3683
3684         /*
3685          * If this page has been partially read or
3686          * if len is not big enough to read the rest of the page or
3687          * a writer is still on the page, then
3688          * we must copy the data from the page to the buffer.
3689          * Otherwise, we can simply swap the page with the one passed in.
3690          */
3691         if (read || (len < (commit - read)) ||
3692             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3693                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3694                 unsigned int rpos = read;
3695                 unsigned int pos = 0;
3696                 unsigned int size;
3697
3698                 if (full)
3699                         goto out_unlock;
3700
3701                 if (len > (commit - read))
3702                         len = (commit - read);
3703
3704                 size = rb_event_length(event);
3705
3706                 if (len < size)
3707                         goto out_unlock;
3708
3709                 /* save the current timestamp, since the user will need it */
3710                 save_timestamp = cpu_buffer->read_stamp;
3711
3712                 /* Need to copy one event at a time */
3713                 do {
3714                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3715
3716                         len -= size;
3717
3718                         rb_advance_reader(cpu_buffer);
3719                         rpos = reader->read;
3720                         pos += size;
3721
3722                         event = rb_reader_event(cpu_buffer);
3723                         size = rb_event_length(event);
3724                 } while (len > size);
3725
3726                 /* update bpage */
3727                 local_set(&bpage->commit, pos);
3728                 bpage->time_stamp = save_timestamp;
3729
3730                 /* we copied everything to the beginning */
3731                 read = 0;
3732         } else {
3733                 /* update the entry counter */
3734                 cpu_buffer->read += rb_page_entries(reader);
3735
3736                 /* swap the pages */
3737                 rb_init_page(bpage);
3738                 bpage = reader->page;
3739                 reader->page = *data_page;
3740                 local_set(&reader->write, 0);
3741                 local_set(&reader->entries, 0);
3742                 reader->read = 0;
3743                 *data_page = bpage;
3744         }
3745         ret = read;
3746
3747  out_unlock:
3748         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3749
3750  out:
3751         return ret;
3752 }
3753 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3754
3755 #ifdef CONFIG_TRACING
3756 static ssize_t
3757 rb_simple_read(struct file *filp, char __user *ubuf,
3758                size_t cnt, loff_t *ppos)
3759 {
3760         unsigned long *p = filp->private_data;
3761         char buf[64];
3762         int r;
3763
3764         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3765                 r = sprintf(buf, "permanently disabled\n");
3766         else
3767                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3768
3769         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3770 }
3771
3772 static ssize_t
3773 rb_simple_write(struct file *filp, const char __user *ubuf,
3774                 size_t cnt, loff_t *ppos)
3775 {
3776         unsigned long *p = filp->private_data;
3777         char buf[64];
3778         unsigned long val;
3779         int ret;
3780
3781         if (cnt >= sizeof(buf))
3782                 return -EINVAL;
3783
3784         if (copy_from_user(&buf, ubuf, cnt))
3785                 return -EFAULT;
3786
3787         buf[cnt] = 0;
3788
3789         ret = strict_strtoul(buf, 10, &val);
3790         if (ret < 0)
3791                 return ret;
3792
3793         if (val)
3794                 set_bit(RB_BUFFERS_ON_BIT, p);
3795         else
3796                 clear_bit(RB_BUFFERS_ON_BIT, p);
3797
3798         (*ppos)++;
3799
3800         return cnt;
3801 }
3802
3803 static const struct file_operations rb_simple_fops = {
3804         .open           = tracing_open_generic,
3805         .read           = rb_simple_read,
3806         .write          = rb_simple_write,
3807 };
3808
3809
3810 static __init int rb_init_debugfs(void)
3811 {
3812         struct dentry *d_tracer;
3813
3814         d_tracer = tracing_init_dentry();
3815
3816         trace_create_file("tracing_on", 0644, d_tracer,
3817                             &ring_buffer_flags, &rb_simple_fops);
3818
3819         return 0;
3820 }
3821
3822 fs_initcall(rb_init_debugfs);
3823 #endif
3824
3825 #ifdef CONFIG_HOTPLUG_CPU
3826 static int rb_cpu_notify(struct notifier_block *self,
3827                          unsigned long action, void *hcpu)
3828 {
3829         struct ring_buffer *buffer =
3830                 container_of(self, struct ring_buffer, cpu_notify);
3831         long cpu = (long)hcpu;
3832
3833         switch (action) {
3834         case CPU_UP_PREPARE:
3835         case CPU_UP_PREPARE_FROZEN:
3836                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3837                         return NOTIFY_OK;
3838
3839                 buffer->buffers[cpu] =
3840                         rb_allocate_cpu_buffer(buffer, cpu);
3841                 if (!buffer->buffers[cpu]) {
3842                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3843                              cpu);
3844                         return NOTIFY_OK;
3845                 }
3846                 smp_wmb();
3847                 cpumask_set_cpu(cpu, buffer->cpumask);
3848                 break;
3849         case CPU_DOWN_PREPARE:
3850         case CPU_DOWN_PREPARE_FROZEN:
3851                 /*
3852                  * Do nothing.
3853                  *  If we were to free the buffer, then the user would
3854                  *  lose any trace that was in the buffer.
3855                  */
3856                 break;
3857         default:
3858                 break;
3859         }
3860         return NOTIFY_OK;
3861 }
3862 #endif