ring-buffer: change "page" variable names to "bpage"
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /*
22  * A fast way to enable or disable all ring buffers is to
23  * call tracing_on or tracing_off. Turning off the ring buffers
24  * prevents all ring buffers from being recorded to.
25  * Turning this switch on, makes it OK to write to the
26  * ring buffer, if the ring buffer is enabled itself.
27  *
28  * There's three layers that must be on in order to write
29  * to the ring buffer.
30  *
31  * 1) This global flag must be set.
32  * 2) The ring buffer must be enabled for recording.
33  * 3) The per cpu buffer must be enabled for recording.
34  *
35  * In case of an anomaly, this global flag has a bit set that
36  * will permantly disable all ring buffers.
37  */
38
39 /*
40  * Global flag to disable all recording to ring buffers
41  *  This has two bits: ON, DISABLED
42  *
43  *  ON   DISABLED
44  * ---- ----------
45  *   0      0        : ring buffers are off
46  *   1      0        : ring buffers are on
47  *   X      1        : ring buffers are permanently disabled
48  */
49
50 enum {
51         RB_BUFFERS_ON_BIT       = 0,
52         RB_BUFFERS_DISABLED_BIT = 1,
53 };
54
55 enum {
56         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
57         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
58 };
59
60 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
61
62 /**
63  * tracing_on - enable all tracing buffers
64  *
65  * This function enables all tracing buffers that may have been
66  * disabled with tracing_off.
67  */
68 void tracing_on(void)
69 {
70         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
71 }
72
73 /**
74  * tracing_off - turn off all tracing buffers
75  *
76  * This function stops all tracing buffers from recording data.
77  * It does not disable any overhead the tracers themselves may
78  * be causing. This function simply causes all recording to
79  * the ring buffers to fail.
80  */
81 void tracing_off(void)
82 {
83         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
84 }
85
86 /**
87  * tracing_off_permanent - permanently disable ring buffers
88  *
89  * This function, once called, will disable all ring buffers
90  * permanenty.
91  */
92 void tracing_off_permanent(void)
93 {
94         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
95 }
96
97 #include "trace.h"
98
99 /* Up this if you want to test the TIME_EXTENTS and normalization */
100 #define DEBUG_SHIFT 0
101
102 /* FIXME!!! */
103 u64 ring_buffer_time_stamp(int cpu)
104 {
105         u64 time;
106
107         preempt_disable_notrace();
108         /* shift to debug/test normalization and TIME_EXTENTS */
109         time = sched_clock() << DEBUG_SHIFT;
110         preempt_enable_notrace();
111
112         return time;
113 }
114
115 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
116 {
117         /* Just stupid testing the normalize function and deltas */
118         *ts >>= DEBUG_SHIFT;
119 }
120
121 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
122 #define RB_ALIGNMENT_SHIFT      2
123 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
124 #define RB_MAX_SMALL_DATA       28
125
126 enum {
127         RB_LEN_TIME_EXTEND = 8,
128         RB_LEN_TIME_STAMP = 16,
129 };
130
131 /* inline for ring buffer fast paths */
132 static inline unsigned
133 rb_event_length(struct ring_buffer_event *event)
134 {
135         unsigned length;
136
137         switch (event->type) {
138         case RINGBUF_TYPE_PADDING:
139                 /* undefined */
140                 return -1;
141
142         case RINGBUF_TYPE_TIME_EXTEND:
143                 return RB_LEN_TIME_EXTEND;
144
145         case RINGBUF_TYPE_TIME_STAMP:
146                 return RB_LEN_TIME_STAMP;
147
148         case RINGBUF_TYPE_DATA:
149                 if (event->len)
150                         length = event->len << RB_ALIGNMENT_SHIFT;
151                 else
152                         length = event->array[0];
153                 return length + RB_EVNT_HDR_SIZE;
154         default:
155                 BUG();
156         }
157         /* not hit */
158         return 0;
159 }
160
161 /**
162  * ring_buffer_event_length - return the length of the event
163  * @event: the event to get the length of
164  */
165 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
166 {
167         return rb_event_length(event);
168 }
169
170 /* inline for ring buffer fast paths */
171 static inline void *
172 rb_event_data(struct ring_buffer_event *event)
173 {
174         BUG_ON(event->type != RINGBUF_TYPE_DATA);
175         /* If length is in len field, then array[0] has the data */
176         if (event->len)
177                 return (void *)&event->array[0];
178         /* Otherwise length is in array[0] and array[1] has the data */
179         return (void *)&event->array[1];
180 }
181
182 /**
183  * ring_buffer_event_data - return the data of the event
184  * @event: the event to get the data from
185  */
186 void *ring_buffer_event_data(struct ring_buffer_event *event)
187 {
188         return rb_event_data(event);
189 }
190
191 #define for_each_buffer_cpu(buffer, cpu)                \
192         for_each_cpu_mask(cpu, buffer->cpumask)
193
194 #define TS_SHIFT        27
195 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
196 #define TS_DELTA_TEST   (~TS_MASK)
197
198 struct buffer_data_page {
199         u64              time_stamp;    /* page time stamp */
200         local_t          commit;        /* write commited index */
201         unsigned char    data[];        /* data of buffer page */
202 };
203
204 struct buffer_page {
205         local_t          write;         /* index for next write */
206         unsigned         read;          /* index for next read */
207         struct list_head list;          /* list of free pages */
208         struct buffer_data_page *page;  /* Actual data page */
209 };
210
211 static void rb_init_page(struct buffer_data_page *bpage)
212 {
213         local_set(&bpage->commit, 0);
214 }
215
216 /*
217  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
218  * this issue out.
219  */
220 static inline void free_buffer_page(struct buffer_page *bpage)
221 {
222         if (bpage->page)
223                 free_page((unsigned long)bpage->page);
224         kfree(bpage);
225 }
226
227 /*
228  * We need to fit the time_stamp delta into 27 bits.
229  */
230 static inline int test_time_stamp(u64 delta)
231 {
232         if (delta & TS_DELTA_TEST)
233                 return 1;
234         return 0;
235 }
236
237 #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
238
239 /*
240  * head_page == tail_page && head == tail then buffer is empty.
241  */
242 struct ring_buffer_per_cpu {
243         int                             cpu;
244         struct ring_buffer              *buffer;
245         spinlock_t                      reader_lock; /* serialize readers */
246         raw_spinlock_t                  lock;
247         struct lock_class_key           lock_key;
248         struct list_head                pages;
249         struct buffer_page              *head_page;     /* read from head */
250         struct buffer_page              *tail_page;     /* write to tail */
251         struct buffer_page              *commit_page;   /* commited pages */
252         struct buffer_page              *reader_page;
253         unsigned long                   overrun;
254         unsigned long                   entries;
255         u64                             write_stamp;
256         u64                             read_stamp;
257         atomic_t                        record_disabled;
258 };
259
260 struct ring_buffer {
261         unsigned long                   size;
262         unsigned                        pages;
263         unsigned                        flags;
264         int                             cpus;
265         cpumask_t                       cpumask;
266         atomic_t                        record_disabled;
267
268         struct mutex                    mutex;
269
270         struct ring_buffer_per_cpu      **buffers;
271 };
272
273 struct ring_buffer_iter {
274         struct ring_buffer_per_cpu      *cpu_buffer;
275         unsigned long                   head;
276         struct buffer_page              *head_page;
277         u64                             read_stamp;
278 };
279
280 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
281 #define RB_WARN_ON(buffer, cond)                                \
282         ({                                                      \
283                 int _____ret = unlikely(cond);                  \
284                 if (_____ret) {                                 \
285                         atomic_inc(&buffer->record_disabled);   \
286                         WARN_ON(1);                             \
287                 }                                               \
288                 _____ret;                                       \
289         })
290
291 /**
292  * check_pages - integrity check of buffer pages
293  * @cpu_buffer: CPU buffer with pages to test
294  *
295  * As a safty measure we check to make sure the data pages have not
296  * been corrupted.
297  */
298 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
299 {
300         struct list_head *head = &cpu_buffer->pages;
301         struct buffer_page *bpage, *tmp;
302
303         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
304                 return -1;
305         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
306                 return -1;
307
308         list_for_each_entry_safe(bpage, tmp, head, list) {
309                 if (RB_WARN_ON(cpu_buffer,
310                                bpage->list.next->prev != &bpage->list))
311                         return -1;
312                 if (RB_WARN_ON(cpu_buffer,
313                                bpage->list.prev->next != &bpage->list))
314                         return -1;
315         }
316
317         return 0;
318 }
319
320 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
321                              unsigned nr_pages)
322 {
323         struct list_head *head = &cpu_buffer->pages;
324         struct buffer_page *bpage, *tmp;
325         unsigned long addr;
326         LIST_HEAD(pages);
327         unsigned i;
328
329         for (i = 0; i < nr_pages; i++) {
330                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
331                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
332                 if (!bpage)
333                         goto free_pages;
334                 list_add(&bpage->list, &pages);
335
336                 addr = __get_free_page(GFP_KERNEL);
337                 if (!addr)
338                         goto free_pages;
339                 bpage->page = (void *)addr;
340                 rb_init_page(bpage->page);
341         }
342
343         list_splice(&pages, head);
344
345         rb_check_pages(cpu_buffer);
346
347         return 0;
348
349  free_pages:
350         list_for_each_entry_safe(bpage, tmp, &pages, list) {
351                 list_del_init(&bpage->list);
352                 free_buffer_page(bpage);
353         }
354         return -ENOMEM;
355 }
356
357 static struct ring_buffer_per_cpu *
358 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
359 {
360         struct ring_buffer_per_cpu *cpu_buffer;
361         struct buffer_page *bpage;
362         unsigned long addr;
363         int ret;
364
365         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
366                                   GFP_KERNEL, cpu_to_node(cpu));
367         if (!cpu_buffer)
368                 return NULL;
369
370         cpu_buffer->cpu = cpu;
371         cpu_buffer->buffer = buffer;
372         spin_lock_init(&cpu_buffer->reader_lock);
373         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
374         INIT_LIST_HEAD(&cpu_buffer->pages);
375
376         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
377                             GFP_KERNEL, cpu_to_node(cpu));
378         if (!bpage)
379                 goto fail_free_buffer;
380
381         cpu_buffer->reader_page = bpage;
382         addr = __get_free_page(GFP_KERNEL);
383         if (!addr)
384                 goto fail_free_reader;
385         bpage->page = (void *)addr;
386         rb_init_page(bpage->page);
387
388         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
389
390         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
391         if (ret < 0)
392                 goto fail_free_reader;
393
394         cpu_buffer->head_page
395                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
396         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
397
398         return cpu_buffer;
399
400  fail_free_reader:
401         free_buffer_page(cpu_buffer->reader_page);
402
403  fail_free_buffer:
404         kfree(cpu_buffer);
405         return NULL;
406 }
407
408 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
409 {
410         struct list_head *head = &cpu_buffer->pages;
411         struct buffer_page *bpage, *tmp;
412
413         list_del_init(&cpu_buffer->reader_page->list);
414         free_buffer_page(cpu_buffer->reader_page);
415
416         list_for_each_entry_safe(bpage, tmp, head, list) {
417                 list_del_init(&bpage->list);
418                 free_buffer_page(bpage);
419         }
420         kfree(cpu_buffer);
421 }
422
423 /*
424  * Causes compile errors if the struct buffer_page gets bigger
425  * than the struct page.
426  */
427 extern int ring_buffer_page_too_big(void);
428
429 /**
430  * ring_buffer_alloc - allocate a new ring_buffer
431  * @size: the size in bytes that is needed.
432  * @flags: attributes to set for the ring buffer.
433  *
434  * Currently the only flag that is available is the RB_FL_OVERWRITE
435  * flag. This flag means that the buffer will overwrite old data
436  * when the buffer wraps. If this flag is not set, the buffer will
437  * drop data when the tail hits the head.
438  */
439 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
440 {
441         struct ring_buffer *buffer;
442         int bsize;
443         int cpu;
444
445         /* Paranoid! Optimizes out when all is well */
446         if (sizeof(struct buffer_page) > sizeof(struct page))
447                 ring_buffer_page_too_big();
448
449
450         /* keep it in its own cache line */
451         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
452                          GFP_KERNEL);
453         if (!buffer)
454                 return NULL;
455
456         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
457         buffer->flags = flags;
458
459         /* need at least two pages */
460         if (buffer->pages == 1)
461                 buffer->pages++;
462
463         buffer->cpumask = cpu_possible_map;
464         buffer->cpus = nr_cpu_ids;
465
466         bsize = sizeof(void *) * nr_cpu_ids;
467         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
468                                   GFP_KERNEL);
469         if (!buffer->buffers)
470                 goto fail_free_buffer;
471
472         for_each_buffer_cpu(buffer, cpu) {
473                 buffer->buffers[cpu] =
474                         rb_allocate_cpu_buffer(buffer, cpu);
475                 if (!buffer->buffers[cpu])
476                         goto fail_free_buffers;
477         }
478
479         mutex_init(&buffer->mutex);
480
481         return buffer;
482
483  fail_free_buffers:
484         for_each_buffer_cpu(buffer, cpu) {
485                 if (buffer->buffers[cpu])
486                         rb_free_cpu_buffer(buffer->buffers[cpu]);
487         }
488         kfree(buffer->buffers);
489
490  fail_free_buffer:
491         kfree(buffer);
492         return NULL;
493 }
494
495 /**
496  * ring_buffer_free - free a ring buffer.
497  * @buffer: the buffer to free.
498  */
499 void
500 ring_buffer_free(struct ring_buffer *buffer)
501 {
502         int cpu;
503
504         for_each_buffer_cpu(buffer, cpu)
505                 rb_free_cpu_buffer(buffer->buffers[cpu]);
506
507         kfree(buffer);
508 }
509
510 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
511
512 static void
513 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
514 {
515         struct buffer_page *bpage;
516         struct list_head *p;
517         unsigned i;
518
519         atomic_inc(&cpu_buffer->record_disabled);
520         synchronize_sched();
521
522         for (i = 0; i < nr_pages; i++) {
523                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
524                         return;
525                 p = cpu_buffer->pages.next;
526                 bpage = list_entry(p, struct buffer_page, list);
527                 list_del_init(&bpage->list);
528                 free_buffer_page(bpage);
529         }
530         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
531                 return;
532
533         rb_reset_cpu(cpu_buffer);
534
535         rb_check_pages(cpu_buffer);
536
537         atomic_dec(&cpu_buffer->record_disabled);
538
539 }
540
541 static void
542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
543                 struct list_head *pages, unsigned nr_pages)
544 {
545         struct buffer_page *bpage;
546         struct list_head *p;
547         unsigned i;
548
549         atomic_inc(&cpu_buffer->record_disabled);
550         synchronize_sched();
551
552         for (i = 0; i < nr_pages; i++) {
553                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
554                         return;
555                 p = pages->next;
556                 bpage = list_entry(p, struct buffer_page, list);
557                 list_del_init(&bpage->list);
558                 list_add_tail(&bpage->list, &cpu_buffer->pages);
559         }
560         rb_reset_cpu(cpu_buffer);
561
562         rb_check_pages(cpu_buffer);
563
564         atomic_dec(&cpu_buffer->record_disabled);
565 }
566
567 /**
568  * ring_buffer_resize - resize the ring buffer
569  * @buffer: the buffer to resize.
570  * @size: the new size.
571  *
572  * The tracer is responsible for making sure that the buffer is
573  * not being used while changing the size.
574  * Note: We may be able to change the above requirement by using
575  *  RCU synchronizations.
576  *
577  * Minimum size is 2 * BUF_PAGE_SIZE.
578  *
579  * Returns -1 on failure.
580  */
581 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
582 {
583         struct ring_buffer_per_cpu *cpu_buffer;
584         unsigned nr_pages, rm_pages, new_pages;
585         struct buffer_page *bpage, *tmp;
586         unsigned long buffer_size;
587         unsigned long addr;
588         LIST_HEAD(pages);
589         int i, cpu;
590
591         /*
592          * Always succeed at resizing a non-existent buffer:
593          */
594         if (!buffer)
595                 return size;
596
597         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
598         size *= BUF_PAGE_SIZE;
599         buffer_size = buffer->pages * BUF_PAGE_SIZE;
600
601         /* we need a minimum of two pages */
602         if (size < BUF_PAGE_SIZE * 2)
603                 size = BUF_PAGE_SIZE * 2;
604
605         if (size == buffer_size)
606                 return size;
607
608         mutex_lock(&buffer->mutex);
609
610         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
611
612         if (size < buffer_size) {
613
614                 /* easy case, just free pages */
615                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
616                         mutex_unlock(&buffer->mutex);
617                         return -1;
618                 }
619
620                 rm_pages = buffer->pages - nr_pages;
621
622                 for_each_buffer_cpu(buffer, cpu) {
623                         cpu_buffer = buffer->buffers[cpu];
624                         rb_remove_pages(cpu_buffer, rm_pages);
625                 }
626                 goto out;
627         }
628
629         /*
630          * This is a bit more difficult. We only want to add pages
631          * when we can allocate enough for all CPUs. We do this
632          * by allocating all the pages and storing them on a local
633          * link list. If we succeed in our allocation, then we
634          * add these pages to the cpu_buffers. Otherwise we just free
635          * them all and return -ENOMEM;
636          */
637         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
638                 mutex_unlock(&buffer->mutex);
639                 return -1;
640         }
641
642         new_pages = nr_pages - buffer->pages;
643
644         for_each_buffer_cpu(buffer, cpu) {
645                 for (i = 0; i < new_pages; i++) {
646                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
647                                                   cache_line_size()),
648                                             GFP_KERNEL, cpu_to_node(cpu));
649                         if (!bpage)
650                                 goto free_pages;
651                         list_add(&bpage->list, &pages);
652                         addr = __get_free_page(GFP_KERNEL);
653                         if (!addr)
654                                 goto free_pages;
655                         bpage->page = (void *)addr;
656                         rb_init_page(bpage->page);
657                 }
658         }
659
660         for_each_buffer_cpu(buffer, cpu) {
661                 cpu_buffer = buffer->buffers[cpu];
662                 rb_insert_pages(cpu_buffer, &pages, new_pages);
663         }
664
665         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
666                 mutex_unlock(&buffer->mutex);
667                 return -1;
668         }
669
670  out:
671         buffer->pages = nr_pages;
672         mutex_unlock(&buffer->mutex);
673
674         return size;
675
676  free_pages:
677         list_for_each_entry_safe(bpage, tmp, &pages, list) {
678                 list_del_init(&bpage->list);
679                 free_buffer_page(bpage);
680         }
681         mutex_unlock(&buffer->mutex);
682         return -ENOMEM;
683 }
684
685 static inline int rb_null_event(struct ring_buffer_event *event)
686 {
687         return event->type == RINGBUF_TYPE_PADDING;
688 }
689
690 static inline void *
691 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
692 {
693         return bpage->data + index;
694 }
695
696 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
697 {
698         return bpage->page->data + index;
699 }
700
701 static inline struct ring_buffer_event *
702 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
703 {
704         return __rb_page_index(cpu_buffer->reader_page,
705                                cpu_buffer->reader_page->read);
706 }
707
708 static inline struct ring_buffer_event *
709 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
710 {
711         return __rb_page_index(cpu_buffer->head_page,
712                                cpu_buffer->head_page->read);
713 }
714
715 static inline struct ring_buffer_event *
716 rb_iter_head_event(struct ring_buffer_iter *iter)
717 {
718         return __rb_page_index(iter->head_page, iter->head);
719 }
720
721 static inline unsigned rb_page_write(struct buffer_page *bpage)
722 {
723         return local_read(&bpage->write);
724 }
725
726 static inline unsigned rb_page_commit(struct buffer_page *bpage)
727 {
728         return local_read(&bpage->page->commit);
729 }
730
731 /* Size is determined by what has been commited */
732 static inline unsigned rb_page_size(struct buffer_page *bpage)
733 {
734         return rb_page_commit(bpage);
735 }
736
737 static inline unsigned
738 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
739 {
740         return rb_page_commit(cpu_buffer->commit_page);
741 }
742
743 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
744 {
745         return rb_page_commit(cpu_buffer->head_page);
746 }
747
748 /*
749  * When the tail hits the head and the buffer is in overwrite mode,
750  * the head jumps to the next page and all content on the previous
751  * page is discarded. But before doing so, we update the overrun
752  * variable of the buffer.
753  */
754 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
755 {
756         struct ring_buffer_event *event;
757         unsigned long head;
758
759         for (head = 0; head < rb_head_size(cpu_buffer);
760              head += rb_event_length(event)) {
761
762                 event = __rb_page_index(cpu_buffer->head_page, head);
763                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
764                         return;
765                 /* Only count data entries */
766                 if (event->type != RINGBUF_TYPE_DATA)
767                         continue;
768                 cpu_buffer->overrun++;
769                 cpu_buffer->entries--;
770         }
771 }
772
773 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
774                                struct buffer_page **bpage)
775 {
776         struct list_head *p = (*bpage)->list.next;
777
778         if (p == &cpu_buffer->pages)
779                 p = p->next;
780
781         *bpage = list_entry(p, struct buffer_page, list);
782 }
783
784 static inline unsigned
785 rb_event_index(struct ring_buffer_event *event)
786 {
787         unsigned long addr = (unsigned long)event;
788
789         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
790 }
791
792 static inline int
793 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
794              struct ring_buffer_event *event)
795 {
796         unsigned long addr = (unsigned long)event;
797         unsigned long index;
798
799         index = rb_event_index(event);
800         addr &= PAGE_MASK;
801
802         return cpu_buffer->commit_page->page == (void *)addr &&
803                 rb_commit_index(cpu_buffer) == index;
804 }
805
806 static inline void
807 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
808                     struct ring_buffer_event *event)
809 {
810         unsigned long addr = (unsigned long)event;
811         unsigned long index;
812
813         index = rb_event_index(event);
814         addr &= PAGE_MASK;
815
816         while (cpu_buffer->commit_page->page != (void *)addr) {
817                 if (RB_WARN_ON(cpu_buffer,
818                           cpu_buffer->commit_page == cpu_buffer->tail_page))
819                         return;
820                 cpu_buffer->commit_page->page->commit =
821                         cpu_buffer->commit_page->write;
822                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
823                 cpu_buffer->write_stamp =
824                         cpu_buffer->commit_page->page->time_stamp;
825         }
826
827         /* Now set the commit to the event's index */
828         local_set(&cpu_buffer->commit_page->page->commit, index);
829 }
830
831 static inline void
832 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
833 {
834         /*
835          * We only race with interrupts and NMIs on this CPU.
836          * If we own the commit event, then we can commit
837          * all others that interrupted us, since the interruptions
838          * are in stack format (they finish before they come
839          * back to us). This allows us to do a simple loop to
840          * assign the commit to the tail.
841          */
842         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
843                 cpu_buffer->commit_page->page->commit =
844                         cpu_buffer->commit_page->write;
845                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
846                 cpu_buffer->write_stamp =
847                         cpu_buffer->commit_page->page->time_stamp;
848                 /* add barrier to keep gcc from optimizing too much */
849                 barrier();
850         }
851         while (rb_commit_index(cpu_buffer) !=
852                rb_page_write(cpu_buffer->commit_page)) {
853                 cpu_buffer->commit_page->page->commit =
854                         cpu_buffer->commit_page->write;
855                 barrier();
856         }
857 }
858
859 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
860 {
861         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
862         cpu_buffer->reader_page->read = 0;
863 }
864
865 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
866 {
867         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
868
869         /*
870          * The iterator could be on the reader page (it starts there).
871          * But the head could have moved, since the reader was
872          * found. Check for this case and assign the iterator
873          * to the head page instead of next.
874          */
875         if (iter->head_page == cpu_buffer->reader_page)
876                 iter->head_page = cpu_buffer->head_page;
877         else
878                 rb_inc_page(cpu_buffer, &iter->head_page);
879
880         iter->read_stamp = iter->head_page->page->time_stamp;
881         iter->head = 0;
882 }
883
884 /**
885  * ring_buffer_update_event - update event type and data
886  * @event: the even to update
887  * @type: the type of event
888  * @length: the size of the event field in the ring buffer
889  *
890  * Update the type and data fields of the event. The length
891  * is the actual size that is written to the ring buffer,
892  * and with this, we can determine what to place into the
893  * data field.
894  */
895 static inline void
896 rb_update_event(struct ring_buffer_event *event,
897                          unsigned type, unsigned length)
898 {
899         event->type = type;
900
901         switch (type) {
902
903         case RINGBUF_TYPE_PADDING:
904                 break;
905
906         case RINGBUF_TYPE_TIME_EXTEND:
907                 event->len =
908                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
909                         >> RB_ALIGNMENT_SHIFT;
910                 break;
911
912         case RINGBUF_TYPE_TIME_STAMP:
913                 event->len =
914                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
915                         >> RB_ALIGNMENT_SHIFT;
916                 break;
917
918         case RINGBUF_TYPE_DATA:
919                 length -= RB_EVNT_HDR_SIZE;
920                 if (length > RB_MAX_SMALL_DATA) {
921                         event->len = 0;
922                         event->array[0] = length;
923                 } else
924                         event->len =
925                                 (length + (RB_ALIGNMENT-1))
926                                 >> RB_ALIGNMENT_SHIFT;
927                 break;
928         default:
929                 BUG();
930         }
931 }
932
933 static inline unsigned rb_calculate_event_length(unsigned length)
934 {
935         struct ring_buffer_event event; /* Used only for sizeof array */
936
937         /* zero length can cause confusions */
938         if (!length)
939                 length = 1;
940
941         if (length > RB_MAX_SMALL_DATA)
942                 length += sizeof(event.array[0]);
943
944         length += RB_EVNT_HDR_SIZE;
945         length = ALIGN(length, RB_ALIGNMENT);
946
947         return length;
948 }
949
950 static struct ring_buffer_event *
951 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
952                   unsigned type, unsigned long length, u64 *ts)
953 {
954         struct buffer_page *tail_page, *head_page, *reader_page;
955         unsigned long tail, write;
956         struct ring_buffer *buffer = cpu_buffer->buffer;
957         struct ring_buffer_event *event;
958         unsigned long flags;
959
960         tail_page = cpu_buffer->tail_page;
961         write = local_add_return(length, &tail_page->write);
962         tail = write - length;
963
964         /* See if we shot pass the end of this buffer page */
965         if (write > BUF_PAGE_SIZE) {
966                 struct buffer_page *next_page = tail_page;
967
968                 local_irq_save(flags);
969                 __raw_spin_lock(&cpu_buffer->lock);
970
971                 rb_inc_page(cpu_buffer, &next_page);
972
973                 head_page = cpu_buffer->head_page;
974                 reader_page = cpu_buffer->reader_page;
975
976                 /* we grabbed the lock before incrementing */
977                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
978                         goto out_unlock;
979
980                 /*
981                  * If for some reason, we had an interrupt storm that made
982                  * it all the way around the buffer, bail, and warn
983                  * about it.
984                  */
985                 if (unlikely(next_page == cpu_buffer->commit_page)) {
986                         WARN_ON_ONCE(1);
987                         goto out_unlock;
988                 }
989
990                 if (next_page == head_page) {
991                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
992                                 /* reset write */
993                                 if (tail <= BUF_PAGE_SIZE)
994                                         local_set(&tail_page->write, tail);
995                                 goto out_unlock;
996                         }
997
998                         /* tail_page has not moved yet? */
999                         if (tail_page == cpu_buffer->tail_page) {
1000                                 /* count overflows */
1001                                 rb_update_overflow(cpu_buffer);
1002
1003                                 rb_inc_page(cpu_buffer, &head_page);
1004                                 cpu_buffer->head_page = head_page;
1005                                 cpu_buffer->head_page->read = 0;
1006                         }
1007                 }
1008
1009                 /*
1010                  * If the tail page is still the same as what we think
1011                  * it is, then it is up to us to update the tail
1012                  * pointer.
1013                  */
1014                 if (tail_page == cpu_buffer->tail_page) {
1015                         local_set(&next_page->write, 0);
1016                         local_set(&next_page->page->commit, 0);
1017                         cpu_buffer->tail_page = next_page;
1018
1019                         /* reread the time stamp */
1020                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1021                         cpu_buffer->tail_page->page->time_stamp = *ts;
1022                 }
1023
1024                 /*
1025                  * The actual tail page has moved forward.
1026                  */
1027                 if (tail < BUF_PAGE_SIZE) {
1028                         /* Mark the rest of the page with padding */
1029                         event = __rb_page_index(tail_page, tail);
1030                         event->type = RINGBUF_TYPE_PADDING;
1031                 }
1032
1033                 if (tail <= BUF_PAGE_SIZE)
1034                         /* Set the write back to the previous setting */
1035                         local_set(&tail_page->write, tail);
1036
1037                 /*
1038                  * If this was a commit entry that failed,
1039                  * increment that too
1040                  */
1041                 if (tail_page == cpu_buffer->commit_page &&
1042                     tail == rb_commit_index(cpu_buffer)) {
1043                         rb_set_commit_to_write(cpu_buffer);
1044                 }
1045
1046                 __raw_spin_unlock(&cpu_buffer->lock);
1047                 local_irq_restore(flags);
1048
1049                 /* fail and let the caller try again */
1050                 return ERR_PTR(-EAGAIN);
1051         }
1052
1053         /* We reserved something on the buffer */
1054
1055         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1056                 return NULL;
1057
1058         event = __rb_page_index(tail_page, tail);
1059         rb_update_event(event, type, length);
1060
1061         /*
1062          * If this is a commit and the tail is zero, then update
1063          * this page's time stamp.
1064          */
1065         if (!tail && rb_is_commit(cpu_buffer, event))
1066                 cpu_buffer->commit_page->page->time_stamp = *ts;
1067
1068         return event;
1069
1070  out_unlock:
1071         __raw_spin_unlock(&cpu_buffer->lock);
1072         local_irq_restore(flags);
1073         return NULL;
1074 }
1075
1076 static int
1077 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1078                   u64 *ts, u64 *delta)
1079 {
1080         struct ring_buffer_event *event;
1081         static int once;
1082         int ret;
1083
1084         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1085                 printk(KERN_WARNING "Delta way too big! %llu"
1086                        " ts=%llu write stamp = %llu\n",
1087                        (unsigned long long)*delta,
1088                        (unsigned long long)*ts,
1089                        (unsigned long long)cpu_buffer->write_stamp);
1090                 WARN_ON(1);
1091         }
1092
1093         /*
1094          * The delta is too big, we to add a
1095          * new timestamp.
1096          */
1097         event = __rb_reserve_next(cpu_buffer,
1098                                   RINGBUF_TYPE_TIME_EXTEND,
1099                                   RB_LEN_TIME_EXTEND,
1100                                   ts);
1101         if (!event)
1102                 return -EBUSY;
1103
1104         if (PTR_ERR(event) == -EAGAIN)
1105                 return -EAGAIN;
1106
1107         /* Only a commited time event can update the write stamp */
1108         if (rb_is_commit(cpu_buffer, event)) {
1109                 /*
1110                  * If this is the first on the page, then we need to
1111                  * update the page itself, and just put in a zero.
1112                  */
1113                 if (rb_event_index(event)) {
1114                         event->time_delta = *delta & TS_MASK;
1115                         event->array[0] = *delta >> TS_SHIFT;
1116                 } else {
1117                         cpu_buffer->commit_page->page->time_stamp = *ts;
1118                         event->time_delta = 0;
1119                         event->array[0] = 0;
1120                 }
1121                 cpu_buffer->write_stamp = *ts;
1122                 /* let the caller know this was the commit */
1123                 ret = 1;
1124         } else {
1125                 /* Darn, this is just wasted space */
1126                 event->time_delta = 0;
1127                 event->array[0] = 0;
1128                 ret = 0;
1129         }
1130
1131         *delta = 0;
1132
1133         return ret;
1134 }
1135
1136 static struct ring_buffer_event *
1137 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1138                       unsigned type, unsigned long length)
1139 {
1140         struct ring_buffer_event *event;
1141         u64 ts, delta;
1142         int commit = 0;
1143         int nr_loops = 0;
1144
1145  again:
1146         /*
1147          * We allow for interrupts to reenter here and do a trace.
1148          * If one does, it will cause this original code to loop
1149          * back here. Even with heavy interrupts happening, this
1150          * should only happen a few times in a row. If this happens
1151          * 1000 times in a row, there must be either an interrupt
1152          * storm or we have something buggy.
1153          * Bail!
1154          */
1155         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1156                 return NULL;
1157
1158         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1159
1160         /*
1161          * Only the first commit can update the timestamp.
1162          * Yes there is a race here. If an interrupt comes in
1163          * just after the conditional and it traces too, then it
1164          * will also check the deltas. More than one timestamp may
1165          * also be made. But only the entry that did the actual
1166          * commit will be something other than zero.
1167          */
1168         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1169             rb_page_write(cpu_buffer->tail_page) ==
1170             rb_commit_index(cpu_buffer)) {
1171
1172                 delta = ts - cpu_buffer->write_stamp;
1173
1174                 /* make sure this delta is calculated here */
1175                 barrier();
1176
1177                 /* Did the write stamp get updated already? */
1178                 if (unlikely(ts < cpu_buffer->write_stamp))
1179                         delta = 0;
1180
1181                 if (test_time_stamp(delta)) {
1182
1183                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1184
1185                         if (commit == -EBUSY)
1186                                 return NULL;
1187
1188                         if (commit == -EAGAIN)
1189                                 goto again;
1190
1191                         RB_WARN_ON(cpu_buffer, commit < 0);
1192                 }
1193         } else
1194                 /* Non commits have zero deltas */
1195                 delta = 0;
1196
1197         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1198         if (PTR_ERR(event) == -EAGAIN)
1199                 goto again;
1200
1201         if (!event) {
1202                 if (unlikely(commit))
1203                         /*
1204                          * Ouch! We needed a timestamp and it was commited. But
1205                          * we didn't get our event reserved.
1206                          */
1207                         rb_set_commit_to_write(cpu_buffer);
1208                 return NULL;
1209         }
1210
1211         /*
1212          * If the timestamp was commited, make the commit our entry
1213          * now so that we will update it when needed.
1214          */
1215         if (commit)
1216                 rb_set_commit_event(cpu_buffer, event);
1217         else if (!rb_is_commit(cpu_buffer, event))
1218                 delta = 0;
1219
1220         event->time_delta = delta;
1221
1222         return event;
1223 }
1224
1225 static DEFINE_PER_CPU(int, rb_need_resched);
1226
1227 /**
1228  * ring_buffer_lock_reserve - reserve a part of the buffer
1229  * @buffer: the ring buffer to reserve from
1230  * @length: the length of the data to reserve (excluding event header)
1231  * @flags: a pointer to save the interrupt flags
1232  *
1233  * Returns a reseverd event on the ring buffer to copy directly to.
1234  * The user of this interface will need to get the body to write into
1235  * and can use the ring_buffer_event_data() interface.
1236  *
1237  * The length is the length of the data needed, not the event length
1238  * which also includes the event header.
1239  *
1240  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1241  * If NULL is returned, then nothing has been allocated or locked.
1242  */
1243 struct ring_buffer_event *
1244 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1245                          unsigned long length,
1246                          unsigned long *flags)
1247 {
1248         struct ring_buffer_per_cpu *cpu_buffer;
1249         struct ring_buffer_event *event;
1250         int cpu, resched;
1251
1252         if (ring_buffer_flags != RB_BUFFERS_ON)
1253                 return NULL;
1254
1255         if (atomic_read(&buffer->record_disabled))
1256                 return NULL;
1257
1258         /* If we are tracing schedule, we don't want to recurse */
1259         resched = ftrace_preempt_disable();
1260
1261         cpu = raw_smp_processor_id();
1262
1263         if (!cpu_isset(cpu, buffer->cpumask))
1264                 goto out;
1265
1266         cpu_buffer = buffer->buffers[cpu];
1267
1268         if (atomic_read(&cpu_buffer->record_disabled))
1269                 goto out;
1270
1271         length = rb_calculate_event_length(length);
1272         if (length > BUF_PAGE_SIZE)
1273                 goto out;
1274
1275         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1276         if (!event)
1277                 goto out;
1278
1279         /*
1280          * Need to store resched state on this cpu.
1281          * Only the first needs to.
1282          */
1283
1284         if (preempt_count() == 1)
1285                 per_cpu(rb_need_resched, cpu) = resched;
1286
1287         return event;
1288
1289  out:
1290         ftrace_preempt_enable(resched);
1291         return NULL;
1292 }
1293
1294 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1295                       struct ring_buffer_event *event)
1296 {
1297         cpu_buffer->entries++;
1298
1299         /* Only process further if we own the commit */
1300         if (!rb_is_commit(cpu_buffer, event))
1301                 return;
1302
1303         cpu_buffer->write_stamp += event->time_delta;
1304
1305         rb_set_commit_to_write(cpu_buffer);
1306 }
1307
1308 /**
1309  * ring_buffer_unlock_commit - commit a reserved
1310  * @buffer: The buffer to commit to
1311  * @event: The event pointer to commit.
1312  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1313  *
1314  * This commits the data to the ring buffer, and releases any locks held.
1315  *
1316  * Must be paired with ring_buffer_lock_reserve.
1317  */
1318 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1319                               struct ring_buffer_event *event,
1320                               unsigned long flags)
1321 {
1322         struct ring_buffer_per_cpu *cpu_buffer;
1323         int cpu = raw_smp_processor_id();
1324
1325         cpu_buffer = buffer->buffers[cpu];
1326
1327         rb_commit(cpu_buffer, event);
1328
1329         /*
1330          * Only the last preempt count needs to restore preemption.
1331          */
1332         if (preempt_count() == 1)
1333                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1334         else
1335                 preempt_enable_no_resched_notrace();
1336
1337         return 0;
1338 }
1339
1340 /**
1341  * ring_buffer_write - write data to the buffer without reserving
1342  * @buffer: The ring buffer to write to.
1343  * @length: The length of the data being written (excluding the event header)
1344  * @data: The data to write to the buffer.
1345  *
1346  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1347  * one function. If you already have the data to write to the buffer, it
1348  * may be easier to simply call this function.
1349  *
1350  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1351  * and not the length of the event which would hold the header.
1352  */
1353 int ring_buffer_write(struct ring_buffer *buffer,
1354                         unsigned long length,
1355                         void *data)
1356 {
1357         struct ring_buffer_per_cpu *cpu_buffer;
1358         struct ring_buffer_event *event;
1359         unsigned long event_length;
1360         void *body;
1361         int ret = -EBUSY;
1362         int cpu, resched;
1363
1364         if (ring_buffer_flags != RB_BUFFERS_ON)
1365                 return -EBUSY;
1366
1367         if (atomic_read(&buffer->record_disabled))
1368                 return -EBUSY;
1369
1370         resched = ftrace_preempt_disable();
1371
1372         cpu = raw_smp_processor_id();
1373
1374         if (!cpu_isset(cpu, buffer->cpumask))
1375                 goto out;
1376
1377         cpu_buffer = buffer->buffers[cpu];
1378
1379         if (atomic_read(&cpu_buffer->record_disabled))
1380                 goto out;
1381
1382         event_length = rb_calculate_event_length(length);
1383         event = rb_reserve_next_event(cpu_buffer,
1384                                       RINGBUF_TYPE_DATA, event_length);
1385         if (!event)
1386                 goto out;
1387
1388         body = rb_event_data(event);
1389
1390         memcpy(body, data, length);
1391
1392         rb_commit(cpu_buffer, event);
1393
1394         ret = 0;
1395  out:
1396         ftrace_preempt_enable(resched);
1397
1398         return ret;
1399 }
1400
1401 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1402 {
1403         struct buffer_page *reader = cpu_buffer->reader_page;
1404         struct buffer_page *head = cpu_buffer->head_page;
1405         struct buffer_page *commit = cpu_buffer->commit_page;
1406
1407         return reader->read == rb_page_commit(reader) &&
1408                 (commit == reader ||
1409                  (commit == head &&
1410                   head->read == rb_page_commit(commit)));
1411 }
1412
1413 /**
1414  * ring_buffer_record_disable - stop all writes into the buffer
1415  * @buffer: The ring buffer to stop writes to.
1416  *
1417  * This prevents all writes to the buffer. Any attempt to write
1418  * to the buffer after this will fail and return NULL.
1419  *
1420  * The caller should call synchronize_sched() after this.
1421  */
1422 void ring_buffer_record_disable(struct ring_buffer *buffer)
1423 {
1424         atomic_inc(&buffer->record_disabled);
1425 }
1426
1427 /**
1428  * ring_buffer_record_enable - enable writes to the buffer
1429  * @buffer: The ring buffer to enable writes
1430  *
1431  * Note, multiple disables will need the same number of enables
1432  * to truely enable the writing (much like preempt_disable).
1433  */
1434 void ring_buffer_record_enable(struct ring_buffer *buffer)
1435 {
1436         atomic_dec(&buffer->record_disabled);
1437 }
1438
1439 /**
1440  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1441  * @buffer: The ring buffer to stop writes to.
1442  * @cpu: The CPU buffer to stop
1443  *
1444  * This prevents all writes to the buffer. Any attempt to write
1445  * to the buffer after this will fail and return NULL.
1446  *
1447  * The caller should call synchronize_sched() after this.
1448  */
1449 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1450 {
1451         struct ring_buffer_per_cpu *cpu_buffer;
1452
1453         if (!cpu_isset(cpu, buffer->cpumask))
1454                 return;
1455
1456         cpu_buffer = buffer->buffers[cpu];
1457         atomic_inc(&cpu_buffer->record_disabled);
1458 }
1459
1460 /**
1461  * ring_buffer_record_enable_cpu - enable writes to the buffer
1462  * @buffer: The ring buffer to enable writes
1463  * @cpu: The CPU to enable.
1464  *
1465  * Note, multiple disables will need the same number of enables
1466  * to truely enable the writing (much like preempt_disable).
1467  */
1468 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1469 {
1470         struct ring_buffer_per_cpu *cpu_buffer;
1471
1472         if (!cpu_isset(cpu, buffer->cpumask))
1473                 return;
1474
1475         cpu_buffer = buffer->buffers[cpu];
1476         atomic_dec(&cpu_buffer->record_disabled);
1477 }
1478
1479 /**
1480  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1481  * @buffer: The ring buffer
1482  * @cpu: The per CPU buffer to get the entries from.
1483  */
1484 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1485 {
1486         struct ring_buffer_per_cpu *cpu_buffer;
1487
1488         if (!cpu_isset(cpu, buffer->cpumask))
1489                 return 0;
1490
1491         cpu_buffer = buffer->buffers[cpu];
1492         return cpu_buffer->entries;
1493 }
1494
1495 /**
1496  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1497  * @buffer: The ring buffer
1498  * @cpu: The per CPU buffer to get the number of overruns from
1499  */
1500 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1501 {
1502         struct ring_buffer_per_cpu *cpu_buffer;
1503
1504         if (!cpu_isset(cpu, buffer->cpumask))
1505                 return 0;
1506
1507         cpu_buffer = buffer->buffers[cpu];
1508         return cpu_buffer->overrun;
1509 }
1510
1511 /**
1512  * ring_buffer_entries - get the number of entries in a buffer
1513  * @buffer: The ring buffer
1514  *
1515  * Returns the total number of entries in the ring buffer
1516  * (all CPU entries)
1517  */
1518 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1519 {
1520         struct ring_buffer_per_cpu *cpu_buffer;
1521         unsigned long entries = 0;
1522         int cpu;
1523
1524         /* if you care about this being correct, lock the buffer */
1525         for_each_buffer_cpu(buffer, cpu) {
1526                 cpu_buffer = buffer->buffers[cpu];
1527                 entries += cpu_buffer->entries;
1528         }
1529
1530         return entries;
1531 }
1532
1533 /**
1534  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1535  * @buffer: The ring buffer
1536  *
1537  * Returns the total number of overruns in the ring buffer
1538  * (all CPU entries)
1539  */
1540 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1541 {
1542         struct ring_buffer_per_cpu *cpu_buffer;
1543         unsigned long overruns = 0;
1544         int cpu;
1545
1546         /* if you care about this being correct, lock the buffer */
1547         for_each_buffer_cpu(buffer, cpu) {
1548                 cpu_buffer = buffer->buffers[cpu];
1549                 overruns += cpu_buffer->overrun;
1550         }
1551
1552         return overruns;
1553 }
1554
1555 static void rb_iter_reset(struct ring_buffer_iter *iter)
1556 {
1557         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1558
1559         /* Iterator usage is expected to have record disabled */
1560         if (list_empty(&cpu_buffer->reader_page->list)) {
1561                 iter->head_page = cpu_buffer->head_page;
1562                 iter->head = cpu_buffer->head_page->read;
1563         } else {
1564                 iter->head_page = cpu_buffer->reader_page;
1565                 iter->head = cpu_buffer->reader_page->read;
1566         }
1567         if (iter->head)
1568                 iter->read_stamp = cpu_buffer->read_stamp;
1569         else
1570                 iter->read_stamp = iter->head_page->page->time_stamp;
1571 }
1572
1573 /**
1574  * ring_buffer_iter_reset - reset an iterator
1575  * @iter: The iterator to reset
1576  *
1577  * Resets the iterator, so that it will start from the beginning
1578  * again.
1579  */
1580 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1581 {
1582         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1583         unsigned long flags;
1584
1585         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1586         rb_iter_reset(iter);
1587         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1588 }
1589
1590 /**
1591  * ring_buffer_iter_empty - check if an iterator has no more to read
1592  * @iter: The iterator to check
1593  */
1594 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1595 {
1596         struct ring_buffer_per_cpu *cpu_buffer;
1597
1598         cpu_buffer = iter->cpu_buffer;
1599
1600         return iter->head_page == cpu_buffer->commit_page &&
1601                 iter->head == rb_commit_index(cpu_buffer);
1602 }
1603
1604 static void
1605 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1606                      struct ring_buffer_event *event)
1607 {
1608         u64 delta;
1609
1610         switch (event->type) {
1611         case RINGBUF_TYPE_PADDING:
1612                 return;
1613
1614         case RINGBUF_TYPE_TIME_EXTEND:
1615                 delta = event->array[0];
1616                 delta <<= TS_SHIFT;
1617                 delta += event->time_delta;
1618                 cpu_buffer->read_stamp += delta;
1619                 return;
1620
1621         case RINGBUF_TYPE_TIME_STAMP:
1622                 /* FIXME: not implemented */
1623                 return;
1624
1625         case RINGBUF_TYPE_DATA:
1626                 cpu_buffer->read_stamp += event->time_delta;
1627                 return;
1628
1629         default:
1630                 BUG();
1631         }
1632         return;
1633 }
1634
1635 static void
1636 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1637                           struct ring_buffer_event *event)
1638 {
1639         u64 delta;
1640
1641         switch (event->type) {
1642         case RINGBUF_TYPE_PADDING:
1643                 return;
1644
1645         case RINGBUF_TYPE_TIME_EXTEND:
1646                 delta = event->array[0];
1647                 delta <<= TS_SHIFT;
1648                 delta += event->time_delta;
1649                 iter->read_stamp += delta;
1650                 return;
1651
1652         case RINGBUF_TYPE_TIME_STAMP:
1653                 /* FIXME: not implemented */
1654                 return;
1655
1656         case RINGBUF_TYPE_DATA:
1657                 iter->read_stamp += event->time_delta;
1658                 return;
1659
1660         default:
1661                 BUG();
1662         }
1663         return;
1664 }
1665
1666 static struct buffer_page *
1667 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1668 {
1669         struct buffer_page *reader = NULL;
1670         unsigned long flags;
1671         int nr_loops = 0;
1672
1673         local_irq_save(flags);
1674         __raw_spin_lock(&cpu_buffer->lock);
1675
1676  again:
1677         /*
1678          * This should normally only loop twice. But because the
1679          * start of the reader inserts an empty page, it causes
1680          * a case where we will loop three times. There should be no
1681          * reason to loop four times (that I know of).
1682          */
1683         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1684                 reader = NULL;
1685                 goto out;
1686         }
1687
1688         reader = cpu_buffer->reader_page;
1689
1690         /* If there's more to read, return this page */
1691         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1692                 goto out;
1693
1694         /* Never should we have an index greater than the size */
1695         if (RB_WARN_ON(cpu_buffer,
1696                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1697                 goto out;
1698
1699         /* check if we caught up to the tail */
1700         reader = NULL;
1701         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1702                 goto out;
1703
1704         /*
1705          * Splice the empty reader page into the list around the head.
1706          * Reset the reader page to size zero.
1707          */
1708
1709         reader = cpu_buffer->head_page;
1710         cpu_buffer->reader_page->list.next = reader->list.next;
1711         cpu_buffer->reader_page->list.prev = reader->list.prev;
1712
1713         local_set(&cpu_buffer->reader_page->write, 0);
1714         local_set(&cpu_buffer->reader_page->page->commit, 0);
1715
1716         /* Make the reader page now replace the head */
1717         reader->list.prev->next = &cpu_buffer->reader_page->list;
1718         reader->list.next->prev = &cpu_buffer->reader_page->list;
1719
1720         /*
1721          * If the tail is on the reader, then we must set the head
1722          * to the inserted page, otherwise we set it one before.
1723          */
1724         cpu_buffer->head_page = cpu_buffer->reader_page;
1725
1726         if (cpu_buffer->commit_page != reader)
1727                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1728
1729         /* Finally update the reader page to the new head */
1730         cpu_buffer->reader_page = reader;
1731         rb_reset_reader_page(cpu_buffer);
1732
1733         goto again;
1734
1735  out:
1736         __raw_spin_unlock(&cpu_buffer->lock);
1737         local_irq_restore(flags);
1738
1739         return reader;
1740 }
1741
1742 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1743 {
1744         struct ring_buffer_event *event;
1745         struct buffer_page *reader;
1746         unsigned length;
1747
1748         reader = rb_get_reader_page(cpu_buffer);
1749
1750         /* This function should not be called when buffer is empty */
1751         if (RB_WARN_ON(cpu_buffer, !reader))
1752                 return;
1753
1754         event = rb_reader_event(cpu_buffer);
1755
1756         if (event->type == RINGBUF_TYPE_DATA)
1757                 cpu_buffer->entries--;
1758
1759         rb_update_read_stamp(cpu_buffer, event);
1760
1761         length = rb_event_length(event);
1762         cpu_buffer->reader_page->read += length;
1763 }
1764
1765 static void rb_advance_iter(struct ring_buffer_iter *iter)
1766 {
1767         struct ring_buffer *buffer;
1768         struct ring_buffer_per_cpu *cpu_buffer;
1769         struct ring_buffer_event *event;
1770         unsigned length;
1771
1772         cpu_buffer = iter->cpu_buffer;
1773         buffer = cpu_buffer->buffer;
1774
1775         /*
1776          * Check if we are at the end of the buffer.
1777          */
1778         if (iter->head >= rb_page_size(iter->head_page)) {
1779                 if (RB_WARN_ON(buffer,
1780                                iter->head_page == cpu_buffer->commit_page))
1781                         return;
1782                 rb_inc_iter(iter);
1783                 return;
1784         }
1785
1786         event = rb_iter_head_event(iter);
1787
1788         length = rb_event_length(event);
1789
1790         /*
1791          * This should not be called to advance the header if we are
1792          * at the tail of the buffer.
1793          */
1794         if (RB_WARN_ON(cpu_buffer,
1795                        (iter->head_page == cpu_buffer->commit_page) &&
1796                        (iter->head + length > rb_commit_index(cpu_buffer))))
1797                 return;
1798
1799         rb_update_iter_read_stamp(iter, event);
1800
1801         iter->head += length;
1802
1803         /* check for end of page padding */
1804         if ((iter->head >= rb_page_size(iter->head_page)) &&
1805             (iter->head_page != cpu_buffer->commit_page))
1806                 rb_advance_iter(iter);
1807 }
1808
1809 static struct ring_buffer_event *
1810 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1811 {
1812         struct ring_buffer_per_cpu *cpu_buffer;
1813         struct ring_buffer_event *event;
1814         struct buffer_page *reader;
1815         int nr_loops = 0;
1816
1817         if (!cpu_isset(cpu, buffer->cpumask))
1818                 return NULL;
1819
1820         cpu_buffer = buffer->buffers[cpu];
1821
1822  again:
1823         /*
1824          * We repeat when a timestamp is encountered. It is possible
1825          * to get multiple timestamps from an interrupt entering just
1826          * as one timestamp is about to be written. The max times
1827          * that this can happen is the number of nested interrupts we
1828          * can have.  Nesting 10 deep of interrupts is clearly
1829          * an anomaly.
1830          */
1831         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1832                 return NULL;
1833
1834         reader = rb_get_reader_page(cpu_buffer);
1835         if (!reader)
1836                 return NULL;
1837
1838         event = rb_reader_event(cpu_buffer);
1839
1840         switch (event->type) {
1841         case RINGBUF_TYPE_PADDING:
1842                 RB_WARN_ON(cpu_buffer, 1);
1843                 rb_advance_reader(cpu_buffer);
1844                 return NULL;
1845
1846         case RINGBUF_TYPE_TIME_EXTEND:
1847                 /* Internal data, OK to advance */
1848                 rb_advance_reader(cpu_buffer);
1849                 goto again;
1850
1851         case RINGBUF_TYPE_TIME_STAMP:
1852                 /* FIXME: not implemented */
1853                 rb_advance_reader(cpu_buffer);
1854                 goto again;
1855
1856         case RINGBUF_TYPE_DATA:
1857                 if (ts) {
1858                         *ts = cpu_buffer->read_stamp + event->time_delta;
1859                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1860                 }
1861                 return event;
1862
1863         default:
1864                 BUG();
1865         }
1866
1867         return NULL;
1868 }
1869
1870 static struct ring_buffer_event *
1871 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1872 {
1873         struct ring_buffer *buffer;
1874         struct ring_buffer_per_cpu *cpu_buffer;
1875         struct ring_buffer_event *event;
1876         int nr_loops = 0;
1877
1878         if (ring_buffer_iter_empty(iter))
1879                 return NULL;
1880
1881         cpu_buffer = iter->cpu_buffer;
1882         buffer = cpu_buffer->buffer;
1883
1884  again:
1885         /*
1886          * We repeat when a timestamp is encountered. It is possible
1887          * to get multiple timestamps from an interrupt entering just
1888          * as one timestamp is about to be written. The max times
1889          * that this can happen is the number of nested interrupts we
1890          * can have. Nesting 10 deep of interrupts is clearly
1891          * an anomaly.
1892          */
1893         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1894                 return NULL;
1895
1896         if (rb_per_cpu_empty(cpu_buffer))
1897                 return NULL;
1898
1899         event = rb_iter_head_event(iter);
1900
1901         switch (event->type) {
1902         case RINGBUF_TYPE_PADDING:
1903                 rb_inc_iter(iter);
1904                 goto again;
1905
1906         case RINGBUF_TYPE_TIME_EXTEND:
1907                 /* Internal data, OK to advance */
1908                 rb_advance_iter(iter);
1909                 goto again;
1910
1911         case RINGBUF_TYPE_TIME_STAMP:
1912                 /* FIXME: not implemented */
1913                 rb_advance_iter(iter);
1914                 goto again;
1915
1916         case RINGBUF_TYPE_DATA:
1917                 if (ts) {
1918                         *ts = iter->read_stamp + event->time_delta;
1919                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1920                 }
1921                 return event;
1922
1923         default:
1924                 BUG();
1925         }
1926
1927         return NULL;
1928 }
1929
1930 /**
1931  * ring_buffer_peek - peek at the next event to be read
1932  * @buffer: The ring buffer to read
1933  * @cpu: The cpu to peak at
1934  * @ts: The timestamp counter of this event.
1935  *
1936  * This will return the event that will be read next, but does
1937  * not consume the data.
1938  */
1939 struct ring_buffer_event *
1940 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1941 {
1942         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1943         struct ring_buffer_event *event;
1944         unsigned long flags;
1945
1946         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1947         event = rb_buffer_peek(buffer, cpu, ts);
1948         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1949
1950         return event;
1951 }
1952
1953 /**
1954  * ring_buffer_iter_peek - peek at the next event to be read
1955  * @iter: The ring buffer iterator
1956  * @ts: The timestamp counter of this event.
1957  *
1958  * This will return the event that will be read next, but does
1959  * not increment the iterator.
1960  */
1961 struct ring_buffer_event *
1962 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1963 {
1964         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1965         struct ring_buffer_event *event;
1966         unsigned long flags;
1967
1968         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1969         event = rb_iter_peek(iter, ts);
1970         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1971
1972         return event;
1973 }
1974
1975 /**
1976  * ring_buffer_consume - return an event and consume it
1977  * @buffer: The ring buffer to get the next event from
1978  *
1979  * Returns the next event in the ring buffer, and that event is consumed.
1980  * Meaning, that sequential reads will keep returning a different event,
1981  * and eventually empty the ring buffer if the producer is slower.
1982  */
1983 struct ring_buffer_event *
1984 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1985 {
1986         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1987         struct ring_buffer_event *event;
1988         unsigned long flags;
1989
1990         if (!cpu_isset(cpu, buffer->cpumask))
1991                 return NULL;
1992
1993         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1994
1995         event = rb_buffer_peek(buffer, cpu, ts);
1996         if (!event)
1997                 goto out;
1998
1999         rb_advance_reader(cpu_buffer);
2000
2001  out:
2002         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2003
2004         return event;
2005 }
2006
2007 /**
2008  * ring_buffer_read_start - start a non consuming read of the buffer
2009  * @buffer: The ring buffer to read from
2010  * @cpu: The cpu buffer to iterate over
2011  *
2012  * This starts up an iteration through the buffer. It also disables
2013  * the recording to the buffer until the reading is finished.
2014  * This prevents the reading from being corrupted. This is not
2015  * a consuming read, so a producer is not expected.
2016  *
2017  * Must be paired with ring_buffer_finish.
2018  */
2019 struct ring_buffer_iter *
2020 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2021 {
2022         struct ring_buffer_per_cpu *cpu_buffer;
2023         struct ring_buffer_iter *iter;
2024         unsigned long flags;
2025
2026         if (!cpu_isset(cpu, buffer->cpumask))
2027                 return NULL;
2028
2029         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2030         if (!iter)
2031                 return NULL;
2032
2033         cpu_buffer = buffer->buffers[cpu];
2034
2035         iter->cpu_buffer = cpu_buffer;
2036
2037         atomic_inc(&cpu_buffer->record_disabled);
2038         synchronize_sched();
2039
2040         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2041         __raw_spin_lock(&cpu_buffer->lock);
2042         rb_iter_reset(iter);
2043         __raw_spin_unlock(&cpu_buffer->lock);
2044         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2045
2046         return iter;
2047 }
2048
2049 /**
2050  * ring_buffer_finish - finish reading the iterator of the buffer
2051  * @iter: The iterator retrieved by ring_buffer_start
2052  *
2053  * This re-enables the recording to the buffer, and frees the
2054  * iterator.
2055  */
2056 void
2057 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2058 {
2059         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2060
2061         atomic_dec(&cpu_buffer->record_disabled);
2062         kfree(iter);
2063 }
2064
2065 /**
2066  * ring_buffer_read - read the next item in the ring buffer by the iterator
2067  * @iter: The ring buffer iterator
2068  * @ts: The time stamp of the event read.
2069  *
2070  * This reads the next event in the ring buffer and increments the iterator.
2071  */
2072 struct ring_buffer_event *
2073 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2074 {
2075         struct ring_buffer_event *event;
2076         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2077         unsigned long flags;
2078
2079         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2080         event = rb_iter_peek(iter, ts);
2081         if (!event)
2082                 goto out;
2083
2084         rb_advance_iter(iter);
2085  out:
2086         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2087
2088         return event;
2089 }
2090
2091 /**
2092  * ring_buffer_size - return the size of the ring buffer (in bytes)
2093  * @buffer: The ring buffer.
2094  */
2095 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2096 {
2097         return BUF_PAGE_SIZE * buffer->pages;
2098 }
2099
2100 static void
2101 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2102 {
2103         cpu_buffer->head_page
2104                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2105         local_set(&cpu_buffer->head_page->write, 0);
2106         local_set(&cpu_buffer->head_page->page->commit, 0);
2107
2108         cpu_buffer->head_page->read = 0;
2109
2110         cpu_buffer->tail_page = cpu_buffer->head_page;
2111         cpu_buffer->commit_page = cpu_buffer->head_page;
2112
2113         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2114         local_set(&cpu_buffer->reader_page->write, 0);
2115         local_set(&cpu_buffer->reader_page->page->commit, 0);
2116         cpu_buffer->reader_page->read = 0;
2117
2118         cpu_buffer->overrun = 0;
2119         cpu_buffer->entries = 0;
2120 }
2121
2122 /**
2123  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2124  * @buffer: The ring buffer to reset a per cpu buffer of
2125  * @cpu: The CPU buffer to be reset
2126  */
2127 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2128 {
2129         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2130         unsigned long flags;
2131
2132         if (!cpu_isset(cpu, buffer->cpumask))
2133                 return;
2134
2135         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2136
2137         __raw_spin_lock(&cpu_buffer->lock);
2138
2139         rb_reset_cpu(cpu_buffer);
2140
2141         __raw_spin_unlock(&cpu_buffer->lock);
2142
2143         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2144 }
2145
2146 /**
2147  * ring_buffer_reset - reset a ring buffer
2148  * @buffer: The ring buffer to reset all cpu buffers
2149  */
2150 void ring_buffer_reset(struct ring_buffer *buffer)
2151 {
2152         int cpu;
2153
2154         for_each_buffer_cpu(buffer, cpu)
2155                 ring_buffer_reset_cpu(buffer, cpu);
2156 }
2157
2158 /**
2159  * rind_buffer_empty - is the ring buffer empty?
2160  * @buffer: The ring buffer to test
2161  */
2162 int ring_buffer_empty(struct ring_buffer *buffer)
2163 {
2164         struct ring_buffer_per_cpu *cpu_buffer;
2165         int cpu;
2166
2167         /* yes this is racy, but if you don't like the race, lock the buffer */
2168         for_each_buffer_cpu(buffer, cpu) {
2169                 cpu_buffer = buffer->buffers[cpu];
2170                 if (!rb_per_cpu_empty(cpu_buffer))
2171                         return 0;
2172         }
2173         return 1;
2174 }
2175
2176 /**
2177  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2178  * @buffer: The ring buffer
2179  * @cpu: The CPU buffer to test
2180  */
2181 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2182 {
2183         struct ring_buffer_per_cpu *cpu_buffer;
2184
2185         if (!cpu_isset(cpu, buffer->cpumask))
2186                 return 1;
2187
2188         cpu_buffer = buffer->buffers[cpu];
2189         return rb_per_cpu_empty(cpu_buffer);
2190 }
2191
2192 /**
2193  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2194  * @buffer_a: One buffer to swap with
2195  * @buffer_b: The other buffer to swap with
2196  *
2197  * This function is useful for tracers that want to take a "snapshot"
2198  * of a CPU buffer and has another back up buffer lying around.
2199  * it is expected that the tracer handles the cpu buffer not being
2200  * used at the moment.
2201  */
2202 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2203                          struct ring_buffer *buffer_b, int cpu)
2204 {
2205         struct ring_buffer_per_cpu *cpu_buffer_a;
2206         struct ring_buffer_per_cpu *cpu_buffer_b;
2207
2208         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2209             !cpu_isset(cpu, buffer_b->cpumask))
2210                 return -EINVAL;
2211
2212         /* At least make sure the two buffers are somewhat the same */
2213         if (buffer_a->size != buffer_b->size ||
2214             buffer_a->pages != buffer_b->pages)
2215                 return -EINVAL;
2216
2217         cpu_buffer_a = buffer_a->buffers[cpu];
2218         cpu_buffer_b = buffer_b->buffers[cpu];
2219
2220         /*
2221          * We can't do a synchronize_sched here because this
2222          * function can be called in atomic context.
2223          * Normally this will be called from the same CPU as cpu.
2224          * If not it's up to the caller to protect this.
2225          */
2226         atomic_inc(&cpu_buffer_a->record_disabled);
2227         atomic_inc(&cpu_buffer_b->record_disabled);
2228
2229         buffer_a->buffers[cpu] = cpu_buffer_b;
2230         buffer_b->buffers[cpu] = cpu_buffer_a;
2231
2232         cpu_buffer_b->buffer = buffer_a;
2233         cpu_buffer_a->buffer = buffer_b;
2234
2235         atomic_dec(&cpu_buffer_a->record_disabled);
2236         atomic_dec(&cpu_buffer_b->record_disabled);
2237
2238         return 0;
2239 }
2240
2241 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2242                               struct buffer_data_page *bpage)
2243 {
2244         struct ring_buffer_event *event;
2245         unsigned long head;
2246
2247         __raw_spin_lock(&cpu_buffer->lock);
2248         for (head = 0; head < local_read(&bpage->commit);
2249              head += rb_event_length(event)) {
2250
2251                 event = __rb_data_page_index(bpage, head);
2252                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2253                         return;
2254                 /* Only count data entries */
2255                 if (event->type != RINGBUF_TYPE_DATA)
2256                         continue;
2257                 cpu_buffer->entries--;
2258         }
2259         __raw_spin_unlock(&cpu_buffer->lock);
2260 }
2261
2262 /**
2263  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2264  * @buffer: the buffer to allocate for.
2265  *
2266  * This function is used in conjunction with ring_buffer_read_page.
2267  * When reading a full page from the ring buffer, these functions
2268  * can be used to speed up the process. The calling function should
2269  * allocate a few pages first with this function. Then when it
2270  * needs to get pages from the ring buffer, it passes the result
2271  * of this function into ring_buffer_read_page, which will swap
2272  * the page that was allocated, with the read page of the buffer.
2273  *
2274  * Returns:
2275  *  The page allocated, or NULL on error.
2276  */
2277 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2278 {
2279         unsigned long addr;
2280         struct buffer_data_page *bpage;
2281
2282         addr = __get_free_page(GFP_KERNEL);
2283         if (!addr)
2284                 return NULL;
2285
2286         bpage = (void *)addr;
2287
2288         return bpage;
2289 }
2290
2291 /**
2292  * ring_buffer_free_read_page - free an allocated read page
2293  * @buffer: the buffer the page was allocate for
2294  * @data: the page to free
2295  *
2296  * Free a page allocated from ring_buffer_alloc_read_page.
2297  */
2298 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2299 {
2300         free_page((unsigned long)data);
2301 }
2302
2303 /**
2304  * ring_buffer_read_page - extract a page from the ring buffer
2305  * @buffer: buffer to extract from
2306  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2307  * @cpu: the cpu of the buffer to extract
2308  * @full: should the extraction only happen when the page is full.
2309  *
2310  * This function will pull out a page from the ring buffer and consume it.
2311  * @data_page must be the address of the variable that was returned
2312  * from ring_buffer_alloc_read_page. This is because the page might be used
2313  * to swap with a page in the ring buffer.
2314  *
2315  * for example:
2316  *      rpage = ring_buffer_alloc_page(buffer);
2317  *      if (!rpage)
2318  *              return error;
2319  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2320  *      if (ret)
2321  *              process_page(rpage);
2322  *
2323  * When @full is set, the function will not return true unless
2324  * the writer is off the reader page.
2325  *
2326  * Note: it is up to the calling functions to handle sleeps and wakeups.
2327  *  The ring buffer can be used anywhere in the kernel and can not
2328  *  blindly call wake_up. The layer that uses the ring buffer must be
2329  *  responsible for that.
2330  *
2331  * Returns:
2332  *  1 if data has been transferred
2333  *  0 if no data has been transferred.
2334  */
2335 int ring_buffer_read_page(struct ring_buffer *buffer,
2336                             void **data_page, int cpu, int full)
2337 {
2338         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2339         struct ring_buffer_event *event;
2340         struct buffer_data_page *bpage;
2341         unsigned long flags;
2342         int ret = 0;
2343
2344         if (!data_page)
2345                 return 0;
2346
2347         bpage = *data_page;
2348         if (!bpage)
2349                 return 0;
2350
2351         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2352
2353         /*
2354          * rb_buffer_peek will get the next ring buffer if
2355          * the current reader page is empty.
2356          */
2357         event = rb_buffer_peek(buffer, cpu, NULL);
2358         if (!event)
2359                 goto out;
2360
2361         /* check for data */
2362         if (!local_read(&cpu_buffer->reader_page->page->commit))
2363                 goto out;
2364         /*
2365          * If the writer is already off of the read page, then simply
2366          * switch the read page with the given page. Otherwise
2367          * we need to copy the data from the reader to the writer.
2368          */
2369         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2370                 unsigned int read = cpu_buffer->reader_page->read;
2371
2372                 if (full)
2373                         goto out;
2374                 /* The writer is still on the reader page, we must copy */
2375                 bpage = cpu_buffer->reader_page->page;
2376                 memcpy(bpage->data,
2377                        cpu_buffer->reader_page->page->data + read,
2378                        local_read(&bpage->commit) - read);
2379
2380                 /* consume what was read */
2381                 cpu_buffer->reader_page += read;
2382
2383         } else {
2384                 /* swap the pages */
2385                 rb_init_page(bpage);
2386                 bpage = cpu_buffer->reader_page->page;
2387                 cpu_buffer->reader_page->page = *data_page;
2388                 cpu_buffer->reader_page->read = 0;
2389                 *data_page = bpage;
2390         }
2391         ret = 1;
2392
2393         /* update the entry counter */
2394         rb_remove_entries(cpu_buffer, bpage);
2395  out:
2396         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2397
2398         return ret;
2399 }
2400
2401 static ssize_t
2402 rb_simple_read(struct file *filp, char __user *ubuf,
2403                size_t cnt, loff_t *ppos)
2404 {
2405         long *p = filp->private_data;
2406         char buf[64];
2407         int r;
2408
2409         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2410                 r = sprintf(buf, "permanently disabled\n");
2411         else
2412                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2413
2414         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2415 }
2416
2417 static ssize_t
2418 rb_simple_write(struct file *filp, const char __user *ubuf,
2419                 size_t cnt, loff_t *ppos)
2420 {
2421         long *p = filp->private_data;
2422         char buf[64];
2423         long val;
2424         int ret;
2425
2426         if (cnt >= sizeof(buf))
2427                 return -EINVAL;
2428
2429         if (copy_from_user(&buf, ubuf, cnt))
2430                 return -EFAULT;
2431
2432         buf[cnt] = 0;
2433
2434         ret = strict_strtoul(buf, 10, &val);
2435         if (ret < 0)
2436                 return ret;
2437
2438         if (val)
2439                 set_bit(RB_BUFFERS_ON_BIT, p);
2440         else
2441                 clear_bit(RB_BUFFERS_ON_BIT, p);
2442
2443         (*ppos)++;
2444
2445         return cnt;
2446 }
2447
2448 static struct file_operations rb_simple_fops = {
2449         .open           = tracing_open_generic,
2450         .read           = rb_simple_read,
2451         .write          = rb_simple_write,
2452 };
2453
2454
2455 static __init int rb_init_debugfs(void)
2456 {
2457         struct dentry *d_tracer;
2458         struct dentry *entry;
2459
2460         d_tracer = tracing_init_dentry();
2461
2462         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2463                                     &ring_buffer_flags, &rb_simple_fops);
2464         if (!entry)
2465                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2466
2467         return 0;
2468 }
2469
2470 fs_initcall(rb_init_debugfs);