tracing: add missing 'extern' keywords to trace_output.h
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer is made up of a list of pages. A separate list of pages is
26  * allocated for each CPU. A writer may only write to a buffer that is
27  * associated with the CPU it is currently executing on.  A reader may read
28  * from any per cpu buffer.
29  *
30  * The reader is special. For each per cpu buffer, the reader has its own
31  * reader page. When a reader has read the entire reader page, this reader
32  * page is swapped with another page in the ring buffer.
33  *
34  * Now, as long as the writer is off the reader page, the reader can do what
35  * ever it wants with that page. The writer will never write to that page
36  * again (as long as it is out of the ring buffer).
37  *
38  * Here's some silly ASCII art.
39  *
40  *   +------+
41  *   |reader|          RING BUFFER
42  *   |page  |
43  *   +------+        +---+   +---+   +---+
44  *                   |   |-->|   |-->|   |
45  *                   +---+   +---+   +---+
46  *                     ^               |
47  *                     |               |
48  *                     +---------------+
49  *
50  *
51  *   +------+
52  *   |reader|          RING BUFFER
53  *   |page  |------------------v
54  *   +------+        +---+   +---+   +---+
55  *                   |   |-->|   |-->|   |
56  *                   +---+   +---+   +---+
57  *                     ^               |
58  *                     |               |
59  *                     +---------------+
60  *
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |------------------v
65  *   +------+        +---+   +---+   +---+
66  *      ^            |   |-->|   |-->|   |
67  *      |            +---+   +---+   +---+
68  *      |                              |
69  *      |                              |
70  *      +------------------------------+
71  *
72  *
73  *   +------+
74  *   |buffer|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *      ^            |   |   |   |-->|   |
78  *      |   New      +---+   +---+   +---+
79  *      |  Reader------^               |
80  *      |   page                       |
81  *      +------------------------------+
82  *
83  *
84  * After we make this swap, the reader can hand this page off to the splice
85  * code and be done with it. It can even allocate a new page if it needs to
86  * and swap that into the ring buffer.
87  *
88  * We will be using cmpxchg soon to make all this lockless.
89  *
90  */
91
92 /*
93  * A fast way to enable or disable all ring buffers is to
94  * call tracing_on or tracing_off. Turning off the ring buffers
95  * prevents all ring buffers from being recorded to.
96  * Turning this switch on, makes it OK to write to the
97  * ring buffer, if the ring buffer is enabled itself.
98  *
99  * There's three layers that must be on in order to write
100  * to the ring buffer.
101  *
102  * 1) This global flag must be set.
103  * 2) The ring buffer must be enabled for recording.
104  * 3) The per cpu buffer must be enabled for recording.
105  *
106  * In case of an anomaly, this global flag has a bit set that
107  * will permantly disable all ring buffers.
108  */
109
110 /*
111  * Global flag to disable all recording to ring buffers
112  *  This has two bits: ON, DISABLED
113  *
114  *  ON   DISABLED
115  * ---- ----------
116  *   0      0        : ring buffers are off
117  *   1      0        : ring buffers are on
118  *   X      1        : ring buffers are permanently disabled
119  */
120
121 enum {
122         RB_BUFFERS_ON_BIT       = 0,
123         RB_BUFFERS_DISABLED_BIT = 1,
124 };
125
126 enum {
127         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
128         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
129 };
130
131 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
132
133 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
134
135 /**
136  * tracing_on - enable all tracing buffers
137  *
138  * This function enables all tracing buffers that may have been
139  * disabled with tracing_off.
140  */
141 void tracing_on(void)
142 {
143         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
144 }
145 EXPORT_SYMBOL_GPL(tracing_on);
146
147 /**
148  * tracing_off - turn off all tracing buffers
149  *
150  * This function stops all tracing buffers from recording data.
151  * It does not disable any overhead the tracers themselves may
152  * be causing. This function simply causes all recording to
153  * the ring buffers to fail.
154  */
155 void tracing_off(void)
156 {
157         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
158 }
159 EXPORT_SYMBOL_GPL(tracing_off);
160
161 /**
162  * tracing_off_permanent - permanently disable ring buffers
163  *
164  * This function, once called, will disable all ring buffers
165  * permanently.
166  */
167 void tracing_off_permanent(void)
168 {
169         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
170 }
171
172 /**
173  * tracing_is_on - show state of ring buffers enabled
174  */
175 int tracing_is_on(void)
176 {
177         return ring_buffer_flags == RB_BUFFERS_ON;
178 }
179 EXPORT_SYMBOL_GPL(tracing_is_on);
180
181 #include "trace.h"
182
183 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
184 #define RB_ALIGNMENT            4U
185 #define RB_MAX_SMALL_DATA       28
186
187 enum {
188         RB_LEN_TIME_EXTEND = 8,
189         RB_LEN_TIME_STAMP = 16,
190 };
191
192 /* inline for ring buffer fast paths */
193 static unsigned
194 rb_event_length(struct ring_buffer_event *event)
195 {
196         unsigned length;
197
198         switch (event->type) {
199         case RINGBUF_TYPE_PADDING:
200                 /* undefined */
201                 return -1;
202
203         case RINGBUF_TYPE_TIME_EXTEND:
204                 return RB_LEN_TIME_EXTEND;
205
206         case RINGBUF_TYPE_TIME_STAMP:
207                 return RB_LEN_TIME_STAMP;
208
209         case RINGBUF_TYPE_DATA:
210                 if (event->len)
211                         length = event->len * RB_ALIGNMENT;
212                 else
213                         length = event->array[0];
214                 return length + RB_EVNT_HDR_SIZE;
215         default:
216                 BUG();
217         }
218         /* not hit */
219         return 0;
220 }
221
222 /**
223  * ring_buffer_event_length - return the length of the event
224  * @event: the event to get the length of
225  */
226 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
227 {
228         unsigned length = rb_event_length(event);
229         if (event->type != RINGBUF_TYPE_DATA)
230                 return length;
231         length -= RB_EVNT_HDR_SIZE;
232         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
233                 length -= sizeof(event->array[0]);
234         return length;
235 }
236 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
237
238 /* inline for ring buffer fast paths */
239 static void *
240 rb_event_data(struct ring_buffer_event *event)
241 {
242         BUG_ON(event->type != RINGBUF_TYPE_DATA);
243         /* If length is in len field, then array[0] has the data */
244         if (event->len)
245                 return (void *)&event->array[0];
246         /* Otherwise length is in array[0] and array[1] has the data */
247         return (void *)&event->array[1];
248 }
249
250 /**
251  * ring_buffer_event_data - return the data of the event
252  * @event: the event to get the data from
253  */
254 void *ring_buffer_event_data(struct ring_buffer_event *event)
255 {
256         return rb_event_data(event);
257 }
258 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
259
260 #define for_each_buffer_cpu(buffer, cpu)                \
261         for_each_cpu(cpu, buffer->cpumask)
262
263 #define TS_SHIFT        27
264 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
265 #define TS_DELTA_TEST   (~TS_MASK)
266
267 struct buffer_data_page {
268         u64              time_stamp;    /* page time stamp */
269         local_t          commit;        /* write committed index */
270         unsigned char    data[];        /* data of buffer page */
271 };
272
273 struct buffer_page {
274         local_t          write;         /* index for next write */
275         unsigned         read;          /* index for next read */
276         struct list_head list;          /* list of free pages */
277         struct buffer_data_page *page;  /* Actual data page */
278 };
279
280 static void rb_init_page(struct buffer_data_page *bpage)
281 {
282         local_set(&bpage->commit, 0);
283 }
284
285 /**
286  * ring_buffer_page_len - the size of data on the page.
287  * @page: The page to read
288  *
289  * Returns the amount of data on the page, including buffer page header.
290  */
291 size_t ring_buffer_page_len(void *page)
292 {
293         return local_read(&((struct buffer_data_page *)page)->commit)
294                 + BUF_PAGE_HDR_SIZE;
295 }
296
297 /*
298  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
299  * this issue out.
300  */
301 static void free_buffer_page(struct buffer_page *bpage)
302 {
303         free_page((unsigned long)bpage->page);
304         kfree(bpage);
305 }
306
307 /*
308  * We need to fit the time_stamp delta into 27 bits.
309  */
310 static inline int test_time_stamp(u64 delta)
311 {
312         if (delta & TS_DELTA_TEST)
313                 return 1;
314         return 0;
315 }
316
317 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
318
319 /*
320  * head_page == tail_page && head == tail then buffer is empty.
321  */
322 struct ring_buffer_per_cpu {
323         int                             cpu;
324         struct ring_buffer              *buffer;
325         spinlock_t                      reader_lock; /* serialize readers */
326         raw_spinlock_t                  lock;
327         struct lock_class_key           lock_key;
328         struct list_head                pages;
329         struct buffer_page              *head_page;     /* read from head */
330         struct buffer_page              *tail_page;     /* write to tail */
331         struct buffer_page              *commit_page;   /* committed pages */
332         struct buffer_page              *reader_page;
333         unsigned long                   overrun;
334         unsigned long                   entries;
335         u64                             write_stamp;
336         u64                             read_stamp;
337         atomic_t                        record_disabled;
338 };
339
340 struct ring_buffer {
341         unsigned                        pages;
342         unsigned                        flags;
343         int                             cpus;
344         atomic_t                        record_disabled;
345         cpumask_var_t                   cpumask;
346
347         struct mutex                    mutex;
348
349         struct ring_buffer_per_cpu      **buffers;
350
351 #ifdef CONFIG_HOTPLUG_CPU
352         struct notifier_block           cpu_notify;
353 #endif
354         u64                             (*clock)(void);
355 };
356
357 struct ring_buffer_iter {
358         struct ring_buffer_per_cpu      *cpu_buffer;
359         unsigned long                   head;
360         struct buffer_page              *head_page;
361         u64                             read_stamp;
362 };
363
364 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
365 #define RB_WARN_ON(buffer, cond)                                \
366         ({                                                      \
367                 int _____ret = unlikely(cond);                  \
368                 if (_____ret) {                                 \
369                         atomic_inc(&buffer->record_disabled);   \
370                         WARN_ON(1);                             \
371                 }                                               \
372                 _____ret;                                       \
373         })
374
375 /* Up this if you want to test the TIME_EXTENTS and normalization */
376 #define DEBUG_SHIFT 0
377
378 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
379 {
380         u64 time;
381
382         preempt_disable_notrace();
383         /* shift to debug/test normalization and TIME_EXTENTS */
384         time = buffer->clock() << DEBUG_SHIFT;
385         preempt_enable_no_resched_notrace();
386
387         return time;
388 }
389 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
390
391 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
392                                       int cpu, u64 *ts)
393 {
394         /* Just stupid testing the normalize function and deltas */
395         *ts >>= DEBUG_SHIFT;
396 }
397 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
398
399 /**
400  * check_pages - integrity check of buffer pages
401  * @cpu_buffer: CPU buffer with pages to test
402  *
403  * As a safety measure we check to make sure the data pages have not
404  * been corrupted.
405  */
406 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
407 {
408         struct list_head *head = &cpu_buffer->pages;
409         struct buffer_page *bpage, *tmp;
410
411         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
412                 return -1;
413         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
414                 return -1;
415
416         list_for_each_entry_safe(bpage, tmp, head, list) {
417                 if (RB_WARN_ON(cpu_buffer,
418                                bpage->list.next->prev != &bpage->list))
419                         return -1;
420                 if (RB_WARN_ON(cpu_buffer,
421                                bpage->list.prev->next != &bpage->list))
422                         return -1;
423         }
424
425         return 0;
426 }
427
428 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
429                              unsigned nr_pages)
430 {
431         struct list_head *head = &cpu_buffer->pages;
432         struct buffer_page *bpage, *tmp;
433         unsigned long addr;
434         LIST_HEAD(pages);
435         unsigned i;
436
437         for (i = 0; i < nr_pages; i++) {
438                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
439                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
440                 if (!bpage)
441                         goto free_pages;
442                 list_add(&bpage->list, &pages);
443
444                 addr = __get_free_page(GFP_KERNEL);
445                 if (!addr)
446                         goto free_pages;
447                 bpage->page = (void *)addr;
448                 rb_init_page(bpage->page);
449         }
450
451         list_splice(&pages, head);
452
453         rb_check_pages(cpu_buffer);
454
455         return 0;
456
457  free_pages:
458         list_for_each_entry_safe(bpage, tmp, &pages, list) {
459                 list_del_init(&bpage->list);
460                 free_buffer_page(bpage);
461         }
462         return -ENOMEM;
463 }
464
465 static struct ring_buffer_per_cpu *
466 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
467 {
468         struct ring_buffer_per_cpu *cpu_buffer;
469         struct buffer_page *bpage;
470         unsigned long addr;
471         int ret;
472
473         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
474                                   GFP_KERNEL, cpu_to_node(cpu));
475         if (!cpu_buffer)
476                 return NULL;
477
478         cpu_buffer->cpu = cpu;
479         cpu_buffer->buffer = buffer;
480         spin_lock_init(&cpu_buffer->reader_lock);
481         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
482         INIT_LIST_HEAD(&cpu_buffer->pages);
483
484         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
485                             GFP_KERNEL, cpu_to_node(cpu));
486         if (!bpage)
487                 goto fail_free_buffer;
488
489         cpu_buffer->reader_page = bpage;
490         addr = __get_free_page(GFP_KERNEL);
491         if (!addr)
492                 goto fail_free_reader;
493         bpage->page = (void *)addr;
494         rb_init_page(bpage->page);
495
496         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
497
498         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
499         if (ret < 0)
500                 goto fail_free_reader;
501
502         cpu_buffer->head_page
503                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
504         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
505
506         return cpu_buffer;
507
508  fail_free_reader:
509         free_buffer_page(cpu_buffer->reader_page);
510
511  fail_free_buffer:
512         kfree(cpu_buffer);
513         return NULL;
514 }
515
516 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
517 {
518         struct list_head *head = &cpu_buffer->pages;
519         struct buffer_page *bpage, *tmp;
520
521         list_del_init(&cpu_buffer->reader_page->list);
522         free_buffer_page(cpu_buffer->reader_page);
523
524         list_for_each_entry_safe(bpage, tmp, head, list) {
525                 list_del_init(&bpage->list);
526                 free_buffer_page(bpage);
527         }
528         kfree(cpu_buffer);
529 }
530
531 /*
532  * Causes compile errors if the struct buffer_page gets bigger
533  * than the struct page.
534  */
535 extern int ring_buffer_page_too_big(void);
536
537 #ifdef CONFIG_HOTPLUG_CPU
538 static int rb_cpu_notify(struct notifier_block *self,
539                          unsigned long action, void *hcpu);
540 #endif
541
542 /**
543  * ring_buffer_alloc - allocate a new ring_buffer
544  * @size: the size in bytes per cpu that is needed.
545  * @flags: attributes to set for the ring buffer.
546  *
547  * Currently the only flag that is available is the RB_FL_OVERWRITE
548  * flag. This flag means that the buffer will overwrite old data
549  * when the buffer wraps. If this flag is not set, the buffer will
550  * drop data when the tail hits the head.
551  */
552 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
553 {
554         struct ring_buffer *buffer;
555         int bsize;
556         int cpu;
557
558         /* Paranoid! Optimizes out when all is well */
559         if (sizeof(struct buffer_page) > sizeof(struct page))
560                 ring_buffer_page_too_big();
561
562
563         /* keep it in its own cache line */
564         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
565                          GFP_KERNEL);
566         if (!buffer)
567                 return NULL;
568
569         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
570                 goto fail_free_buffer;
571
572         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
573         buffer->flags = flags;
574         buffer->clock = trace_clock_local;
575
576         /* need at least two pages */
577         if (buffer->pages == 1)
578                 buffer->pages++;
579
580         /*
581          * In case of non-hotplug cpu, if the ring-buffer is allocated
582          * in early initcall, it will not be notified of secondary cpus.
583          * In that off case, we need to allocate for all possible cpus.
584          */
585 #ifdef CONFIG_HOTPLUG_CPU
586         get_online_cpus();
587         cpumask_copy(buffer->cpumask, cpu_online_mask);
588 #else
589         cpumask_copy(buffer->cpumask, cpu_possible_mask);
590 #endif
591         buffer->cpus = nr_cpu_ids;
592
593         bsize = sizeof(void *) * nr_cpu_ids;
594         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
595                                   GFP_KERNEL);
596         if (!buffer->buffers)
597                 goto fail_free_cpumask;
598
599         for_each_buffer_cpu(buffer, cpu) {
600                 buffer->buffers[cpu] =
601                         rb_allocate_cpu_buffer(buffer, cpu);
602                 if (!buffer->buffers[cpu])
603                         goto fail_free_buffers;
604         }
605
606 #ifdef CONFIG_HOTPLUG_CPU
607         buffer->cpu_notify.notifier_call = rb_cpu_notify;
608         buffer->cpu_notify.priority = 0;
609         register_cpu_notifier(&buffer->cpu_notify);
610 #endif
611
612         put_online_cpus();
613         mutex_init(&buffer->mutex);
614
615         return buffer;
616
617  fail_free_buffers:
618         for_each_buffer_cpu(buffer, cpu) {
619                 if (buffer->buffers[cpu])
620                         rb_free_cpu_buffer(buffer->buffers[cpu]);
621         }
622         kfree(buffer->buffers);
623
624  fail_free_cpumask:
625         free_cpumask_var(buffer->cpumask);
626         put_online_cpus();
627
628  fail_free_buffer:
629         kfree(buffer);
630         return NULL;
631 }
632 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
633
634 /**
635  * ring_buffer_free - free a ring buffer.
636  * @buffer: the buffer to free.
637  */
638 void
639 ring_buffer_free(struct ring_buffer *buffer)
640 {
641         int cpu;
642
643         get_online_cpus();
644
645 #ifdef CONFIG_HOTPLUG_CPU
646         unregister_cpu_notifier(&buffer->cpu_notify);
647 #endif
648
649         for_each_buffer_cpu(buffer, cpu)
650                 rb_free_cpu_buffer(buffer->buffers[cpu]);
651
652         put_online_cpus();
653
654         free_cpumask_var(buffer->cpumask);
655
656         kfree(buffer);
657 }
658 EXPORT_SYMBOL_GPL(ring_buffer_free);
659
660 void ring_buffer_set_clock(struct ring_buffer *buffer,
661                            u64 (*clock)(void))
662 {
663         buffer->clock = clock;
664 }
665
666 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
667
668 static void
669 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
670 {
671         struct buffer_page *bpage;
672         struct list_head *p;
673         unsigned i;
674
675         atomic_inc(&cpu_buffer->record_disabled);
676         synchronize_sched();
677
678         for (i = 0; i < nr_pages; i++) {
679                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
680                         return;
681                 p = cpu_buffer->pages.next;
682                 bpage = list_entry(p, struct buffer_page, list);
683                 list_del_init(&bpage->list);
684                 free_buffer_page(bpage);
685         }
686         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
687                 return;
688
689         rb_reset_cpu(cpu_buffer);
690
691         rb_check_pages(cpu_buffer);
692
693         atomic_dec(&cpu_buffer->record_disabled);
694
695 }
696
697 static void
698 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
699                 struct list_head *pages, unsigned nr_pages)
700 {
701         struct buffer_page *bpage;
702         struct list_head *p;
703         unsigned i;
704
705         atomic_inc(&cpu_buffer->record_disabled);
706         synchronize_sched();
707
708         for (i = 0; i < nr_pages; i++) {
709                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
710                         return;
711                 p = pages->next;
712                 bpage = list_entry(p, struct buffer_page, list);
713                 list_del_init(&bpage->list);
714                 list_add_tail(&bpage->list, &cpu_buffer->pages);
715         }
716         rb_reset_cpu(cpu_buffer);
717
718         rb_check_pages(cpu_buffer);
719
720         atomic_dec(&cpu_buffer->record_disabled);
721 }
722
723 /**
724  * ring_buffer_resize - resize the ring buffer
725  * @buffer: the buffer to resize.
726  * @size: the new size.
727  *
728  * The tracer is responsible for making sure that the buffer is
729  * not being used while changing the size.
730  * Note: We may be able to change the above requirement by using
731  *  RCU synchronizations.
732  *
733  * Minimum size is 2 * BUF_PAGE_SIZE.
734  *
735  * Returns -1 on failure.
736  */
737 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
738 {
739         struct ring_buffer_per_cpu *cpu_buffer;
740         unsigned nr_pages, rm_pages, new_pages;
741         struct buffer_page *bpage, *tmp;
742         unsigned long buffer_size;
743         unsigned long addr;
744         LIST_HEAD(pages);
745         int i, cpu;
746
747         /*
748          * Always succeed at resizing a non-existent buffer:
749          */
750         if (!buffer)
751                 return size;
752
753         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
754         size *= BUF_PAGE_SIZE;
755         buffer_size = buffer->pages * BUF_PAGE_SIZE;
756
757         /* we need a minimum of two pages */
758         if (size < BUF_PAGE_SIZE * 2)
759                 size = BUF_PAGE_SIZE * 2;
760
761         if (size == buffer_size)
762                 return size;
763
764         mutex_lock(&buffer->mutex);
765         get_online_cpus();
766
767         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
768
769         if (size < buffer_size) {
770
771                 /* easy case, just free pages */
772                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
773                         goto out_fail;
774
775                 rm_pages = buffer->pages - nr_pages;
776
777                 for_each_buffer_cpu(buffer, cpu) {
778                         cpu_buffer = buffer->buffers[cpu];
779                         rb_remove_pages(cpu_buffer, rm_pages);
780                 }
781                 goto out;
782         }
783
784         /*
785          * This is a bit more difficult. We only want to add pages
786          * when we can allocate enough for all CPUs. We do this
787          * by allocating all the pages and storing them on a local
788          * link list. If we succeed in our allocation, then we
789          * add these pages to the cpu_buffers. Otherwise we just free
790          * them all and return -ENOMEM;
791          */
792         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
793                 goto out_fail;
794
795         new_pages = nr_pages - buffer->pages;
796
797         for_each_buffer_cpu(buffer, cpu) {
798                 for (i = 0; i < new_pages; i++) {
799                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
800                                                   cache_line_size()),
801                                             GFP_KERNEL, cpu_to_node(cpu));
802                         if (!bpage)
803                                 goto free_pages;
804                         list_add(&bpage->list, &pages);
805                         addr = __get_free_page(GFP_KERNEL);
806                         if (!addr)
807                                 goto free_pages;
808                         bpage->page = (void *)addr;
809                         rb_init_page(bpage->page);
810                 }
811         }
812
813         for_each_buffer_cpu(buffer, cpu) {
814                 cpu_buffer = buffer->buffers[cpu];
815                 rb_insert_pages(cpu_buffer, &pages, new_pages);
816         }
817
818         if (RB_WARN_ON(buffer, !list_empty(&pages)))
819                 goto out_fail;
820
821  out:
822         buffer->pages = nr_pages;
823         put_online_cpus();
824         mutex_unlock(&buffer->mutex);
825
826         return size;
827
828  free_pages:
829         list_for_each_entry_safe(bpage, tmp, &pages, list) {
830                 list_del_init(&bpage->list);
831                 free_buffer_page(bpage);
832         }
833         put_online_cpus();
834         mutex_unlock(&buffer->mutex);
835         return -ENOMEM;
836
837         /*
838          * Something went totally wrong, and we are too paranoid
839          * to even clean up the mess.
840          */
841  out_fail:
842         put_online_cpus();
843         mutex_unlock(&buffer->mutex);
844         return -1;
845 }
846 EXPORT_SYMBOL_GPL(ring_buffer_resize);
847
848 static inline int rb_null_event(struct ring_buffer_event *event)
849 {
850         return event->type == RINGBUF_TYPE_PADDING;
851 }
852
853 static inline void *
854 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
855 {
856         return bpage->data + index;
857 }
858
859 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
860 {
861         return bpage->page->data + index;
862 }
863
864 static inline struct ring_buffer_event *
865 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
866 {
867         return __rb_page_index(cpu_buffer->reader_page,
868                                cpu_buffer->reader_page->read);
869 }
870
871 static inline struct ring_buffer_event *
872 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
873 {
874         return __rb_page_index(cpu_buffer->head_page,
875                                cpu_buffer->head_page->read);
876 }
877
878 static inline struct ring_buffer_event *
879 rb_iter_head_event(struct ring_buffer_iter *iter)
880 {
881         return __rb_page_index(iter->head_page, iter->head);
882 }
883
884 static inline unsigned rb_page_write(struct buffer_page *bpage)
885 {
886         return local_read(&bpage->write);
887 }
888
889 static inline unsigned rb_page_commit(struct buffer_page *bpage)
890 {
891         return local_read(&bpage->page->commit);
892 }
893
894 /* Size is determined by what has been commited */
895 static inline unsigned rb_page_size(struct buffer_page *bpage)
896 {
897         return rb_page_commit(bpage);
898 }
899
900 static inline unsigned
901 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
902 {
903         return rb_page_commit(cpu_buffer->commit_page);
904 }
905
906 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
907 {
908         return rb_page_commit(cpu_buffer->head_page);
909 }
910
911 /*
912  * When the tail hits the head and the buffer is in overwrite mode,
913  * the head jumps to the next page and all content on the previous
914  * page is discarded. But before doing so, we update the overrun
915  * variable of the buffer.
916  */
917 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
918 {
919         struct ring_buffer_event *event;
920         unsigned long head;
921
922         for (head = 0; head < rb_head_size(cpu_buffer);
923              head += rb_event_length(event)) {
924
925                 event = __rb_page_index(cpu_buffer->head_page, head);
926                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
927                         return;
928                 /* Only count data entries */
929                 if (event->type != RINGBUF_TYPE_DATA)
930                         continue;
931                 cpu_buffer->overrun++;
932                 cpu_buffer->entries--;
933         }
934 }
935
936 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
937                                struct buffer_page **bpage)
938 {
939         struct list_head *p = (*bpage)->list.next;
940
941         if (p == &cpu_buffer->pages)
942                 p = p->next;
943
944         *bpage = list_entry(p, struct buffer_page, list);
945 }
946
947 static inline unsigned
948 rb_event_index(struct ring_buffer_event *event)
949 {
950         unsigned long addr = (unsigned long)event;
951
952         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
953 }
954
955 static int
956 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
957              struct ring_buffer_event *event)
958 {
959         unsigned long addr = (unsigned long)event;
960         unsigned long index;
961
962         index = rb_event_index(event);
963         addr &= PAGE_MASK;
964
965         return cpu_buffer->commit_page->page == (void *)addr &&
966                 rb_commit_index(cpu_buffer) == index;
967 }
968
969 static void
970 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
971                     struct ring_buffer_event *event)
972 {
973         unsigned long addr = (unsigned long)event;
974         unsigned long index;
975
976         index = rb_event_index(event);
977         addr &= PAGE_MASK;
978
979         while (cpu_buffer->commit_page->page != (void *)addr) {
980                 if (RB_WARN_ON(cpu_buffer,
981                           cpu_buffer->commit_page == cpu_buffer->tail_page))
982                         return;
983                 cpu_buffer->commit_page->page->commit =
984                         cpu_buffer->commit_page->write;
985                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
986                 cpu_buffer->write_stamp =
987                         cpu_buffer->commit_page->page->time_stamp;
988         }
989
990         /* Now set the commit to the event's index */
991         local_set(&cpu_buffer->commit_page->page->commit, index);
992 }
993
994 static void
995 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
996 {
997         /*
998          * We only race with interrupts and NMIs on this CPU.
999          * If we own the commit event, then we can commit
1000          * all others that interrupted us, since the interruptions
1001          * are in stack format (they finish before they come
1002          * back to us). This allows us to do a simple loop to
1003          * assign the commit to the tail.
1004          */
1005  again:
1006         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1007                 cpu_buffer->commit_page->page->commit =
1008                         cpu_buffer->commit_page->write;
1009                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1010                 cpu_buffer->write_stamp =
1011                         cpu_buffer->commit_page->page->time_stamp;
1012                 /* add barrier to keep gcc from optimizing too much */
1013                 barrier();
1014         }
1015         while (rb_commit_index(cpu_buffer) !=
1016                rb_page_write(cpu_buffer->commit_page)) {
1017                 cpu_buffer->commit_page->page->commit =
1018                         cpu_buffer->commit_page->write;
1019                 barrier();
1020         }
1021
1022         /* again, keep gcc from optimizing */
1023         barrier();
1024
1025         /*
1026          * If an interrupt came in just after the first while loop
1027          * and pushed the tail page forward, we will be left with
1028          * a dangling commit that will never go forward.
1029          */
1030         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1031                 goto again;
1032 }
1033
1034 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1035 {
1036         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1037         cpu_buffer->reader_page->read = 0;
1038 }
1039
1040 static void rb_inc_iter(struct ring_buffer_iter *iter)
1041 {
1042         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1043
1044         /*
1045          * The iterator could be on the reader page (it starts there).
1046          * But the head could have moved, since the reader was
1047          * found. Check for this case and assign the iterator
1048          * to the head page instead of next.
1049          */
1050         if (iter->head_page == cpu_buffer->reader_page)
1051                 iter->head_page = cpu_buffer->head_page;
1052         else
1053                 rb_inc_page(cpu_buffer, &iter->head_page);
1054
1055         iter->read_stamp = iter->head_page->page->time_stamp;
1056         iter->head = 0;
1057 }
1058
1059 /**
1060  * ring_buffer_update_event - update event type and data
1061  * @event: the even to update
1062  * @type: the type of event
1063  * @length: the size of the event field in the ring buffer
1064  *
1065  * Update the type and data fields of the event. The length
1066  * is the actual size that is written to the ring buffer,
1067  * and with this, we can determine what to place into the
1068  * data field.
1069  */
1070 static void
1071 rb_update_event(struct ring_buffer_event *event,
1072                          unsigned type, unsigned length)
1073 {
1074         event->type = type;
1075
1076         switch (type) {
1077
1078         case RINGBUF_TYPE_PADDING:
1079                 break;
1080
1081         case RINGBUF_TYPE_TIME_EXTEND:
1082                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
1083                 break;
1084
1085         case RINGBUF_TYPE_TIME_STAMP:
1086                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1087                 break;
1088
1089         case RINGBUF_TYPE_DATA:
1090                 length -= RB_EVNT_HDR_SIZE;
1091                 if (length > RB_MAX_SMALL_DATA) {
1092                         event->len = 0;
1093                         event->array[0] = length;
1094                 } else
1095                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1096                 break;
1097         default:
1098                 BUG();
1099         }
1100 }
1101
1102 static unsigned rb_calculate_event_length(unsigned length)
1103 {
1104         struct ring_buffer_event event; /* Used only for sizeof array */
1105
1106         /* zero length can cause confusions */
1107         if (!length)
1108                 length = 1;
1109
1110         if (length > RB_MAX_SMALL_DATA)
1111                 length += sizeof(event.array[0]);
1112
1113         length += RB_EVNT_HDR_SIZE;
1114         length = ALIGN(length, RB_ALIGNMENT);
1115
1116         return length;
1117 }
1118
1119 static struct ring_buffer_event *
1120 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1121                   unsigned type, unsigned long length, u64 *ts)
1122 {
1123         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1124         unsigned long tail, write;
1125         struct ring_buffer *buffer = cpu_buffer->buffer;
1126         struct ring_buffer_event *event;
1127         unsigned long flags;
1128         bool lock_taken = false;
1129
1130         commit_page = cpu_buffer->commit_page;
1131         /* we just need to protect against interrupts */
1132         barrier();
1133         tail_page = cpu_buffer->tail_page;
1134         write = local_add_return(length, &tail_page->write);
1135         tail = write - length;
1136
1137         /* See if we shot pass the end of this buffer page */
1138         if (write > BUF_PAGE_SIZE) {
1139                 struct buffer_page *next_page = tail_page;
1140
1141                 local_irq_save(flags);
1142                 /*
1143                  * Since the write to the buffer is still not
1144                  * fully lockless, we must be careful with NMIs.
1145                  * The locks in the writers are taken when a write
1146                  * crosses to a new page. The locks protect against
1147                  * races with the readers (this will soon be fixed
1148                  * with a lockless solution).
1149                  *
1150                  * Because we can not protect against NMIs, and we
1151                  * want to keep traces reentrant, we need to manage
1152                  * what happens when we are in an NMI.
1153                  *
1154                  * NMIs can happen after we take the lock.
1155                  * If we are in an NMI, only take the lock
1156                  * if it is not already taken. Otherwise
1157                  * simply fail.
1158                  */
1159                 if (unlikely(in_nmi())) {
1160                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1161                                 goto out_reset;
1162                 } else
1163                         __raw_spin_lock(&cpu_buffer->lock);
1164
1165                 lock_taken = true;
1166
1167                 rb_inc_page(cpu_buffer, &next_page);
1168
1169                 head_page = cpu_buffer->head_page;
1170                 reader_page = cpu_buffer->reader_page;
1171
1172                 /* we grabbed the lock before incrementing */
1173                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1174                         goto out_reset;
1175
1176                 /*
1177                  * If for some reason, we had an interrupt storm that made
1178                  * it all the way around the buffer, bail, and warn
1179                  * about it.
1180                  */
1181                 if (unlikely(next_page == commit_page)) {
1182                         WARN_ON_ONCE(1);
1183                         goto out_reset;
1184                 }
1185
1186                 if (next_page == head_page) {
1187                         if (!(buffer->flags & RB_FL_OVERWRITE))
1188                                 goto out_reset;
1189
1190                         /* tail_page has not moved yet? */
1191                         if (tail_page == cpu_buffer->tail_page) {
1192                                 /* count overflows */
1193                                 rb_update_overflow(cpu_buffer);
1194
1195                                 rb_inc_page(cpu_buffer, &head_page);
1196                                 cpu_buffer->head_page = head_page;
1197                                 cpu_buffer->head_page->read = 0;
1198                         }
1199                 }
1200
1201                 /*
1202                  * If the tail page is still the same as what we think
1203                  * it is, then it is up to us to update the tail
1204                  * pointer.
1205                  */
1206                 if (tail_page == cpu_buffer->tail_page) {
1207                         local_set(&next_page->write, 0);
1208                         local_set(&next_page->page->commit, 0);
1209                         cpu_buffer->tail_page = next_page;
1210
1211                         /* reread the time stamp */
1212                         *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1213                         cpu_buffer->tail_page->page->time_stamp = *ts;
1214                 }
1215
1216                 /*
1217                  * The actual tail page has moved forward.
1218                  */
1219                 if (tail < BUF_PAGE_SIZE) {
1220                         /* Mark the rest of the page with padding */
1221                         event = __rb_page_index(tail_page, tail);
1222                         event->type = RINGBUF_TYPE_PADDING;
1223                 }
1224
1225                 if (tail <= BUF_PAGE_SIZE)
1226                         /* Set the write back to the previous setting */
1227                         local_set(&tail_page->write, tail);
1228
1229                 /*
1230                  * If this was a commit entry that failed,
1231                  * increment that too
1232                  */
1233                 if (tail_page == cpu_buffer->commit_page &&
1234                     tail == rb_commit_index(cpu_buffer)) {
1235                         rb_set_commit_to_write(cpu_buffer);
1236                 }
1237
1238                 __raw_spin_unlock(&cpu_buffer->lock);
1239                 local_irq_restore(flags);
1240
1241                 /* fail and let the caller try again */
1242                 return ERR_PTR(-EAGAIN);
1243         }
1244
1245         /* We reserved something on the buffer */
1246
1247         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1248                 return NULL;
1249
1250         event = __rb_page_index(tail_page, tail);
1251         rb_update_event(event, type, length);
1252
1253         /*
1254          * If this is a commit and the tail is zero, then update
1255          * this page's time stamp.
1256          */
1257         if (!tail && rb_is_commit(cpu_buffer, event))
1258                 cpu_buffer->commit_page->page->time_stamp = *ts;
1259
1260         return event;
1261
1262  out_reset:
1263         /* reset write */
1264         if (tail <= BUF_PAGE_SIZE)
1265                 local_set(&tail_page->write, tail);
1266
1267         if (likely(lock_taken))
1268                 __raw_spin_unlock(&cpu_buffer->lock);
1269         local_irq_restore(flags);
1270         return NULL;
1271 }
1272
1273 static int
1274 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1275                   u64 *ts, u64 *delta)
1276 {
1277         struct ring_buffer_event *event;
1278         static int once;
1279         int ret;
1280
1281         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1282                 printk(KERN_WARNING "Delta way too big! %llu"
1283                        " ts=%llu write stamp = %llu\n",
1284                        (unsigned long long)*delta,
1285                        (unsigned long long)*ts,
1286                        (unsigned long long)cpu_buffer->write_stamp);
1287                 WARN_ON(1);
1288         }
1289
1290         /*
1291          * The delta is too big, we to add a
1292          * new timestamp.
1293          */
1294         event = __rb_reserve_next(cpu_buffer,
1295                                   RINGBUF_TYPE_TIME_EXTEND,
1296                                   RB_LEN_TIME_EXTEND,
1297                                   ts);
1298         if (!event)
1299                 return -EBUSY;
1300
1301         if (PTR_ERR(event) == -EAGAIN)
1302                 return -EAGAIN;
1303
1304         /* Only a commited time event can update the write stamp */
1305         if (rb_is_commit(cpu_buffer, event)) {
1306                 /*
1307                  * If this is the first on the page, then we need to
1308                  * update the page itself, and just put in a zero.
1309                  */
1310                 if (rb_event_index(event)) {
1311                         event->time_delta = *delta & TS_MASK;
1312                         event->array[0] = *delta >> TS_SHIFT;
1313                 } else {
1314                         cpu_buffer->commit_page->page->time_stamp = *ts;
1315                         event->time_delta = 0;
1316                         event->array[0] = 0;
1317                 }
1318                 cpu_buffer->write_stamp = *ts;
1319                 /* let the caller know this was the commit */
1320                 ret = 1;
1321         } else {
1322                 /* Darn, this is just wasted space */
1323                 event->time_delta = 0;
1324                 event->array[0] = 0;
1325                 ret = 0;
1326         }
1327
1328         *delta = 0;
1329
1330         return ret;
1331 }
1332
1333 static struct ring_buffer_event *
1334 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1335                       unsigned type, unsigned long length)
1336 {
1337         struct ring_buffer_event *event;
1338         u64 ts, delta;
1339         int commit = 0;
1340         int nr_loops = 0;
1341
1342  again:
1343         /*
1344          * We allow for interrupts to reenter here and do a trace.
1345          * If one does, it will cause this original code to loop
1346          * back here. Even with heavy interrupts happening, this
1347          * should only happen a few times in a row. If this happens
1348          * 1000 times in a row, there must be either an interrupt
1349          * storm or we have something buggy.
1350          * Bail!
1351          */
1352         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1353                 return NULL;
1354
1355         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1356
1357         /*
1358          * Only the first commit can update the timestamp.
1359          * Yes there is a race here. If an interrupt comes in
1360          * just after the conditional and it traces too, then it
1361          * will also check the deltas. More than one timestamp may
1362          * also be made. But only the entry that did the actual
1363          * commit will be something other than zero.
1364          */
1365         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1366             rb_page_write(cpu_buffer->tail_page) ==
1367             rb_commit_index(cpu_buffer)) {
1368
1369                 delta = ts - cpu_buffer->write_stamp;
1370
1371                 /* make sure this delta is calculated here */
1372                 barrier();
1373
1374                 /* Did the write stamp get updated already? */
1375                 if (unlikely(ts < cpu_buffer->write_stamp))
1376                         delta = 0;
1377
1378                 if (test_time_stamp(delta)) {
1379
1380                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1381
1382                         if (commit == -EBUSY)
1383                                 return NULL;
1384
1385                         if (commit == -EAGAIN)
1386                                 goto again;
1387
1388                         RB_WARN_ON(cpu_buffer, commit < 0);
1389                 }
1390         } else
1391                 /* Non commits have zero deltas */
1392                 delta = 0;
1393
1394         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1395         if (PTR_ERR(event) == -EAGAIN)
1396                 goto again;
1397
1398         if (!event) {
1399                 if (unlikely(commit))
1400                         /*
1401                          * Ouch! We needed a timestamp and it was commited. But
1402                          * we didn't get our event reserved.
1403                          */
1404                         rb_set_commit_to_write(cpu_buffer);
1405                 return NULL;
1406         }
1407
1408         /*
1409          * If the timestamp was commited, make the commit our entry
1410          * now so that we will update it when needed.
1411          */
1412         if (commit)
1413                 rb_set_commit_event(cpu_buffer, event);
1414         else if (!rb_is_commit(cpu_buffer, event))
1415                 delta = 0;
1416
1417         event->time_delta = delta;
1418
1419         return event;
1420 }
1421
1422 static DEFINE_PER_CPU(int, rb_need_resched);
1423
1424 /**
1425  * ring_buffer_lock_reserve - reserve a part of the buffer
1426  * @buffer: the ring buffer to reserve from
1427  * @length: the length of the data to reserve (excluding event header)
1428  *
1429  * Returns a reseverd event on the ring buffer to copy directly to.
1430  * The user of this interface will need to get the body to write into
1431  * and can use the ring_buffer_event_data() interface.
1432  *
1433  * The length is the length of the data needed, not the event length
1434  * which also includes the event header.
1435  *
1436  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1437  * If NULL is returned, then nothing has been allocated or locked.
1438  */
1439 struct ring_buffer_event *
1440 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1441 {
1442         struct ring_buffer_per_cpu *cpu_buffer;
1443         struct ring_buffer_event *event;
1444         int cpu, resched;
1445
1446         if (ring_buffer_flags != RB_BUFFERS_ON)
1447                 return NULL;
1448
1449         if (atomic_read(&buffer->record_disabled))
1450                 return NULL;
1451
1452         /* If we are tracing schedule, we don't want to recurse */
1453         resched = ftrace_preempt_disable();
1454
1455         cpu = raw_smp_processor_id();
1456
1457         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1458                 goto out;
1459
1460         cpu_buffer = buffer->buffers[cpu];
1461
1462         if (atomic_read(&cpu_buffer->record_disabled))
1463                 goto out;
1464
1465         length = rb_calculate_event_length(length);
1466         if (length > BUF_PAGE_SIZE)
1467                 goto out;
1468
1469         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1470         if (!event)
1471                 goto out;
1472
1473         /*
1474          * Need to store resched state on this cpu.
1475          * Only the first needs to.
1476          */
1477
1478         if (preempt_count() == 1)
1479                 per_cpu(rb_need_resched, cpu) = resched;
1480
1481         return event;
1482
1483  out:
1484         ftrace_preempt_enable(resched);
1485         return NULL;
1486 }
1487 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1488
1489 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1490                       struct ring_buffer_event *event)
1491 {
1492         cpu_buffer->entries++;
1493
1494         /* Only process further if we own the commit */
1495         if (!rb_is_commit(cpu_buffer, event))
1496                 return;
1497
1498         cpu_buffer->write_stamp += event->time_delta;
1499
1500         rb_set_commit_to_write(cpu_buffer);
1501 }
1502
1503 /**
1504  * ring_buffer_unlock_commit - commit a reserved
1505  * @buffer: The buffer to commit to
1506  * @event: The event pointer to commit.
1507  *
1508  * This commits the data to the ring buffer, and releases any locks held.
1509  *
1510  * Must be paired with ring_buffer_lock_reserve.
1511  */
1512 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1513                               struct ring_buffer_event *event)
1514 {
1515         struct ring_buffer_per_cpu *cpu_buffer;
1516         int cpu = raw_smp_processor_id();
1517
1518         cpu_buffer = buffer->buffers[cpu];
1519
1520         rb_commit(cpu_buffer, event);
1521
1522         /*
1523          * Only the last preempt count needs to restore preemption.
1524          */
1525         if (preempt_count() == 1)
1526                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1527         else
1528                 preempt_enable_no_resched_notrace();
1529
1530         return 0;
1531 }
1532 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1533
1534 /**
1535  * ring_buffer_write - write data to the buffer without reserving
1536  * @buffer: The ring buffer to write to.
1537  * @length: The length of the data being written (excluding the event header)
1538  * @data: The data to write to the buffer.
1539  *
1540  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1541  * one function. If you already have the data to write to the buffer, it
1542  * may be easier to simply call this function.
1543  *
1544  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1545  * and not the length of the event which would hold the header.
1546  */
1547 int ring_buffer_write(struct ring_buffer *buffer,
1548                         unsigned long length,
1549                         void *data)
1550 {
1551         struct ring_buffer_per_cpu *cpu_buffer;
1552         struct ring_buffer_event *event;
1553         unsigned long event_length;
1554         void *body;
1555         int ret = -EBUSY;
1556         int cpu, resched;
1557
1558         if (ring_buffer_flags != RB_BUFFERS_ON)
1559                 return -EBUSY;
1560
1561         if (atomic_read(&buffer->record_disabled))
1562                 return -EBUSY;
1563
1564         resched = ftrace_preempt_disable();
1565
1566         cpu = raw_smp_processor_id();
1567
1568         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1569                 goto out;
1570
1571         cpu_buffer = buffer->buffers[cpu];
1572
1573         if (atomic_read(&cpu_buffer->record_disabled))
1574                 goto out;
1575
1576         event_length = rb_calculate_event_length(length);
1577         event = rb_reserve_next_event(cpu_buffer,
1578                                       RINGBUF_TYPE_DATA, event_length);
1579         if (!event)
1580                 goto out;
1581
1582         body = rb_event_data(event);
1583
1584         memcpy(body, data, length);
1585
1586         rb_commit(cpu_buffer, event);
1587
1588         ret = 0;
1589  out:
1590         ftrace_preempt_enable(resched);
1591
1592         return ret;
1593 }
1594 EXPORT_SYMBOL_GPL(ring_buffer_write);
1595
1596 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1597 {
1598         struct buffer_page *reader = cpu_buffer->reader_page;
1599         struct buffer_page *head = cpu_buffer->head_page;
1600         struct buffer_page *commit = cpu_buffer->commit_page;
1601
1602         return reader->read == rb_page_commit(reader) &&
1603                 (commit == reader ||
1604                  (commit == head &&
1605                   head->read == rb_page_commit(commit)));
1606 }
1607
1608 /**
1609  * ring_buffer_record_disable - stop all writes into the buffer
1610  * @buffer: The ring buffer to stop writes to.
1611  *
1612  * This prevents all writes to the buffer. Any attempt to write
1613  * to the buffer after this will fail and return NULL.
1614  *
1615  * The caller should call synchronize_sched() after this.
1616  */
1617 void ring_buffer_record_disable(struct ring_buffer *buffer)
1618 {
1619         atomic_inc(&buffer->record_disabled);
1620 }
1621 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1622
1623 /**
1624  * ring_buffer_record_enable - enable writes to the buffer
1625  * @buffer: The ring buffer to enable writes
1626  *
1627  * Note, multiple disables will need the same number of enables
1628  * to truely enable the writing (much like preempt_disable).
1629  */
1630 void ring_buffer_record_enable(struct ring_buffer *buffer)
1631 {
1632         atomic_dec(&buffer->record_disabled);
1633 }
1634 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1635
1636 /**
1637  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1638  * @buffer: The ring buffer to stop writes to.
1639  * @cpu: The CPU buffer to stop
1640  *
1641  * This prevents all writes to the buffer. Any attempt to write
1642  * to the buffer after this will fail and return NULL.
1643  *
1644  * The caller should call synchronize_sched() after this.
1645  */
1646 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1647 {
1648         struct ring_buffer_per_cpu *cpu_buffer;
1649
1650         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1651                 return;
1652
1653         cpu_buffer = buffer->buffers[cpu];
1654         atomic_inc(&cpu_buffer->record_disabled);
1655 }
1656 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1657
1658 /**
1659  * ring_buffer_record_enable_cpu - enable writes to the buffer
1660  * @buffer: The ring buffer to enable writes
1661  * @cpu: The CPU to enable.
1662  *
1663  * Note, multiple disables will need the same number of enables
1664  * to truely enable the writing (much like preempt_disable).
1665  */
1666 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1667 {
1668         struct ring_buffer_per_cpu *cpu_buffer;
1669
1670         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1671                 return;
1672
1673         cpu_buffer = buffer->buffers[cpu];
1674         atomic_dec(&cpu_buffer->record_disabled);
1675 }
1676 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1677
1678 /**
1679  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1680  * @buffer: The ring buffer
1681  * @cpu: The per CPU buffer to get the entries from.
1682  */
1683 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1684 {
1685         struct ring_buffer_per_cpu *cpu_buffer;
1686         unsigned long ret;
1687
1688         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1689                 return 0;
1690
1691         cpu_buffer = buffer->buffers[cpu];
1692         ret = cpu_buffer->entries;
1693
1694         return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1697
1698 /**
1699  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1700  * @buffer: The ring buffer
1701  * @cpu: The per CPU buffer to get the number of overruns from
1702  */
1703 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1704 {
1705         struct ring_buffer_per_cpu *cpu_buffer;
1706         unsigned long ret;
1707
1708         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1709                 return 0;
1710
1711         cpu_buffer = buffer->buffers[cpu];
1712         ret = cpu_buffer->overrun;
1713
1714         return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1717
1718 /**
1719  * ring_buffer_entries - get the number of entries in a buffer
1720  * @buffer: The ring buffer
1721  *
1722  * Returns the total number of entries in the ring buffer
1723  * (all CPU entries)
1724  */
1725 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1726 {
1727         struct ring_buffer_per_cpu *cpu_buffer;
1728         unsigned long entries = 0;
1729         int cpu;
1730
1731         /* if you care about this being correct, lock the buffer */
1732         for_each_buffer_cpu(buffer, cpu) {
1733                 cpu_buffer = buffer->buffers[cpu];
1734                 entries += cpu_buffer->entries;
1735         }
1736
1737         return entries;
1738 }
1739 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1740
1741 /**
1742  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1743  * @buffer: The ring buffer
1744  *
1745  * Returns the total number of overruns in the ring buffer
1746  * (all CPU entries)
1747  */
1748 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1749 {
1750         struct ring_buffer_per_cpu *cpu_buffer;
1751         unsigned long overruns = 0;
1752         int cpu;
1753
1754         /* if you care about this being correct, lock the buffer */
1755         for_each_buffer_cpu(buffer, cpu) {
1756                 cpu_buffer = buffer->buffers[cpu];
1757                 overruns += cpu_buffer->overrun;
1758         }
1759
1760         return overruns;
1761 }
1762 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1763
1764 static void rb_iter_reset(struct ring_buffer_iter *iter)
1765 {
1766         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1767
1768         /* Iterator usage is expected to have record disabled */
1769         if (list_empty(&cpu_buffer->reader_page->list)) {
1770                 iter->head_page = cpu_buffer->head_page;
1771                 iter->head = cpu_buffer->head_page->read;
1772         } else {
1773                 iter->head_page = cpu_buffer->reader_page;
1774                 iter->head = cpu_buffer->reader_page->read;
1775         }
1776         if (iter->head)
1777                 iter->read_stamp = cpu_buffer->read_stamp;
1778         else
1779                 iter->read_stamp = iter->head_page->page->time_stamp;
1780 }
1781
1782 /**
1783  * ring_buffer_iter_reset - reset an iterator
1784  * @iter: The iterator to reset
1785  *
1786  * Resets the iterator, so that it will start from the beginning
1787  * again.
1788  */
1789 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1790 {
1791         struct ring_buffer_per_cpu *cpu_buffer;
1792         unsigned long flags;
1793
1794         if (!iter)
1795                 return;
1796
1797         cpu_buffer = iter->cpu_buffer;
1798
1799         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1800         rb_iter_reset(iter);
1801         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1802 }
1803 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1804
1805 /**
1806  * ring_buffer_iter_empty - check if an iterator has no more to read
1807  * @iter: The iterator to check
1808  */
1809 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1810 {
1811         struct ring_buffer_per_cpu *cpu_buffer;
1812
1813         cpu_buffer = iter->cpu_buffer;
1814
1815         return iter->head_page == cpu_buffer->commit_page &&
1816                 iter->head == rb_commit_index(cpu_buffer);
1817 }
1818 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1819
1820 static void
1821 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1822                      struct ring_buffer_event *event)
1823 {
1824         u64 delta;
1825
1826         switch (event->type) {
1827         case RINGBUF_TYPE_PADDING:
1828                 return;
1829
1830         case RINGBUF_TYPE_TIME_EXTEND:
1831                 delta = event->array[0];
1832                 delta <<= TS_SHIFT;
1833                 delta += event->time_delta;
1834                 cpu_buffer->read_stamp += delta;
1835                 return;
1836
1837         case RINGBUF_TYPE_TIME_STAMP:
1838                 /* FIXME: not implemented */
1839                 return;
1840
1841         case RINGBUF_TYPE_DATA:
1842                 cpu_buffer->read_stamp += event->time_delta;
1843                 return;
1844
1845         default:
1846                 BUG();
1847         }
1848         return;
1849 }
1850
1851 static void
1852 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1853                           struct ring_buffer_event *event)
1854 {
1855         u64 delta;
1856
1857         switch (event->type) {
1858         case RINGBUF_TYPE_PADDING:
1859                 return;
1860
1861         case RINGBUF_TYPE_TIME_EXTEND:
1862                 delta = event->array[0];
1863                 delta <<= TS_SHIFT;
1864                 delta += event->time_delta;
1865                 iter->read_stamp += delta;
1866                 return;
1867
1868         case RINGBUF_TYPE_TIME_STAMP:
1869                 /* FIXME: not implemented */
1870                 return;
1871
1872         case RINGBUF_TYPE_DATA:
1873                 iter->read_stamp += event->time_delta;
1874                 return;
1875
1876         default:
1877                 BUG();
1878         }
1879         return;
1880 }
1881
1882 static struct buffer_page *
1883 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1884 {
1885         struct buffer_page *reader = NULL;
1886         unsigned long flags;
1887         int nr_loops = 0;
1888
1889         local_irq_save(flags);
1890         __raw_spin_lock(&cpu_buffer->lock);
1891
1892  again:
1893         /*
1894          * This should normally only loop twice. But because the
1895          * start of the reader inserts an empty page, it causes
1896          * a case where we will loop three times. There should be no
1897          * reason to loop four times (that I know of).
1898          */
1899         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1900                 reader = NULL;
1901                 goto out;
1902         }
1903
1904         reader = cpu_buffer->reader_page;
1905
1906         /* If there's more to read, return this page */
1907         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1908                 goto out;
1909
1910         /* Never should we have an index greater than the size */
1911         if (RB_WARN_ON(cpu_buffer,
1912                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1913                 goto out;
1914
1915         /* check if we caught up to the tail */
1916         reader = NULL;
1917         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1918                 goto out;
1919
1920         /*
1921          * Splice the empty reader page into the list around the head.
1922          * Reset the reader page to size zero.
1923          */
1924
1925         reader = cpu_buffer->head_page;
1926         cpu_buffer->reader_page->list.next = reader->list.next;
1927         cpu_buffer->reader_page->list.prev = reader->list.prev;
1928
1929         local_set(&cpu_buffer->reader_page->write, 0);
1930         local_set(&cpu_buffer->reader_page->page->commit, 0);
1931
1932         /* Make the reader page now replace the head */
1933         reader->list.prev->next = &cpu_buffer->reader_page->list;
1934         reader->list.next->prev = &cpu_buffer->reader_page->list;
1935
1936         /*
1937          * If the tail is on the reader, then we must set the head
1938          * to the inserted page, otherwise we set it one before.
1939          */
1940         cpu_buffer->head_page = cpu_buffer->reader_page;
1941
1942         if (cpu_buffer->commit_page != reader)
1943                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1944
1945         /* Finally update the reader page to the new head */
1946         cpu_buffer->reader_page = reader;
1947         rb_reset_reader_page(cpu_buffer);
1948
1949         goto again;
1950
1951  out:
1952         __raw_spin_unlock(&cpu_buffer->lock);
1953         local_irq_restore(flags);
1954
1955         return reader;
1956 }
1957
1958 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1959 {
1960         struct ring_buffer_event *event;
1961         struct buffer_page *reader;
1962         unsigned length;
1963
1964         reader = rb_get_reader_page(cpu_buffer);
1965
1966         /* This function should not be called when buffer is empty */
1967         if (RB_WARN_ON(cpu_buffer, !reader))
1968                 return;
1969
1970         event = rb_reader_event(cpu_buffer);
1971
1972         if (event->type == RINGBUF_TYPE_DATA)
1973                 cpu_buffer->entries--;
1974
1975         rb_update_read_stamp(cpu_buffer, event);
1976
1977         length = rb_event_length(event);
1978         cpu_buffer->reader_page->read += length;
1979 }
1980
1981 static void rb_advance_iter(struct ring_buffer_iter *iter)
1982 {
1983         struct ring_buffer *buffer;
1984         struct ring_buffer_per_cpu *cpu_buffer;
1985         struct ring_buffer_event *event;
1986         unsigned length;
1987
1988         cpu_buffer = iter->cpu_buffer;
1989         buffer = cpu_buffer->buffer;
1990
1991         /*
1992          * Check if we are at the end of the buffer.
1993          */
1994         if (iter->head >= rb_page_size(iter->head_page)) {
1995                 if (RB_WARN_ON(buffer,
1996                                iter->head_page == cpu_buffer->commit_page))
1997                         return;
1998                 rb_inc_iter(iter);
1999                 return;
2000         }
2001
2002         event = rb_iter_head_event(iter);
2003
2004         length = rb_event_length(event);
2005
2006         /*
2007          * This should not be called to advance the header if we are
2008          * at the tail of the buffer.
2009          */
2010         if (RB_WARN_ON(cpu_buffer,
2011                        (iter->head_page == cpu_buffer->commit_page) &&
2012                        (iter->head + length > rb_commit_index(cpu_buffer))))
2013                 return;
2014
2015         rb_update_iter_read_stamp(iter, event);
2016
2017         iter->head += length;
2018
2019         /* check for end of page padding */
2020         if ((iter->head >= rb_page_size(iter->head_page)) &&
2021             (iter->head_page != cpu_buffer->commit_page))
2022                 rb_advance_iter(iter);
2023 }
2024
2025 static struct ring_buffer_event *
2026 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2027 {
2028         struct ring_buffer_per_cpu *cpu_buffer;
2029         struct ring_buffer_event *event;
2030         struct buffer_page *reader;
2031         int nr_loops = 0;
2032
2033         cpu_buffer = buffer->buffers[cpu];
2034
2035  again:
2036         /*
2037          * We repeat when a timestamp is encountered. It is possible
2038          * to get multiple timestamps from an interrupt entering just
2039          * as one timestamp is about to be written. The max times
2040          * that this can happen is the number of nested interrupts we
2041          * can have.  Nesting 10 deep of interrupts is clearly
2042          * an anomaly.
2043          */
2044         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2045                 return NULL;
2046
2047         reader = rb_get_reader_page(cpu_buffer);
2048         if (!reader)
2049                 return NULL;
2050
2051         event = rb_reader_event(cpu_buffer);
2052
2053         switch (event->type) {
2054         case RINGBUF_TYPE_PADDING:
2055                 RB_WARN_ON(cpu_buffer, 1);
2056                 rb_advance_reader(cpu_buffer);
2057                 return NULL;
2058
2059         case RINGBUF_TYPE_TIME_EXTEND:
2060                 /* Internal data, OK to advance */
2061                 rb_advance_reader(cpu_buffer);
2062                 goto again;
2063
2064         case RINGBUF_TYPE_TIME_STAMP:
2065                 /* FIXME: not implemented */
2066                 rb_advance_reader(cpu_buffer);
2067                 goto again;
2068
2069         case RINGBUF_TYPE_DATA:
2070                 if (ts) {
2071                         *ts = cpu_buffer->read_stamp + event->time_delta;
2072                         ring_buffer_normalize_time_stamp(buffer,
2073                                                          cpu_buffer->cpu, ts);
2074                 }
2075                 return event;
2076
2077         default:
2078                 BUG();
2079         }
2080
2081         return NULL;
2082 }
2083 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2084
2085 static struct ring_buffer_event *
2086 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2087 {
2088         struct ring_buffer *buffer;
2089         struct ring_buffer_per_cpu *cpu_buffer;
2090         struct ring_buffer_event *event;
2091         int nr_loops = 0;
2092
2093         if (ring_buffer_iter_empty(iter))
2094                 return NULL;
2095
2096         cpu_buffer = iter->cpu_buffer;
2097         buffer = cpu_buffer->buffer;
2098
2099  again:
2100         /*
2101          * We repeat when a timestamp is encountered. It is possible
2102          * to get multiple timestamps from an interrupt entering just
2103          * as one timestamp is about to be written. The max times
2104          * that this can happen is the number of nested interrupts we
2105          * can have. Nesting 10 deep of interrupts is clearly
2106          * an anomaly.
2107          */
2108         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2109                 return NULL;
2110
2111         if (rb_per_cpu_empty(cpu_buffer))
2112                 return NULL;
2113
2114         event = rb_iter_head_event(iter);
2115
2116         switch (event->type) {
2117         case RINGBUF_TYPE_PADDING:
2118                 rb_inc_iter(iter);
2119                 goto again;
2120
2121         case RINGBUF_TYPE_TIME_EXTEND:
2122                 /* Internal data, OK to advance */
2123                 rb_advance_iter(iter);
2124                 goto again;
2125
2126         case RINGBUF_TYPE_TIME_STAMP:
2127                 /* FIXME: not implemented */
2128                 rb_advance_iter(iter);
2129                 goto again;
2130
2131         case RINGBUF_TYPE_DATA:
2132                 if (ts) {
2133                         *ts = iter->read_stamp + event->time_delta;
2134                         ring_buffer_normalize_time_stamp(buffer,
2135                                                          cpu_buffer->cpu, ts);
2136                 }
2137                 return event;
2138
2139         default:
2140                 BUG();
2141         }
2142
2143         return NULL;
2144 }
2145 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2146
2147 /**
2148  * ring_buffer_peek - peek at the next event to be read
2149  * @buffer: The ring buffer to read
2150  * @cpu: The cpu to peak at
2151  * @ts: The timestamp counter of this event.
2152  *
2153  * This will return the event that will be read next, but does
2154  * not consume the data.
2155  */
2156 struct ring_buffer_event *
2157 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2158 {
2159         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2160         struct ring_buffer_event *event;
2161         unsigned long flags;
2162
2163         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2164                 return NULL;
2165
2166         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2167         event = rb_buffer_peek(buffer, cpu, ts);
2168         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2169
2170         return event;
2171 }
2172
2173 /**
2174  * ring_buffer_iter_peek - peek at the next event to be read
2175  * @iter: The ring buffer iterator
2176  * @ts: The timestamp counter of this event.
2177  *
2178  * This will return the event that will be read next, but does
2179  * not increment the iterator.
2180  */
2181 struct ring_buffer_event *
2182 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2183 {
2184         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2185         struct ring_buffer_event *event;
2186         unsigned long flags;
2187
2188         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2189         event = rb_iter_peek(iter, ts);
2190         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2191
2192         return event;
2193 }
2194
2195 /**
2196  * ring_buffer_consume - return an event and consume it
2197  * @buffer: The ring buffer to get the next event from
2198  *
2199  * Returns the next event in the ring buffer, and that event is consumed.
2200  * Meaning, that sequential reads will keep returning a different event,
2201  * and eventually empty the ring buffer if the producer is slower.
2202  */
2203 struct ring_buffer_event *
2204 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2205 {
2206         struct ring_buffer_per_cpu *cpu_buffer;
2207         struct ring_buffer_event *event = NULL;
2208         unsigned long flags;
2209
2210         /* might be called in atomic */
2211         preempt_disable();
2212
2213         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2214                 goto out;
2215
2216         cpu_buffer = buffer->buffers[cpu];
2217         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2218
2219         event = rb_buffer_peek(buffer, cpu, ts);
2220         if (!event)
2221                 goto out_unlock;
2222
2223         rb_advance_reader(cpu_buffer);
2224
2225  out_unlock:
2226         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2227
2228  out:
2229         preempt_enable();
2230
2231         return event;
2232 }
2233 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2234
2235 /**
2236  * ring_buffer_read_start - start a non consuming read of the buffer
2237  * @buffer: The ring buffer to read from
2238  * @cpu: The cpu buffer to iterate over
2239  *
2240  * This starts up an iteration through the buffer. It also disables
2241  * the recording to the buffer until the reading is finished.
2242  * This prevents the reading from being corrupted. This is not
2243  * a consuming read, so a producer is not expected.
2244  *
2245  * Must be paired with ring_buffer_finish.
2246  */
2247 struct ring_buffer_iter *
2248 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2249 {
2250         struct ring_buffer_per_cpu *cpu_buffer;
2251         struct ring_buffer_iter *iter;
2252         unsigned long flags;
2253
2254         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2255                 return NULL;
2256
2257         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2258         if (!iter)
2259                 return NULL;
2260
2261         cpu_buffer = buffer->buffers[cpu];
2262
2263         iter->cpu_buffer = cpu_buffer;
2264
2265         atomic_inc(&cpu_buffer->record_disabled);
2266         synchronize_sched();
2267
2268         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2269         __raw_spin_lock(&cpu_buffer->lock);
2270         rb_iter_reset(iter);
2271         __raw_spin_unlock(&cpu_buffer->lock);
2272         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2273
2274         return iter;
2275 }
2276 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2277
2278 /**
2279  * ring_buffer_finish - finish reading the iterator of the buffer
2280  * @iter: The iterator retrieved by ring_buffer_start
2281  *
2282  * This re-enables the recording to the buffer, and frees the
2283  * iterator.
2284  */
2285 void
2286 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2287 {
2288         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2289
2290         atomic_dec(&cpu_buffer->record_disabled);
2291         kfree(iter);
2292 }
2293 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2294
2295 /**
2296  * ring_buffer_read - read the next item in the ring buffer by the iterator
2297  * @iter: The ring buffer iterator
2298  * @ts: The time stamp of the event read.
2299  *
2300  * This reads the next event in the ring buffer and increments the iterator.
2301  */
2302 struct ring_buffer_event *
2303 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2304 {
2305         struct ring_buffer_event *event;
2306         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2307         unsigned long flags;
2308
2309         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2310         event = rb_iter_peek(iter, ts);
2311         if (!event)
2312                 goto out;
2313
2314         rb_advance_iter(iter);
2315  out:
2316         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2317
2318         return event;
2319 }
2320 EXPORT_SYMBOL_GPL(ring_buffer_read);
2321
2322 /**
2323  * ring_buffer_size - return the size of the ring buffer (in bytes)
2324  * @buffer: The ring buffer.
2325  */
2326 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2327 {
2328         return BUF_PAGE_SIZE * buffer->pages;
2329 }
2330 EXPORT_SYMBOL_GPL(ring_buffer_size);
2331
2332 static void
2333 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2334 {
2335         cpu_buffer->head_page
2336                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2337         local_set(&cpu_buffer->head_page->write, 0);
2338         local_set(&cpu_buffer->head_page->page->commit, 0);
2339
2340         cpu_buffer->head_page->read = 0;
2341
2342         cpu_buffer->tail_page = cpu_buffer->head_page;
2343         cpu_buffer->commit_page = cpu_buffer->head_page;
2344
2345         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2346         local_set(&cpu_buffer->reader_page->write, 0);
2347         local_set(&cpu_buffer->reader_page->page->commit, 0);
2348         cpu_buffer->reader_page->read = 0;
2349
2350         cpu_buffer->overrun = 0;
2351         cpu_buffer->entries = 0;
2352
2353         cpu_buffer->write_stamp = 0;
2354         cpu_buffer->read_stamp = 0;
2355 }
2356
2357 /**
2358  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2359  * @buffer: The ring buffer to reset a per cpu buffer of
2360  * @cpu: The CPU buffer to be reset
2361  */
2362 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2363 {
2364         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2365         unsigned long flags;
2366
2367         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2368                 return;
2369
2370         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2371
2372         __raw_spin_lock(&cpu_buffer->lock);
2373
2374         rb_reset_cpu(cpu_buffer);
2375
2376         __raw_spin_unlock(&cpu_buffer->lock);
2377
2378         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2379 }
2380 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2381
2382 /**
2383  * ring_buffer_reset - reset a ring buffer
2384  * @buffer: The ring buffer to reset all cpu buffers
2385  */
2386 void ring_buffer_reset(struct ring_buffer *buffer)
2387 {
2388         int cpu;
2389
2390         for_each_buffer_cpu(buffer, cpu)
2391                 ring_buffer_reset_cpu(buffer, cpu);
2392 }
2393 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2394
2395 /**
2396  * rind_buffer_empty - is the ring buffer empty?
2397  * @buffer: The ring buffer to test
2398  */
2399 int ring_buffer_empty(struct ring_buffer *buffer)
2400 {
2401         struct ring_buffer_per_cpu *cpu_buffer;
2402         int cpu;
2403
2404         /* yes this is racy, but if you don't like the race, lock the buffer */
2405         for_each_buffer_cpu(buffer, cpu) {
2406                 cpu_buffer = buffer->buffers[cpu];
2407                 if (!rb_per_cpu_empty(cpu_buffer))
2408                         return 0;
2409         }
2410
2411         return 1;
2412 }
2413 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2414
2415 /**
2416  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2417  * @buffer: The ring buffer
2418  * @cpu: The CPU buffer to test
2419  */
2420 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2421 {
2422         struct ring_buffer_per_cpu *cpu_buffer;
2423         int ret;
2424
2425         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2426                 return 1;
2427
2428         cpu_buffer = buffer->buffers[cpu];
2429         ret = rb_per_cpu_empty(cpu_buffer);
2430
2431
2432         return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2435
2436 /**
2437  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2438  * @buffer_a: One buffer to swap with
2439  * @buffer_b: The other buffer to swap with
2440  *
2441  * This function is useful for tracers that want to take a "snapshot"
2442  * of a CPU buffer and has another back up buffer lying around.
2443  * it is expected that the tracer handles the cpu buffer not being
2444  * used at the moment.
2445  */
2446 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2447                          struct ring_buffer *buffer_b, int cpu)
2448 {
2449         struct ring_buffer_per_cpu *cpu_buffer_a;
2450         struct ring_buffer_per_cpu *cpu_buffer_b;
2451         int ret = -EINVAL;
2452
2453         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2454             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2455                 goto out;
2456
2457         /* At least make sure the two buffers are somewhat the same */
2458         if (buffer_a->pages != buffer_b->pages)
2459                 goto out;
2460
2461         ret = -EAGAIN;
2462
2463         if (ring_buffer_flags != RB_BUFFERS_ON)
2464                 goto out;
2465
2466         if (atomic_read(&buffer_a->record_disabled))
2467                 goto out;
2468
2469         if (atomic_read(&buffer_b->record_disabled))
2470                 goto out;
2471
2472         cpu_buffer_a = buffer_a->buffers[cpu];
2473         cpu_buffer_b = buffer_b->buffers[cpu];
2474
2475         if (atomic_read(&cpu_buffer_a->record_disabled))
2476                 goto out;
2477
2478         if (atomic_read(&cpu_buffer_b->record_disabled))
2479                 goto out;
2480
2481         /*
2482          * We can't do a synchronize_sched here because this
2483          * function can be called in atomic context.
2484          * Normally this will be called from the same CPU as cpu.
2485          * If not it's up to the caller to protect this.
2486          */
2487         atomic_inc(&cpu_buffer_a->record_disabled);
2488         atomic_inc(&cpu_buffer_b->record_disabled);
2489
2490         buffer_a->buffers[cpu] = cpu_buffer_b;
2491         buffer_b->buffers[cpu] = cpu_buffer_a;
2492
2493         cpu_buffer_b->buffer = buffer_a;
2494         cpu_buffer_a->buffer = buffer_b;
2495
2496         atomic_dec(&cpu_buffer_a->record_disabled);
2497         atomic_dec(&cpu_buffer_b->record_disabled);
2498
2499         ret = 0;
2500 out:
2501         return ret;
2502 }
2503 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2504
2505 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2506                               struct buffer_data_page *bpage,
2507                               unsigned int offset)
2508 {
2509         struct ring_buffer_event *event;
2510         unsigned long head;
2511
2512         __raw_spin_lock(&cpu_buffer->lock);
2513         for (head = offset; head < local_read(&bpage->commit);
2514              head += rb_event_length(event)) {
2515
2516                 event = __rb_data_page_index(bpage, head);
2517                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2518                         return;
2519                 /* Only count data entries */
2520                 if (event->type != RINGBUF_TYPE_DATA)
2521                         continue;
2522                 cpu_buffer->entries--;
2523         }
2524         __raw_spin_unlock(&cpu_buffer->lock);
2525 }
2526
2527 /**
2528  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2529  * @buffer: the buffer to allocate for.
2530  *
2531  * This function is used in conjunction with ring_buffer_read_page.
2532  * When reading a full page from the ring buffer, these functions
2533  * can be used to speed up the process. The calling function should
2534  * allocate a few pages first with this function. Then when it
2535  * needs to get pages from the ring buffer, it passes the result
2536  * of this function into ring_buffer_read_page, which will swap
2537  * the page that was allocated, with the read page of the buffer.
2538  *
2539  * Returns:
2540  *  The page allocated, or NULL on error.
2541  */
2542 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2543 {
2544         struct buffer_data_page *bpage;
2545         unsigned long addr;
2546
2547         addr = __get_free_page(GFP_KERNEL);
2548         if (!addr)
2549                 return NULL;
2550
2551         bpage = (void *)addr;
2552
2553         rb_init_page(bpage);
2554
2555         return bpage;
2556 }
2557
2558 /**
2559  * ring_buffer_free_read_page - free an allocated read page
2560  * @buffer: the buffer the page was allocate for
2561  * @data: the page to free
2562  *
2563  * Free a page allocated from ring_buffer_alloc_read_page.
2564  */
2565 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2566 {
2567         free_page((unsigned long)data);
2568 }
2569
2570 /**
2571  * ring_buffer_read_page - extract a page from the ring buffer
2572  * @buffer: buffer to extract from
2573  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2574  * @len: amount to extract
2575  * @cpu: the cpu of the buffer to extract
2576  * @full: should the extraction only happen when the page is full.
2577  *
2578  * This function will pull out a page from the ring buffer and consume it.
2579  * @data_page must be the address of the variable that was returned
2580  * from ring_buffer_alloc_read_page. This is because the page might be used
2581  * to swap with a page in the ring buffer.
2582  *
2583  * for example:
2584  *      rpage = ring_buffer_alloc_read_page(buffer);
2585  *      if (!rpage)
2586  *              return error;
2587  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2588  *      if (ret >= 0)
2589  *              process_page(rpage, ret);
2590  *
2591  * When @full is set, the function will not return true unless
2592  * the writer is off the reader page.
2593  *
2594  * Note: it is up to the calling functions to handle sleeps and wakeups.
2595  *  The ring buffer can be used anywhere in the kernel and can not
2596  *  blindly call wake_up. The layer that uses the ring buffer must be
2597  *  responsible for that.
2598  *
2599  * Returns:
2600  *  >=0 if data has been transferred, returns the offset of consumed data.
2601  *  <0 if no data has been transferred.
2602  */
2603 int ring_buffer_read_page(struct ring_buffer *buffer,
2604                           void **data_page, size_t len, int cpu, int full)
2605 {
2606         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2607         struct ring_buffer_event *event;
2608         struct buffer_data_page *bpage;
2609         struct buffer_page *reader;
2610         unsigned long flags;
2611         unsigned int commit;
2612         unsigned int read;
2613         u64 save_timestamp;
2614         int ret = -1;
2615
2616         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2617                 goto out;
2618
2619         /*
2620          * If len is not big enough to hold the page header, then
2621          * we can not copy anything.
2622          */
2623         if (len <= BUF_PAGE_HDR_SIZE)
2624                 goto out;
2625
2626         len -= BUF_PAGE_HDR_SIZE;
2627
2628         if (!data_page)
2629                 goto out;
2630
2631         bpage = *data_page;
2632         if (!bpage)
2633                 goto out;
2634
2635         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2636
2637         reader = rb_get_reader_page(cpu_buffer);
2638         if (!reader)
2639                 goto out_unlock;
2640
2641         event = rb_reader_event(cpu_buffer);
2642
2643         read = reader->read;
2644         commit = rb_page_commit(reader);
2645
2646         /*
2647          * If this page has been partially read or
2648          * if len is not big enough to read the rest of the page or
2649          * a writer is still on the page, then
2650          * we must copy the data from the page to the buffer.
2651          * Otherwise, we can simply swap the page with the one passed in.
2652          */
2653         if (read || (len < (commit - read)) ||
2654             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2655                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2656                 unsigned int rpos = read;
2657                 unsigned int pos = 0;
2658                 unsigned int size;
2659
2660                 if (full)
2661                         goto out_unlock;
2662
2663                 if (len > (commit - read))
2664                         len = (commit - read);
2665
2666                 size = rb_event_length(event);
2667
2668                 if (len < size)
2669                         goto out_unlock;
2670
2671                 /* save the current timestamp, since the user will need it */
2672                 save_timestamp = cpu_buffer->read_stamp;
2673
2674                 /* Need to copy one event at a time */
2675                 do {
2676                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2677
2678                         len -= size;
2679
2680                         rb_advance_reader(cpu_buffer);
2681                         rpos = reader->read;
2682                         pos += size;
2683
2684                         event = rb_reader_event(cpu_buffer);
2685                         size = rb_event_length(event);
2686                 } while (len > size);
2687
2688                 /* update bpage */
2689                 local_set(&bpage->commit, pos);
2690                 bpage->time_stamp = save_timestamp;
2691
2692                 /* we copied everything to the beginning */
2693                 read = 0;
2694         } else {
2695                 /* swap the pages */
2696                 rb_init_page(bpage);
2697                 bpage = reader->page;
2698                 reader->page = *data_page;
2699                 local_set(&reader->write, 0);
2700                 reader->read = 0;
2701                 *data_page = bpage;
2702
2703                 /* update the entry counter */
2704                 rb_remove_entries(cpu_buffer, bpage, read);
2705         }
2706         ret = read;
2707
2708  out_unlock:
2709         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2710
2711  out:
2712         return ret;
2713 }
2714
2715 static ssize_t
2716 rb_simple_read(struct file *filp, char __user *ubuf,
2717                size_t cnt, loff_t *ppos)
2718 {
2719         unsigned long *p = filp->private_data;
2720         char buf[64];
2721         int r;
2722
2723         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2724                 r = sprintf(buf, "permanently disabled\n");
2725         else
2726                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2727
2728         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2729 }
2730
2731 static ssize_t
2732 rb_simple_write(struct file *filp, const char __user *ubuf,
2733                 size_t cnt, loff_t *ppos)
2734 {
2735         unsigned long *p = filp->private_data;
2736         char buf[64];
2737         unsigned long val;
2738         int ret;
2739
2740         if (cnt >= sizeof(buf))
2741                 return -EINVAL;
2742
2743         if (copy_from_user(&buf, ubuf, cnt))
2744                 return -EFAULT;
2745
2746         buf[cnt] = 0;
2747
2748         ret = strict_strtoul(buf, 10, &val);
2749         if (ret < 0)
2750                 return ret;
2751
2752         if (val)
2753                 set_bit(RB_BUFFERS_ON_BIT, p);
2754         else
2755                 clear_bit(RB_BUFFERS_ON_BIT, p);
2756
2757         (*ppos)++;
2758
2759         return cnt;
2760 }
2761
2762 static const struct file_operations rb_simple_fops = {
2763         .open           = tracing_open_generic,
2764         .read           = rb_simple_read,
2765         .write          = rb_simple_write,
2766 };
2767
2768
2769 static __init int rb_init_debugfs(void)
2770 {
2771         struct dentry *d_tracer;
2772         struct dentry *entry;
2773
2774         d_tracer = tracing_init_dentry();
2775
2776         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2777                                     &ring_buffer_flags, &rb_simple_fops);
2778         if (!entry)
2779                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2780
2781         return 0;
2782 }
2783
2784 fs_initcall(rb_init_debugfs);
2785
2786 #ifdef CONFIG_HOTPLUG_CPU
2787 static int rb_cpu_notify(struct notifier_block *self,
2788                          unsigned long action, void *hcpu)
2789 {
2790         struct ring_buffer *buffer =
2791                 container_of(self, struct ring_buffer, cpu_notify);
2792         long cpu = (long)hcpu;
2793
2794         switch (action) {
2795         case CPU_UP_PREPARE:
2796         case CPU_UP_PREPARE_FROZEN:
2797                 if (cpu_isset(cpu, *buffer->cpumask))
2798                         return NOTIFY_OK;
2799
2800                 buffer->buffers[cpu] =
2801                         rb_allocate_cpu_buffer(buffer, cpu);
2802                 if (!buffer->buffers[cpu]) {
2803                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2804                              cpu);
2805                         return NOTIFY_OK;
2806                 }
2807                 smp_wmb();
2808                 cpu_set(cpu, *buffer->cpumask);
2809                 break;
2810         case CPU_DOWN_PREPARE:
2811         case CPU_DOWN_PREPARE_FROZEN:
2812                 /*
2813                  * Do nothing.
2814                  *  If we were to free the buffer, then the user would
2815                  *  lose any trace that was in the buffer.
2816                  */
2817                 break;
2818         default:
2819                 break;
2820         }
2821         return NOTIFY_OK;
2822 }
2823 #endif