51633d74a21eaae376771390f0b562455552e21a
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #include "trace.h"
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213
214 enum {
215         RB_LEN_TIME_EXTEND = 8,
216         RB_LEN_TIME_STAMP = 16,
217 };
218
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221         return event->type_len == RINGBUF_TYPE_PADDING
222                         && event->time_delta == 0;
223 }
224
225 static inline int rb_discarded_event(struct ring_buffer_event *event)
226 {
227         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228 }
229
230 static void rb_event_set_padding(struct ring_buffer_event *event)
231 {
232         event->type_len = RINGBUF_TYPE_PADDING;
233         event->time_delta = 0;
234 }
235
236 static unsigned
237 rb_event_data_length(struct ring_buffer_event *event)
238 {
239         unsigned length;
240
241         if (event->type_len)
242                 length = event->type_len * RB_ALIGNMENT;
243         else
244                 length = event->array[0];
245         return length + RB_EVNT_HDR_SIZE;
246 }
247
248 /* inline for ring buffer fast paths */
249 static unsigned
250 rb_event_length(struct ring_buffer_event *event)
251 {
252         switch (event->type_len) {
253         case RINGBUF_TYPE_PADDING:
254                 if (rb_null_event(event))
255                         /* undefined */
256                         return -1;
257                 return  event->array[0] + RB_EVNT_HDR_SIZE;
258
259         case RINGBUF_TYPE_TIME_EXTEND:
260                 return RB_LEN_TIME_EXTEND;
261
262         case RINGBUF_TYPE_TIME_STAMP:
263                 return RB_LEN_TIME_STAMP;
264
265         case RINGBUF_TYPE_DATA:
266                 return rb_event_data_length(event);
267         default:
268                 BUG();
269         }
270         /* not hit */
271         return 0;
272 }
273
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280         unsigned length = rb_event_length(event);
281         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
282                 return length;
283         length -= RB_EVNT_HDR_SIZE;
284         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285                 length -= sizeof(event->array[0]);
286         return length;
287 }
288 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
289
290 /* inline for ring buffer fast paths */
291 static void *
292 rb_event_data(struct ring_buffer_event *event)
293 {
294         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295         /* If length is in len field, then array[0] has the data */
296         if (event->type_len)
297                 return (void *)&event->array[0];
298         /* Otherwise length is in array[0] and array[1] has the data */
299         return (void *)&event->array[1];
300 }
301
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308         return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311
312 #define for_each_buffer_cpu(buffer, cpu)                \
313         for_each_cpu(cpu, buffer->cpumask)
314
315 #define TS_SHIFT        27
316 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
317 #define TS_DELTA_TEST   (~TS_MASK)
318
319 struct buffer_data_page {
320         u64              time_stamp;    /* page time stamp */
321         local_t          commit;        /* write committed index */
322         unsigned char    data[];        /* data of buffer page */
323 };
324
325 /*
326  * Note, the buffer_page list must be first. The buffer pages
327  * are allocated in cache lines, which means that each buffer
328  * page will be at the beginning of a cache line, and thus
329  * the least significant bits will be zero. We use this to
330  * add flags in the list struct pointers, to make the ring buffer
331  * lockless.
332  */
333 struct buffer_page {
334         struct list_head list;          /* list of buffer pages */
335         local_t          write;         /* index for next write */
336         unsigned         read;          /* index for next read */
337         local_t          entries;       /* entries on this page */
338         struct buffer_data_page *page;  /* Actual data page */
339 };
340
341 /*
342  * The buffer page counters, write and entries, must be reset
343  * atomically when crossing page boundaries. To synchronize this
344  * update, two counters are inserted into the number. One is
345  * the actual counter for the write position or count on the page.
346  *
347  * The other is a counter of updaters. Before an update happens
348  * the update partition of the counter is incremented. This will
349  * allow the updater to update the counter atomically.
350  *
351  * The counter is 20 bits, and the state data is 12.
352  */
353 #define RB_WRITE_MASK           0xfffff
354 #define RB_WRITE_INTCNT         (1 << 20)
355
356 static void rb_init_page(struct buffer_data_page *bpage)
357 {
358         local_set(&bpage->commit, 0);
359 }
360
361 /**
362  * ring_buffer_page_len - the size of data on the page.
363  * @page: The page to read
364  *
365  * Returns the amount of data on the page, including buffer page header.
366  */
367 size_t ring_buffer_page_len(void *page)
368 {
369         return local_read(&((struct buffer_data_page *)page)->commit)
370                 + BUF_PAGE_HDR_SIZE;
371 }
372
373 /*
374  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
375  * this issue out.
376  */
377 static void free_buffer_page(struct buffer_page *bpage)
378 {
379         free_page((unsigned long)bpage->page);
380         kfree(bpage);
381 }
382
383 /*
384  * We need to fit the time_stamp delta into 27 bits.
385  */
386 static inline int test_time_stamp(u64 delta)
387 {
388         if (delta & TS_DELTA_TEST)
389                 return 1;
390         return 0;
391 }
392
393 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
394
395 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
396 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
397
398 /* Max number of timestamps that can fit on a page */
399 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
400
401 int ring_buffer_print_page_header(struct trace_seq *s)
402 {
403         struct buffer_data_page field;
404         int ret;
405
406         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
407                                "offset:0;\tsize:%u;\n",
408                                (unsigned int)sizeof(field.time_stamp));
409
410         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
411                                "offset:%u;\tsize:%u;\n",
412                                (unsigned int)offsetof(typeof(field), commit),
413                                (unsigned int)sizeof(field.commit));
414
415         ret = trace_seq_printf(s, "\tfield: char data;\t"
416                                "offset:%u;\tsize:%u;\n",
417                                (unsigned int)offsetof(typeof(field), data),
418                                (unsigned int)BUF_PAGE_SIZE);
419
420         return ret;
421 }
422
423 /*
424  * head_page == tail_page && head == tail then buffer is empty.
425  */
426 struct ring_buffer_per_cpu {
427         int                             cpu;
428         struct ring_buffer              *buffer;
429         spinlock_t                      reader_lock;    /* serialize readers */
430         raw_spinlock_t                  lock;
431         struct lock_class_key           lock_key;
432         struct list_head                *pages;
433         struct buffer_page              *head_page;     /* read from head */
434         struct buffer_page              *tail_page;     /* write to tail */
435         struct buffer_page              *commit_page;   /* committed pages */
436         struct buffer_page              *reader_page;
437         local_t                         commit_overrun;
438         local_t                         overrun;
439         local_t                         entries;
440         local_t                         committing;
441         local_t                         commits;
442         unsigned long                   read;
443         u64                             write_stamp;
444         u64                             read_stamp;
445         atomic_t                        record_disabled;
446 };
447
448 struct ring_buffer {
449         unsigned                        pages;
450         unsigned                        flags;
451         int                             cpus;
452         atomic_t                        record_disabled;
453         cpumask_var_t                   cpumask;
454
455         struct lock_class_key           *reader_lock_key;
456
457         struct mutex                    mutex;
458
459         struct ring_buffer_per_cpu      **buffers;
460
461 #ifdef CONFIG_HOTPLUG_CPU
462         struct notifier_block           cpu_notify;
463 #endif
464         u64                             (*clock)(void);
465 };
466
467 struct ring_buffer_iter {
468         struct ring_buffer_per_cpu      *cpu_buffer;
469         unsigned long                   head;
470         struct buffer_page              *head_page;
471         u64                             read_stamp;
472 };
473
474 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
475 #define RB_WARN_ON(buffer, cond)                                \
476         ({                                                      \
477                 int _____ret = unlikely(cond);                  \
478                 if (_____ret) {                                 \
479                         atomic_inc(&buffer->record_disabled);   \
480                         WARN_ON(1);                             \
481                 }                                               \
482                 _____ret;                                       \
483         })
484
485 /* Up this if you want to test the TIME_EXTENTS and normalization */
486 #define DEBUG_SHIFT 0
487
488 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
489 {
490         /* shift to debug/test normalization and TIME_EXTENTS */
491         return buffer->clock() << DEBUG_SHIFT;
492 }
493
494 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
495 {
496         u64 time;
497
498         preempt_disable_notrace();
499         time = rb_time_stamp(buffer, cpu);
500         preempt_enable_no_resched_notrace();
501
502         return time;
503 }
504 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
505
506 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
507                                       int cpu, u64 *ts)
508 {
509         /* Just stupid testing the normalize function and deltas */
510         *ts >>= DEBUG_SHIFT;
511 }
512 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
513
514 /*
515  * Making the ring buffer lockless makes things tricky.
516  * Although writes only happen on the CPU that they are on,
517  * and they only need to worry about interrupts. Reads can
518  * happen on any CPU.
519  *
520  * The reader page is always off the ring buffer, but when the
521  * reader finishes with a page, it needs to swap its page with
522  * a new one from the buffer. The reader needs to take from
523  * the head (writes go to the tail). But if a writer is in overwrite
524  * mode and wraps, it must push the head page forward.
525  *
526  * Here lies the problem.
527  *
528  * The reader must be careful to replace only the head page, and
529  * not another one. As described at the top of the file in the
530  * ASCII art, the reader sets its old page to point to the next
531  * page after head. It then sets the page after head to point to
532  * the old reader page. But if the writer moves the head page
533  * during this operation, the reader could end up with the tail.
534  *
535  * We use cmpxchg to help prevent this race. We also do something
536  * special with the page before head. We set the LSB to 1.
537  *
538  * When the writer must push the page forward, it will clear the
539  * bit that points to the head page, move the head, and then set
540  * the bit that points to the new head page.
541  *
542  * We also don't want an interrupt coming in and moving the head
543  * page on another writer. Thus we use the second LSB to catch
544  * that too. Thus:
545  *
546  * head->list->prev->next        bit 1          bit 0
547  *                              -------        -------
548  * Normal page                     0              0
549  * Points to head page             0              1
550  * New head page                   1              0
551  *
552  * Note we can not trust the prev pointer of the head page, because:
553  *
554  * +----+       +-----+        +-----+
555  * |    |------>|  T  |---X--->|  N  |
556  * |    |<------|     |        |     |
557  * +----+       +-----+        +-----+
558  *   ^                           ^ |
559  *   |          +-----+          | |
560  *   +----------|  R  |----------+ |
561  *              |     |<-----------+
562  *              +-----+
563  *
564  * Key:  ---X-->  HEAD flag set in pointer
565  *         T      Tail page
566  *         R      Reader page
567  *         N      Next page
568  *
569  * (see __rb_reserve_next() to see where this happens)
570  *
571  *  What the above shows is that the reader just swapped out
572  *  the reader page with a page in the buffer, but before it
573  *  could make the new header point back to the new page added
574  *  it was preempted by a writer. The writer moved forward onto
575  *  the new page added by the reader and is about to move forward
576  *  again.
577  *
578  *  You can see, it is legitimate for the previous pointer of
579  *  the head (or any page) not to point back to itself. But only
580  *  temporarially.
581  */
582
583 #define RB_PAGE_NORMAL          0UL
584 #define RB_PAGE_HEAD            1UL
585 #define RB_PAGE_UPDATE          2UL
586
587
588 #define RB_FLAG_MASK            3UL
589
590 /* PAGE_MOVED is not part of the mask */
591 #define RB_PAGE_MOVED           4UL
592
593 /*
594  * rb_list_head - remove any bit
595  */
596 static struct list_head *rb_list_head(struct list_head *list)
597 {
598         unsigned long val = (unsigned long)list;
599
600         return (struct list_head *)(val & ~RB_FLAG_MASK);
601 }
602
603 /*
604  * rb_is_head_page - test if the give page is the head page
605  *
606  * Because the reader may move the head_page pointer, we can
607  * not trust what the head page is (it may be pointing to
608  * the reader page). But if the next page is a header page,
609  * its flags will be non zero.
610  */
611 static int inline
612 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
613                 struct buffer_page *page, struct list_head *list)
614 {
615         unsigned long val;
616
617         val = (unsigned long)list->next;
618
619         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
620                 return RB_PAGE_MOVED;
621
622         return val & RB_FLAG_MASK;
623 }
624
625 /*
626  * rb_is_reader_page
627  *
628  * The unique thing about the reader page, is that, if the
629  * writer is ever on it, the previous pointer never points
630  * back to the reader page.
631  */
632 static int rb_is_reader_page(struct buffer_page *page)
633 {
634         struct list_head *list = page->list.prev;
635
636         return rb_list_head(list->next) != &page->list;
637 }
638
639 /*
640  * rb_set_list_to_head - set a list_head to be pointing to head.
641  */
642 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
643                                 struct list_head *list)
644 {
645         unsigned long *ptr;
646
647         ptr = (unsigned long *)&list->next;
648         *ptr |= RB_PAGE_HEAD;
649         *ptr &= ~RB_PAGE_UPDATE;
650 }
651
652 /*
653  * rb_head_page_activate - sets up head page
654  */
655 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
656 {
657         struct buffer_page *head;
658
659         head = cpu_buffer->head_page;
660         if (!head)
661                 return;
662
663         /*
664          * Set the previous list pointer to have the HEAD flag.
665          */
666         rb_set_list_to_head(cpu_buffer, head->list.prev);
667 }
668
669 static void rb_list_head_clear(struct list_head *list)
670 {
671         unsigned long *ptr = (unsigned long *)&list->next;
672
673         *ptr &= ~RB_FLAG_MASK;
674 }
675
676 /*
677  * rb_head_page_dactivate - clears head page ptr (for free list)
678  */
679 static void
680 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
681 {
682         struct list_head *hd;
683
684         /* Go through the whole list and clear any pointers found. */
685         rb_list_head_clear(cpu_buffer->pages);
686
687         list_for_each(hd, cpu_buffer->pages)
688                 rb_list_head_clear(hd);
689 }
690
691 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
692                             struct buffer_page *head,
693                             struct buffer_page *prev,
694                             int old_flag, int new_flag)
695 {
696         struct list_head *list;
697         unsigned long val = (unsigned long)&head->list;
698         unsigned long ret;
699
700         list = &prev->list;
701
702         val &= ~RB_FLAG_MASK;
703
704         ret = (unsigned long)cmpxchg(&list->next,
705                                      val | old_flag, val | new_flag);
706
707         /* check if the reader took the page */
708         if ((ret & ~RB_FLAG_MASK) != val)
709                 return RB_PAGE_MOVED;
710
711         return ret & RB_FLAG_MASK;
712 }
713
714 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
715                                    struct buffer_page *head,
716                                    struct buffer_page *prev,
717                                    int old_flag)
718 {
719         return rb_head_page_set(cpu_buffer, head, prev,
720                                 old_flag, RB_PAGE_UPDATE);
721 }
722
723 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
724                                  struct buffer_page *head,
725                                  struct buffer_page *prev,
726                                  int old_flag)
727 {
728         return rb_head_page_set(cpu_buffer, head, prev,
729                                 old_flag, RB_PAGE_HEAD);
730 }
731
732 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
733                                    struct buffer_page *head,
734                                    struct buffer_page *prev,
735                                    int old_flag)
736 {
737         return rb_head_page_set(cpu_buffer, head, prev,
738                                 old_flag, RB_PAGE_NORMAL);
739 }
740
741 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
742                                struct buffer_page **bpage)
743 {
744         struct list_head *p = rb_list_head((*bpage)->list.next);
745
746         *bpage = list_entry(p, struct buffer_page, list);
747 }
748
749 static struct buffer_page *
750 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
751 {
752         struct buffer_page *head;
753         struct buffer_page *page;
754         struct list_head *list;
755         int i;
756
757         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
758                 return NULL;
759
760         /* sanity check */
761         list = cpu_buffer->pages;
762         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
763                 return NULL;
764
765         page = head = cpu_buffer->head_page;
766         /*
767          * It is possible that the writer moves the header behind
768          * where we started, and we miss in one loop.
769          * A second loop should grab the header, but we'll do
770          * three loops just because I'm paranoid.
771          */
772         for (i = 0; i < 3; i++) {
773                 do {
774                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
775                                 cpu_buffer->head_page = page;
776                                 return page;
777                         }
778                         rb_inc_page(cpu_buffer, &page);
779                 } while (page != head);
780         }
781
782         RB_WARN_ON(cpu_buffer, 1);
783
784         return NULL;
785 }
786
787 static int rb_head_page_replace(struct buffer_page *old,
788                                 struct buffer_page *new)
789 {
790         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
791         unsigned long val;
792         unsigned long ret;
793
794         val = *ptr & ~RB_FLAG_MASK;
795         val |= RB_PAGE_HEAD;
796
797         ret = cmpxchg(ptr, val, &new->list);
798
799         return ret == val;
800 }
801
802 /*
803  * rb_tail_page_update - move the tail page forward
804  *
805  * Returns 1 if moved tail page, 0 if someone else did.
806  */
807 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
808                                struct buffer_page *tail_page,
809                                struct buffer_page *next_page)
810 {
811         struct buffer_page *old_tail;
812         unsigned long old_entries;
813         unsigned long old_write;
814         int ret = 0;
815
816         /*
817          * The tail page now needs to be moved forward.
818          *
819          * We need to reset the tail page, but without messing
820          * with possible erasing of data brought in by interrupts
821          * that have moved the tail page and are currently on it.
822          *
823          * We add a counter to the write field to denote this.
824          */
825         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
826         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
827
828         /*
829          * Just make sure we have seen our old_write and synchronize
830          * with any interrupts that come in.
831          */
832         barrier();
833
834         /*
835          * If the tail page is still the same as what we think
836          * it is, then it is up to us to update the tail
837          * pointer.
838          */
839         if (tail_page == cpu_buffer->tail_page) {
840                 /* Zero the write counter */
841                 unsigned long val = old_write & ~RB_WRITE_MASK;
842                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
843
844                 /*
845                  * This will only succeed if an interrupt did
846                  * not come in and change it. In which case, we
847                  * do not want to modify it.
848                  *
849                  * We add (void) to let the compiler know that we do not care
850                  * about the return value of these functions. We use the
851                  * cmpxchg to only update if an interrupt did not already
852                  * do it for us. If the cmpxchg fails, we don't care.
853                  */
854                 (void)local_cmpxchg(&next_page->write, old_write, val);
855                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
856
857                 /*
858                  * No need to worry about races with clearing out the commit.
859                  * it only can increment when a commit takes place. But that
860                  * only happens in the outer most nested commit.
861                  */
862                 local_set(&next_page->page->commit, 0);
863
864                 old_tail = cmpxchg(&cpu_buffer->tail_page,
865                                    tail_page, next_page);
866
867                 if (old_tail == tail_page)
868                         ret = 1;
869         }
870
871         return ret;
872 }
873
874 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
875                           struct buffer_page *bpage)
876 {
877         unsigned long val = (unsigned long)bpage;
878
879         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
880                 return 1;
881
882         return 0;
883 }
884
885 /**
886  * rb_check_list - make sure a pointer to a list has the last bits zero
887  */
888 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
889                          struct list_head *list)
890 {
891         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
892                 return 1;
893         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
894                 return 1;
895         return 0;
896 }
897
898 /**
899  * check_pages - integrity check of buffer pages
900  * @cpu_buffer: CPU buffer with pages to test
901  *
902  * As a safety measure we check to make sure the data pages have not
903  * been corrupted.
904  */
905 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
906 {
907         struct list_head *head = cpu_buffer->pages;
908         struct buffer_page *bpage, *tmp;
909
910         rb_head_page_deactivate(cpu_buffer);
911
912         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
913                 return -1;
914         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
915                 return -1;
916
917         if (rb_check_list(cpu_buffer, head))
918                 return -1;
919
920         list_for_each_entry_safe(bpage, tmp, head, list) {
921                 if (RB_WARN_ON(cpu_buffer,
922                                bpage->list.next->prev != &bpage->list))
923                         return -1;
924                 if (RB_WARN_ON(cpu_buffer,
925                                bpage->list.prev->next != &bpage->list))
926                         return -1;
927                 if (rb_check_list(cpu_buffer, &bpage->list))
928                         return -1;
929         }
930
931         rb_head_page_activate(cpu_buffer);
932
933         return 0;
934 }
935
936 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
937                              unsigned nr_pages)
938 {
939         struct buffer_page *bpage, *tmp;
940         unsigned long addr;
941         LIST_HEAD(pages);
942         unsigned i;
943
944         WARN_ON(!nr_pages);
945
946         for (i = 0; i < nr_pages; i++) {
947                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
948                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
949                 if (!bpage)
950                         goto free_pages;
951
952                 rb_check_bpage(cpu_buffer, bpage);
953
954                 list_add(&bpage->list, &pages);
955
956                 addr = __get_free_page(GFP_KERNEL);
957                 if (!addr)
958                         goto free_pages;
959                 bpage->page = (void *)addr;
960                 rb_init_page(bpage->page);
961         }
962
963         /*
964          * The ring buffer page list is a circular list that does not
965          * start and end with a list head. All page list items point to
966          * other pages.
967          */
968         cpu_buffer->pages = pages.next;
969         list_del(&pages);
970
971         rb_check_pages(cpu_buffer);
972
973         return 0;
974
975  free_pages:
976         list_for_each_entry_safe(bpage, tmp, &pages, list) {
977                 list_del_init(&bpage->list);
978                 free_buffer_page(bpage);
979         }
980         return -ENOMEM;
981 }
982
983 static struct ring_buffer_per_cpu *
984 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
985 {
986         struct ring_buffer_per_cpu *cpu_buffer;
987         struct buffer_page *bpage;
988         unsigned long addr;
989         int ret;
990
991         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
992                                   GFP_KERNEL, cpu_to_node(cpu));
993         if (!cpu_buffer)
994                 return NULL;
995
996         cpu_buffer->cpu = cpu;
997         cpu_buffer->buffer = buffer;
998         spin_lock_init(&cpu_buffer->reader_lock);
999         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1000         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
1001
1002         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1003                             GFP_KERNEL, cpu_to_node(cpu));
1004         if (!bpage)
1005                 goto fail_free_buffer;
1006
1007         rb_check_bpage(cpu_buffer, bpage);
1008
1009         cpu_buffer->reader_page = bpage;
1010         addr = __get_free_page(GFP_KERNEL);
1011         if (!addr)
1012                 goto fail_free_reader;
1013         bpage->page = (void *)addr;
1014         rb_init_page(bpage->page);
1015
1016         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1017
1018         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1019         if (ret < 0)
1020                 goto fail_free_reader;
1021
1022         cpu_buffer->head_page
1023                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1024         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1025
1026         rb_head_page_activate(cpu_buffer);
1027
1028         return cpu_buffer;
1029
1030  fail_free_reader:
1031         free_buffer_page(cpu_buffer->reader_page);
1032
1033  fail_free_buffer:
1034         kfree(cpu_buffer);
1035         return NULL;
1036 }
1037
1038 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1039 {
1040         struct list_head *head = cpu_buffer->pages;
1041         struct buffer_page *bpage, *tmp;
1042
1043         free_buffer_page(cpu_buffer->reader_page);
1044
1045         rb_head_page_deactivate(cpu_buffer);
1046
1047         if (head) {
1048                 list_for_each_entry_safe(bpage, tmp, head, list) {
1049                         list_del_init(&bpage->list);
1050                         free_buffer_page(bpage);
1051                 }
1052                 bpage = list_entry(head, struct buffer_page, list);
1053                 free_buffer_page(bpage);
1054         }
1055
1056         kfree(cpu_buffer);
1057 }
1058
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 static int rb_cpu_notify(struct notifier_block *self,
1061                          unsigned long action, void *hcpu);
1062 #endif
1063
1064 /**
1065  * ring_buffer_alloc - allocate a new ring_buffer
1066  * @size: the size in bytes per cpu that is needed.
1067  * @flags: attributes to set for the ring buffer.
1068  *
1069  * Currently the only flag that is available is the RB_FL_OVERWRITE
1070  * flag. This flag means that the buffer will overwrite old data
1071  * when the buffer wraps. If this flag is not set, the buffer will
1072  * drop data when the tail hits the head.
1073  */
1074 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1075                                         struct lock_class_key *key)
1076 {
1077         struct ring_buffer *buffer;
1078         int bsize;
1079         int cpu;
1080
1081         /* keep it in its own cache line */
1082         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1083                          GFP_KERNEL);
1084         if (!buffer)
1085                 return NULL;
1086
1087         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1088                 goto fail_free_buffer;
1089
1090         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1091         buffer->flags = flags;
1092         buffer->clock = trace_clock_local;
1093         buffer->reader_lock_key = key;
1094
1095         /* need at least two pages */
1096         if (buffer->pages < 2)
1097                 buffer->pages = 2;
1098
1099         /*
1100          * In case of non-hotplug cpu, if the ring-buffer is allocated
1101          * in early initcall, it will not be notified of secondary cpus.
1102          * In that off case, we need to allocate for all possible cpus.
1103          */
1104 #ifdef CONFIG_HOTPLUG_CPU
1105         get_online_cpus();
1106         cpumask_copy(buffer->cpumask, cpu_online_mask);
1107 #else
1108         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1109 #endif
1110         buffer->cpus = nr_cpu_ids;
1111
1112         bsize = sizeof(void *) * nr_cpu_ids;
1113         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1114                                   GFP_KERNEL);
1115         if (!buffer->buffers)
1116                 goto fail_free_cpumask;
1117
1118         for_each_buffer_cpu(buffer, cpu) {
1119                 buffer->buffers[cpu] =
1120                         rb_allocate_cpu_buffer(buffer, cpu);
1121                 if (!buffer->buffers[cpu])
1122                         goto fail_free_buffers;
1123         }
1124
1125 #ifdef CONFIG_HOTPLUG_CPU
1126         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1127         buffer->cpu_notify.priority = 0;
1128         register_cpu_notifier(&buffer->cpu_notify);
1129 #endif
1130
1131         put_online_cpus();
1132         mutex_init(&buffer->mutex);
1133
1134         return buffer;
1135
1136  fail_free_buffers:
1137         for_each_buffer_cpu(buffer, cpu) {
1138                 if (buffer->buffers[cpu])
1139                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1140         }
1141         kfree(buffer->buffers);
1142
1143  fail_free_cpumask:
1144         free_cpumask_var(buffer->cpumask);
1145         put_online_cpus();
1146
1147  fail_free_buffer:
1148         kfree(buffer);
1149         return NULL;
1150 }
1151 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1152
1153 /**
1154  * ring_buffer_free - free a ring buffer.
1155  * @buffer: the buffer to free.
1156  */
1157 void
1158 ring_buffer_free(struct ring_buffer *buffer)
1159 {
1160         int cpu;
1161
1162         get_online_cpus();
1163
1164 #ifdef CONFIG_HOTPLUG_CPU
1165         unregister_cpu_notifier(&buffer->cpu_notify);
1166 #endif
1167
1168         for_each_buffer_cpu(buffer, cpu)
1169                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1170
1171         put_online_cpus();
1172
1173         free_cpumask_var(buffer->cpumask);
1174
1175         kfree(buffer);
1176 }
1177 EXPORT_SYMBOL_GPL(ring_buffer_free);
1178
1179 void ring_buffer_set_clock(struct ring_buffer *buffer,
1180                            u64 (*clock)(void))
1181 {
1182         buffer->clock = clock;
1183 }
1184
1185 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1186
1187 static void
1188 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1189 {
1190         struct buffer_page *bpage;
1191         struct list_head *p;
1192         unsigned i;
1193
1194         atomic_inc(&cpu_buffer->record_disabled);
1195         synchronize_sched();
1196
1197         rb_head_page_deactivate(cpu_buffer);
1198
1199         for (i = 0; i < nr_pages; i++) {
1200                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1201                         return;
1202                 p = cpu_buffer->pages->next;
1203                 bpage = list_entry(p, struct buffer_page, list);
1204                 list_del_init(&bpage->list);
1205                 free_buffer_page(bpage);
1206         }
1207         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1208                 return;
1209
1210         rb_reset_cpu(cpu_buffer);
1211
1212         rb_check_pages(cpu_buffer);
1213
1214         atomic_dec(&cpu_buffer->record_disabled);
1215
1216 }
1217
1218 static void
1219 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1220                 struct list_head *pages, unsigned nr_pages)
1221 {
1222         struct buffer_page *bpage;
1223         struct list_head *p;
1224         unsigned i;
1225
1226         atomic_inc(&cpu_buffer->record_disabled);
1227         synchronize_sched();
1228
1229         spin_lock_irq(&cpu_buffer->reader_lock);
1230         rb_head_page_deactivate(cpu_buffer);
1231
1232         for (i = 0; i < nr_pages; i++) {
1233                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1234                         return;
1235                 p = pages->next;
1236                 bpage = list_entry(p, struct buffer_page, list);
1237                 list_del_init(&bpage->list);
1238                 list_add_tail(&bpage->list, cpu_buffer->pages);
1239         }
1240         rb_reset_cpu(cpu_buffer);
1241         spin_unlock_irq(&cpu_buffer->reader_lock);
1242
1243         rb_check_pages(cpu_buffer);
1244
1245         atomic_dec(&cpu_buffer->record_disabled);
1246 }
1247
1248 /**
1249  * ring_buffer_resize - resize the ring buffer
1250  * @buffer: the buffer to resize.
1251  * @size: the new size.
1252  *
1253  * The tracer is responsible for making sure that the buffer is
1254  * not being used while changing the size.
1255  * Note: We may be able to change the above requirement by using
1256  *  RCU synchronizations.
1257  *
1258  * Minimum size is 2 * BUF_PAGE_SIZE.
1259  *
1260  * Returns -1 on failure.
1261  */
1262 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1263 {
1264         struct ring_buffer_per_cpu *cpu_buffer;
1265         unsigned nr_pages, rm_pages, new_pages;
1266         struct buffer_page *bpage, *tmp;
1267         unsigned long buffer_size;
1268         unsigned long addr;
1269         LIST_HEAD(pages);
1270         int i, cpu;
1271
1272         /*
1273          * Always succeed at resizing a non-existent buffer:
1274          */
1275         if (!buffer)
1276                 return size;
1277
1278         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1279         size *= BUF_PAGE_SIZE;
1280         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1281
1282         /* we need a minimum of two pages */
1283         if (size < BUF_PAGE_SIZE * 2)
1284                 size = BUF_PAGE_SIZE * 2;
1285
1286         if (size == buffer_size)
1287                 return size;
1288
1289         mutex_lock(&buffer->mutex);
1290         get_online_cpus();
1291
1292         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1293
1294         if (size < buffer_size) {
1295
1296                 /* easy case, just free pages */
1297                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1298                         goto out_fail;
1299
1300                 rm_pages = buffer->pages - nr_pages;
1301
1302                 for_each_buffer_cpu(buffer, cpu) {
1303                         cpu_buffer = buffer->buffers[cpu];
1304                         rb_remove_pages(cpu_buffer, rm_pages);
1305                 }
1306                 goto out;
1307         }
1308
1309         /*
1310          * This is a bit more difficult. We only want to add pages
1311          * when we can allocate enough for all CPUs. We do this
1312          * by allocating all the pages and storing them on a local
1313          * link list. If we succeed in our allocation, then we
1314          * add these pages to the cpu_buffers. Otherwise we just free
1315          * them all and return -ENOMEM;
1316          */
1317         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1318                 goto out_fail;
1319
1320         new_pages = nr_pages - buffer->pages;
1321
1322         for_each_buffer_cpu(buffer, cpu) {
1323                 for (i = 0; i < new_pages; i++) {
1324                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1325                                                   cache_line_size()),
1326                                             GFP_KERNEL, cpu_to_node(cpu));
1327                         if (!bpage)
1328                                 goto free_pages;
1329                         list_add(&bpage->list, &pages);
1330                         addr = __get_free_page(GFP_KERNEL);
1331                         if (!addr)
1332                                 goto free_pages;
1333                         bpage->page = (void *)addr;
1334                         rb_init_page(bpage->page);
1335                 }
1336         }
1337
1338         for_each_buffer_cpu(buffer, cpu) {
1339                 cpu_buffer = buffer->buffers[cpu];
1340                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1341         }
1342
1343         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1344                 goto out_fail;
1345
1346  out:
1347         buffer->pages = nr_pages;
1348         put_online_cpus();
1349         mutex_unlock(&buffer->mutex);
1350
1351         return size;
1352
1353  free_pages:
1354         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1355                 list_del_init(&bpage->list);
1356                 free_buffer_page(bpage);
1357         }
1358         put_online_cpus();
1359         mutex_unlock(&buffer->mutex);
1360         return -ENOMEM;
1361
1362         /*
1363          * Something went totally wrong, and we are too paranoid
1364          * to even clean up the mess.
1365          */
1366  out_fail:
1367         put_online_cpus();
1368         mutex_unlock(&buffer->mutex);
1369         return -1;
1370 }
1371 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1372
1373 static inline void *
1374 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1375 {
1376         return bpage->data + index;
1377 }
1378
1379 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1380 {
1381         return bpage->page->data + index;
1382 }
1383
1384 static inline struct ring_buffer_event *
1385 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1386 {
1387         return __rb_page_index(cpu_buffer->reader_page,
1388                                cpu_buffer->reader_page->read);
1389 }
1390
1391 static inline struct ring_buffer_event *
1392 rb_iter_head_event(struct ring_buffer_iter *iter)
1393 {
1394         return __rb_page_index(iter->head_page, iter->head);
1395 }
1396
1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399         return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401
1402 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1403 {
1404         return local_read(&bpage->page->commit);
1405 }
1406
1407 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1408 {
1409         return local_read(&bpage->entries) & RB_WRITE_MASK;
1410 }
1411
1412 /* Size is determined by what has been commited */
1413 static inline unsigned rb_page_size(struct buffer_page *bpage)
1414 {
1415         return rb_page_commit(bpage);
1416 }
1417
1418 static inline unsigned
1419 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1420 {
1421         return rb_page_commit(cpu_buffer->commit_page);
1422 }
1423
1424 static inline unsigned
1425 rb_event_index(struct ring_buffer_event *event)
1426 {
1427         unsigned long addr = (unsigned long)event;
1428
1429         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1430 }
1431
1432 static inline int
1433 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1434                    struct ring_buffer_event *event)
1435 {
1436         unsigned long addr = (unsigned long)event;
1437         unsigned long index;
1438
1439         index = rb_event_index(event);
1440         addr &= PAGE_MASK;
1441
1442         return cpu_buffer->commit_page->page == (void *)addr &&
1443                 rb_commit_index(cpu_buffer) == index;
1444 }
1445
1446 static void
1447 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1448 {
1449         unsigned long max_count;
1450
1451         /*
1452          * We only race with interrupts and NMIs on this CPU.
1453          * If we own the commit event, then we can commit
1454          * all others that interrupted us, since the interruptions
1455          * are in stack format (they finish before they come
1456          * back to us). This allows us to do a simple loop to
1457          * assign the commit to the tail.
1458          */
1459  again:
1460         max_count = cpu_buffer->buffer->pages * 100;
1461
1462         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1463                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1464                         return;
1465                 if (RB_WARN_ON(cpu_buffer,
1466                                rb_is_reader_page(cpu_buffer->tail_page)))
1467                         return;
1468                 local_set(&cpu_buffer->commit_page->page->commit,
1469                           rb_page_write(cpu_buffer->commit_page));
1470                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1471                 cpu_buffer->write_stamp =
1472                         cpu_buffer->commit_page->page->time_stamp;
1473                 /* add barrier to keep gcc from optimizing too much */
1474                 barrier();
1475         }
1476         while (rb_commit_index(cpu_buffer) !=
1477                rb_page_write(cpu_buffer->commit_page)) {
1478
1479                 local_set(&cpu_buffer->commit_page->page->commit,
1480                           rb_page_write(cpu_buffer->commit_page));
1481                 RB_WARN_ON(cpu_buffer,
1482                            local_read(&cpu_buffer->commit_page->page->commit) &
1483                            ~RB_WRITE_MASK);
1484                 barrier();
1485         }
1486
1487         /* again, keep gcc from optimizing */
1488         barrier();
1489
1490         /*
1491          * If an interrupt came in just after the first while loop
1492          * and pushed the tail page forward, we will be left with
1493          * a dangling commit that will never go forward.
1494          */
1495         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1496                 goto again;
1497 }
1498
1499 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1500 {
1501         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1502         cpu_buffer->reader_page->read = 0;
1503 }
1504
1505 static void rb_inc_iter(struct ring_buffer_iter *iter)
1506 {
1507         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1508
1509         /*
1510          * The iterator could be on the reader page (it starts there).
1511          * But the head could have moved, since the reader was
1512          * found. Check for this case and assign the iterator
1513          * to the head page instead of next.
1514          */
1515         if (iter->head_page == cpu_buffer->reader_page)
1516                 iter->head_page = rb_set_head_page(cpu_buffer);
1517         else
1518                 rb_inc_page(cpu_buffer, &iter->head_page);
1519
1520         iter->read_stamp = iter->head_page->page->time_stamp;
1521         iter->head = 0;
1522 }
1523
1524 /**
1525  * ring_buffer_update_event - update event type and data
1526  * @event: the even to update
1527  * @type: the type of event
1528  * @length: the size of the event field in the ring buffer
1529  *
1530  * Update the type and data fields of the event. The length
1531  * is the actual size that is written to the ring buffer,
1532  * and with this, we can determine what to place into the
1533  * data field.
1534  */
1535 static void
1536 rb_update_event(struct ring_buffer_event *event,
1537                          unsigned type, unsigned length)
1538 {
1539         event->type_len = type;
1540
1541         switch (type) {
1542
1543         case RINGBUF_TYPE_PADDING:
1544         case RINGBUF_TYPE_TIME_EXTEND:
1545         case RINGBUF_TYPE_TIME_STAMP:
1546                 break;
1547
1548         case 0:
1549                 length -= RB_EVNT_HDR_SIZE;
1550                 if (length > RB_MAX_SMALL_DATA)
1551                         event->array[0] = length;
1552                 else
1553                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1554                 break;
1555         default:
1556                 BUG();
1557         }
1558 }
1559
1560 /*
1561  * rb_handle_head_page - writer hit the head page
1562  *
1563  * Returns: +1 to retry page
1564  *           0 to continue
1565  *          -1 on error
1566  */
1567 static int
1568 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1569                     struct buffer_page *tail_page,
1570                     struct buffer_page *next_page)
1571 {
1572         struct buffer_page *new_head;
1573         int entries;
1574         int type;
1575         int ret;
1576
1577         entries = rb_page_entries(next_page);
1578
1579         /*
1580          * The hard part is here. We need to move the head
1581          * forward, and protect against both readers on
1582          * other CPUs and writers coming in via interrupts.
1583          */
1584         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1585                                        RB_PAGE_HEAD);
1586
1587         /*
1588          * type can be one of four:
1589          *  NORMAL - an interrupt already moved it for us
1590          *  HEAD   - we are the first to get here.
1591          *  UPDATE - we are the interrupt interrupting
1592          *           a current move.
1593          *  MOVED  - a reader on another CPU moved the next
1594          *           pointer to its reader page. Give up
1595          *           and try again.
1596          */
1597
1598         switch (type) {
1599         case RB_PAGE_HEAD:
1600                 /*
1601                  * We changed the head to UPDATE, thus
1602                  * it is our responsibility to update
1603                  * the counters.
1604                  */
1605                 local_add(entries, &cpu_buffer->overrun);
1606
1607                 /*
1608                  * The entries will be zeroed out when we move the
1609                  * tail page.
1610                  */
1611
1612                 /* still more to do */
1613                 break;
1614
1615         case RB_PAGE_UPDATE:
1616                 /*
1617                  * This is an interrupt that interrupt the
1618                  * previous update. Still more to do.
1619                  */
1620                 break;
1621         case RB_PAGE_NORMAL:
1622                 /*
1623                  * An interrupt came in before the update
1624                  * and processed this for us.
1625                  * Nothing left to do.
1626                  */
1627                 return 1;
1628         case RB_PAGE_MOVED:
1629                 /*
1630                  * The reader is on another CPU and just did
1631                  * a swap with our next_page.
1632                  * Try again.
1633                  */
1634                 return 1;
1635         default:
1636                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1637                 return -1;
1638         }
1639
1640         /*
1641          * Now that we are here, the old head pointer is
1642          * set to UPDATE. This will keep the reader from
1643          * swapping the head page with the reader page.
1644          * The reader (on another CPU) will spin till
1645          * we are finished.
1646          *
1647          * We just need to protect against interrupts
1648          * doing the job. We will set the next pointer
1649          * to HEAD. After that, we set the old pointer
1650          * to NORMAL, but only if it was HEAD before.
1651          * otherwise we are an interrupt, and only
1652          * want the outer most commit to reset it.
1653          */
1654         new_head = next_page;
1655         rb_inc_page(cpu_buffer, &new_head);
1656
1657         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1658                                     RB_PAGE_NORMAL);
1659
1660         /*
1661          * Valid returns are:
1662          *  HEAD   - an interrupt came in and already set it.
1663          *  NORMAL - One of two things:
1664          *            1) We really set it.
1665          *            2) A bunch of interrupts came in and moved
1666          *               the page forward again.
1667          */
1668         switch (ret) {
1669         case RB_PAGE_HEAD:
1670         case RB_PAGE_NORMAL:
1671                 /* OK */
1672                 break;
1673         default:
1674                 RB_WARN_ON(cpu_buffer, 1);
1675                 return -1;
1676         }
1677
1678         /*
1679          * It is possible that an interrupt came in,
1680          * set the head up, then more interrupts came in
1681          * and moved it again. When we get back here,
1682          * the page would have been set to NORMAL but we
1683          * just set it back to HEAD.
1684          *
1685          * How do you detect this? Well, if that happened
1686          * the tail page would have moved.
1687          */
1688         if (ret == RB_PAGE_NORMAL) {
1689                 /*
1690                  * If the tail had moved passed next, then we need
1691                  * to reset the pointer.
1692                  */
1693                 if (cpu_buffer->tail_page != tail_page &&
1694                     cpu_buffer->tail_page != next_page)
1695                         rb_head_page_set_normal(cpu_buffer, new_head,
1696                                                 next_page,
1697                                                 RB_PAGE_HEAD);
1698         }
1699
1700         /*
1701          * If this was the outer most commit (the one that
1702          * changed the original pointer from HEAD to UPDATE),
1703          * then it is up to us to reset it to NORMAL.
1704          */
1705         if (type == RB_PAGE_HEAD) {
1706                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1707                                               tail_page,
1708                                               RB_PAGE_UPDATE);
1709                 if (RB_WARN_ON(cpu_buffer,
1710                                ret != RB_PAGE_UPDATE))
1711                         return -1;
1712         }
1713
1714         return 0;
1715 }
1716
1717 static unsigned rb_calculate_event_length(unsigned length)
1718 {
1719         struct ring_buffer_event event; /* Used only for sizeof array */
1720
1721         /* zero length can cause confusions */
1722         if (!length)
1723                 length = 1;
1724
1725         if (length > RB_MAX_SMALL_DATA)
1726                 length += sizeof(event.array[0]);
1727
1728         length += RB_EVNT_HDR_SIZE;
1729         length = ALIGN(length, RB_ALIGNMENT);
1730
1731         return length;
1732 }
1733
1734 static inline void
1735 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1736               struct buffer_page *tail_page,
1737               unsigned long tail, unsigned long length)
1738 {
1739         struct ring_buffer_event *event;
1740
1741         /*
1742          * Only the event that crossed the page boundary
1743          * must fill the old tail_page with padding.
1744          */
1745         if (tail >= BUF_PAGE_SIZE) {
1746                 local_sub(length, &tail_page->write);
1747                 return;
1748         }
1749
1750         event = __rb_page_index(tail_page, tail);
1751         kmemcheck_annotate_bitfield(event, bitfield);
1752
1753         /*
1754          * If this event is bigger than the minimum size, then
1755          * we need to be careful that we don't subtract the
1756          * write counter enough to allow another writer to slip
1757          * in on this page.
1758          * We put in a discarded commit instead, to make sure
1759          * that this space is not used again.
1760          *
1761          * If we are less than the minimum size, we don't need to
1762          * worry about it.
1763          */
1764         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1765                 /* No room for any events */
1766
1767                 /* Mark the rest of the page with padding */
1768                 rb_event_set_padding(event);
1769
1770                 /* Set the write back to the previous setting */
1771                 local_sub(length, &tail_page->write);
1772                 return;
1773         }
1774
1775         /* Put in a discarded event */
1776         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1777         event->type_len = RINGBUF_TYPE_PADDING;
1778         /* time delta must be non zero */
1779         event->time_delta = 1;
1780         /* Account for this as an entry */
1781         local_inc(&tail_page->entries);
1782         local_inc(&cpu_buffer->entries);
1783
1784         /* Set write to end of buffer */
1785         length = (tail + length) - BUF_PAGE_SIZE;
1786         local_sub(length, &tail_page->write);
1787 }
1788
1789 static struct ring_buffer_event *
1790 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1791              unsigned long length, unsigned long tail,
1792              struct buffer_page *commit_page,
1793              struct buffer_page *tail_page, u64 *ts)
1794 {
1795         struct ring_buffer *buffer = cpu_buffer->buffer;
1796         struct buffer_page *next_page;
1797         int ret;
1798
1799         next_page = tail_page;
1800
1801         rb_inc_page(cpu_buffer, &next_page);
1802
1803         /*
1804          * If for some reason, we had an interrupt storm that made
1805          * it all the way around the buffer, bail, and warn
1806          * about it.
1807          */
1808         if (unlikely(next_page == commit_page)) {
1809                 local_inc(&cpu_buffer->commit_overrun);
1810                 goto out_reset;
1811         }
1812
1813         /*
1814          * This is where the fun begins!
1815          *
1816          * We are fighting against races between a reader that
1817          * could be on another CPU trying to swap its reader
1818          * page with the buffer head.
1819          *
1820          * We are also fighting against interrupts coming in and
1821          * moving the head or tail on us as well.
1822          *
1823          * If the next page is the head page then we have filled
1824          * the buffer, unless the commit page is still on the
1825          * reader page.
1826          */
1827         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1828
1829                 /*
1830                  * If the commit is not on the reader page, then
1831                  * move the header page.
1832                  */
1833                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1834                         /*
1835                          * If we are not in overwrite mode,
1836                          * this is easy, just stop here.
1837                          */
1838                         if (!(buffer->flags & RB_FL_OVERWRITE))
1839                                 goto out_reset;
1840
1841                         ret = rb_handle_head_page(cpu_buffer,
1842                                                   tail_page,
1843                                                   next_page);
1844                         if (ret < 0)
1845                                 goto out_reset;
1846                         if (ret)
1847                                 goto out_again;
1848                 } else {
1849                         /*
1850                          * We need to be careful here too. The
1851                          * commit page could still be on the reader
1852                          * page. We could have a small buffer, and
1853                          * have filled up the buffer with events
1854                          * from interrupts and such, and wrapped.
1855                          *
1856                          * Note, if the tail page is also the on the
1857                          * reader_page, we let it move out.
1858                          */
1859                         if (unlikely((cpu_buffer->commit_page !=
1860                                       cpu_buffer->tail_page) &&
1861                                      (cpu_buffer->commit_page ==
1862                                       cpu_buffer->reader_page))) {
1863                                 local_inc(&cpu_buffer->commit_overrun);
1864                                 goto out_reset;
1865                         }
1866                 }
1867         }
1868
1869         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1870         if (ret) {
1871                 /*
1872                  * Nested commits always have zero deltas, so
1873                  * just reread the time stamp
1874                  */
1875                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1876                 next_page->page->time_stamp = *ts;
1877         }
1878
1879  out_again:
1880
1881         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1882
1883         /* fail and let the caller try again */
1884         return ERR_PTR(-EAGAIN);
1885
1886  out_reset:
1887         /* reset write */
1888         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1889
1890         return NULL;
1891 }
1892
1893 static struct ring_buffer_event *
1894 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1895                   unsigned type, unsigned long length, u64 *ts)
1896 {
1897         struct buffer_page *tail_page, *commit_page;
1898         struct ring_buffer_event *event;
1899         unsigned long tail, write;
1900
1901         commit_page = cpu_buffer->commit_page;
1902         /* we just need to protect against interrupts */
1903         barrier();
1904         tail_page = cpu_buffer->tail_page;
1905         write = local_add_return(length, &tail_page->write);
1906
1907         /* set write to only the index of the write */
1908         write &= RB_WRITE_MASK;
1909         tail = write - length;
1910
1911         /* See if we shot pass the end of this buffer page */
1912         if (write > BUF_PAGE_SIZE)
1913                 return rb_move_tail(cpu_buffer, length, tail,
1914                                     commit_page, tail_page, ts);
1915
1916         /* We reserved something on the buffer */
1917
1918         event = __rb_page_index(tail_page, tail);
1919         kmemcheck_annotate_bitfield(event, bitfield);
1920         rb_update_event(event, type, length);
1921
1922         /* The passed in type is zero for DATA */
1923         if (likely(!type))
1924                 local_inc(&tail_page->entries);
1925
1926         /*
1927          * If this is the first commit on the page, then update
1928          * its timestamp.
1929          */
1930         if (!tail)
1931                 tail_page->page->time_stamp = *ts;
1932
1933         return event;
1934 }
1935
1936 static inline int
1937 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1938                   struct ring_buffer_event *event)
1939 {
1940         unsigned long new_index, old_index;
1941         struct buffer_page *bpage;
1942         unsigned long index;
1943         unsigned long addr;
1944
1945         new_index = rb_event_index(event);
1946         old_index = new_index + rb_event_length(event);
1947         addr = (unsigned long)event;
1948         addr &= PAGE_MASK;
1949
1950         bpage = cpu_buffer->tail_page;
1951
1952         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1953                 unsigned long write_mask =
1954                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1955                 /*
1956                  * This is on the tail page. It is possible that
1957                  * a write could come in and move the tail page
1958                  * and write to the next page. That is fine
1959                  * because we just shorten what is on this page.
1960                  */
1961                 old_index += write_mask;
1962                 new_index += write_mask;
1963                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1964                 if (index == old_index)
1965                         return 1;
1966         }
1967
1968         /* could not discard */
1969         return 0;
1970 }
1971
1972 static int
1973 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1974                   u64 *ts, u64 *delta)
1975 {
1976         struct ring_buffer_event *event;
1977         static int once;
1978         int ret;
1979
1980         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1981                 printk(KERN_WARNING "Delta way too big! %llu"
1982                        " ts=%llu write stamp = %llu\n",
1983                        (unsigned long long)*delta,
1984                        (unsigned long long)*ts,
1985                        (unsigned long long)cpu_buffer->write_stamp);
1986                 WARN_ON(1);
1987         }
1988
1989         /*
1990          * The delta is too big, we to add a
1991          * new timestamp.
1992          */
1993         event = __rb_reserve_next(cpu_buffer,
1994                                   RINGBUF_TYPE_TIME_EXTEND,
1995                                   RB_LEN_TIME_EXTEND,
1996                                   ts);
1997         if (!event)
1998                 return -EBUSY;
1999
2000         if (PTR_ERR(event) == -EAGAIN)
2001                 return -EAGAIN;
2002
2003         /* Only a commited time event can update the write stamp */
2004         if (rb_event_is_commit(cpu_buffer, event)) {
2005                 /*
2006                  * If this is the first on the page, then it was
2007                  * updated with the page itself. Try to discard it
2008                  * and if we can't just make it zero.
2009                  */
2010                 if (rb_event_index(event)) {
2011                         event->time_delta = *delta & TS_MASK;
2012                         event->array[0] = *delta >> TS_SHIFT;
2013                 } else {
2014                         /* try to discard, since we do not need this */
2015                         if (!rb_try_to_discard(cpu_buffer, event)) {
2016                                 /* nope, just zero it */
2017                                 event->time_delta = 0;
2018                                 event->array[0] = 0;
2019                         }
2020                 }
2021                 cpu_buffer->write_stamp = *ts;
2022                 /* let the caller know this was the commit */
2023                 ret = 1;
2024         } else {
2025                 /* Try to discard the event */
2026                 if (!rb_try_to_discard(cpu_buffer, event)) {
2027                         /* Darn, this is just wasted space */
2028                         event->time_delta = 0;
2029                         event->array[0] = 0;
2030                 }
2031                 ret = 0;
2032         }
2033
2034         *delta = 0;
2035
2036         return ret;
2037 }
2038
2039 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2040 {
2041         local_inc(&cpu_buffer->committing);
2042         local_inc(&cpu_buffer->commits);
2043 }
2044
2045 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2046 {
2047         unsigned long commits;
2048
2049         if (RB_WARN_ON(cpu_buffer,
2050                        !local_read(&cpu_buffer->committing)))
2051                 return;
2052
2053  again:
2054         commits = local_read(&cpu_buffer->commits);
2055         /* synchronize with interrupts */
2056         barrier();
2057         if (local_read(&cpu_buffer->committing) == 1)
2058                 rb_set_commit_to_write(cpu_buffer);
2059
2060         local_dec(&cpu_buffer->committing);
2061
2062         /* synchronize with interrupts */
2063         barrier();
2064
2065         /*
2066          * Need to account for interrupts coming in between the
2067          * updating of the commit page and the clearing of the
2068          * committing counter.
2069          */
2070         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2071             !local_read(&cpu_buffer->committing)) {
2072                 local_inc(&cpu_buffer->committing);
2073                 goto again;
2074         }
2075 }
2076
2077 static struct ring_buffer_event *
2078 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
2079                       unsigned long length)
2080 {
2081         struct ring_buffer_event *event;
2082         u64 ts, delta = 0;
2083         int commit = 0;
2084         int nr_loops = 0;
2085
2086         rb_start_commit(cpu_buffer);
2087
2088         length = rb_calculate_event_length(length);
2089  again:
2090         /*
2091          * We allow for interrupts to reenter here and do a trace.
2092          * If one does, it will cause this original code to loop
2093          * back here. Even with heavy interrupts happening, this
2094          * should only happen a few times in a row. If this happens
2095          * 1000 times in a row, there must be either an interrupt
2096          * storm or we have something buggy.
2097          * Bail!
2098          */
2099         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2100                 goto out_fail;
2101
2102         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
2103
2104         /*
2105          * Only the first commit can update the timestamp.
2106          * Yes there is a race here. If an interrupt comes in
2107          * just after the conditional and it traces too, then it
2108          * will also check the deltas. More than one timestamp may
2109          * also be made. But only the entry that did the actual
2110          * commit will be something other than zero.
2111          */
2112         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2113                    rb_page_write(cpu_buffer->tail_page) ==
2114                    rb_commit_index(cpu_buffer))) {
2115                 u64 diff;
2116
2117                 diff = ts - cpu_buffer->write_stamp;
2118
2119                 /* make sure this diff is calculated here */
2120                 barrier();
2121
2122                 /* Did the write stamp get updated already? */
2123                 if (unlikely(ts < cpu_buffer->write_stamp))
2124                         goto get_event;
2125
2126                 delta = diff;
2127                 if (unlikely(test_time_stamp(delta))) {
2128
2129                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2130                         if (commit == -EBUSY)
2131                                 goto out_fail;
2132
2133                         if (commit == -EAGAIN)
2134                                 goto again;
2135
2136                         RB_WARN_ON(cpu_buffer, commit < 0);
2137                 }
2138         }
2139
2140  get_event:
2141         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2142         if (unlikely(PTR_ERR(event) == -EAGAIN))
2143                 goto again;
2144
2145         if (!event)
2146                 goto out_fail;
2147
2148         if (!rb_event_is_commit(cpu_buffer, event))
2149                 delta = 0;
2150
2151         event->time_delta = delta;
2152
2153         return event;
2154
2155  out_fail:
2156         rb_end_commit(cpu_buffer);
2157         return NULL;
2158 }
2159
2160 #ifdef CONFIG_TRACING
2161
2162 #define TRACE_RECURSIVE_DEPTH 16
2163
2164 static int trace_recursive_lock(void)
2165 {
2166         current->trace_recursion++;
2167
2168         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2169                 return 0;
2170
2171         /* Disable all tracing before we do anything else */
2172         tracing_off_permanent();
2173
2174         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2175                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2176                     current->trace_recursion,
2177                     hardirq_count() >> HARDIRQ_SHIFT,
2178                     softirq_count() >> SOFTIRQ_SHIFT,
2179                     in_nmi());
2180
2181         WARN_ON_ONCE(1);
2182         return -1;
2183 }
2184
2185 static void trace_recursive_unlock(void)
2186 {
2187         WARN_ON_ONCE(!current->trace_recursion);
2188
2189         current->trace_recursion--;
2190 }
2191
2192 #else
2193
2194 #define trace_recursive_lock()          (0)
2195 #define trace_recursive_unlock()        do { } while (0)
2196
2197 #endif
2198
2199 static DEFINE_PER_CPU(int, rb_need_resched);
2200
2201 /**
2202  * ring_buffer_lock_reserve - reserve a part of the buffer
2203  * @buffer: the ring buffer to reserve from
2204  * @length: the length of the data to reserve (excluding event header)
2205  *
2206  * Returns a reseverd event on the ring buffer to copy directly to.
2207  * The user of this interface will need to get the body to write into
2208  * and can use the ring_buffer_event_data() interface.
2209  *
2210  * The length is the length of the data needed, not the event length
2211  * which also includes the event header.
2212  *
2213  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2214  * If NULL is returned, then nothing has been allocated or locked.
2215  */
2216 struct ring_buffer_event *
2217 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2218 {
2219         struct ring_buffer_per_cpu *cpu_buffer;
2220         struct ring_buffer_event *event;
2221         int cpu, resched;
2222
2223         if (ring_buffer_flags != RB_BUFFERS_ON)
2224                 return NULL;
2225
2226         if (atomic_read(&buffer->record_disabled))
2227                 return NULL;
2228
2229         /* If we are tracing schedule, we don't want to recurse */
2230         resched = ftrace_preempt_disable();
2231
2232         if (trace_recursive_lock())
2233                 goto out_nocheck;
2234
2235         cpu = raw_smp_processor_id();
2236
2237         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2238                 goto out;
2239
2240         cpu_buffer = buffer->buffers[cpu];
2241
2242         if (atomic_read(&cpu_buffer->record_disabled))
2243                 goto out;
2244
2245         if (length > BUF_MAX_DATA_SIZE)
2246                 goto out;
2247
2248         event = rb_reserve_next_event(cpu_buffer, length);
2249         if (!event)
2250                 goto out;
2251
2252         /*
2253          * Need to store resched state on this cpu.
2254          * Only the first needs to.
2255          */
2256
2257         if (preempt_count() == 1)
2258                 per_cpu(rb_need_resched, cpu) = resched;
2259
2260         return event;
2261
2262  out:
2263         trace_recursive_unlock();
2264
2265  out_nocheck:
2266         ftrace_preempt_enable(resched);
2267         return NULL;
2268 }
2269 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2270
2271 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2272                       struct ring_buffer_event *event)
2273 {
2274         local_inc(&cpu_buffer->entries);
2275
2276         /*
2277          * The event first in the commit queue updates the
2278          * time stamp.
2279          */
2280         if (rb_event_is_commit(cpu_buffer, event))
2281                 cpu_buffer->write_stamp += event->time_delta;
2282
2283         rb_end_commit(cpu_buffer);
2284 }
2285
2286 /**
2287  * ring_buffer_unlock_commit - commit a reserved
2288  * @buffer: The buffer to commit to
2289  * @event: The event pointer to commit.
2290  *
2291  * This commits the data to the ring buffer, and releases any locks held.
2292  *
2293  * Must be paired with ring_buffer_lock_reserve.
2294  */
2295 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2296                               struct ring_buffer_event *event)
2297 {
2298         struct ring_buffer_per_cpu *cpu_buffer;
2299         int cpu = raw_smp_processor_id();
2300
2301         cpu_buffer = buffer->buffers[cpu];
2302
2303         rb_commit(cpu_buffer, event);
2304
2305         trace_recursive_unlock();
2306
2307         /*
2308          * Only the last preempt count needs to restore preemption.
2309          */
2310         if (preempt_count() == 1)
2311                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2312         else
2313                 preempt_enable_no_resched_notrace();
2314
2315         return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2318
2319 static inline void rb_event_discard(struct ring_buffer_event *event)
2320 {
2321         /* array[0] holds the actual length for the discarded event */
2322         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2323         event->type_len = RINGBUF_TYPE_PADDING;
2324         /* time delta must be non zero */
2325         if (!event->time_delta)
2326                 event->time_delta = 1;
2327 }
2328
2329 /**
2330  * ring_buffer_event_discard - discard any event in the ring buffer
2331  * @event: the event to discard
2332  *
2333  * Sometimes a event that is in the ring buffer needs to be ignored.
2334  * This function lets the user discard an event in the ring buffer
2335  * and then that event will not be read later.
2336  *
2337  * Note, it is up to the user to be careful with this, and protect
2338  * against races. If the user discards an event that has been consumed
2339  * it is possible that it could corrupt the ring buffer.
2340  */
2341 void ring_buffer_event_discard(struct ring_buffer_event *event)
2342 {
2343         rb_event_discard(event);
2344 }
2345 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
2346
2347 /**
2348  * ring_buffer_commit_discard - discard an event that has not been committed
2349  * @buffer: the ring buffer
2350  * @event: non committed event to discard
2351  *
2352  * This is similar to ring_buffer_event_discard but must only be
2353  * performed on an event that has not been committed yet. The difference
2354  * is that this will also try to free the event from the ring buffer
2355  * if another event has not been added behind it.
2356  *
2357  * If another event has been added behind it, it will set the event
2358  * up as discarded, and perform the commit.
2359  *
2360  * If this function is called, do not call ring_buffer_unlock_commit on
2361  * the event.
2362  */
2363 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2364                                 struct ring_buffer_event *event)
2365 {
2366         struct ring_buffer_per_cpu *cpu_buffer;
2367         int cpu;
2368
2369         /* The event is discarded regardless */
2370         rb_event_discard(event);
2371
2372         cpu = smp_processor_id();
2373         cpu_buffer = buffer->buffers[cpu];
2374
2375         /*
2376          * This must only be called if the event has not been
2377          * committed yet. Thus we can assume that preemption
2378          * is still disabled.
2379          */
2380         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2381
2382         if (!rb_try_to_discard(cpu_buffer, event))
2383                 goto out;
2384
2385         /*
2386          * The commit is still visible by the reader, so we
2387          * must increment entries.
2388          */
2389         local_inc(&cpu_buffer->entries);
2390  out:
2391         rb_end_commit(cpu_buffer);
2392
2393         trace_recursive_unlock();
2394
2395         /*
2396          * Only the last preempt count needs to restore preemption.
2397          */
2398         if (preempt_count() == 1)
2399                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2400         else
2401                 preempt_enable_no_resched_notrace();
2402
2403 }
2404 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2405
2406 /**
2407  * ring_buffer_write - write data to the buffer without reserving
2408  * @buffer: The ring buffer to write to.
2409  * @length: The length of the data being written (excluding the event header)
2410  * @data: The data to write to the buffer.
2411  *
2412  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2413  * one function. If you already have the data to write to the buffer, it
2414  * may be easier to simply call this function.
2415  *
2416  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2417  * and not the length of the event which would hold the header.
2418  */
2419 int ring_buffer_write(struct ring_buffer *buffer,
2420                         unsigned long length,
2421                         void *data)
2422 {
2423         struct ring_buffer_per_cpu *cpu_buffer;
2424         struct ring_buffer_event *event;
2425         void *body;
2426         int ret = -EBUSY;
2427         int cpu, resched;
2428
2429         if (ring_buffer_flags != RB_BUFFERS_ON)
2430                 return -EBUSY;
2431
2432         if (atomic_read(&buffer->record_disabled))
2433                 return -EBUSY;
2434
2435         resched = ftrace_preempt_disable();
2436
2437         cpu = raw_smp_processor_id();
2438
2439         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2440                 goto out;
2441
2442         cpu_buffer = buffer->buffers[cpu];
2443
2444         if (atomic_read(&cpu_buffer->record_disabled))
2445                 goto out;
2446
2447         if (length > BUF_MAX_DATA_SIZE)
2448                 goto out;
2449
2450         event = rb_reserve_next_event(cpu_buffer, length);
2451         if (!event)
2452                 goto out;
2453
2454         body = rb_event_data(event);
2455
2456         memcpy(body, data, length);
2457
2458         rb_commit(cpu_buffer, event);
2459
2460         ret = 0;
2461  out:
2462         ftrace_preempt_enable(resched);
2463
2464         return ret;
2465 }
2466 EXPORT_SYMBOL_GPL(ring_buffer_write);
2467
2468 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2469 {
2470         struct buffer_page *reader = cpu_buffer->reader_page;
2471         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2472         struct buffer_page *commit = cpu_buffer->commit_page;
2473
2474         /* In case of error, head will be NULL */
2475         if (unlikely(!head))
2476                 return 1;
2477
2478         return reader->read == rb_page_commit(reader) &&
2479                 (commit == reader ||
2480                  (commit == head &&
2481                   head->read == rb_page_commit(commit)));
2482 }
2483
2484 /**
2485  * ring_buffer_record_disable - stop all writes into the buffer
2486  * @buffer: The ring buffer to stop writes to.
2487  *
2488  * This prevents all writes to the buffer. Any attempt to write
2489  * to the buffer after this will fail and return NULL.
2490  *
2491  * The caller should call synchronize_sched() after this.
2492  */
2493 void ring_buffer_record_disable(struct ring_buffer *buffer)
2494 {
2495         atomic_inc(&buffer->record_disabled);
2496 }
2497 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2498
2499 /**
2500  * ring_buffer_record_enable - enable writes to the buffer
2501  * @buffer: The ring buffer to enable writes
2502  *
2503  * Note, multiple disables will need the same number of enables
2504  * to truely enable the writing (much like preempt_disable).
2505  */
2506 void ring_buffer_record_enable(struct ring_buffer *buffer)
2507 {
2508         atomic_dec(&buffer->record_disabled);
2509 }
2510 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2511
2512 /**
2513  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2514  * @buffer: The ring buffer to stop writes to.
2515  * @cpu: The CPU buffer to stop
2516  *
2517  * This prevents all writes to the buffer. Any attempt to write
2518  * to the buffer after this will fail and return NULL.
2519  *
2520  * The caller should call synchronize_sched() after this.
2521  */
2522 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2523 {
2524         struct ring_buffer_per_cpu *cpu_buffer;
2525
2526         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2527                 return;
2528
2529         cpu_buffer = buffer->buffers[cpu];
2530         atomic_inc(&cpu_buffer->record_disabled);
2531 }
2532 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2533
2534 /**
2535  * ring_buffer_record_enable_cpu - enable writes to the buffer
2536  * @buffer: The ring buffer to enable writes
2537  * @cpu: The CPU to enable.
2538  *
2539  * Note, multiple disables will need the same number of enables
2540  * to truely enable the writing (much like preempt_disable).
2541  */
2542 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2543 {
2544         struct ring_buffer_per_cpu *cpu_buffer;
2545
2546         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2547                 return;
2548
2549         cpu_buffer = buffer->buffers[cpu];
2550         atomic_dec(&cpu_buffer->record_disabled);
2551 }
2552 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2553
2554 /**
2555  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2556  * @buffer: The ring buffer
2557  * @cpu: The per CPU buffer to get the entries from.
2558  */
2559 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2560 {
2561         struct ring_buffer_per_cpu *cpu_buffer;
2562         unsigned long ret;
2563
2564         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2565                 return 0;
2566
2567         cpu_buffer = buffer->buffers[cpu];
2568         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2569                 - cpu_buffer->read;
2570
2571         return ret;
2572 }
2573 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2574
2575 /**
2576  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2577  * @buffer: The ring buffer
2578  * @cpu: The per CPU buffer to get the number of overruns from
2579  */
2580 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2581 {
2582         struct ring_buffer_per_cpu *cpu_buffer;
2583         unsigned long ret;
2584
2585         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2586                 return 0;
2587
2588         cpu_buffer = buffer->buffers[cpu];
2589         ret = local_read(&cpu_buffer->overrun);
2590
2591         return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2594
2595 /**
2596  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2597  * @buffer: The ring buffer
2598  * @cpu: The per CPU buffer to get the number of overruns from
2599  */
2600 unsigned long
2601 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2602 {
2603         struct ring_buffer_per_cpu *cpu_buffer;
2604         unsigned long ret;
2605
2606         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2607                 return 0;
2608
2609         cpu_buffer = buffer->buffers[cpu];
2610         ret = local_read(&cpu_buffer->commit_overrun);
2611
2612         return ret;
2613 }
2614 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2615
2616 /**
2617  * ring_buffer_entries - get the number of entries in a buffer
2618  * @buffer: The ring buffer
2619  *
2620  * Returns the total number of entries in the ring buffer
2621  * (all CPU entries)
2622  */
2623 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2624 {
2625         struct ring_buffer_per_cpu *cpu_buffer;
2626         unsigned long entries = 0;
2627         int cpu;
2628
2629         /* if you care about this being correct, lock the buffer */
2630         for_each_buffer_cpu(buffer, cpu) {
2631                 cpu_buffer = buffer->buffers[cpu];
2632                 entries += (local_read(&cpu_buffer->entries) -
2633                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2634         }
2635
2636         return entries;
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2639
2640 /**
2641  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2642  * @buffer: The ring buffer
2643  *
2644  * Returns the total number of overruns in the ring buffer
2645  * (all CPU entries)
2646  */
2647 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2648 {
2649         struct ring_buffer_per_cpu *cpu_buffer;
2650         unsigned long overruns = 0;
2651         int cpu;
2652
2653         /* if you care about this being correct, lock the buffer */
2654         for_each_buffer_cpu(buffer, cpu) {
2655                 cpu_buffer = buffer->buffers[cpu];
2656                 overruns += local_read(&cpu_buffer->overrun);
2657         }
2658
2659         return overruns;
2660 }
2661 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2662
2663 static void rb_iter_reset(struct ring_buffer_iter *iter)
2664 {
2665         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2666
2667         /* Iterator usage is expected to have record disabled */
2668         if (list_empty(&cpu_buffer->reader_page->list)) {
2669                 iter->head_page = rb_set_head_page(cpu_buffer);
2670                 if (unlikely(!iter->head_page))
2671                         return;
2672                 iter->head = iter->head_page->read;
2673         } else {
2674                 iter->head_page = cpu_buffer->reader_page;
2675                 iter->head = cpu_buffer->reader_page->read;
2676         }
2677         if (iter->head)
2678                 iter->read_stamp = cpu_buffer->read_stamp;
2679         else
2680                 iter->read_stamp = iter->head_page->page->time_stamp;
2681 }
2682
2683 /**
2684  * ring_buffer_iter_reset - reset an iterator
2685  * @iter: The iterator to reset
2686  *
2687  * Resets the iterator, so that it will start from the beginning
2688  * again.
2689  */
2690 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2691 {
2692         struct ring_buffer_per_cpu *cpu_buffer;
2693         unsigned long flags;
2694
2695         if (!iter)
2696                 return;
2697
2698         cpu_buffer = iter->cpu_buffer;
2699
2700         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2701         rb_iter_reset(iter);
2702         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2703 }
2704 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2705
2706 /**
2707  * ring_buffer_iter_empty - check if an iterator has no more to read
2708  * @iter: The iterator to check
2709  */
2710 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2711 {
2712         struct ring_buffer_per_cpu *cpu_buffer;
2713
2714         cpu_buffer = iter->cpu_buffer;
2715
2716         return iter->head_page == cpu_buffer->commit_page &&
2717                 iter->head == rb_commit_index(cpu_buffer);
2718 }
2719 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2720
2721 static void
2722 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2723                      struct ring_buffer_event *event)
2724 {
2725         u64 delta;
2726
2727         switch (event->type_len) {
2728         case RINGBUF_TYPE_PADDING:
2729                 return;
2730
2731         case RINGBUF_TYPE_TIME_EXTEND:
2732                 delta = event->array[0];
2733                 delta <<= TS_SHIFT;
2734                 delta += event->time_delta;
2735                 cpu_buffer->read_stamp += delta;
2736                 return;
2737
2738         case RINGBUF_TYPE_TIME_STAMP:
2739                 /* FIXME: not implemented */
2740                 return;
2741
2742         case RINGBUF_TYPE_DATA:
2743                 cpu_buffer->read_stamp += event->time_delta;
2744                 return;
2745
2746         default:
2747                 BUG();
2748         }
2749         return;
2750 }
2751
2752 static void
2753 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2754                           struct ring_buffer_event *event)
2755 {
2756         u64 delta;
2757
2758         switch (event->type_len) {
2759         case RINGBUF_TYPE_PADDING:
2760                 return;
2761
2762         case RINGBUF_TYPE_TIME_EXTEND:
2763                 delta = event->array[0];
2764                 delta <<= TS_SHIFT;
2765                 delta += event->time_delta;
2766                 iter->read_stamp += delta;
2767                 return;
2768
2769         case RINGBUF_TYPE_TIME_STAMP:
2770                 /* FIXME: not implemented */
2771                 return;
2772
2773         case RINGBUF_TYPE_DATA:
2774                 iter->read_stamp += event->time_delta;
2775                 return;
2776
2777         default:
2778                 BUG();
2779         }
2780         return;
2781 }
2782
2783 static struct buffer_page *
2784 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2785 {
2786         struct buffer_page *reader = NULL;
2787         unsigned long flags;
2788         int nr_loops = 0;
2789         int ret;
2790
2791         local_irq_save(flags);
2792         __raw_spin_lock(&cpu_buffer->lock);
2793
2794  again:
2795         /*
2796          * This should normally only loop twice. But because the
2797          * start of the reader inserts an empty page, it causes
2798          * a case where we will loop three times. There should be no
2799          * reason to loop four times (that I know of).
2800          */
2801         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2802                 reader = NULL;
2803                 goto out;
2804         }
2805
2806         reader = cpu_buffer->reader_page;
2807
2808         /* If there's more to read, return this page */
2809         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2810                 goto out;
2811
2812         /* Never should we have an index greater than the size */
2813         if (RB_WARN_ON(cpu_buffer,
2814                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2815                 goto out;
2816
2817         /* check if we caught up to the tail */
2818         reader = NULL;
2819         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2820                 goto out;
2821
2822         /*
2823          * Reset the reader page to size zero.
2824          */
2825         local_set(&cpu_buffer->reader_page->write, 0);
2826         local_set(&cpu_buffer->reader_page->entries, 0);
2827         local_set(&cpu_buffer->reader_page->page->commit, 0);
2828
2829  spin:
2830         /*
2831          * Splice the empty reader page into the list around the head.
2832          */
2833         reader = rb_set_head_page(cpu_buffer);
2834         cpu_buffer->reader_page->list.next = reader->list.next;
2835         cpu_buffer->reader_page->list.prev = reader->list.prev;
2836
2837         /*
2838          * cpu_buffer->pages just needs to point to the buffer, it
2839          *  has no specific buffer page to point to. Lets move it out
2840          *  of our way so we don't accidently swap it.
2841          */
2842         cpu_buffer->pages = reader->list.prev;
2843
2844         /* The reader page will be pointing to the new head */
2845         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2846
2847         /*
2848          * Here's the tricky part.
2849          *
2850          * We need to move the pointer past the header page.
2851          * But we can only do that if a writer is not currently
2852          * moving it. The page before the header page has the
2853          * flag bit '1' set if it is pointing to the page we want.
2854          * but if the writer is in the process of moving it
2855          * than it will be '2' or already moved '0'.
2856          */
2857
2858         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2859
2860         /*
2861          * If we did not convert it, then we must try again.
2862          */
2863         if (!ret)
2864                 goto spin;
2865
2866         /*
2867          * Yeah! We succeeded in replacing the page.
2868          *
2869          * Now make the new head point back to the reader page.
2870          */
2871         reader->list.next->prev = &cpu_buffer->reader_page->list;
2872         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2873
2874         /* Finally update the reader page to the new head */
2875         cpu_buffer->reader_page = reader;
2876         rb_reset_reader_page(cpu_buffer);
2877
2878         goto again;
2879
2880  out:
2881         __raw_spin_unlock(&cpu_buffer->lock);
2882         local_irq_restore(flags);
2883
2884         return reader;
2885 }
2886
2887 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2888 {
2889         struct ring_buffer_event *event;
2890         struct buffer_page *reader;
2891         unsigned length;
2892
2893         reader = rb_get_reader_page(cpu_buffer);
2894
2895         /* This function should not be called when buffer is empty */
2896         if (RB_WARN_ON(cpu_buffer, !reader))
2897                 return;
2898
2899         event = rb_reader_event(cpu_buffer);
2900
2901         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2902                         || rb_discarded_event(event))
2903                 cpu_buffer->read++;
2904
2905         rb_update_read_stamp(cpu_buffer, event);
2906
2907         length = rb_event_length(event);
2908         cpu_buffer->reader_page->read += length;
2909 }
2910
2911 static void rb_advance_iter(struct ring_buffer_iter *iter)
2912 {
2913         struct ring_buffer *buffer;
2914         struct ring_buffer_per_cpu *cpu_buffer;
2915         struct ring_buffer_event *event;
2916         unsigned length;
2917
2918         cpu_buffer = iter->cpu_buffer;
2919         buffer = cpu_buffer->buffer;
2920
2921         /*
2922          * Check if we are at the end of the buffer.
2923          */
2924         if (iter->head >= rb_page_size(iter->head_page)) {
2925                 /* discarded commits can make the page empty */
2926                 if (iter->head_page == cpu_buffer->commit_page)
2927                         return;
2928                 rb_inc_iter(iter);
2929                 return;
2930         }
2931
2932         event = rb_iter_head_event(iter);
2933
2934         length = rb_event_length(event);
2935
2936         /*
2937          * This should not be called to advance the header if we are
2938          * at the tail of the buffer.
2939          */
2940         if (RB_WARN_ON(cpu_buffer,
2941                        (iter->head_page == cpu_buffer->commit_page) &&
2942                        (iter->head + length > rb_commit_index(cpu_buffer))))
2943                 return;
2944
2945         rb_update_iter_read_stamp(iter, event);
2946
2947         iter->head += length;
2948
2949         /* check for end of page padding */
2950         if ((iter->head >= rb_page_size(iter->head_page)) &&
2951             (iter->head_page != cpu_buffer->commit_page))
2952                 rb_advance_iter(iter);
2953 }
2954
2955 static struct ring_buffer_event *
2956 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2957 {
2958         struct ring_buffer_per_cpu *cpu_buffer;
2959         struct ring_buffer_event *event;
2960         struct buffer_page *reader;
2961         int nr_loops = 0;
2962
2963         cpu_buffer = buffer->buffers[cpu];
2964
2965  again:
2966         /*
2967          * We repeat when a timestamp is encountered. It is possible
2968          * to get multiple timestamps from an interrupt entering just
2969          * as one timestamp is about to be written, or from discarded
2970          * commits. The most that we can have is the number on a single page.
2971          */
2972         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2973                 return NULL;
2974
2975         reader = rb_get_reader_page(cpu_buffer);
2976         if (!reader)
2977                 return NULL;
2978
2979         event = rb_reader_event(cpu_buffer);
2980
2981         switch (event->type_len) {
2982         case RINGBUF_TYPE_PADDING:
2983                 if (rb_null_event(event))
2984                         RB_WARN_ON(cpu_buffer, 1);
2985                 /*
2986                  * Because the writer could be discarding every
2987                  * event it creates (which would probably be bad)
2988                  * if we were to go back to "again" then we may never
2989                  * catch up, and will trigger the warn on, or lock
2990                  * the box. Return the padding, and we will release
2991                  * the current locks, and try again.
2992                  */
2993                 rb_advance_reader(cpu_buffer);
2994                 return event;
2995
2996         case RINGBUF_TYPE_TIME_EXTEND:
2997                 /* Internal data, OK to advance */
2998                 rb_advance_reader(cpu_buffer);
2999                 goto again;
3000
3001         case RINGBUF_TYPE_TIME_STAMP:
3002                 /* FIXME: not implemented */
3003                 rb_advance_reader(cpu_buffer);
3004                 goto again;
3005
3006         case RINGBUF_TYPE_DATA:
3007                 if (ts) {
3008                         *ts = cpu_buffer->read_stamp + event->time_delta;
3009                         ring_buffer_normalize_time_stamp(buffer,
3010                                                          cpu_buffer->cpu, ts);
3011                 }
3012                 return event;
3013
3014         default:
3015                 BUG();
3016         }
3017
3018         return NULL;
3019 }
3020 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3021
3022 static struct ring_buffer_event *
3023 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3024 {
3025         struct ring_buffer *buffer;
3026         struct ring_buffer_per_cpu *cpu_buffer;
3027         struct ring_buffer_event *event;
3028         int nr_loops = 0;
3029
3030         if (ring_buffer_iter_empty(iter))
3031                 return NULL;
3032
3033         cpu_buffer = iter->cpu_buffer;
3034         buffer = cpu_buffer->buffer;
3035
3036  again:
3037         /*
3038          * We repeat when a timestamp is encountered.
3039          * We can get multiple timestamps by nested interrupts or also
3040          * if filtering is on (discarding commits). Since discarding
3041          * commits can be frequent we can get a lot of timestamps.
3042          * But we limit them by not adding timestamps if they begin
3043          * at the start of a page.
3044          */
3045         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3046                 return NULL;
3047
3048         if (rb_per_cpu_empty(cpu_buffer))
3049                 return NULL;
3050
3051         event = rb_iter_head_event(iter);
3052
3053         switch (event->type_len) {
3054         case RINGBUF_TYPE_PADDING:
3055                 if (rb_null_event(event)) {
3056                         rb_inc_iter(iter);
3057                         goto again;
3058                 }
3059                 rb_advance_iter(iter);
3060                 return event;
3061
3062         case RINGBUF_TYPE_TIME_EXTEND:
3063                 /* Internal data, OK to advance */
3064                 rb_advance_iter(iter);
3065                 goto again;
3066
3067         case RINGBUF_TYPE_TIME_STAMP:
3068                 /* FIXME: not implemented */
3069                 rb_advance_iter(iter);
3070                 goto again;
3071
3072         case RINGBUF_TYPE_DATA:
3073                 if (ts) {
3074                         *ts = iter->read_stamp + event->time_delta;
3075                         ring_buffer_normalize_time_stamp(buffer,
3076                                                          cpu_buffer->cpu, ts);
3077                 }
3078                 return event;
3079
3080         default:
3081                 BUG();
3082         }
3083
3084         return NULL;
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3087
3088 static inline int rb_ok_to_lock(void)
3089 {
3090         /*
3091          * If an NMI die dumps out the content of the ring buffer
3092          * do not grab locks. We also permanently disable the ring
3093          * buffer too. A one time deal is all you get from reading
3094          * the ring buffer from an NMI.
3095          */
3096         if (likely(!in_nmi() && !oops_in_progress))
3097                 return 1;
3098
3099         tracing_off_permanent();
3100         return 0;
3101 }
3102
3103 /**
3104  * ring_buffer_peek - peek at the next event to be read
3105  * @buffer: The ring buffer to read
3106  * @cpu: The cpu to peak at
3107  * @ts: The timestamp counter of this event.
3108  *
3109  * This will return the event that will be read next, but does
3110  * not consume the data.
3111  */
3112 struct ring_buffer_event *
3113 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3114 {
3115         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3116         struct ring_buffer_event *event;
3117         unsigned long flags;
3118         int dolock;
3119
3120         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3121                 return NULL;
3122
3123         dolock = rb_ok_to_lock();
3124  again:
3125         local_irq_save(flags);
3126         if (dolock)
3127                 spin_lock(&cpu_buffer->reader_lock);
3128         event = rb_buffer_peek(buffer, cpu, ts);
3129         if (dolock)
3130                 spin_unlock(&cpu_buffer->reader_lock);
3131         local_irq_restore(flags);
3132
3133         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
3134                 cpu_relax();
3135                 goto again;
3136         }
3137
3138         return event;
3139 }
3140
3141 /**
3142  * ring_buffer_iter_peek - peek at the next event to be read
3143  * @iter: The ring buffer iterator
3144  * @ts: The timestamp counter of this event.
3145  *
3146  * This will return the event that will be read next, but does
3147  * not increment the iterator.
3148  */
3149 struct ring_buffer_event *
3150 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3151 {
3152         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3153         struct ring_buffer_event *event;
3154         unsigned long flags;
3155
3156  again:
3157         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3158         event = rb_iter_peek(iter, ts);
3159         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3160
3161         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
3162                 cpu_relax();
3163                 goto again;
3164         }
3165
3166         return event;
3167 }
3168
3169 /**
3170  * ring_buffer_consume - return an event and consume it
3171  * @buffer: The ring buffer to get the next event from
3172  *
3173  * Returns the next event in the ring buffer, and that event is consumed.
3174  * Meaning, that sequential reads will keep returning a different event,
3175  * and eventually empty the ring buffer if the producer is slower.
3176  */
3177 struct ring_buffer_event *
3178 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3179 {
3180         struct ring_buffer_per_cpu *cpu_buffer;
3181         struct ring_buffer_event *event = NULL;
3182         unsigned long flags;
3183         int dolock;
3184
3185         dolock = rb_ok_to_lock();
3186
3187  again:
3188         /* might be called in atomic */
3189         preempt_disable();
3190
3191         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3192                 goto out;
3193
3194         cpu_buffer = buffer->buffers[cpu];
3195         local_irq_save(flags);
3196         if (dolock)
3197                 spin_lock(&cpu_buffer->reader_lock);
3198
3199         event = rb_buffer_peek(buffer, cpu, ts);
3200         if (!event)
3201                 goto out_unlock;
3202
3203         rb_advance_reader(cpu_buffer);
3204
3205  out_unlock:
3206         if (dolock)
3207                 spin_unlock(&cpu_buffer->reader_lock);
3208         local_irq_restore(flags);
3209
3210  out:
3211         preempt_enable();
3212
3213         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
3214                 cpu_relax();
3215                 goto again;
3216         }
3217
3218         return event;
3219 }
3220 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3221
3222 /**
3223  * ring_buffer_read_start - start a non consuming read of the buffer
3224  * @buffer: The ring buffer to read from
3225  * @cpu: The cpu buffer to iterate over
3226  *
3227  * This starts up an iteration through the buffer. It also disables
3228  * the recording to the buffer until the reading is finished.
3229  * This prevents the reading from being corrupted. This is not
3230  * a consuming read, so a producer is not expected.
3231  *
3232  * Must be paired with ring_buffer_finish.
3233  */
3234 struct ring_buffer_iter *
3235 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3236 {
3237         struct ring_buffer_per_cpu *cpu_buffer;
3238         struct ring_buffer_iter *iter;
3239         unsigned long flags;
3240
3241         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242                 return NULL;
3243
3244         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3245         if (!iter)
3246                 return NULL;
3247
3248         cpu_buffer = buffer->buffers[cpu];
3249
3250         iter->cpu_buffer = cpu_buffer;
3251
3252         atomic_inc(&cpu_buffer->record_disabled);
3253         synchronize_sched();
3254
3255         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3256         __raw_spin_lock(&cpu_buffer->lock);
3257         rb_iter_reset(iter);
3258         __raw_spin_unlock(&cpu_buffer->lock);
3259         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3260
3261         return iter;
3262 }
3263 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3264
3265 /**
3266  * ring_buffer_finish - finish reading the iterator of the buffer
3267  * @iter: The iterator retrieved by ring_buffer_start
3268  *
3269  * This re-enables the recording to the buffer, and frees the
3270  * iterator.
3271  */
3272 void
3273 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3274 {
3275         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3276
3277         atomic_dec(&cpu_buffer->record_disabled);
3278         kfree(iter);
3279 }
3280 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3281
3282 /**
3283  * ring_buffer_read - read the next item in the ring buffer by the iterator
3284  * @iter: The ring buffer iterator
3285  * @ts: The time stamp of the event read.
3286  *
3287  * This reads the next event in the ring buffer and increments the iterator.
3288  */
3289 struct ring_buffer_event *
3290 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3291 {
3292         struct ring_buffer_event *event;
3293         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3294         unsigned long flags;
3295
3296  again:
3297         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3298         event = rb_iter_peek(iter, ts);
3299         if (!event)
3300                 goto out;
3301
3302         rb_advance_iter(iter);
3303  out:
3304         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3305
3306         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
3307                 cpu_relax();
3308                 goto again;
3309         }
3310
3311         return event;
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_read);
3314
3315 /**
3316  * ring_buffer_size - return the size of the ring buffer (in bytes)
3317  * @buffer: The ring buffer.
3318  */
3319 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3320 {
3321         return BUF_PAGE_SIZE * buffer->pages;
3322 }
3323 EXPORT_SYMBOL_GPL(ring_buffer_size);
3324
3325 static void
3326 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3327 {
3328         rb_head_page_deactivate(cpu_buffer);
3329
3330         cpu_buffer->head_page
3331                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3332         local_set(&cpu_buffer->head_page->write, 0);
3333         local_set(&cpu_buffer->head_page->entries, 0);
3334         local_set(&cpu_buffer->head_page->page->commit, 0);
3335
3336         cpu_buffer->head_page->read = 0;
3337
3338         cpu_buffer->tail_page = cpu_buffer->head_page;
3339         cpu_buffer->commit_page = cpu_buffer->head_page;
3340
3341         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3342         local_set(&cpu_buffer->reader_page->write, 0);
3343         local_set(&cpu_buffer->reader_page->entries, 0);
3344         local_set(&cpu_buffer->reader_page->page->commit, 0);
3345         cpu_buffer->reader_page->read = 0;
3346
3347         local_set(&cpu_buffer->commit_overrun, 0);
3348         local_set(&cpu_buffer->overrun, 0);
3349         local_set(&cpu_buffer->entries, 0);
3350         local_set(&cpu_buffer->committing, 0);
3351         local_set(&cpu_buffer->commits, 0);
3352         cpu_buffer->read = 0;
3353
3354         cpu_buffer->write_stamp = 0;
3355         cpu_buffer->read_stamp = 0;
3356
3357         rb_head_page_activate(cpu_buffer);
3358 }
3359
3360 /**
3361  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3362  * @buffer: The ring buffer to reset a per cpu buffer of
3363  * @cpu: The CPU buffer to be reset
3364  */
3365 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3366 {
3367         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3368         unsigned long flags;
3369
3370         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3371                 return;
3372
3373         atomic_inc(&cpu_buffer->record_disabled);
3374
3375         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3376
3377         __raw_spin_lock(&cpu_buffer->lock);
3378
3379         rb_reset_cpu(cpu_buffer);
3380
3381         __raw_spin_unlock(&cpu_buffer->lock);
3382
3383         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3384
3385         atomic_dec(&cpu_buffer->record_disabled);
3386 }
3387 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3388
3389 /**
3390  * ring_buffer_reset - reset a ring buffer
3391  * @buffer: The ring buffer to reset all cpu buffers
3392  */
3393 void ring_buffer_reset(struct ring_buffer *buffer)
3394 {
3395         int cpu;
3396
3397         for_each_buffer_cpu(buffer, cpu)
3398                 ring_buffer_reset_cpu(buffer, cpu);
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3401
3402 /**
3403  * rind_buffer_empty - is the ring buffer empty?
3404  * @buffer: The ring buffer to test
3405  */
3406 int ring_buffer_empty(struct ring_buffer *buffer)
3407 {
3408         struct ring_buffer_per_cpu *cpu_buffer;
3409         unsigned long flags;
3410         int dolock;
3411         int cpu;
3412         int ret;
3413
3414         dolock = rb_ok_to_lock();
3415
3416         /* yes this is racy, but if you don't like the race, lock the buffer */
3417         for_each_buffer_cpu(buffer, cpu) {
3418                 cpu_buffer = buffer->buffers[cpu];
3419                 local_irq_save(flags);
3420                 if (dolock)
3421                         spin_lock(&cpu_buffer->reader_lock);
3422                 ret = rb_per_cpu_empty(cpu_buffer);
3423                 if (dolock)
3424                         spin_unlock(&cpu_buffer->reader_lock);
3425                 local_irq_restore(flags);
3426
3427                 if (!ret)
3428                         return 0;
3429         }
3430
3431         return 1;
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3434
3435 /**
3436  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3437  * @buffer: The ring buffer
3438  * @cpu: The CPU buffer to test
3439  */
3440 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3441 {
3442         struct ring_buffer_per_cpu *cpu_buffer;
3443         unsigned long flags;
3444         int dolock;
3445         int ret;
3446
3447         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448                 return 1;
3449
3450         dolock = rb_ok_to_lock();
3451
3452         cpu_buffer = buffer->buffers[cpu];
3453         local_irq_save(flags);
3454         if (dolock)
3455                 spin_lock(&cpu_buffer->reader_lock);
3456         ret = rb_per_cpu_empty(cpu_buffer);
3457         if (dolock)
3458                 spin_unlock(&cpu_buffer->reader_lock);
3459         local_irq_restore(flags);
3460
3461         return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3464
3465 /**
3466  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3467  * @buffer_a: One buffer to swap with
3468  * @buffer_b: The other buffer to swap with
3469  *
3470  * This function is useful for tracers that want to take a "snapshot"
3471  * of a CPU buffer and has another back up buffer lying around.
3472  * it is expected that the tracer handles the cpu buffer not being
3473  * used at the moment.
3474  */
3475 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3476                          struct ring_buffer *buffer_b, int cpu)
3477 {
3478         struct ring_buffer_per_cpu *cpu_buffer_a;
3479         struct ring_buffer_per_cpu *cpu_buffer_b;
3480         int ret = -EINVAL;
3481
3482         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3483             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3484                 goto out;
3485
3486         /* At least make sure the two buffers are somewhat the same */
3487         if (buffer_a->pages != buffer_b->pages)
3488                 goto out;
3489
3490         ret = -EAGAIN;
3491
3492         if (ring_buffer_flags != RB_BUFFERS_ON)
3493                 goto out;
3494
3495         if (atomic_read(&buffer_a->record_disabled))
3496                 goto out;
3497
3498         if (atomic_read(&buffer_b->record_disabled))
3499                 goto out;
3500
3501         cpu_buffer_a = buffer_a->buffers[cpu];
3502         cpu_buffer_b = buffer_b->buffers[cpu];
3503
3504         if (atomic_read(&cpu_buffer_a->record_disabled))
3505                 goto out;
3506
3507         if (atomic_read(&cpu_buffer_b->record_disabled))
3508                 goto out;
3509
3510         /*
3511          * We can't do a synchronize_sched here because this
3512          * function can be called in atomic context.
3513          * Normally this will be called from the same CPU as cpu.
3514          * If not it's up to the caller to protect this.
3515          */
3516         atomic_inc(&cpu_buffer_a->record_disabled);
3517         atomic_inc(&cpu_buffer_b->record_disabled);
3518
3519         buffer_a->buffers[cpu] = cpu_buffer_b;
3520         buffer_b->buffers[cpu] = cpu_buffer_a;
3521
3522         cpu_buffer_b->buffer = buffer_a;
3523         cpu_buffer_a->buffer = buffer_b;
3524
3525         atomic_dec(&cpu_buffer_a->record_disabled);
3526         atomic_dec(&cpu_buffer_b->record_disabled);
3527
3528         ret = 0;
3529 out:
3530         return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3533
3534 /**
3535  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3536  * @buffer: the buffer to allocate for.
3537  *
3538  * This function is used in conjunction with ring_buffer_read_page.
3539  * When reading a full page from the ring buffer, these functions
3540  * can be used to speed up the process. The calling function should
3541  * allocate a few pages first with this function. Then when it
3542  * needs to get pages from the ring buffer, it passes the result
3543  * of this function into ring_buffer_read_page, which will swap
3544  * the page that was allocated, with the read page of the buffer.
3545  *
3546  * Returns:
3547  *  The page allocated, or NULL on error.
3548  */
3549 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3550 {
3551         struct buffer_data_page *bpage;
3552         unsigned long addr;
3553
3554         addr = __get_free_page(GFP_KERNEL);
3555         if (!addr)
3556                 return NULL;
3557
3558         bpage = (void *)addr;
3559
3560         rb_init_page(bpage);
3561
3562         return bpage;
3563 }
3564 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3565
3566 /**
3567  * ring_buffer_free_read_page - free an allocated read page
3568  * @buffer: the buffer the page was allocate for
3569  * @data: the page to free
3570  *
3571  * Free a page allocated from ring_buffer_alloc_read_page.
3572  */
3573 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3574 {
3575         free_page((unsigned long)data);
3576 }
3577 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3578
3579 /**
3580  * ring_buffer_read_page - extract a page from the ring buffer
3581  * @buffer: buffer to extract from
3582  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3583  * @len: amount to extract
3584  * @cpu: the cpu of the buffer to extract
3585  * @full: should the extraction only happen when the page is full.
3586  *
3587  * This function will pull out a page from the ring buffer and consume it.
3588  * @data_page must be the address of the variable that was returned
3589  * from ring_buffer_alloc_read_page. This is because the page might be used
3590  * to swap with a page in the ring buffer.
3591  *
3592  * for example:
3593  *      rpage = ring_buffer_alloc_read_page(buffer);
3594  *      if (!rpage)
3595  *              return error;
3596  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3597  *      if (ret >= 0)
3598  *              process_page(rpage, ret);
3599  *
3600  * When @full is set, the function will not return true unless
3601  * the writer is off the reader page.
3602  *
3603  * Note: it is up to the calling functions to handle sleeps and wakeups.
3604  *  The ring buffer can be used anywhere in the kernel and can not
3605  *  blindly call wake_up. The layer that uses the ring buffer must be
3606  *  responsible for that.
3607  *
3608  * Returns:
3609  *  >=0 if data has been transferred, returns the offset of consumed data.
3610  *  <0 if no data has been transferred.
3611  */
3612 int ring_buffer_read_page(struct ring_buffer *buffer,
3613                           void **data_page, size_t len, int cpu, int full)
3614 {
3615         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3616         struct ring_buffer_event *event;
3617         struct buffer_data_page *bpage;
3618         struct buffer_page *reader;
3619         unsigned long flags;
3620         unsigned int commit;
3621         unsigned int read;
3622         u64 save_timestamp;
3623         int ret = -1;
3624
3625         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3626                 goto out;
3627
3628         /*
3629          * If len is not big enough to hold the page header, then
3630          * we can not copy anything.
3631          */
3632         if (len <= BUF_PAGE_HDR_SIZE)
3633                 goto out;
3634
3635         len -= BUF_PAGE_HDR_SIZE;
3636
3637         if (!data_page)
3638                 goto out;
3639
3640         bpage = *data_page;
3641         if (!bpage)
3642                 goto out;
3643
3644         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3645
3646         reader = rb_get_reader_page(cpu_buffer);
3647         if (!reader)
3648                 goto out_unlock;
3649
3650         event = rb_reader_event(cpu_buffer);
3651
3652         read = reader->read;
3653         commit = rb_page_commit(reader);
3654
3655         /*
3656          * If this page has been partially read or
3657          * if len is not big enough to read the rest of the page or
3658          * a writer is still on the page, then
3659          * we must copy the data from the page to the buffer.
3660          * Otherwise, we can simply swap the page with the one passed in.
3661          */
3662         if (read || (len < (commit - read)) ||
3663             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3664                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3665                 unsigned int rpos = read;
3666                 unsigned int pos = 0;
3667                 unsigned int size;
3668
3669                 if (full)
3670                         goto out_unlock;
3671
3672                 if (len > (commit - read))
3673                         len = (commit - read);
3674
3675                 size = rb_event_length(event);
3676
3677                 if (len < size)
3678                         goto out_unlock;
3679
3680                 /* save the current timestamp, since the user will need it */
3681                 save_timestamp = cpu_buffer->read_stamp;
3682
3683                 /* Need to copy one event at a time */
3684                 do {
3685                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3686
3687                         len -= size;
3688
3689                         rb_advance_reader(cpu_buffer);
3690                         rpos = reader->read;
3691                         pos += size;
3692
3693                         event = rb_reader_event(cpu_buffer);
3694                         size = rb_event_length(event);
3695                 } while (len > size);
3696
3697                 /* update bpage */
3698                 local_set(&bpage->commit, pos);
3699                 bpage->time_stamp = save_timestamp;
3700
3701                 /* we copied everything to the beginning */
3702                 read = 0;
3703         } else {
3704                 /* update the entry counter */
3705                 cpu_buffer->read += rb_page_entries(reader);
3706
3707                 /* swap the pages */
3708                 rb_init_page(bpage);
3709                 bpage = reader->page;
3710                 reader->page = *data_page;
3711                 local_set(&reader->write, 0);
3712                 local_set(&reader->entries, 0);
3713                 reader->read = 0;
3714                 *data_page = bpage;
3715         }
3716         ret = read;
3717
3718  out_unlock:
3719         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3720
3721  out:
3722         return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3725
3726 #ifdef CONFIG_TRACING
3727 static ssize_t
3728 rb_simple_read(struct file *filp, char __user *ubuf,
3729                size_t cnt, loff_t *ppos)
3730 {
3731         unsigned long *p = filp->private_data;
3732         char buf[64];
3733         int r;
3734
3735         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3736                 r = sprintf(buf, "permanently disabled\n");
3737         else
3738                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3739
3740         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3741 }
3742
3743 static ssize_t
3744 rb_simple_write(struct file *filp, const char __user *ubuf,
3745                 size_t cnt, loff_t *ppos)
3746 {
3747         unsigned long *p = filp->private_data;
3748         char buf[64];
3749         unsigned long val;
3750         int ret;
3751
3752         if (cnt >= sizeof(buf))
3753                 return -EINVAL;
3754
3755         if (copy_from_user(&buf, ubuf, cnt))
3756                 return -EFAULT;
3757
3758         buf[cnt] = 0;
3759
3760         ret = strict_strtoul(buf, 10, &val);
3761         if (ret < 0)
3762                 return ret;
3763
3764         if (val)
3765                 set_bit(RB_BUFFERS_ON_BIT, p);
3766         else
3767                 clear_bit(RB_BUFFERS_ON_BIT, p);
3768
3769         (*ppos)++;
3770
3771         return cnt;
3772 }
3773
3774 static const struct file_operations rb_simple_fops = {
3775         .open           = tracing_open_generic,
3776         .read           = rb_simple_read,
3777         .write          = rb_simple_write,
3778 };
3779
3780
3781 static __init int rb_init_debugfs(void)
3782 {
3783         struct dentry *d_tracer;
3784
3785         d_tracer = tracing_init_dentry();
3786
3787         trace_create_file("tracing_on", 0644, d_tracer,
3788                             &ring_buffer_flags, &rb_simple_fops);
3789
3790         return 0;
3791 }
3792
3793 fs_initcall(rb_init_debugfs);
3794 #endif
3795
3796 #ifdef CONFIG_HOTPLUG_CPU
3797 static int rb_cpu_notify(struct notifier_block *self,
3798                          unsigned long action, void *hcpu)
3799 {
3800         struct ring_buffer *buffer =
3801                 container_of(self, struct ring_buffer, cpu_notify);
3802         long cpu = (long)hcpu;
3803
3804         switch (action) {
3805         case CPU_UP_PREPARE:
3806         case CPU_UP_PREPARE_FROZEN:
3807                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3808                         return NOTIFY_OK;
3809
3810                 buffer->buffers[cpu] =
3811                         rb_allocate_cpu_buffer(buffer, cpu);
3812                 if (!buffer->buffers[cpu]) {
3813                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3814                              cpu);
3815                         return NOTIFY_OK;
3816                 }
3817                 smp_wmb();
3818                 cpumask_set_cpu(cpu, buffer->cpumask);
3819                 break;
3820         case CPU_DOWN_PREPARE:
3821         case CPU_DOWN_PREPARE_FROZEN:
3822                 /*
3823                  * Do nothing.
3824                  *  If we were to free the buffer, then the user would
3825                  *  lose any trace that was in the buffer.
3826                  */
3827                 break;
3828         default:
3829                 break;
3830         }
3831         return NOTIFY_OK;
3832 }
3833 #endif